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Abstract

This paper considers a linear panel data model with reduced rank regressors and interactive fixed effects.
The leading example is a factor model where some of the factors are observed, some others not. Invariance
considerations yield a maximal invariant statistic whose density does not depend on incidental parameters. It
is natural to consider a likelihood ratio test based on the maximal invariant statistic. Its density can be found
by using as a prior the unique invariant distribution for the incidental parameters. That invariant distribution
is least favorable and leads to minimax optimality properties. Combining the invariant distribution with
a prior for the remaining parameters gives a class of admissible tests. A particular choice of distribution
yields the spiked covariance model of Johnstone (2001). Numerical simulations suggest that the maximal
invariant likelihood ratio test outperforms the standard likelihood ratio test. Tests which are not invariant
to data transformations (i) are uniquely represented as randomized tests of the maximal invariant statistic
and (ii) do not solve the incidental parameter problem.

Keywords: Panel data models, factor models, incidental parameters, invariance, integrated likelihood,
minimax, likelihood ratio test.
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1. Introduction

Inference in large statistical/econometric models has recently generated a most active area of research. A
major feature of such models is the so-called incidental parameter problem—the description of which can be
traced back to the seminal paper by Neyman and Scott (1948). A major consequence of that problem is that
such classical and commonly used procedures as maximum likelihood estimation or likelihood ratio testing,
when the number of nuisance parameters is large, fail to provide adequate inference methods. This is the case
in a number of econometric models, such as panel, weak instrumental variable, and factor models, to mention
only a few. In dynamic linear panel data models, Arellano and Bond (1991) introduce GMM estimators,
Hahn and Kuersteiner (2002) propose a bias-corrected OLS estimator, Lancaster (2002) uses noninformative
priors, Chamberlain and Moreira (2009) and Bai (2012) advocate for a correlated-random effects estimator,
and Moreira (2009) relies on invariance arguments to propose a maximum likelihood estimation method.
Bekker (1994) shows that, in many weak instrumental variable models, the limited information maximum
likelihood estimator (LIML) is consistent and asymptotically normal under i.i.d. errors, while Chioda and
Jansson (2009) derive attainable efficiency bounds, and Hausman et al. (2012) propose a jacknife estimator
to accommodate for heteroskedastic errors. In factor models, Chamberlain and Rothschild (1983) extend
the approximate model of Ross (1976), Bai and Ng (2002) propose new methods to determine the number of
factors in large models, and Bai (2009) obtains the asymptotic distribution of an interactive-effects estimator.
See Lancaster (2000) and Arellano (2003) for a general discussion of the incidental parameter problem in
econometric models.
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This paper applies classical decision-theoretical principles to a simple linear panel data model. The model
is invariant to the action of groups of transformations of the sample space; such groups, acting on the sample
space, induce groups of transformations of the parameter space. This symmetry yields an invariant measure
for the incidental parameters. When the group is compact, this measure can be transformed into an invariant
probability measure. This methodology yields minimax optimality results where the invariant distribution
is least favorable. Integrating out the likelihood with respect to the invariant measure gives the distribution
of the maximal invariant. When the group is not compact, the integrated likelihood approach yields a
likelihood ratio statistic for the maximal invariant. For the groups considered here, we can still obtain a
minimax result by approximating the invariant measure by sequences of probability measures. Most of our
theoretical results are only expository. Ferguson (1967) describes the decision theory framework, Eaton
(1989) discusses the role of invariance in statistical models, and Lehmann and Romano (2005) outline the
main concepts in hypothesis testing. Our contribution is to point out that maximal invariant likelihood
ratio tests have optimality properties, whereas the standard likelihood ratio test does not.

Our results are illustrated by four examples. The leading example is a factor model with i.i.d. errors
and reduced-rank regressors as in Moon and Weidner (2012); those regressors can be interpreted as observed
factors as in Fama and French (1993). After transformations in the parameter and sample spaces, we obtain
structural parameters (γ, σ) and incidental parameters (β, λ, ω). We are interested in γ and σ, which have
fixed dimension irrespective of the sample size. The dimensions of β and λ increase with the cross-sectional
dimension, while the dimension of ω grows with the time series length. We show that the model is invariant
under a group which induces, on the parameter space, a group that acts transitively on the incidental
parameters. The maximal invariant does not depend on the incidental parameters at all and the group
characterizes an invariant (probability) measure. This distribution is least favorable, and yields a minimax
optimality resolving the incidental parameter problem. Using the invariant distribution as a prior leads to
an integrated likelihood method. The integrated likelihood yields the distribution for the maximal invariant,
so it coincides with the marginal maximal invariant likelihood approach.

