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Abstract

a

In a recent paper Birke and Bissantz (2008) considered the problem of nonparametric estima-

tion in inverse regression models with convolution-type operators. For multivariate predictors

nonparametric methods suffer from the curse of dimensionality and we consider inverse re-

gression models with the additional qualitative assumption of additivity. In these models

several additive estimators are studied. In particular, we investigate estimators under the

random design assumption which are applicable when observations are not available on a

grid. Finally, we compare this estimator with the marginal integration and the non-additive

estimator by means of a simulation study. It is demonstrated that the new method yields a

substantial improvement of the currently available procedures.
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1 Introduction

Inverse models have numerous applications in such important fields as biology, astronomy, economy

or physics, where they have been intensively studied in a deterministic framework [Engl et al.

(1996), Saitoh (1997)]. Recently inverse problems have also found considerable interest in the

statistical literature. These investigations reflect the demand in applications to quantify the

uncertainty of estimates or to validate the model assumptions by the construction of statistical

confidence regions or hypotheses tests, respectively [see Mair and Ruymgaart (1996), Kaipio and

Somersalo (2010), Bissantz et al. (2007b), Cavalier (2008), Bertero et al. (2009), Bertero et al.

(2009) or Birke et al. (2010) among others]. In this paper we are interested in the convolution

type inverse regression model

Y = g(z) + ε =

∫
Rd
ψ(z− t)θ(t)d(t) + ε(1.1)

with a known function ψ : Rd → R [e.g. Adorf (1995)] and a centered noise term ε. The goal

of the experiment is to recover the signal θ : Rd → R from data (z1, Y1), . . . , (zn, Yn) which is

closely related to deconvolution [e.g. Stefanski and Carroll (1990) and Fan (1991)]. Models of the

type (1.1) have important applications in the recovery of images from astronomical telescopes or

fluorescence microscopes in biology. Therefore statistical inference for the problem of estimating

the signal θ in model (1.1) has become an important field of research in recent years, where the

main focus is on a one dimensional predictor. Bayesian methods have been investigated in Bertero

et al. (2009) and Kaipio and Somersalo (2010) and nonparametric methods have been proposed

by Mair and Ruymgaart (1996), Cavalier (2008) and Bissantz et al. (2007b) among others.

In the present paper we investigate convergence properties of Fourier-based estimators for the

function θ with the following purposes. Firstly, our research is motivated by the fact that decon-

volution problems often arise with a multivariate predictor such as location and time. For this

situation Birke and Bissantz (2008) proposed a nonparametric estimate of the signal θ and derived

its asymptotic properties under rather strong assumptions. We will discuss the nonparametric es-

timation problem for the signal θ under substantially weaker assumptions. Secondly, because

nonparametric estimation usually suffers from the curse of dimensionality improved estimators

incorporating qualitative assumptions such as additivity or multiplicity are investigated under the

fixed and the random design assumption. While additive estimation has been intensively discussed

for direct problems from different perspectives [see Linton and Nielsen (1995b), Mammen et al.

(1999), Carroll et al. (2002), Hengartner and Sperlich (2005), Nielsen and Sperlich (2005), Doksum

and Koo (2000), Horowitz and Lee (2005), Lee et al. (2010), Dette and Scheder (2011)] - to our

best knowledge - only one additive estimator is available for indirect inverse regression models so

far where it is assumed that the observations are available on a grid [see Birke et al. (2012)]. In

this paper we are particularly interested in two alternative additive estimators. The first one is
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applicable if observations are available on a grid but has a substantially simpler structure than

the method proposed by the last-named authors, which makes it very attractive for practition-

ers. Moreover, it also yields substantially more precise estimates than the method of Birke et al.

(2012). The second estimator is additionally applicable in the case of random predictors.

Thirdly, we will also investigate the case of correlated errors in the inverse regression model (1.1),

which has - to our best knowledge - not been considered so far although it appears frequently in

applications. Finally, we do not assume that the kernel ψ is periodic, which is a common assertion

in inverse regression models with convolution operator [see e.g. Cavalier and Tsybakov (2002)].

Note that for many problems such as the reconstruction of astronomical and biological images

from telescopic and microscopic imaging devices this assumption is unrealistic.

The remaining part of this paper is organized as follows. In Section 2 we introduce the necessary

notation, different types of designs and estimators studied in this paper. Section 3 is devoted to the

asymptotic properties of the estimators and we establish asymptotic normality of all considered

(appropriately standardized) statistics. In Section 4 we explain how the results are changing for

dependent data while Section 5 presents a small simulation study of the finite sample properties

of the proposed methods. In particular we compare the new additive estimator with the currently

available methods and demonstrate its superiority by a factor 6-8 with respect to mean squared

error. Finally all details regarding the proofs of our asymptotic results can be found in Section 6.

2 Preliminaries

Recall the definition of model (1.1) where we assume that the moments E[εk] exist for all k ∈ N
such that E[ε] = 0 and σ2 = E[ε2] > 0. For the sake of transparency we assume at this point

that the errors corresponding to different predictors are independent - for the more general case

of an error process with an MA(q)-structure, see Section 4. We will investigate various estimators

under two assumptions regarding the explanatory variables z.

(FD) Under the fixed design assumption we assume that observations are available on a grid of

increasing size. More precisely we consider a sequence an → 0 as n → ∞ and assume that

at each location zk = k
nan
∈ Rd with k = (k1, ..., kd) ∈ {−n, ..., n}d a pair of observations

(zk, Yk) is available in the model

Yk = g(zk) + εk =

∫
Rd
ψ(zk − t)θ(t)dt + εk,(2.1)

where {εk | k ∈ {−n, ..., n}d} are independent and identically distributed random variables.

Under this assumption the sample size is N = (2n + 1)d. Note that formally the random

variables {Yk|k ∈ {−n, ..., n}d} form a triangular array, but we do not reflect this dependence

in the notation. In other words we will use the notation Yk, zk, εk instead of Yk,n, zk,n, εk,n
throughout this paper.
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(RD) Under the random design assumption we assume that the explanatory variables are realiza-

tions of independent, identically distributed random variables X1,n, ...,Xn,n with a density

fn. Again we will not reflect the triangular structure in the notation and use Yk,Xk, εk and

f instead of Yk,n,Xk,n, εk,n and fn, respectively, that is

Yk = g(Xk) + εk =

∫
Rd
ψ(Xk − t)θ(t)dt + εk; k ∈ {1, ..., n},(2.2)

where ε1, ..., εn are independent identically distributed random variables. Under this as-

sumption the sample size is N = n.

We will use different estimators in both scenarios (2.1) and (2.2). Note that assumption (FD)

assumes that observations are available on a complete d-dimensional grid of length 1
nan

. In this

case an estimator of the signal θ has also been studied by Birke and Bissantz (2008). The estimator

in model (2.2) under assumption (RD), which is proposed in the following section, could also be

used if not all observations are available on the grid.

2.1 Unrestricted estimation for random design

Fourier-based estimators have been considered by numerous authors in the univariate case (e.g.

Diggle and Hall (1993), Mair and Ruymgaart (1996), Cavalier and Tsybakov (2002) and Bissantz

et al. (2007a)) and its generalization to the multivariate case considered in the models (2.1) and

(2.2) is straightforward. For model (2.1) a Fourier-based estimator is given by

θ̂FD(x∗) =
1

(2π)d

∫
Rd
e−i〈w,x

∗〉ΦK(hw)
Φ̂FD(w)

Φψ(w)
dw,(2.3)

where

Φ̂FD(w) =
1

ndadn

∑
k∈{−n,...,n}d

Yke
i〈w,zk〉.

denotes the empirical Fourier transform, 〈v,w〉 is the standard inner product of the vectors v,w ∈
Rd and ΦK and Φψ denote the Fourier transform of a kernel function K and the convolution

function ψ (which is assumed to be known), respectively. Moreover, in (2.3) the quantity h is a

bandwidth converging to 0 with increasing sample size. Birke et al. (2012) used this estimator to

construct improved estimators under the qualitative assumption of additivity in the case of a fixed

design. In Section 2.2 we will propose an alternative additive estimator in the case of fixed design,

which provides a notable improvement of the estimator proposed by the last named authors.

For a random design we will use the same Fourier-based estimator as defined in (2.3), where the
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empirical Fourier transform Φ̂FD(w) in (2.3) is replaced by

Φ̂RD(w) =
1

n

n∑
k=1

ei〈w,Xk〉 Yk
max{f(Xk), f( 1

an
)}
,(2.4)

1/an = (1/an, ..., 1/an) ∈ Rd and an is again a sequence converging to 0 with increasing sample

size. The resulting estimator will be denoted by θ̂RD(x∗). In (2.4) f denotes the density of X1

and we take the maximum of f(Xk) and f( 1
an

) to ensure that the variance of θ̂RD(x∗) is bounded.

We also note that the estimator θ̂RD admits the representation

θ̂RD(x∗) =
n∑
k=1

Ykwn(x∗,Xk),(2.5)

where the weights are given by

wn(x∗,Xk) =
1

nmax{f(Xk), f( 1
an

)}(2π)d

∫
Rd
e−i〈w,x

∗−Xk〉ΦK(hw)

Φψ(w)
dw.(2.6)

Remark 2.1 Note that we use the same bandwidth for all components of the predictor. This

assumption is made for the sake of a transparent presentation of the results. In applications the

components of the vector x represent different physical quantities such that different bandwidths

have to be used. All results presented in this paper can be modified to this case with an additional

amount of notation.

2.2 Estimation of additive inverse regression models

It is well known that in practical applications nonparametric methods as introduced in Section 2.1

suffer from the curse of dimensionality and therefore do not yield precise estimates of the signal θ

with a multivariate predictor. A common approach in nonparametric statistics to deal with this

problem is to postulate an additive structure of the signal θ, that is

θ(x∗) = θadd(x∗) := θadd0 +
m∑
j=1

θaddIj
(x∗Ij)(2.7)

[see Hastie and Tibishirani (2008)]. Here {I1, ..., Im} denotes a partition of the set {1, ..., d} with

cardinalities |Ij| = dj and x∗Ij is the vector which includes all components of the vector x∗ with

corresponding indices i ∈ Ij. Furthermore θadd0 is a constant and θaddIj
: Rdj → R denote functions

normalized such that ∫
θaddIj

(x)d(x) = 0 (j = 1, ...,m).
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Note that the completely additive case is obtained for the choice m = d, that is d1 = ... = dd = 1.