A problem of particular interest that can be efficiently handled by this approach is that of testing for
the presence of latent factors in the data. Such a test may be useful, for example, in auction studies
where one suspects that heterogeneous bidders’ valuations are affected by common factors that are known
to the bidders but unobserved by the econometrician (Athey and Haile (2007, Section 6)). Recent signal
processing literature (Nadakuditi and Edelman (2008) and Nadakuditi and Silverstein (2010)) points out the
existence of a fundamental limit on the power of factor detection procedures based on standard likelihood
ratio tests: such procedures have trivial power in the detection of factors when the signal-to-noise ratio lies
below a “fundamental impossibility threshold.” Onatski et al. (2011) show that, in contrast with this, the
likelihood ratio test based on a maximal invariant statistic has non-trivial asymptotic power, even below the
“impossibility threshold.” In Section 4, we show that the power of such a test remains non-trivial in finite
samples. Moreover, we find that this power is very close to the finite-sample power envelope.

The spiked covariance model of Johnstone (2001) arises from a distributional assumption for the factors
in Example 1. This distribution can be decomposed into the invariant probability measure for ω and a
distribution on γ (which has fixed dimension). Hence the spiked covariance model automatically protects
against the incidental parameter problem for large time series, with no apparent robustness issues. It is then
natural to impose the invariant probability measure for λ as well, which again yields the minimax optimality
and the maximal invariant likelihood test. In Example 2, we consider the special case of testing the null
hypothesis that the errors’ covariance matrix is identity against the spiked covariance alternative. We show
that tests which are not invariant to orthogonal transformations of cross-sectional observations are uniquely
represented as randomized tests based on the maximal invariant statistic.

Our first two examples are relatively simple, but the principle of maximal invariant likelihood ratio
tests is applicable to more general models. For example, Chamberlain and Rothschild (1983) introduce
approximate factor models with correlated errors. When the covariance matrix of the vectorized error
matrix has a Kronecker product structure, the same group of transformations as in Examples 1 and 2
applies. The distribution of the maximal invariant statistic now depends on the eigenvalues of the error
covariance matrix. However, the maximal invariant likelihood ratio test avoids maximization over a large
number of eigenvectors of the error covariance matrix. This may bring considerable power gains with respect
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to the standard likelihood ratio test.
The last application, given in Example 4, involves the null hypothesis under which the covariance matrices

from two different populations are equal. This setup can be particularly useful for testing peer effects, such
as exam performance in different classrooms or schools; see Graham (2008). Using invariance arguments
yields considerable dimension reduction. Under the null hypothesis that the covariance matrices are equal,
the action group acts transitively. Hence likelihood ratio tests are pivotal (distribution-free under the null),
and controlling size is trivial. Under the alternative, we are able to reduce the parameter dimensionality by
a half. This reduction can be important in applications with large clusters.

The paper is organized as follows. Section 2 presents the panel data model and derives a canonical
representation for it. Section 3.1 describes invariance groups acting on the sample space, and the induced
groups acting on the parameter spaces, respectively. Section 3.2 discusses invariance properties of the
likelihood ratio tests and introduces likelihood ratio tests based on maximal invariants. Section 3.3 studies
optimal invariant tests, and points out their close connection to the likelihood ratio tests based on maximal
invariant. Section 3.4 shows that a Gaussian assumption on the factors yields the spiked covariance model
of Johnstone (2001). Section 3.5 briefly discusses a few other examples and their relation with the factor
model. Section 4 compares (still in the factor model of Example 1) the finite-sample performances of the
maximal invariant likelihood ratio test with those of the standard likelihod ratio test. Section 5 concludes,
and the Appendix provides the proofs of theoretical results.

2. The Model

Consider the linear factor model under which the observation consists of a matrix Y ∈ Rp×n satisfying
a model of the form

Y = β̃X + λ̃f̃ ′ + Σ1/2 (σ)W (1)

where X ∈ Rj×n is a full row rank matrix of observed factors or regressors, and f̃ ∈ Rn×k a matrix of
unobserved factors. The unobserved l × n disturbance matrix W ∼ N(0, In ⊗ Il) affects the observed
cross-sectional values of Y through Σ1/2 (σ)W , where Σ1/2(σ) is the symmetric square root of a symmetric

positive definite n×n matrix Σ(σ); the parameters σ ∈ Rr and β̃ ∈ Rp×j , and the factor loadings λ̃ ∈ Rp×k
are unspecified. Throughout, we assume j, p ≤ n.

In all examples below, we treat β̃ as a nuisance parameter. It is convenient then to apply a one-to-
one transformation of the model that simplifies the derivation of our results. Consider therefore the polar
decomposition

X =
(
ρ 0

)
q′

of X, where ρ = (XX ′)
1/2

is the unique symmetric square root matrix of XX ′ and q ∈ On, the group of
n× n orthogonal matrices. Partitioning q into (q1 q2) with q1 ∈ Rn×j and q2 ∈ Rn×(n−j), let

X =
(
ρ 0

)( q′1
q′2

)
= ρq′1;

we can rotate Y and work with Z = Y q. Because W has a spherical distribution,

Z = Y q
d
=
(
β̃ρ 0

)
+ λ̃f̃ ′q + Σ1/2(σ)W.

Partitioning (f ′1, f
′
2) = f ′ = f̃ ′q = (f̃ ′q1, f̃

′q2) conformably with q (f1 ∈ Rj×k, f2 ∈ R(n−j)×k) yields

Z
d
=
(
β̃ρ+ λ̃f ′1 λ̃f ′2

)
+ Σ1/2(σ)W. (2)

Write β = β̃ρ+ λ̃f ′1 and let λγω′ be a singular value decomposition of λ̃f ′2, where λ belongs to the set Fk,p
of p × k matrices with mutually orthogonal unit-length columns, ω similarly belongs to Fk,n−j , and γ is

3



a k × k diagonal matrix with non-increasing elements along the diagonal; this defines a natural embedding
of γ into Rk. The model for Z = (Z1, Z2) (with Z1 ∈ Rp×j and Z2 ∈ Rp×(n−j)) is(

Z1 Z2

) d
=
(
β λγω′

)
+ Σ1/2(σ)

(
W1 W2

)
(3)

and will be considered the canonical form of (1).

Example 1. For our purposes, the leading example is a simple linear factor model with some observed
factors X, and possibly some unobserved ones f̃ :

Y |X d
= β̃X + λ̃f̃ ′ + σW. (4)

Here, W is p× n, and the unobserved errors have variance σ2. We are interested in testing for the presence
of the unobserved factor, that is,

H0 : ‖f̃‖ = 0 against H1 : ‖f̃‖ > 0, (5)

where ‖f̃‖ =
(
tr(f̃ ′f̃)

)1/2
is the Frobenius norm of f̃ . The canonical form of (4) is(

Z1 Z2

) d
=
(
β λγω′

)
+ σW.

The factor component f1 in β = β̃ρ+ λ̃f ′1 is not identified, and so the problem becomes that of testing

H0 : ‖γ‖ = 0 against H1 : ‖γ‖ > 0. (6)

Example 2. In the model with observed factors X and unrestricted p× p covariance matrix Σ

Y = β̃X + Σ1/2W, (7)

consider the problem of testing
H0 : Σ = Σ0 against H0 : Σ 6= Σ0. (8)

Without loss of generality, we can assume Σ0 = Ip, otherwise we can work with the transformed vari-

able Σ
−1/2
0 Y .

Example 3. Assuming that, in Example 1, f̃ ∼ N
(
0, σ2Ik ⊗ In

)
, model (4) can be written as

Y | X d
= β̃X + Σ1/2W,

where Σ = σ2(Ip + λ̃λ̃′) and W ∼ N(0, In ⊗ Ip). A modification of this model, allowing for cross-sectional
and temporal covariances in the disturbance matrix, is (for simplicity, we restrict to the case X = 0 of
unobserved factors)

Y = Σ1/2WΩ1/2. (9)

The covariance matrix for Y is Φ = Ω⊗Σ. The eigenvalues τi, i = 1, . . . , np of Φ are the np products of an
eigenvalue of Ω with an eigenvalue of Σ. We could test whether r(1), the largest eigenvalue of Φ, is relatively
important to the other ones. For example,

H0 : r(1) ≤ ar(2) against H1 : r(1) > ar(2)

for some given constant a ≥ 1. This testing problem can be seen as generalizing (from an i.i.d. to a correlated
noise context) the problem of detecting the presence of factors.
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Example 4. Consider two independent random samples with m-dimensional normal observations

Y1,i
iid∼ Nm(β̃1,Σ1) and Y2,i

iid∼ Nm(β̃2,Σ2), i = 1, . . . , n, respectively. We want to test whether the co-
variance matrices in those two samples are the same, that is,

H0 : Σ1 = Σ2 against H1 : Σ1 6= Σ2. (10)

We can stack the observations into a p×n matrix Y whose i-th column is
(
Y ′1,i, Y

′
2,i

)′
, with dimension p = 2m.