In the case of direct regression models several estimation techniques such as marginal integration

[see Linton and Nielsen (1995b), Carroll et al. (2002), Hengartner and Sperlich (2005)], backfitting

[Mammen et al. (1999), Nielsen and Sperlich (2005)] have been proposed in the literature. Recently

the estimation problem of an additive (direct) regression model has also found considerable interest

in the context of quantile regression [see Doksum and Koo (2000), De Gooijer and Zerom (2003),

Horowitz and Lee (2005), Lee et al. (2010), Dette and Scheder (2011) among others] but - to

our best knowledge - only one estimator has been proposed for additive inverse regression models

under the assumption that observations are available on a grid [see Birke et al. (2012)]. For

this situation we will propose an alternative estimator in the following section, which yields an

improvement by a factor 6-10 with respect to mean squared error (see our numerical results in

Section 5).

To construct an estimator in the additive inverse regression model (2.7) with random design we

apply the marginal integration method introduced in Linton and Nielsen (1995a) to the statistic

defined in (2.5). To this end we consider weighting functions QI1 , ..., QIm , QIj : Rdj → R and

define

Q(x∗) = QI1(x
∗
I1

)...QIm(x∗Im)

QIcj
(x∗Icj ) = QI1(x

∗
I1

)...QIj−1
(x∗Ij−1

)QIj+1
(x∗Ij+1

)...QIm(x∗Im),(2.8)

where Icj = {1, . . . , d} \ Ij. With this notation we introduce the quantities

αj,QIc
j
(x∗Ij) =

∫
Rd−dj

θ(x∗)dQIcj
(x∗Icj ), j = 1, ...,m,(2.9)

c =

∫
Rd
θ(x∗)dQ(x∗).(2.10)

Now let θ̂RD denote the unrestricted estimator introduced in Section 2.1 for the random design

model, then the additive estimator for the signal θ is finally defined by

θ̂add,RD(x∗) = α̂1,QIc1
(x∗I1) + ...+ α̂m,QIcm (x∗Im)− (m− 1)ĉ(2.11)

where ĉ and α̂j,QIc
j

denote estimates for the quantities c and αj,QIc
j

which are obtained by replacing

in (2.9) and (2.10) the signal θ by its estimator θ̂full,RD, respectively. Recalling the definition of

the unrestricted estimator in (2.3) and (2.4), we obtain from (2.9) the representation

α̂j,QIc
j
(x∗Ij) =

n∑
k=1

Ykw
add
n (x∗Ij ,Xk),(2.12)
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where the weights are given by

waddn (x∗Ij ,Xk) =
1

nhd(2π)d

∫
Rd
ei〈w,Xk〉/he

−i〈wIj ,x
∗
Ij
〉/h
LIcj

(
wIcj

h

)
ΦK(w)

Φψ(w
h

)
dw× 1

max{f(Xk), f( 1
an

)}

and

LIcj (yIcj ) =

∫
Rd−dj

e
−i〈yIc

j
,x∗
Ic
j
〉
dQIcj

(x∗Icj ).

2.3 An alternative additive estimator for a fixed design

In principle the marginal integration estimator could also be used under the fixed design assump-

tion (FD) and its asymptotic properties have been studied by Birke et al. (2012). However, it

turns out that for observations on a grid a simpler and more efficient estimator can be defined.

This idea is closely related to the backfitting approach. To be precise we note that the assumption

of additivity for the signal θ implies additivity of the observable signal g due to the linearity of

the convolution operator. Hence, model (2.1) is equivalent to

Yk = g0 + gI1(zkI1 ) + ...+ gIm(zkIm ) + εk,(2.13)

where g0 =
∫
Rd ψ(z− t)θ0dt,

gIj(zkIj
) =

∫
Rdj

ψIj(zkIj
− tIj)θ

add
Ij

(tIj)dtIj (j = 1, . . . ,m)(2.14)

and ψI1 , ..., ψId are the marginals of ψ, that is

ψIj(tIj) =

∫
Rd−dj

ψ(t)dtIcj .

Recall the definition of kIj and kIcj as the dj and (d− dj)-dimensional vector corresponding to the

components (kl | l ∈ Ij) and (kl | l ∈ Icj ) of the vector k = (k1, ..., kd), respectively. In order to

define estimators of these terms we consider the empirical Fourier transforms in dimension dj

Ψ̂Ij(w) =
1

(nan)dj

∑
kIj∈{−n,...,n}

dj

ZkIj
e
i〈w,zkIj 〉 (j = 1, . . . ,m),

where the random variables ZkIj
are given by

ZkIj
=

1

(2n+ 1)d−dj

∑
kIc
j
∈{−n,...,n}d−dj

Yk.(2.15)
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The additive estimator is now defined by

θ̂add,FD(x∗) = θ̂0 + θ̂FDI1 (x∗I1) + ...+ θ̂FDIm (x∗Im),(2.16)

where

θ̂0 =
1

nd

∑
k∈{−n,...,n}d

Yk

θ̂FDIj (x∗Ij) =
1

(2π)dj

∫
Rdj

e
−i〈w,x∗Ij 〉ΦK(hw)

Ψ̂gIj
(w)

ΦψIj
(w)

dw (j = 1, . . . ,m).(2.17)

Note that by the lattice structure the statistic ZkIj
in (2.15) is a

√
nd−dj -consistent estimator of

gIj(zkIj
). Therefore the deconvolution problem for the j-th component is reduced to a problem in

dimension dj and the estimator θ̂FDIj (x∗Ij) can be rewritten as

θ̂FDIj (x∗Ij) =
∑

kIj∈{−n,...,n}
dj

ZkIj
wkIj ,n

(x∗Ij),(2.18)

where the weights wkIj ,n
are defined by

wkIj ,n
(x∗Ij) =

1

(nhan2π)dj

∫
Rdj

e
−i〈w,(x∗Ij−zkIj )〉/h ΦK(w)

ΦψIj
(w
h

)
dw.(2.19)

2.4 Technical Assumptions

In the following Section we will derive important asymptotic properties of the proposed estimators.

For this purpose the following assumptions are required, where different statements in the following

discussion require different parts of these assumptions. Throughout this paper ‖ . ‖ denotes the

Euclidean norm and the symbol an ∼ bn means that limn→∞ an/bn = c for some positive constant

c.

Assumption 1 a

(A) Under the random design assumption the Fourier transform Φψ of the function ψ satisfies

(as h→ 0) ∫
Rd

|ΦK(w)|
|Φψ(w

h
)|
dw ≤ C1h

−β ,

∫
Rd

|ΦK(w)|2

|Φψ(w
h

)|2
dw ∼ C2h

−2β

for some β > 0 and constants C1, C2 > 0.
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(B) Under the fixed design and additivity assumption the Fourier transforms ΦψIj
of the marginals

ψIj of ψ satisfy∫
Rdj

|ΦK(w)|
|ΦψIj

(w
h

)|
dw ≤ C1h

−βj ,

∫
Rdj

|ΦK(w)|2

|ΦψIj
(w
h

)|2
dw ∼ C2h

−2βj

for some βj > 0 (j = 1, . . . ,m) and constants C1, C2 > 0.

Assumption 2 a

(A) Under the random design assumption the Fourier transform ΦK of the kernel K in (2.3) is

symmetric, supported on the cube [−1, 1]d and there exists a constant b ∈ (0, 1] such that

ΦK(w) = 1 for w ∈ [−b, b]d, b > 0, and |ΦK(w)| ≤ 1 for all w ∈ [−1, 1]d.

(B) Under the fixed design and additivity assumption the Fourier transform ΦK of the kernel

K is symmetric and supported on [−1, 1]dj and there exists a constant b ∈ (0, 1] such that

ΦK(w) = 1 for w ∈ [−b, b]dj , b > 0, and |ΦK(w)| ≤ 1 for all w ∈ [−1, 1]dj for all j = 1, ...,m.

Assumption 3 a

(A) The Fourier transform Φθ of the signal θ in model (1.1) exists and satisfies∫
Rd
|Φθ(w)| ‖ w ‖s−1 dw <∞ for some s > 1.

(B) The function g in model (1.1) satisfies∫
Rd
|g(z)| ‖ z ‖r dz <∞

for some r > 0 such that arn = O(hβ+d+s−1).

(C) The Fourier transforms ΦθaddI1
, ...,ΦθaddIm

of the functions θaddI1
, ..., θaddIm

in the additive model

(2.7) satisfy∫
Rd
|ΦθaddIj

(w)| ‖ w ‖s−1 dw <∞ for some s > 1 and j = 1, ...,m.

(D) The functions gI1 , ..., gIm defined in (2.14) satisfy∫
Rdj
|gIj(z)| ‖ z ‖r dz >∞ for j = 1, ...,m

for some r > 0 such that a
r−dj
n = O(hβj+s+dj−1).
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Assumption 4 For each n ∈ N let X1, ...,Xn denote independent identically distributed d-

dimensional random variables with density f (which may depend on n) such that f(x) 6= 0

for all x ∈ [− 1
an
, 1
an

]d. Furthermore we assume, that for sufficiently large n ∈ N

f(x) ≥ f(
1

an

) for x ∈ [− 1

an
,

1

an
]d.

The final assumption is required for the marginal integration estimator and is an extension of

Assumption 1. For a precise statement we define for y ∈ Rd−dj

LIcj (y) =

∫
Rd−dj

e
−i〈y,xIc

j
〉
dQIcj

(xIcj )(2.20)

where QIcj
(xIcj ) as defined in (2.8).

Assumption 5 There exist positive constants γ1, ..., γm such that the Fourier transform Φψ of

the convolution function ψ satisfies

(A)
∫
Rd

∣∣∣LIcj (wIc
j

h

)∣∣∣2 |ΦK(w)|2
|Φψ(w

h
)|2dw ∼ C3h

−2β+γj (j = 1, ...,m)

(B)
∫
Rd

∣∣∣∑m
j=1 e

−i〈wIj ,x
∗
Ij
〉/h
LIcj

(wIc
j

h

)∣∣∣2 |ΦK(w)|2
|Φψ(w

h
)|2dw ∼ C4h

−2β+γmin , where γmin = minmj=1 γj

(C)
∫
Rd
(∏m

j=1

∣∣LIcj (wIcjh )∣∣2) |ΦK(w)|2
|Φψ(w

h
)|2dw = o

(
h−2β+γmin

)
.