The model is

Y =

[
β̃1

β̃2

]
1′n +

[
Σ

1/2
1 0

0 Σ
1/2
2

]
W. (11)

The matrix X here is just the vector 1′n, but we could also easily accommodate explanatory variables, as
well as a larger number K > 2 of random samples. This model is a special case of (1) without unobserved

factors nor covariates (k = 0, j = 1), where β̃ is the 2m × 1 vector stacking β̃1 on top of β̃2, σ = (Σ1,Σ2),
and

Σ(σ) =

[
Σ1 0
0 Σ2

]
.

The n×n orthogonal matrix q here has first column q1 = n−1/21n; the other columns are arbitrarily defined
(under the constraint that q is orthogonal). The first column Z1 of Z = Y q is then the empirical mean of Y ’s
rows, multiplied by a factor

√
n; Z2 is 2p× (n− 1), and consists of the remaining (n− 1) columns. Clearly,

Z2 coincides with the last (n − 1) columns of Σ1/2(σ)Wq, which in turn equals Σ1/2(σ)W in distribution.

To summarize, the distribution of Z2 is the same as that of the 2m× (n− 1) matrix (Y2 − β̃, . . . , Yn − β̃).

3. Invariance and likelihood ratio tests

3.1. Group invariance and linear factor model

Denote by Pβ,γ,σ,λ,ω or Pϑ the distribution of Z in (3) under parameter value ϑ = (β, γ, σ, λ, ω), where
ϑ ∈ Θ = Rp×j × Rk × Rr × Fk,p × Fk,n−j , and let P = {Pϑ|ϑ ∈ Θ}. Throughout, β will be a nuisance
parameter, the parameter of interest being θ = (γ, σ, λ, ω): all testing problems here are thus of the form

H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1. (12)

The linear model (1) and the testing problem (12) enjoy natural invariance properties, which are better
described in reference to the canonical form (3). We use the notation G for a general group of transformations
acting on the observation or sample space, with elements g and the binary operation ◦. If the group G is
such that the distribution PgZϑ of gZ under ϑ still belongs to P, there exists a unique parameter value—ḡϑ,

say, such that PgZϑ = Pḡϑ: P is said to be invariant under the action of G. The mappings ϑ 7→ ḡϑ yield
another group of transformations Ḡ, the induced group, acting on the parameter space Θ. We refer to Eaton
(1989) or Chapter 6 of Lehmann and Romano (2005) for details.

Consider, for example, the group G1 = {gb| b ∈ Rp×j}, where

gbZ = gb (Z1, Z2) = (Z1 + b, Z2) ,

hence gb2◦gb1 = gb1+b2 . That group is a group of translations acting on the first j columns of the observation
space. The action of gb on Z yields a shifted distribution for Z1, with mean β + b, while the distribution
of Z2 remains the same: it follows that P is invariant under G1, with ḡb(β, γ, σ, λ, ω) = (β + b, γ, σ, λ, ω).
Clearly, Ḡ1 acts transitively on Θ. Maximal invariants for G1 and Ḡ1 are Z2 and θ = (γ, σ, λ, ω), respectively.
The distribution of an invariant statistic only depends on the maximal invariant of the induced group (see
Lehmann and Romano (2005, Theorem 6.3.2)); the distribution of Z2 thus only depends on θ: denote it
as Pθ, and write pθ for the corresponding probability density.

A testing problem of the form (12) is invariant under G1, in the sense that ḡbΘ0 = Θ0 and ḡbΘ1 = Θ1 for
all b. When a testing problem is invariant under a group, it seems natural to restrict attention to tests that
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are themselves invariant under that group. Such tests are measurable functions of the maximal invariant.
When making inference on the parameter of interest θ = (γ, σ, λ, ω), invariance arguments thus suggest to
look only at Z2-measurable procedures.

Depending on the invariance features of Θ0 and Θ1, the testing problems considered here involve various
groups G, all admitting G1 as a subgroup. Theorem 6.2.2 of Lehmann and Romano (2005, p. 217) tells
us that, in such cases, Z2 rather than Z can be considered as the observation; the corresponding family
of distributions is P2 = {Pθ| θ ∈ Rk × Rr × Fk,p × Fk,n−j}. Invariant (with respect to G, hence also with
respect to G1) inference on θ in the presence of observed factors is thus the same as invariant inference on θ
without observed factors, albeit with a smaller sample size n− j in the canonical model (3).