Remark 2.2 a

1. The common assumption on the convolution function ψ is

Φψ(w) ‖ w ‖β→ C w→∞,(2.21)

[see Birke and Bissantz (2008)]. Assumption 1 is substantially weaker because we do not

assume Φψ to be asymptotically radial-symmetric. It is satisfied for many commonly used

convolution functions such as the multivariate Laplace density, the density of several Gamma

distributions such as the Exponential distribution for which (2.21) does not hold.

2. Assumptions 3(A) and 3(B) will not be required for the new additive estimator introduced

in Section 2.2 under the fixed design assumption. As a consequence the asymptotic theory

for the new estimator in the completely additive case m = d (d1 = ... = dm = 1) does

not require the additive functions to have compact support as it is assumed in Birke et al.

(2012).
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3. Assumptions 3(B) and 3(D) are needed for the computation of the bias, where we have to

ensure that g(x) converges sufficiently fast to zero as x → ∞. Note that we only observe

data on the cube [− 1
an
, 1
an

]d.

4. The results of this Section can be extended to multiplicative signals of the form

θmult(x∗) =
m∏
j=1

θmultIj
(x∗Ij).(2.22)

The details are omitted for the sake of brevity.

Example 2.3 In order to demonstrate that the assumptions are satisfied in many cases of prac-

tical importance we consider exemplarily Assumptions 1 and 5 and a two dimensional additive

signal that is x = (x1, x2),

θ(x1, x2) = θ1(x1) + θ2(x2),

(I1 = Ic2 = {1}, I2 = Ic1 = {2}). For the convolution function in (1.1) and the weight (2.8) we

choose

ψ(x) =
λ2

4
e−λ(|x1|+|x2|)

Q(x) = 1[−1,1]2(x),

respectively, and the kernel K is given by

K(x) =
sin(x1) sin(x2)

π2x1x2

.

The integrals in Assumptions 1 and 5 are therefore obtained by a straightforward calculation∫
R2

|ΦK(w)|
|Φψ(w

h )|
dw =

∫
[−1,1]2

(
1 +

w2
1

h2

)(
1 +

w2
2

h2

)
dw =

(
2

3h2
+ 2

)2

∫
R2

|ΦK(w)|2

|Φψ(w
h )|2

dw =

∫
[−1,1]2

(
1 +

w2
1

h2

)2(
1 +

w2
2

h2

)2

dw =

(
2

5h4
+

4

3h2
+ 2

)2

∫
R2

∣∣∣L1

(w1

h

)∣∣∣2 |ΦK(w)|2

|Φψ(w
h )|2

dw =

∫
[−1,1]2

4h2| sin
(
w1

h

)
|2
(

1 +
w2

1

h2

)2 (
1 +

w2
2

h2

)2
w2

1

dw =
8

15h6
+ o(h−6),
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where we define Si(x) =
∫ x

0
sin(t)
t
dt.

∫
R2

∣∣∣∣∣∣
2∑
j=1

e
−i〈wIj

,x∗
Ij
〉/h

LIcj

(
wIcj
h

)∣∣∣∣∣∣
2

|ΦK(w)|2

|Φψ(w
h )|2

dw = h2

∫
[−1,1]2

∣∣∣∣∣e−iw1x1/h
sin
(
w2

h

)
w2

+ e−iw2x2/h
sin
(
w1

h

)
w1

∣∣∣∣∣
2

×
(

1 +
w2

1

h2

)2(
1 +

w2
2

h2

)2

dw =
16

15h6
+ o

(
h−6

)

∫
R2

2∏
j=1

∣∣∣LIj (wIjh )∣∣∣2 |ΦK(w)|2

|Φψ(w
h )|2

dw =
(∫

[−1,1]

4h2| sin
(
w1

h

)
|2
(

1 +
w2

1

h2

)2
w2

1

dw1

)2
=

16

9h4
+ o(h−4)

3 Asymptotic properties

3.1 Unrestricted estimator

In the following we discuss the weak convergence of the unrestricted estimator θ̂RD for the signal

θ. In the case of a fixed design on a grid (assumption (FD)) the asymptotic properties of this

estimator have been studied in Birke and Bissantz (2008). Therefore we restrict ourselves to model

(2.2) corresponding to the random design assumption, for which the situation is substantially more

complicated. Here the estimator is given by

(3.1)

θ̂RD(x∗) =
1

nhd(2π)d

n∑
k=1

∫
Rd
e−i〈w,x

∗−Xk〉/hΦK(w)

Φψ(w
h

)
dw

Yk
max{f(Xk), f( 1

an
)}

and its asymptotic properties are described in our first main result which is proved in the appendix.

Throughout this paper the symbol ⇒ denotes weak convergence.

Theorem 3.1 Consider the inverse regression model (2.2) under the random design assumption

(RD). Let Assumptions 1(A), 2, 3(A), 3(B), 4 and 5 be fulfilled and h→ 0 and an → 0 as n→∞
such that

n1/2hβ+d/2f(a−1
n )1/2 →∞ and n1/2h3d/2f(a−1

n )3/2 →∞.

Furthermore, assume that the errors in model (2.2) are independent, identically distributed with

mean zero and variance σ2. Then

V
−1/2

1

(
θ̂RD(x∗)− E[θ̂RD(x∗)]

)
⇒ N (0, 1),(3.2)

12



where E[θ̂RD(x∗)] = θ(x∗) +O(hs−1) and the normalizing sequence

V1 =
1

n(2π)2d

∫
Rd

(∫
Rd
e−i〈s,(x

∗−y)〉ΦK(hs)

Φψ(s)
ds

)2
(σ2 + g2(y))f(y)

max
{
f(y), f( 1

an
)
}2dy(3.3)

is bounded by

Cln
1/2hd/2+βf(a−1

n )1/2 ≤ V
−1/2

1 ≤ Cun
1/2hd/2+β.(3.4)

Remark 3.2 Note that the rate of convergence in Theorem 3.1 depends sensitively on the design

density. We demonstrate this by providing two examples, one for the fastest and one for the

slowest possible rate. First, assume that the predictors are uniformly distributed on the cube

[− 1
an
, 1
an

]d and that the convolution function is the d-dimensional Laplace density function. This

yields β = 2d in Assumption 1 and we get a rate of convergence of order n1/2h5d/2a
d/2
n , which

is exactly the lower bound in Theorem 3.1 and coincides with the rate in the fixed design case.

However, a rate of order n1/2h5d/2 is obtained for the design density

f(x1, ..., xd) =
d∏

k=1

ga,b(xk),

where the function ga,b : R→ R is defined by

ga,b(x) =

a, if x ∈ [−1, 1]

a
|x|b , else ,

and the parameters a and b are given by b > 1, a = (2 + 2
b−1

)−1. In this case we have

V
−1/2

1 ∼ n−1/2h−5d/2 + n−1/2h−2da(−b+1)/2
n .

For the choice h = o(ab−1
n ) we therefore obtain V

−1/2
1 ∼ n−1/2h−5d/2.

3.2 Additive estimation for random design

In this Section we consider the marginal integration estimator θ̂add,RD defined in (2.11) under the

random design assumption. Lemma 3.3 below gives the asymptotic behaviour of the j-th compo-

nent α̂j,QIc
j

and Theorem 3.5 the asymptotic distribution of θ̂add,RD. The proofs are complicated

and also deferred to Section 6.

Lemma 3.3 If Assumptions 1(A), 2, 3(C), 3(D), 4 and 5 are satisfied and

n1/2hβ+d/2−γj/2f(a−1
n )1/2 →∞ and n1/2h3/2(d−γj)f(a−1

n )→∞

13



as n→∞. Then the appropriately standardized estimator α̂j,QIc
j
(x∗Ij) defined in (2.12) converges

weakly to a standard normal distribution, that is

V
−1/2

2

(
α̂j,QIc

j
(x∗Ij)− E[α̂j,QIc

j
(x∗Ij)])

)
⇒ N (0, 1)(3.5)

for j = 1, ...,m, where E[α̂j,QIc
j
(x∗Ij)] = αj,QIc

j
(x∗Ij) +O(hs−1) and the standardizing factor

V2 =
1

n(2π)d

∫
Rd

(∫
Rd
e−i〈w,x〉ei〈wIj ,xIj 〉LIcj

(
wIcj

)ΦK(hw)

Φψ(w)
dw

)2
(σ2 + g(x)2)f(x)

max{f(x), f( 1
an

)}2
dx.

satisfies

Cln
1/2hd/2+β−γjf(a−1

n )1/2 ≤ V
−1/2

2 ≤ Cun
1/2hd/2+β−γj .

Remark 3.4 Similar to the unrestricted case, the rate of convergence depends on the design

density f . Note that under the given assumptions the rate of convergence of the estimator α̂j,QIc
j

is by the factor hγj faster than the rate of the unrestricted estimator.

Theorem 3.5 If Assumptions 1(A), 2, 3(C), 3(D), 4 and 5 are satisfied and

nhβ+(3d+γmin/)2f(a−1
n )2 →∞, n1/2hβ+(d−γmin)/2f(a−1

n )1/2 →∞
n1/2h3/2(d−γj)f(a−1

n )3 →∞ (j = 1, ...,m)

as n → ∞, then the appropriately standardized additive estimator θ̂add,RD converges weakly to a

standard normal distribution, that is

V
−1/2

3

(
θ̂add,RD(x∗)− E[θ̂add,RD(x∗)]

)
⇒ N (0, 1),(3.6)

where E[θ̂add,RD(x∗)] = θadd(x∗) +O(hs−1) and the standardizing factor

V3 =
1

n(2π)2d

∫
Rd

(∫
Rd
ei〈w,s〉

( m∑
j=1

e
−i〈wIj ,x

∗
Ij
〉
LIcj (wIcj

)
)ΦK(hw)

Φψ(w)
dw

)2
(σ2 + g(s)2)f(s)

max{f(s), f( 1
an

)}
ds.

satisfies

Cln
1/2hd/2+β−γminf(a−1

n )1/2 ≤ V
−1/2

3 ≤ Cun
1/2hd/2+β−γmin .

3.3 Additive estimator for fixed design

The asymptotic properties of the additive estimator θ̂add,RD defined in (2.11) under the fixed

design assumption have been studied by Birke et al. (2012) and in this Section we investigate the

14



asymptotic properties of the alternative estimator defined in Section 2.2. Our first result, Lemma

3.6, gives the weak convergence of θ̂FDIj , whereas Theorem 3.7 contains the asymptotic distribution

of the estimator θ̂add,FD defined in (2.16). The proofs are again deferred to Section 6.

Lemma 3.6 Consider the inverse regression model under the fixed design assumption (FD). Let

Assumptions 1(B), 2, 3(C) and 3(D) be fulfilled for some j ∈ {1, ...,m}, h → 0 and an → 0 as

n→∞ such that

ndhdj+2βjadjn →∞ and n2h2+dj+βja3
n →∞,

then

Unj(x
∗
Ij

)−1/2(θ̂FDIj (x∗Ij)− E[θ̂FDIj (x∗Ij)])⇒ N (0, 1),(3.7)

where the normalizing sequence is defined by

Unj(x
∗
Ij

) =
σ2

(2n+ 1)d−dj

∑
kIj∈{−n,...,n}

dj

wkIj ,n(x∗Ij)
2,

the weights wkIj ,n are defined in (2.19) and

E[θ̂FDIj (x∗Ij)] = θaddIj
(x∗Ij) +O(hs−1) +O(n−2h−dj−βj−2a−3

n ).

The result of Theorem 3.7 below follows immediately from Lemma 3.6. The bias is of the same

order as the bias in Lemma 3.6 and we define j∗ = argmaxj (dj + 2βj).

Theorem 3.7 Consider the inverse regression model under the fixed design assumption (FD). Let

Assumptions 1,2, 3(C) and 3(D) be fulfilled, h→ 0 and an → 0 as n→∞ such that

ndhdj∗+2βj∗a
dj∗
n →∞ and n2h2+dj∗+βj∗a3

n →∞.

Then

Un(x∗)−1/2(θ̂add,FD(x∗)− E[θ̂add,FD(x∗)])⇒ N (0, 1),(3.8)

where the normalizing sequence is defined by

Un(x∗) = σ2
∑

k∈{−n,...,n}d

(
m∑
j=1

1

(2n+ 1)d−dj
wkIj ,n(x∗Ij)

)2

,
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the weights wkIj ,n are defined in (2.19) and

E[θ̂add,FD(x∗)] = θadd(x∗) +O(hs−1) +O(
1

n2h2+maxj dj+maxj βja3
n

).

Remark 3.8 a

(1) The normalizing sequence Un(x∗) in (3.8) is of order ndhdj∗+2βj∗a
dj∗
n .

(2) The bias of the additive estimator in the fixed design case is only vanishing if the subsets Ij
in the decomposition (2.7) satisfy dj ≤ 3 for all j = 1, ...,m.

(3) Theorem 3.2 can easily be extended to multiplicative models of the form (1.1) with

θ(x∗) =
m∏
j=1

θIj(x
∗
Ij

)

if the convolution function ψ is also multiplicative. Otherwise the estimator is not consistent

and other techniques such as the marginal integration method have to be used.

4 Dependent data

In this Section we briefly discuss the case of dependent data. To be precise we assume that

the errors in the inverse regression models have an MA(q) structure. Under the random design

assumption this structure is given by

(4.1) εt = Zt + β1Zt−1 + ...+ βqZt−q,

where {Zt, }t∈Z denotes a white noise process with variance σ2. A careful inspection of the proof

of Theorem 3.1, which is based on the investigation of the asymptotic properties of cumulants

shows that the result of Theorem 3.1 remains valid under this assumption.

Theorem 4.1

(1) Consider the inverse regression model (2.2) under the random design assumption (RD). If

the Assumptions of Theorem 3.1 are satisfied, then

V
−1/2

1

(
θ̂RD(x∗)− E[θ̂RD(x∗)]

)
⇒ N (0, 1),(4.2)

where the normalizing sequence is given by

V1 =
1

nhd(2π)2d

∫
Rd

(∫
Rd
e−i〈s,(x

∗/h−y)〉ΦK(s)

Φψ( s
h
)
ds
)2 (σ2

∑q
k,l=0 βkβl + g2(hy))f(hy)

max{f(hy), f( 1
an

)}2
dy,
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β0 = 1 and E[θ̂RD(x∗)] = θ(x∗) +O(hs−1).

(2) If the assumptions of Theorem 3.5 are satisfied, then the appropriately standardized additive

estimator θ̂add,RD converges weakly to a standard normal distribution, that is

V
−1/2

3

(
θ̂add,RD(x∗)− E[θ̂add,RD(x∗)]

)
⇒ N (0, 1),(4.3)

where the standardizing factor is given by

V3 =
1

n(2π)2d

∫
Rd

(∫
Rd
ei〈w,s〉

( m∑
j=1

e
−i〈wIj ,x

∗
Ij
〉
LIcj (wIcj

)
)ΦK(hw)

Φψ(w)
dw

)2 (σ2
∑q

k,l=0 βkβl + g(s)2)f(s)

max{f(s), f( 1
an

)}
ds.

and E[θ̂add,RD(x∗)] = θadd(x∗) +O(hs−1).

Under the assumption of a fixed design on a grid we consider an error process with an MA(q)

structure defined by

εk =
∑

r∈{−q,...,q}d
βrZk−r,(4.4)

where {Zj}j∈Zd are i.i.d. random variables with mean zero and variance σ2. This means, that

the noise terms are influenced by all shocks, which have a distance on the lattice lower or equal

q regarding the ∞-norm. The following result can be obtained by similar arguments as used for

the proof of Theorem 3.7.

Theorem 4.2 Consider the inverse regression model (2.1) under the fixed design assumption with

an MA(q) dependent error process. If the assumptions of Lemma 3.6 are satisfied we have

V
−1/2
MA (x∗)

(
θ̂add,FD(x∗)− E[θ̂add,FD(x∗)]

)
⇒ N (0, 1)

where the normalizing sequence is given by

VMA(x∗) = σ2
∑
l∈Zd
‖l‖∞≤2q

∑
r1∈{−q,...,q}d

βr1βl+r1

∑
k∈{−n,...,n}d

|
m∑
j=1

1

(2n+ 1)d−dj
wkIj ,n

(x∗Ij)|
2.

and E[θ̂add,FD(x∗)] = θadd(x∗) +O(hs−1) +O( 1

n2h2+maxj dj+maxj βja3n
).

Remark 4.3 If εt has an MA(∞) representation Theorem 4.1 and 4.2 will not hold in general,

because without additional assumptions the l-th cumulant of the normalized statistic does not

converge to zero for all l ≥ 3.
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5 Finite sample properties

In this Section we investigate the finite sample properties of the new estimators and also provide

a comparison with competing methods. We first investigate the case of a fixed design in model

(1.1) with the convolution function

ψ(x1, x2) =
9

4
e−3(|x1|+|x2|),

and two additive signals

θ(1)(x1, x2) = e−(x1−0.1)2 + e−(x2−0.4)2(5.1)

θ(2)(x1, x2) = e−|x1−0.4| + 2e−2x22(5.2)

For the kernel K in the Fourier transform ΦK we use the kernel K(x) = sin(x1) sin(x2)
π2x1x2

. We consider

a fixed design on the grid {( k1
nan

, k2
nan
| k1, k2 ∈ {−n, ..., n}} with N = (2n + 1)2 points where

n ∈ {30, 50}. In both cases we choose the design parameter as an = 0.25, such that the cube

[−1
an
, 1
an

]2 covers most of the region where the functions θ(1) and θ(2) deviate significantly from 0.

In all simulations we use (independent) noise terms, which are normal distributed with mean 0

and variance 0.25.

The bandwidth h in the estimator (2.17) is chosen such that the mean integrated squared error

(MISE)

E
[ ∫

R2

(θ̂(x)− θ(x))2dx
]

is minimized. Figure 1 shows a typical example of the MISE as a function of the bandwidth h.

Figure 2 shows the contour plot of the function θ(1) defined in (5.1) and contour plots of three

typical additive estimates where n = 50 and the bandwidths are chosen as h = 0.32, 0.36, 0.4 (the

bandwidth h = 0.36 minimizes the MISE). We observe that the shapes in all figures are very

similar. The bandwidths h = 0.32 and h = 0.4 yield stronger deviations from the true function

especially at the boundary, but the main structure is even for these choices still recovered. Because

other simulations showed a similar picture we conclude that small changes in the bandwidth do

not effect the general structure of the estimator significantly.

In order to investigate the finite sample properties of the new estimate θ̂add,FD defined in (2.16)

we performed 1000 iterations with the signal θ(2) (the results for the signal θ(1) are similar and

are not depicted for the sake of brevity). The simulated mean, variance and mean squared error

(MSE) of θ̂add,FD are given in Table 1 for different choices of x = (x1, x2) where the sample size is

N = 10201 and the variance of the errors is 0.25. We observe that in most cases the mean squared

error is dominated by the bias.
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Figure 1: MISE of the estimator θ̂add,FD for different bandwidths in model (5.1), where σ = 0.5

N x1 x2 θ(2)(x) E[θ̂(x)] Var(θ̂(x)) MSE(θ̂(x)

-1.6 0.1473 0.2522 0.0017 0.0127

-0.8 0.3131 0.3805 0.0017 0.0063

10201 -1.6 0 0.6823 0.8296 0.0017 0.0234

0.8 0.6823 0.8159 0.0017 0.0195

1.6 0.3131 0.3827 0.0017 0.0065

-1.6 0.6914 0.8216 0.0017 0.0187

-0.8 0.8573 0.9446 0.0018 0.0094

10201 -0.8 0 1.2264 1.3977 0.0017 0.0310

0.8 1.2264 1.3864 0.0017 0.0273

1.6 0.8573 0.9496 0.0018 0.0103

-1.6 2.1353 2.1887 0.0018 0.0046

-0.8 2.3012 2.3123 0.0017 0.0018

10201 0 0 2.6703 2.7640 0.0018 0.0106

0.8 2.6703 2.7548 0.0016 0.0087

1.6 2.3012 2.3178 0.0018 0.0020

-1.6 0.6914 0.8181 0.0017 0.0178

-0.8 0.8573 0.9445 0.0018 0.0094

10201 0.8 0 1.2264 1.3967 0.0017 0.0307

0.8 1.2264 1.3864 0.0017 0.0273

1.6 0.8573 0.9496 0.0018 0.0103

-1.6 0.1473 0.2532 0.0016 0.0128

-0.8 0.3131 0.3785 0.0017 0.0060

10201 1.6 0 0.6823 0.8290 0.0018 0.0233

0.8 0.6823 0.8168 0.0019 0.0200

1.6 0.3131 0.3855 0.0017 0.0069

Table 1: Mean, variance and mean squared error of the new additive estimator θ̂ = θ̂add,FD in the
case of a fixed design. The model is given by (5.2) with variance σ2 = 0.25.