Now, assume that all the elements g of G are differentiable mappings, and denote by χg their Jacobian
determinant. It follows from traditional results on continuous functions of random variables that, under
parameter value θ, the density of gZ2 at gz is pθ(z)χg(z), z ∈ Rp×(n−j). On the other hand, invariance

of P2 under G implies PgZ2

θ = Pḡθ, where PgZ2

θ denotes the distribution of gZ2 under parameter value θ, so
that the density under θ of gZ2, evaluated at gz, is of the form pḡθ(gz). Therefore,

pḡθ(gz) = pθ(z)χg(z) z − a.e., (13)

hence, replacing θ with ḡ−1θ, we obtain the identity

pθ(gz) = pḡ−1θ(z)χg(z) z − a.e. (14)

Identity (14) is quite general and actually holds for any parametric family P = {Pθ} of absolutely
continuous distributions with densities pθ invariant under a group G with differentiable elements g:z 7→ gz.
Let us illustrate this identity in the context of Example 1 (Examples 2-4 are treated in Section 3.5) and the
group G with elements gs,c,d, (s, c, d) ∈ R+ ×Op ×On−j , where

gs,c,dZ2 = s cZ2d
′, hence gs1,c1,d1◦ gs2,c2,d2 = gs1s2,c1c2,d1d2 . (15)

Under the canonical model (3),

gs,c,dZ2
d
= cλ (sγ) ω′d ′ + (sσ) W2.

The distribution P
gs,c,dZ2

θ of gs,c,dZ2 under parameter value θ is thus Psγ,sσ,cλ,dω, so that

ḡs,c,d(γ, σ, λ, ω) = (sγ, sσ, cλ, dω),

which defines the action of the induced group Ḡ. This transformation leaves the ratio γ/σ unchanged, and
thus preserves the testing problem (6).

The probability density of Z2 at z ∈ Rp×(n−j) when θ = (γ, σ, λ, ω) is

pθ (z) =
(
2πσ2

)−p(n−j)/2
exp

(
− 1

2σ2
tr(z − λγω′)′(z − λγω′)

)
.

For g = gs,c,d, the left-hand side of (13) yields pḡθ (gz) = psγ,sσ,cλ,dω (sczd ′). Hence,

pḡθ (gz) =
(
2πs2σ2

)−p(n−j)/2
exp

(
− 1

2s2σ2
tr(s czd′ − s cλγω′d′)′(s czd′ − s cλγω′d′)

)
=

(
2πs2σ2

)−p(n−j)/2
exp

(
− 1

2σ2
tr(z − λγω′)′(z − λγω′)

)
= pḡθ (gz)χg(z)

with χg(z) = s−p(n−j). This Jacobian χg(z) depends on g = gs,c,d only through the multiplicative constant s.
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3.2. Group invariance and likelihood ratio tests

Irrespective of any invariance considerations, a natural idea, in a Gaussian testing problem of the
form (12), consists in performing a likelihood ratio test (LRT). That LRT either could be based on the
full observation Z = (Z1, Z2), or on Z2 only. The following proposition establishes the remarkable fact that,
for any problem of the form (12), (14) implies the invariance under G of the Z2-based LRT statistic; the
validity of this proposition actually extends, well beyond Example 1, to any problem for which (14) holds.

Proposition 3.1 Suppose that the group G preserves the null and alternative hypotheses in (12), and
that (14) holds for all g ∈ G. Then, the Z2-based likelihood ratio test statistic

LR(Z2) = 2

[
max
θ∈Θ1

ln pθ (Z2)− max
θ∈Θ0

ln pθ (Z2)

]
(16)

is invariant under G, that is, LR(gZ2) = LR(Z2) for any g ∈ G.

In Example 1, the same invariance property also holds for the Z-based LRT statistic

LR(Z1, Z2) = 2

[
max

ϑ∈Rp×j×Θ1

ln pϑ (Z1, Z2)− max
ϑ∈Rp×j×Θ0

ln pϑ (Z1, Z2)

]
,

based on the entire sample Z = (Z1 Z2). Indeed, (i) Z1 and Z2 are independent and (ii) the maximum
likelihood estimator of β is Z1 itself, under θ ∈ Θ0 as well as under θ ∈ Θ1, so that LR(Z1, Z2) = LR(Z2).

Proposition 3.1 has crucial implications. The distribution of any invariant statistic only depends on the
maximal invariant of Ḡ in the parameter space. Since the group Ḡ here preserves the ratio γ/σ and acts
transitively on (σ, λ, ω), γ/σ is maximal invariant for Ḡ. The distribution of LR(Z2) thus depends on θ
only through γ/σ, which can mislead us to think that the incidental parameter problem is solved. This is
an illusion, though, as the maximum likelihood estimator for (σ, λ, ω), hence the Z2-based LRT, has poor
properties when p and n are large; see Onatski (2012). Instead of the Z2-based LRT, we therefore suggest
to use the LRT based on a maximal invariant (for G) statistic.