In the second part of this section we compare three different estimates for the signal in the inverse

regression model (1.1). The first estimate for θ is the statistic θ̂add,FD proposed in this paper

[see formula (2.16)]. The second method is the marginal integration estimator suggested by Birke

et al. (2012) and the third method is the non additive estimate of Birke and Bissantz (2008). The
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Figure 2: Contour plot of the function θ(1) defined in (5.1) (left upper panel) and its estimates
θ̂add,FD defined in (2.16) with different bandwidths. Upper right panel: h = 0.32; Lower left panel:
h = 0.36 (which minimizes the MISE); Lower right panel: h = 0.4;

results are shown in Table 2 for the sample size N = 3721 and selected values of the predictor.

We observe that the additive estimate of Birke et al. (2012) improves the unrestricted estimate

with respect to mean squared error by 20-50%. However, the new additive estimate θ̂add,FD yields

a much larger improvement. The MSE is about 14 and 7-10 times smaller than the MSE obtained

by the unrestricted estimator or the estimator proposed by Birke et al. (2012). Further simulations

for the signal θ(2) in (5.2) show similar results and not depicted for the sake of brevity.
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N x1 x2 θ(1)(x) Eθ̂(x) Var θ̂(x) MSE θ̂(x)

3721 0 0 1.8422 1.9667 0.0516 0.0671

θ̂RD 3721 0 1 1.6877 1.6983 0.0458 0.0459

3721 1 1 1.1425 1.1909 0.0329 0.0352

3721 1 1.8 0.5857 0.6624 0.0189 0.0248

3721 0 0 1.8422 1.8680 0.0440 0.0301

θ̂add,RD 3721 0 1 1.6877 1.6405 0.0195 0.0217

3721 1 1 1.1425 1.3371 0.0232 0.0610

3721 1 1.8 0.5857 0.8184 0.0199 0.0740

3721 0 0 1.8422 1.8123 0.0426 0.0435

θ̂FD 3721 0 1 1.6877 1.7305 0.0425 0.0443

3721 1 1 1.1425 1.2143 0.0418 0.0470

3721 1 1.8 0.5857 0.4774 0.0416 0.0533

3721 0 0 1.8422 1.8234 0.0027 0.0031

θ̂add,FD 3721 0 1 1.6877 1.6589 0.0024 0.0032

3721 1 1 1.1425 1.1097 0.0025 0.0036

3721 1 1.8 0.5857 0.5494 0.0023 0.0036

3721 0 0 1.8422 1.8874 0.0194 0.0214

θ̂BBH 3721 0 1 1.6877 1.7316 0.0191 0.0210

3721 1 1 1.1425 1.1833 0.0201 0.0218

3721 1 1.8 0.5857 0.4438 0.0207 0.0408

Table 2: Mean, variance and mean squared error of the unrestricted estimator θ̂FD proposed
in Birke and Bissantz (2008), the estimator θ̂BBH proposed by Birke et al. (2012) and the new
estimators θ̂RD, θ̂add,RD and θ̂add,FD proposed in this paper. The model is given by (5.1), where
σ2 = 0.25.

For the sake of comparison, the first two rows of Table 2 contain results of the estimators θ̂RD and

θ̂add,RD, where the explanatory variables follow a uniform distribution on the same cube [ 1
an
, 1
an

]2

as used for the fixed design. We observe a similar behaviour of the unrestricted estimators under

the fixed and random design assumption. This corresponds to the asymptotic theory, which shows

that in the case of a uniform distribution the unrestricted estimators converge with the same rate

of convergence (see Remark 3.2). On the other hand, the additive estimator θ̂add,RD produces a

substantially larger mean squared error compared to the estimator θ̂add,FD, which is of similar size

as the mean squared error of the estimator proposed by Birke et al. (2012).

Because the performance of the estimators depends on the correct specification of the convolution

function ψ we next investigate the performance of the estimators under misspecification of the

function ψ. In Figure 3 we display the contour plots of the estimates θ̂add,FD, where in every panel

the convolution function is misspecificated as Laplace distribution Lap(α, β) with parameters

α = 0 and β = 1
3
. In the upper left and upper right panel the β parameter of the Laplace

distribution Lap(α, β) is misspecificated, whereas in the lower left panel the true convolution

function is the density of a standard normal distribution and in the lower right panel it is a gamma

distribution. We observe, that a miss-specification of the shape of the convolution function (as it

occurs if a Laplace density is used instead of the density of a Gamma(3,2) distribution) yields to

an estimator with a different structure as the true signal (see the lower right panel in Figure 3).

All other panels show the same structure as the upper left panel Figure 2 which gives the contour
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plot of the true signal θ(1). This indicates that the structure of the signal can be reconstructed,

as long as the chosen convolution kernel exhibits similar modal properties as the “true kernel” .

However, we also observe from Figure 3 that the levels of the contour differ from those of the true

signal.

Figure 3: Contour plot of the estimate θ̂add,FD of θ(1) with misspecificated convolution func-
tion. Upper left panel: ψ misspecificated as Lap(0,1

3
), where the true convolution function is

Lap(0,1); Upper right panel: ψ misspecificated as Lap(0,1
3
), where the true convolution function is

Lap(0,1
5
) ; Lower left panel: ψ misspecificated as Lap(0,1

3
), where the true convolution function is

N (0, 1); Lower right panel: ψ misspecificated as Lap(0,1
3
), where the true convolution function is

Gamma(3,2). The model is given by (5.1), where σ2 = 0.25.
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We conclude this section with a brief discussion of the performance of the unrestricted estimator

θ̂RD under the assumption (RD) of a non-uniform random design. In Table 3 we display the

simulated mean, variance and mean squared error for various distributions of the predictor X,

where the components are independent and identically distributed. In most cases we observe

similar results for the bias, independently of the distribution of X and the choice of the sequence an.

On the other hand the mean squared error is dominated by the variance, which depends sensitively

on the choice of the parameter an. This observation corresponds with the representation of the

asymptotic variance of θ̂RD in formula (3.3) of Theorem 3.1. We also observe that the impact of

the distribution of the explanatory variable on the variance of the estimate θ̂RD is much smaller.

X N an x1 x2 θ(1)(x) Eθ̂(x) Var θ̂(x) MSE θ̂(x)

10201 0.25 0 0 1.8422 1.7421 0.0297 0.0397

U [−1
an
, 1
an

] 10201 0.25 0 1 1.6877 1.7163 0.0272 0.0283

10201 0.25 1 1 1.1425 1.2858 0.0194 0.0399

10201 0.25 1 1.8 0.5857 0.6105 0.0117 0.0123

10201 0.5 0 0 1.8422 1.4957 0.0076 0.1277

U [−1
an
, 1
an

] 10201 0.5 0 1 1.6877 1.8123 0.0070 0.0225

10201 0.5 1 1 1.1425 1.5438 0.0044 0.1654

10201 0.5 1 1.8 0.5857 0.5695 0.0023 0.0026

10201 0.25 0 0 1.8422 1.8512 0.3271 0.3271

N(0, 1) 10201 0.25 0 1 1.6877 1.7019 0.7098 0.7100

10201 0.25 1 1 1.1425 1.2038 0.7077 0.7115

10201 0.25 1 1.8 0.5857 0.5983 0.4477 0.4479

10201 0.5 0 0 1.8422 1.8229 0.0079 0.0083

N(0, 1) 10201 0.5 0 1 1.6877 1.7466 0.0107 0.0143

10201 0.5 1 1 1.1425 1.2531 0.0114 0.0236

10201 0.5 1 1.8 0.5857 0.6366 0.0135 0.0161

10201 0.25 0 0 1.8422 1.8758 0.0174 0.0185

t(2) 10201 0.25 0 1 1.6877 1.7129 0.0255 0.0261

10201 0.25 1 1 1.1425 1.1786 0.0271 0.0284

10201 0.25 1 1.8 0.5857 0.6138 0.0324 0.0332

10201 0.5 0 0 1.8422 1.8590 0.0115 0.0118

t(2) 10201 0.5 0 1 1.6877 1.7260 0.0158 0.0173

10201 0.5 1 1 1.1425 1.2069 0.0182 0.0223

10201 0.5 1 1.8 0.5857 0.6275 0.0174 0.0191

Table 3: Mean, variance and mean squared error of the unrestricted estimator θ̂RD proposed in
this paper for different distributions of the explanatory variables X and different choices for the
parameter an. The model is given by (5.1) and the variance is σ2 = 0.25.
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6 Appendix

For the proofs we make frequent use of the cumulant method, which is a common tool in time

series analysis. Following Brillinger (2001) the r-th order joint cumulant cum(Y1, ..., Yr) of a

r-dimensional complex valued random vector (Y1, ..., Yr) is given by

cum(Y1, ..., Yr) =
∑

(−1)p−1(p− 1)!
(
E
∏
j∈ν1

Yj

)
. . .
(
E
∏
j∈νp

Yj

)
,(5.1)

where we assume the existence of moments of order r, i.e. E(|Y r
j |) < ∞ (j = 1, ..., r) and the

summation extends over all partitions (ν1, ..., νp), p = 1, ..., r of (1, ..., r). If we choose Yj = Y, j =

1, ..., r we denote with cumr(Y ) = cum(Y, ..., Y ) the r-th order cumulant of a univariate random

variable. The following properties of the cumulant will be used frequently in our proofs [see e.g.

Brillinger (2001)].

(B1) cum(a1Y1, ..., arYr) = a1 . . . arcum(Y1, ..., Yr) for constants a1, ..., ar ∈ C

(B2) if any group of the Y’s is independent of the remaining Y’s, then cum(Y1, ..., Yr) = 0

(B3) for the random variable (Z1, Y1, ..., Yr) we have

cum(Z1 + Y1, Y2, ..., Yr) = cum(Z1, Y2, ..., Yr) + cum(Y1, Y2, ..., Yr)

(B4) if the random variables (Y1, ..., Yr) and (Z1, ..., Zr) are independent, then

cum(Y1 + Z1, ..., Yr + Zr) = cum(Y1, ..., Yr) + cum(Z1, ..., Zr)

(B5) cum(Yj) = E(Yj) for j = 1, ..., r

(B6) cum(Yj, Y j) = V ar(Yj) for j = 1, ..., r

We finally state a result which can easily be proven by using the definition (5.1) and the properties

of the mean.

Theorem 6.1 Let Y = (Y1, ..., Yr) be a random variable, bn a sequence and C > 0 a constant

with

E
[ l∏
j=1

|Yij |
]
≤ C lbln for all 1 ≤ l ≤ r,

then |cum(Yi1 , ..., Yim)| ≤ (m− 1)!Cmbmn
∑m

j=1 Sm,j, where Sm,j denotes the Sterling number of the

second kind.
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We will also make use of the fact that the normal distribution with mean µ and variance σ2 is

characterized by its cumulants, where the first two cumulants are equal to µ and σ2 respectively

and all cumulants of larger order are zero. To show asymptotic normality in our proofs we have

to calculate the first two cumulants which give the asymptotic mean and variance and show in

a second step that all cumulants of order l ≥ 3 are vanishing asymptotically. In the following

discussion all constants which do not depend on the sample size (but may differ in different steps

of the proofs) will be denoted by C.

Proof of Theorem 3.1: For the sake of brevity we write θ̂ instead of θ̂full,RD throughout this

proof. By the discussion of the previous paragraph we have to calculate the mean and the variance

of θ̂(x∗) and all cumulants of order l ≥ 3. We start with the mean conditional on X = (X1, ...,Xn),

which can be calculated as

E[θ̂(x∗)|X] =
n∑
k=1

g(Xk)wn(x∗,Xk)

where the weights wn are defined in (2.6). By iterative expectation we get

E[θ̂(x∗)] =
1

hd(2π)d

∫
Rd
g(x)

∫
Rd
e−i〈s,(x

∗−x)〉/hΦK(s)

Φψ( s
h
)

f(x)

max{f(x), f( 1
an

)}
dsdx,

which yields a bias of the form biasθ̂ = E[θ̂(x∗)]−θ(x∗) = A1 +A2, where (note that Φg = Φψ ·Φθ)

A1 =
1

hd(2π)d

∫
Rd
e−i〈s,x

∗〉/hΦK(s)Φθ

( s

h

)
ds− θ(x∗)

A2 =
1

hd(2π)d

∫
Rd
e−i〈s,x

∗〉/hΦK(s)

Φψ( s
h
)

∫
Rd
g(x)ei〈s,x〉/h

( f(x)

max{f(x), f( 1
an

)}
− 1
)
dxds

For the summand A1 we can use exactly the same calculation as in Birke and Bissantz (2008) to

obtain A1 = O(hs−1). For the second term A2 we have

A2 ≤
1

hd(2π)d

∫
Rd

|ΦK(s)|
|Φψ( s

h
)|

∫
Rd
|g(x)|

∣∣∣ f(x)

max{f(x), f( 1
an

)}
− 1
∣∣∣dxds

≤ C

hd+β(2π)d

∫
([− 1

an
, 1
an

]d)c
|g(x)|

∣∣∣ f(x)

max{f(x), f( 1
an

)}
− 1
∣∣∣dx,

where we used Assumption 1(A) and 4 in the last inequality. In the next step we will use the fact

that 0 ≤ f(x)

max{f(x),f( 1
an

)} ≤ 1 (x ∈ Rd) and Assumption 3(B) to obtain

A2 ≤
C

hd+β(2π)d

∫
([− 1

an
, 1
an

]d)c
|g(x)| ‖ x ‖r 1

‖ x ‖r
dx = O

( arn
hd+β

)
= O(hs−1).
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This shows that the bias of θ̂(x∗) is of order O(hs−1). By the definition of θ̂(x∗) and (2.6) it follows

V (θ̂(x∗)|X) =
σ2

n2h2d(2π)2d

n∑
k=1

∣∣∣ ∫
Rd
e−i〈s,(x

∗−Xk)〉/hΦK(s)

Φψ( s
h
)
ds
∣∣∣2 1

max{f(Xk), f( 1
an

)}2

which yields

E[V (θ̂(x∗)|X)] =
σ2

nhd(2π)2d

∫
Rd

∣∣∣ ∫
Rd
e−i〈s,(x

∗/h−y)〉ΦK(s)

Φψ( s
h
)
ds
∣∣∣2 f(hy)

max{f(hy), f( 1
an

)}2
dy.

The variance of the conditional expectation is given by (observe again the definition of the weight

wn in (2.6))

V (E[θ̂(x∗)|X]) = V
( n∑
k=1

g(Xk)wn(x∗,Xk)
)

=
1

nhd(2π)2d

∫
Rd

∣∣∣ ∫
Rd
e−i〈s,(x

∗/h−y)〉ΦK(s)

Φψ( s
h
)
ds
∣∣∣2 g2(hy)f(hy)

max{f(hy), f( 1
an

)}2
dy

− 1

n(2π)2d

∣∣∣ ∫
Rd

∫
Rd
e−i〈s,(x

∗/h−y)〉ΦK(s)

Φψ( s
h
)
ds

g(hy)f(hy)

max
{
f(hy), f( 1

an
)
}dy∣∣∣2,

where the second summand is of order O(n−1). Thus the variance can be written as

V (θ̂(x∗)) = E[V (θ̂(x∗)|X)] + V (E[θ̂(x∗)|X])(5.2)

=
1

nhd(2π)2d

∫
Rd

∣∣∣ ∫
Rd
e−i〈s,(x

∗/h−y)〉ΦK(s)

Φψ( s
h
)
ds
∣∣∣2 (σ2 + g2(hy))f(hy)

max{f(hy), f( 1
an

)}2
dy +O(n−1)

and the rate of convergence has a lower bound given by

V (θ̂(x∗))−1/2 = Ω
(
n1/2hβ+d/2f(a−1

n )1/2
)
,

where the symbol bn = Ω(cn) means that there exists a constant C and n0 ∈ N such that for all

n ≥ n0 we have |bn| ≥ C|cn|. The variance has a lower bound

V (θ̂(x∗)) ≥ 1

nhd(2π)2d

∫
([ −1
han

, 1
han

]d)

∣∣∣ ∫
Rd
e−i〈s,(x

∗/h−y)〉ΦK(s)

Φψ( s
h
)
ds
∣∣∣2 (σ2 + g2(hy))f(hy)

f(hy)2
dy

≥ C

nhd(2π)2d

∫
([ −1
han

, 1
han

]d)

∣∣∣ ∫
Rd
e−i〈s,(x

∗/h−y)〉ΦK(s)

Φψ( s
h
)
ds
∣∣∣2dy = C(nhd+2β)−1(1 + o(1)),

where we used Assumption 4 and Parsevals equality. This yields to the upper bound

V (θ̂(x∗))−1/2 = O
(
n1/2hβ+d/2

)
(5.3)
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For the proof of asymptotic normality we now show that the l-th cumulant ofGl =
∣∣cuml

(
V (θ̂(x∗))−1/2θ̂(x∗)

)∣∣
is vanishing asymptotically, whenever l ≥ 3. For this purpose we recall the definition of the weights

wn in (2.6) and obtain from (5.3) the estimate

Gl ≤ Cnl/2hlβ+dl/2

n∑
k1,...,kl=1

|cum
(
Yk1wn(x∗,Xk1), ..., Yklwn(x∗,Xkl)

)
|(5.4)

= Cnl/2hlβ+dl/2

n∑
k=1

|cuml

(
Ykwn(x∗,Xk)

)
|

= Cnl/2+1hlβ+dl/2
∑

j∈{0,1}l
|(cum(U j1wn(x∗,X1), ..., U jlwn(x∗,X1))|,

where we used (B2) and the notation U0 = g(X1) and U1 = ε. This term can be written as

Cnl/2+1hlβ+dl/2

l∑
s=0

(
l

s

) ∑
j∈{0,1}l

j1+...+jl=s

∣∣cum(U j1wn(x∗,X1), ..., U jlwn(x∗,X1))
∣∣.

By using the product theorem for cumulants [see e.g. Brillinger (2001)], we obtain

Cnl/2+1hlβ+dl/2

l∑
s=0

(
l

s

) ∑
j∈{0,1}l

j1+...+jl=s

∣∣∣∑
ν

p∏
k=1

cum(Aij, ij ∈ νk)
∣∣∣,(5.5)

where the third sum is calculated over all indecomposable partitions ν = (ν1, ..., νp) of the table

Ai1 Ai2
...

...

Ai1 Ai2
Aij
...

Aij

(here the first s rows have two and the last l − s rows have one column) and

Ai1 = ε 1 ≤ i ≤ s

Ai2 = wn(x∗,X1)) 1 ≤ i ≤ s

Aij = g(X1)wn(x∗,X1)) s+ 1 ≤ i ≤ l.

As ε is independent of X only those indecomposable partitions yield a non zero cumulant, which

seperate all ε’s from the other terms. This means that for a partition ν there are m(ν) sets

29



ν1, ..., νm(ν) which include only ε′s while νm(ν)+1, ..., νp contain only wn(x∗,X)’s and g(X)wn(x∗,X)’s.

Thus (5.5) can be written as

Cnl/2+1hlβ+dl/2

l∑
s=0

(
l

s

) ∑
j∈{0,1}l

j1+...+jl=s

∣∣∣∑
ν

m(ν)∏
k=1

cumsk(ε)

p∏
k=m(ν)+1

cum(Aij, ij ∈ νk)
∣∣∣(5.6)

with

Aij = wn(x∗ −X1)) 1 ≤ i ≤ s

Aij = g(X)wn(x∗ −X1)) s+ 1 ≤ i ≤ l.

and s1 + ... + sm(ν) = s . Furthermore we have si ≥ 2, because the noise terms ε have mean

zero, and each set νm(ν)+1, ..., νp includes at least one Aij with 1 ≤ i ≤ s because otherwise

the partition would not be indecomposable. Let ar = |νr| denote the number of elements in

the set νr (r = m(ν) + 1, ..., p), then we get am+1 + ... + ap = l. Furthermore for r ∈ {m +

1, ..., p} the cumulant cum(Aij, ij ∈ νr) equals

cum(g(X1)wn(x∗,X1)), ..., g(X1)wn(x∗,X1)), wn(x∗,X1)), ..., wn(x∗,X1)))(5.7)

because of the symmetry of the arguments in the cumulant. In the next step we denote by br the

number of components of the form g(X1)wn(x∗,X1) and show the estimate

E
[ br∏
i=1

|g(X1)wn(x∗,X1))|
ar−br∏
j=1

|wn(x∗,X1))|
]
≤ Car

narhar(β+d)f( 1
an

)ar
(5.8)

(which does not depend on br). From Theorem 5.1 we then obtain that the term in (5.7) is of

order O(n−arh−ar(β+d)f(1/an)−ar). Equations (5.4), (5.6) and (5.7) yield for the cumulants of

order l ≥ 3

Gl ≤ Cnl/2+1hlβ+dl/2

l∑
s=0

(
l

s

) ∑
j∈{0,1}l

j1+...+jl=s

∣∣∣∑
ν

m(ν)∏
k=1

cumsk(ε)

p∏
r=m(ν)+1

Car

narhar(d+β)f( 1
an

)ar

∣∣∣
= O

(
(nl/2−1hld/2f(an

−1)l)−1
)

= o(1),

which shows the asymptotic normality.