In order to determine such maximal invariants for the group G defined in (15), it is convenient to notice
that G is the group generated by the union of two subgroups, G2 and G0, where G2, with elements gc,d, is
the (compact) group of orthogonal transformations acting on Z2, namely,

gc,dZ2 = cZ2d
′, (c, d) ∈ Op ×On−j , (17)

while G0, with elements gs, s ∈ R+
0 , is a group of scale transformations: gsZ2 = sZ2. The following result

then is straightforward.

Proposition 3.2 (i) A maximal invariant for G2 is the collection T (Z2) =
(
l(1), l(2), . . . , l(p)

)
of ordered

eigenvalues of Z2Z
′
2.

(ii) A maximal invariant for G is the collection M (Z2) =
(
l(2)/l(1), . . . , l(p)/l(1)

)
of ratios of ordered

eigenvalues of Z2Z
′
2.

Since T (Z2) is maximal invariant for G2, its distribution PTγ,σ only depends on (γ, σ), which is maximal

invariant for Ḡ2. Inference based on T (Z2) thus completely eliminates the impact of λ and ω. This is quite
desirable when λ and ω (as well as β) are nuisance parameters, as in the testing problem (6). Consider
the T (Z2)-based likelihood ratio test statistic for (6)

LR(T (Z2)) = 2

[
max

(γ,σ)∈Rk×R+
0

ln pTγ,σ (T (Z2))− max
σ∈R+

0

ln pT0,σ (T (Z2))

]
, (18)

where pTγ,σ (t) denotes the density of T (Z2) under parameter value θ = (γ, σ, λ, ω) evaluated at t ∈ Rp.
The same argument as in Proposition 3.1 shows that the distribution of LR(T (Z2)) does not depend on σ,
leading to an exact test for (6).
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Alternatively, for the same testing problem (6), we could consider the M(Z2)-based likelihood ratio test
statistic

LR(M(Z2)) = 2

[
max
γ/σ∈Rk

ln pMγ/σ(M(Z2))− ln pM0 (M(Z2))

]
, (19)

where pMγ/σ (m) is the density, under parameter value θ = (γ, σ, λ, ω) of the maximal invariant (for G) M(Z2)

evaluated at m ∈ Rp−1. Section 3.3 provides two optimality results which support the use of both likelihood
ratio tests.

3.3. Finite-sample optimality issues

The group of transformations Ḡ acts transitively on (σ, λ, ω) ∈ R+
0 × Fk,p × Fk,n−j . Hence, the power

function of an invariant test φ (M (Z2)) depends only on γ/σ. This suggests that a (M(Z2))-based LRT
might be minimax (with respect to the nuisance parameters (σ, λ, ω)). The group G is not compact; however,
the subgroup G2 is, and the induced group Ḡ2 acts transitively on (λ, ω) ∈ Fk,p × Fk,n−j . Because G2 is
compact, Theorem 2.2 of Eaton (1989, p. 25) implies that there exists a unique G2-invariant probability
measure on Fk,p × Fk,n−j , which is a product measure of the form H = Hp × Hn−j , the product of the
invariant probability measures Hp on Fk,p and Hn−j on Fk,n−j , respectively.

Consider the integrated (with respect to H) likelihood

pH
γ,σ(Z2) =

∫
Fk,p×Fk,n−j

pγ,σ,λ,ω(Z2) H(dλ× dω). (20)

The following proposition establishes the close relation between pH
γ,σ(Z2) and the density of the maximal

invariant T (Z2) =
(
l(1), l(2), . . . , l(p)

)
(recall that min(n, p) = p). Denote by η(T (Z2)) the p× (n− j) matrix

with diagonal elements l
1/2
(1) , l

1/2
(2) , . . . , l

1/2
(min(p,n−j)), 0, . . . , 0 and off-diagonal elements zero.

Proposition 3.3 (i) The integrated likelihood (20) is such that pH
γ,σ(Z2) = pH

γ,σ(η(T (Z2))).

(ii) The density, evaluated at t ∈ Rp, of PTγ,σ with respect to the measure µT−1, where µ is the Lebesgue

measure on Rp×(n−j), is pH
γ,σ(η(t)).

The invariant distribution H also has an appealing decision-theoretic interpretation. Suppose we are
interested in making inference on (γ, σ). The possibly high-dimensional parameters λ and ω are only nuisance
parameters. Let A be the decision space, and denote by L(γ, σ; a) the loss incurred when decision a ∈ A is
taken while the parameter value is γ, σ. We observe Z2 and make a decision δ(Z2). For simplicity, we only
consider nonrandomized decision rules δ : Z2 → A and convex loss functions; we also omit measurability
conditions. The risk function associated with a decision rule δ is

R(γ, σ, λ, ω; δ) =

∫
Rp×(n−j)

L(γ, σ; δ(Z2)) pγ,σ,λ,ω (z) µ(dz).

Because G2 acts transitively on (λ, ω) but does not affect (γ, σ), we use the invariant probability measure
for (λ, ω) and an arbitrary weight function W for (γ, σ) in the evaluation of a decision rule δ: a decision
rule δ∗ is optimal within a class C if δ∗ ∈ C and

δ∗ = arg min
δ∈C

∫
Rk×Rr×Fk,p×Fk,n−j

R (γ, σ, λ, ω; δ) H(dλ× dω)W (dγ × dσ) . (21)

The following proposition shows that the optimal decision rule δ∗ which solves (21) is minimax.

Proposition 3.4 The optimal solution δ∗ in (21) is minimax; more precisely,

δ∗ = arg min
δ∈C

sup
λ∈Fk,p, ω∈Fk,n−j

∫
Rk×Rr

R (γ, σ, λ, ω; δ) W (dγ × dσ),

and depends on Z2 only through T (Z2). Furthermore, H is the least favorable distribution for (λ, ω).
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Proposition 3.4 implies that restricting to G2-invariant (equivalently, T -measurable) decision rules does
not affect the minimax solution of the decision problem. The proof is standard and uses the fact that G2 is
compact (implying a finite Haar measure)1.

The T (Z2)-based LRT (18) replaces the arbitrary choice of a weight function W by a maximization
over γ and σ. This procedure may not be admissible, but it does avoid the incidental parameter problem.
Analogously, the M(Z2)-based LRT test (19) replaces the arbitrary W by the invariant measure on σ
and a maximization over γ/σ. The resulting test may not be admissible for general one-sided alternatives
involving γ/σ.

3.4. The unconditional factor model

Instead of the conditional (on the factors f) approach that has been adopted so far, consider the uncon-
ditional approach under which

f̃ |X d
= N(X ′π̃,Σ⊗ In), (22)

where π̃ ∈ Rj×k and the positive definite matrix Σ are unspecified. In the rotated model (2), where f = q′f̃ ,
we obtain

f =

(
f1

f2

)
d
= N

((
π
0

)
,Σ⊗ In

)
,

where π = ρπ̃. Elementary algebraic manipulations yield(
Z1 Z2

) d
= N

((
β 0

)
, σ2In ⊗ (Ip + V hV ′)

)
,

where β = β̃ρ + λ̃π′, V ∈ Fk,p, and h is the k × k diagonal matrix of ordered eigenvalues hj ≥ 0 of the
standardized covariance matrix σ−2Σ.

As in the conditional model, we first apply the translation group G1 to eliminate Z1. This yields Z2 as
a maximal invariant, with

Z2
d
= N

(
0, σ2In−j ⊗ (Ip + V hV ′)

)
, (23)

that is, a spiked covariance model in the sense of Johnstone (2001). The same invariance properties as
in (17) hold for (23): the maximal invariant for G2 remains T (Z2), the distribution of which depends only
on σ and h; see Onatski et al. (2012).

The distributional assumption (22) on the factors f̃ at first sight may look too restrictive. The following
proposition shows that this assumption actually is related to the invariant distribution for an incidental
parameter. In that sense, the unconditional model (23) for Z2 is close to the model described by the
integrated likelihood (20) considered in the conditional model context.

To formulate this, let us introduce some notation. For any full-rank matrix x ∈ R(n−j)×k with k < n− j,
let ϕγω′ be the unique singular value decomposition of x′ such that the first row of ϕ ∈ Ok has positive
elements, γ is the k × k diagonal matrix of ordered singular values of x, and ω ∈ Fk,n−j . The matrices ϕ
and γ are uniquely determined by x′x, so we write ϕ = ϕ (x′x) and γ = γ (x′x) . In contrast, the matrix ω
depends on the full matrix x, and so we write ω = ω (x). Further, let uhu′ be a spectral decomposition

of Σ/σ2, and denote by P
f ′2f2
u,h,σ the probability measure on Rk×k of the random matrix f ′2f2.