In order to prove the remaining estimate (5.8) we use the definition of wn(x∗,X1) and obtain for
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the term on the left hand side of (5.8)

Ln =

∫
Rd
|g(x)|br

( 1

nhd(2π)d

∣∣∣ ∫
Rd
e−i〈s,(x

∗−x)〉/hΦK(s)

Φψ( s
h
)

1

max{f(x), f( 1
an

)}
ds
∣∣∣)arf(x)dx

≤ C

narhard

∫
Rd
|g(x)|br

(∫
Rd

|ΦK(s)|
|Φψ( s

h
)|

1

max{f(x), f( 1
an

)}
ds
)ar

f(x)dx

≤ C

narhardf( 1
an

)ar

∫
Rd

(∫
Rd

|ΦK(s)|
|Φψ( s

h
)|
ds
)ar

f(x)dx,

where we used the fact that g is bounded. Using this inequality and Assumption 1(A) it follows

that Ln ≤ C/narhar(d+β)f( 1
an

)ar , which proves (5.8).

Proof of Lemma 3.3: Similar to the proof of Theorem 3.1, we have to calculate the cumulants

of the estimators α̂j,QIc
j
(x∗Ij). We start with the first order cumulant

E[α̂j,QIc
j
(x∗Ij)] =

1

hd(2π)d

∫
Rd−dj

∫
Rd

∫
Rd
g(x)

∫
Rd

ΦK(s)

Φψ( s
h
)

e−i〈s,(x
∗−x)〉/hf(x)

max{f(x), f( 1
an

)}
dsdxdQIcj

(x∗Icj )

and with the same arguments as in the proof of Theorem 3.1, we obtain a bias of order O(hs−1).

For the calculation of the variance of α̂j,QIc
j
(x∗Ij) we investigate its conditional variance. Recalling

the definitions (2.6) and (2.20) it follows by a straightforward argument

V (α̂j,QIc
j
(x∗Ij)|X) =

σ2

n2h2d(2π)2d

n∑
k=1

∣∣∣ ∫
Rd
e−i〈w,Xk〉/hei〈wIj ,xIj 〉/hLIcj

(wIcj

h

)ΦK(w)

Φψ(w
h

)
dw
∣∣∣2

× 1

max{f(Xk), f( 1
an

)}2
,

which gives

E
[
V (α̂j,QIc

j
(x∗Ij)|X)

]
=

σ2

nh2d(2π)2d

∫
Rd

∣∣∣ ∫
Rd
e−i〈w,x〉/hei〈wIj ,xIj 〉/hLIcj

(wIcj

h

)ΦK(w)

Φψ(w
h

)
dw
∣∣∣2

× f(x)

max{f(x), f( 1
an

)}2
dx.

The variance of the conditional expectation can be calculated as

V
(
E[α̂j,QIc

j
(x∗Ij)|X]

)
=

1

nhd(2π)2d

∫
Rd

∣∣∣ ∫
Rd
e−i〈w,x〉ei〈wIj ,xIj 〉/hLIcj

(wIcj

h

)ΦK(w)

Φψ(w
h

)
dw
∣∣∣2

× g(hx)2f(hx)

max{f(hx), f( 1
an

)}2
dx

31



− 1

n(2π)2d

∣∣∣ ∫
Rd

∫
Rd
e−i〈w,x〉ei〈wIj ,xIj 〉/hLIcj

(wIcj

h

)ΦK(w)

Φψ(w
h

)
dw

× g(hx)f(hx)

max{f(hx), f( 1
an

)}
dx
∣∣∣2,

where the second summand is of order O(n−1). Therefore it follows

V (α̂j,QIc
j
(x∗Ij)) =

1

nhd(2π)2d

∫
Rd

∣∣∣ ∫
Rd
e−i〈w,y〉ei〈wIj ,xIj 〉/hLIcj

(wIcj

h

)ΦK(w)

Φψ(w
h

)
dw
∣∣∣2

× (σ2 + g(hy)2)f(hy)

max{f(hy), f( 1
an

)}2
dy +O(n−1).

The upper bound for this term is obtained from Assumption 4 which gives

(σ2 + g(hy)2)f(hy)

max{f(hy), f( 1
an

)}2
= O(an

−1).(5.9)

Therefore an application of Parseval’s equality and Assumption 5(C) yields

V (α̂j,QIc
j
(x∗Ij) ≤

C

nhd+2β−γjf( 1
an

)
.(5.10)

A similar argument as in the proof of Theorem 3.1 gives the lower bound V (α̂j,QIc
j
(x∗Ij) ≥

C/nhd+2β−γj . Finally the statement that the l-th cumulant of V (α̂j,QIc
j
(x∗Ij)

−1/2α̂j,QIc
j
(x∗Ij) is of

order o(1) can be shown by similiar arguments as in the proof of Theorem 3.1.

Proof of Theorem 3.5: The proof follows by similar arguments as given in the previous

Sections. For the sake of brevity we restrict ourselves for the calculation of the first and second

order cumulants. For this purpose we show, that the estimate ĉ has a faster rate of convergence

than α̂j,QIc
j
(x∗Ij) for at least one j ∈ {1, ...,m}. If this statement is correct the asymptotic variance

of the statistic

θ̂add,RD(x∗) =
m∑
j=1

α̂j,QIc
j
(x∗Ij)− (m− 1)ĉ

is determined by its first term. Recalling the notation (2.12) this term has the representation

D̂n =
m∑
j=1

α̂j,QIc
j
(x∗Ij) =

m∑
j=1

n∑
k=1

Ykw
add,RD
n (x∗Ij ,Xk)(5.11)
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and can be treated in the same way as before. The resulting bias of D̂n is the sum of the biases

of the individual term and therefore also of order O(hs−1). The conditional variance is given by

V (D̂n|X) = σ2

n∑
k=1

∣∣∣ m∑
j=1

wadd,RDn (x∗Ij ,Xk)
∣∣∣2

=
σ2

n2h2d(2π)2d

n∑
k=1

∣∣∣ ∫
Rd
ei〈w,Xk〉/h

( m∑
j=1

e
−i〈wIj ,x

∗
Ij
〉/h
LIcj

(wIcj

h

))ΦK(w)

Φψ(w
h

)
dw

× 1

max{f(Xk), f( 1
an

)}

∣∣∣2.
This yields for expectation of the conditional variance

E
[
V (D̂n|X)

]
=

σ2

nh2d(2π)2d

∫
Rd

∣∣∣ ∫
Rd
ei〈w,s〉/h

( m∑
j=1

e
−i〈wIj ,x

∗
Ij
〉/h
LIcj

(wIcj

h

))ΦK(w)

Φψ(w
h

)
dw
∣∣∣2 f(s)

max{f(s), f( 1
an

)}2
ds

and the variance of the conditional expectation is obtained as

V
(
E[D̂n|X]

)
=

1

nhd(2π)2d

∫
Rd

∣∣∣ ∫
Rd
ei〈w,s〉

( m∑
j=1

e
−i〈wIj ,x

∗
Ij
〉/h
LIcj

(wIcj

h

))ΦK(w)

Φψ(w
h

)
dw
∣∣∣2 g(hs)2f(hs)

max{f(hs), f( 1
an

)}2
ds

− 1

n(2π)2d

∣∣∣ ∫
Rd

∫
Rd
ei〈w,s〉

( m∑
j=1

e
−i〈wIj ,x

∗
Ij
〉/h
LIcj

(wIcj

h

))ΦK(w)

Φψ(w
h

)
dw

g(hs)f(hs)

max{f(hs), f( 1
an

)}
ds
∣∣∣2,

where the second summand is of order O(n−1). Thus yields for the variance

V (D̂n) =
1

nh2d(2π)2d

∫
Rd

∣∣∣ ∫
Rd
ei〈w,s〉/h

( m∑
j=1

e
−i〈wIj ,x

∗
Ij
〉/h
LIcj

(wIcj

h

))ΦK(w)

Φψ(w
h

)
dw
∣∣∣2

× (σ2 + g(s)2)f(s)

max{f(s), f( 1
an

)}
ds +O(n−1)

In order to obtain bounds for the rate of the variance, we use the lower bound for max{f(hs), f( 1
an

)}
mentioned in (5.9) and Parseval’s equality which yields

( 1

nhdf( 1
an

)

∫
Rd

∣∣∣∣∣
m∑
j=1

e
−i〈wIj ,x

∗
Ij
〉/h
LIcj

(wIcj

h

)∣∣∣∣∣
2
|ΦK(w)|2

|Φψ(w
h

)|2
dw
)1/2

= O
(
(nhd+2β−γminf(a−1n ))−1

)
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as an upper bound, where the last estimate follows from Assumption 5. The lower bound is of

order Ω((nhd+2β−γmin)−1), where we use Assumption 4 and the same calculations as in the previous

Section. These are in fact the same bounds as for α̂j∗,QIc
j∗

(x∗Ij∗ ) with j∗ = argminj γj. This means

that

D̂n − E[D̂n] = OP (n−1/2h−d/2−β−γmin/2f(an
−1)−1/2)

In the last step we show that the estimate ĉ has a faster rate of convergence. For this purpose we

write ĉ as weighted sum of independent random variables that is

ĉ =

∫
Rd
θ̂(x∗)dQ(x∗) =

1

nhd(2π)d

n∑
k=1

∫
Rd
ei〈w,Xk〉/h

( m∏
j=1

LIcj

(wIcj

h

))ΦK(w)

Φψ(w
h

)
dw

Yk
max{f(Xk), f( 1

an
)}

It now follows by similar calculations as given in the previous paragraph and Assumption 5(C)

that

V (ĉ) = o(V (
m∑
j=1

α̂j,QIc
j
(x∗Ij)))

and thus we can ignore the term ĉ for the calculation of the asymptotic variance of the statistic

θ̂add,RD.

Proof of Lemma 3.6: Observing the representation (2.15) and (2.18) we decompose the

estimator into its deterministic and stochastic part, that is

θ̂FDIj (x∗Ij) = Ê1n + Ê2n(5.12)

where

Ê1n =
1

(2n+ 1)d−dj

∑
k∈{−n,...,n}d

(gI1(zkI1
) + ...+ gIm(zkIm

))wkIj ,n
(x∗Ij)

Ê2n =
1

(2n+ 1)d−dj

n∑
k∈{−n,...,n}d

εkwkIj ,n
(x∗Ij)

and wkIj ,n
(x∗Ij) are defined in (2.19). In a first step we show, that the bias of θ̂FDIj is of order

O( 1

n2h2+dj+βja3n
). For this purpose we rewrite the deterministic part as

Ê1n = Ê
(1)
1n + Ê

(2)
1n

where

Ê
(1)
1n =

∑
kIj∈{−n,...,n}

dj

gIj(zkIj
)wkIj ,n

(xIj)
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Ê
(2)
1n =

1

(2n+ 1)d−dj

∑
kIc
j
∈{−n,...,n}d−dj

(
gI1(zkI1

) + ...+ gIj−1
(zkIj−1

) + gIj+1
(zkIj+1

) + ...+ gIm(zkIm
)
)

×
∑

kIj∈{−n,...,n}
dj

wkIj ,n
(x∗Ij),

where the second summand is of order Ê
(2)
1n = o( a

r−dj
n

hβj+dj
) = O(hs−1), which follows from Assumption

3(D). For the difference of the first summand and θaddI1
(x∗Ij) we use the same calculation as in Birke

and Bissantz (2008) and obtain

Ê
(1)
1n − θaddIj

(xIj) = O(hs−1) +O(
1

n2a2
nh

dj+2+βj
).

Note that the Rieman-approximation does not provide an error of order O((nan)−d), but we can

show that the lattice structure yields an error term of order O((n2h2a3
n)−1). In the next step we

derive the variance of the estimator θ̂FDIj . We can neglect the deterministic part Ê2n in (5.12) and

obtain from Parseval’s equality and Assumption 1(B)

V (θ̂FDIj (x∗Ij)) =
σ2

(2n+ 1)d−dj

∑
kIj∈{−n,...,n}

dj

|wkIj ,n
(x∗Ij)|

2

=
σ2

(2n+ 1)d−djn2djh2dja
2dj
n (2π)2dj

∑
kIj∈{−n,...,n}

dj

∣∣∣ ∫
Rdj

e
−i〈w,(x∗Ij−zkIj )〉/h ΦK(w)

ΦψIj
(w
h

)
dw
∣∣∣2

=
σ2

(2n+ 1)d−djndjhdja
dj
n (2π)2dj(∫

[−1/(han),1/(han)]dj

∣∣∣ ∫
Rdj

e
−i〈w,(x∗Ij /h−s)〉

ΦK(w)

ΦψIj
(w
h

)
dw
∣∣∣2ds+O((nan)−1)

)
∼ σ2

(2n+ 1)d−djndjhdja
dj
n (2π)2dj

∫
Rdj

∣∣∣ ∫
Rdj

e
−i〈w,(x∗Ij /h−s)〉

ΦK(w)

ΦψIj
(w
h

)
dw
∣∣∣2ds(1 + o(1))

=
σ2

(2n+ 1)d−djndjhdja
dj
n (2π)2dj

∫
Rdj

|ΦK(w)|2

|ΦψIj
(w
h

)|2
dw(1 + o(1))

=
σ2C

(2n+ 1)d−djndjhdj+2βja
dj
n (2π)2dj

∼ C

ndhdj+2βja
dj
n

.

For the proof of the asymptotic normality, we finally show that the l-th cumulant of V (θ̂FDIj (x∗Ij))
−1/2θ̂FDIj (x∗Ij)

converges to zero for l ≥ 3, which completes the proof of Lemma 3.6. For this purpose we note

that
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|cuml(V (θ̂FDIj (x∗Ij))
−1/2θ̂FDIj (x∗Ij))| ≤ |Cn

ld/2hldj/2+lβjaldj/2n cuml(θ̂
FD
Ij

(x∗Ij))|

≤
∣∣∣ C

(nld/2hldj/2a
ldj/2
n

∑
k1,...,kl∈{−n,...,n}d

l∏
m=1

(∫
Rdj

e
−i〈w,(x∗Ij−zkm,Ij )〉/hΦK(w)

Φψ(w
h

)
dw

)
cum(εk1 , ..., εkl)

∣∣∣
≤ C

nld/2hldj/2a
ldj/2
n

∑
k1∈{−n,...,n}d

l∏
m=1

(∫
Rdj

|ΦK(w)|
|Φψ(w

h
)|
dw

)
,

where κl denotes the l-th cumulant of ε. From Assumption 1 it follows that this term is bounded

by
C

nld/2hldj/2a
ldj
n /2

(2n+ 1)dh−lβj = Cn−ld/2+1h−ldj/2aldj/2n ,

which converges to zero for l ≥ 3.

Proof of Theorem 3.7: In the following discussion we ignore the constant term g0 = θ0 because

the mean

θ̂0 =
1

nd

∑
k∈{−n,...,n}d

Yk

is a
√
nd-consistent estimator for this constant and the nonparametric components in (2.13) can

only be estimated at slower rates. Note that

θ̂add,FD(x∗) =
∑

k∈{−n,...,n}d
Yk

n∑
j=1

1

(2n+ 1)d−dj
wkIj ,n

(x∗Ij)

and obtain the asymptotic distribution with the same arguments as in the proof of Lemma 3.6.

Proof of Theorem 4.2: Under the assumption of an MA(q)-dependency structure (4.4) there

are no changes in the calculation of the mean of the estimator θ̂FDIj and we only have to calculate

the cumulants of order l ≥ 2 in order to establish the asymptotic normality. We start with the

variance, which is given by

V (θ̂FDIj (x∗Ij)) =
1

(2n+ 1)2(d−dj)

∑
k1,k2∈{−n,...,n}d

wk1,Ij
,n(x∗Ij)wk2,Ij

,n(x∗Ij)cum(εk1 , εk2)

=
1

(2n+ 1)2(d−dj)

∑
k1∈{−n,...,n}d

∑
k2:‖k2−k1‖∞≤2q

∑
r1,r2∈{−q,...,q}d

wk1,Ij
,n(x∗Ij)wk2,Ij

,n(x∗Ij)

cum(βr1Zk1−r1 , βr2Zk2−r2)

=
1

(2n+ 1)2(d−dj)

∑
k1∈{−n,...,n}d

∑
k2:‖k2−k1‖∞≤2q

∑
r1∈{−q,...,q}d

wk1,Ij
,n(x∗Ij)wk2,Ij

,n(x∗Ij)

cum(βr1Zk1−r1 , βk2−k1+r1Zk1−r1)
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=
σ2

(2n+ 1)2(d−dj)

∑
k1∈{−n,...,n}d

∑
k2:‖k2−k1‖∞≤2q

∑
r1∈{−q,...,q}d

wk1,Ij
,n(x∗Ij)wk2,Ij

,n(x∗Ij)

βr1βk2−k1+r1

=
σ2

(2n+ 1)2(d−dj)

∑
k1∈{−n,...,n}d

∑
l∈Zd
‖l‖∞≤2q

∑
r1∈{−q,...,q}d

wk1,Ij
,n(x∗Ij)wlIj+k1,Ij

,n(x∗Ij)

βr1βl+r1

=
σ2(1 + o(1))

(2n+ 1)(d−dj)

∑
k1,Ij

∈{−n,...,n}dj

∑
l∈Zd
‖l‖∞≤2q

∑
r1∈{−q,...,q}d

|wk1,Ij
,n(x∗Ij)|

2βr1βl+r1 ,

where we used a Taylor-approximation for the weights wlIj+k1,Ij
,n(x∗Ij) = wk1,Ij

,n(x∗Ij)(1 + o(1)) in

the last step. This gives the expression for the variance in Lemma 4.2. For the calculation of the

cumulants of V −1/2θ̂add,FDIj
we first note that the order of the variance V = V (θ̂add,FDIj

(xIj)) can be

calculated in the same way as in the proof of Lemma 3.6, which gives V = O(n−dh−dj−2βja
−dj
n ).

Therefore we have to show

|cuml(n
d/2hdj/2+βadj/2n θ̂add,FDIj

)| = nld/2hl(dj/2+βaldj/2n |cuml(θ̂
add,FD
Ij

)| → 0

for l ≥ 3. By a straightforward calculation it follows that

|cuml(θ̂
FD
Ij

)(x∗Ij)|

=
∣∣∣ 1

(2n+ 1)l(d−dj)nldjhldja
ldj
n

∑
k1,...,kl∈{−n,...,n}d

l∏
m=1

(∫
Rdj

e
−i〈w,(x∗Ij−zkm,Ij )〉/hΦK(w)

φψ(w
h

)
dw
)
cum(εk1 , ..., εkl)

∣∣∣
≤ C

(2n+ 1)l(d−dj)nldjhldja
ldj
n

∑
k1,...,kl∈{−n,...,n}d

l∏
m=1

(∫
Rdj

|ΦK(w)|
|φψ(w

h
)|
dw
)
|cum(εk1 , ..., εkl)|

=
C

(2n+ 1)l(d−dj)nldjhldja
ldj
n

1

hlβ

∑
k1,...,kl∈{−n,...,n}d

|cum(εk1 , ..., εkl)|

=
C

(2n+ 1)l(d−dj)nldjhldja
ldj
n

1

hlβ
(2n+ 1)d,

because by (4.4) k1 can be chosen arbitrarily and k2, ...,kl have only (4q+1)d possibilities to be cho-

sen and their bound is independent of n. Thus the l-th cumulant is of order n−ld/2+1h−ldj/2a
−ldj/2
n ,

which converges to zero for l ≥ 3. The result for θ̂add,FD follow immediately from the results of

θ̂FDIj .
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