Proposition 3.5 Assume that k < n− j. In the unconditional model (19),

(i) the density function of Z2 at z ∈ Rp×(n−j) is

qσ,V,h(z) =

∫
Fk,n−j

∫
Rk×k

pγ(y),σ,V u′ϕ(y),ω (z) Hn−j (dω) P
f ′2f2
u,h,σ (dy) ; (24)

1It is possible to extend this proposition to accommodate also the non-compact group G0 by applying the Hunt-Stein
theorem; see Lehmann and Romano (2005, p. 333). However, for the purpose of obtaining tests with good power for large p
and n, invariance with respect to G0 is unnecessary as long as the dimension r of σ2 (in most cases, r = 1) remains small
irrespective of the sample size n.
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(ii) defining qH
h,σ (z) =

∫
Fk,p

qσ,V,h(z)Hp (dV ) , we have

qH
h,σ (z) =

∫
Rk×k

pH
γ(y),σ (z) P

f ′2f2
u,h,σ (dy) ;

therefore qH
h,σ (η (t)) is the density of T = T (Z2) at T = t.

The density qH
h,σ (η(t)) is related to (20), which gives the likelihood for T (Z2) in the conditional model.

The unconditional model density qσ,V,h implicitly integrates the parameter ω out of the conditional model pγ,σ,λ,ω
with respect to the uniform invariant distribution on Fk,n−j . Further, after a reparameterization λ̃ 7→ V u′

and λ 7→ V u′ϕ, it integrates out u′ϕγ with respect to a Wishart distribution on Rk×k. So, the starting point
of our approach differs from the one adopted by Johnstone (2001). The conditional model treats the factor
loadings as “fixed” effect parameters. The minimax optimality yields the least favorable distribution. The
unique invariant distribution on ω ∈ Fk,n−j can be combined with a family of distributions for u′ϕγ ∈ Rk×k
to obtain the unconditional, spiked covariance model.

Proposition 3.5 has some implications for testing the presence of factors for large n and p. First, the
correlated factor assumption imposes a distributional assumption on ϕγ2ϕ′ = f ′2f2 for invariant tests.
The parameters ϕ and γ have fixed dimension, irrespective of the sample size, so that inference on the
unconditional model as in Onatski et al. (2011) is similar to the conditional model. Second, a standard
likelihood ratio test based on the unconditional model avoids the incidental parameter problem for large n
by imposing a minimal distributional assumption. Third, the unconditional model still entails maximization
over λ ∈ Fk,p, so it does not fully solve the high-dimensionality problem for large p. Therefore, we suggest
to integrate out the incidental parameter to obtain a minimax result.

3.5. Further Examples

The finite-sample theory of Sections 3.1-3.4 can be extended to other models when both p and n are large.
The main ingredients in our analysis (maximal invariants in the sample and parameter spaces, Haar measure,
and minimax tests) remain valid for appropriate groups, which are specific to each particular problem. We
illustrate our approach in the context of Examples 2-4; in all of them, β is a nuisance parameter, and we
therefore consider the canonical model (3).

Example 2 (cont.): Example 2 could be extended to the problem of testing sphericity, that is, H0 :
Σ = σ2I against H1 : Σ 6= σ2I with unspecified σ > 0—the problem considered in Ledoit and Wolf (2002),
Srivastava (2005), Schott (2006), Bai et al. (2009), Chen et al. (2010), Cai and Ma (2012)—by including
the additional group G0 of scale transformation and M(Z2) instead of T (Z2) as maximal invariant. For
simplicity, however, we only consider the specified-σ case, and the group G2, acting on Z2, described in (17).
Under model (9),

gc,dZ2 = cZ2d
′ = cΣ1/2W2d

′, (c, d) ∈ Op ×On−j ,
the induced group Ḡ2, now acting on Σ (rather than on (γ, σ, λ, ω), as in Section 3.1), is characterized by

ḡc,dΣ = cΣd′, (c, d) ∈ Op ×On−j ,

and the testing problem (8) (with Σ0 = Ip) is clearly invariant under G2. It follows from Proposition 3.2(ii)
that a maximal invariant for G2 is the ordered collection T (Z2) = (l(1), . . . , l(p)) of eigenvalues of Z2Z

′
2. A

maximal invariant for Ḡ2 is the ordered collection v(1), . . . , v(p) of eigenvalues of the covariance matrix Σ.
The group G2 moreover yields unique (up to a positive multiplicative constant) left- and right-invariant
measures. A minimax result can be obtained along the same lines as in Proposition 3.4.

Invariance under left-hand orthogonal transformations of the form gc,In−j , c ∈ Op reduces the p (p+ 1) /2-
dimensional parameter space of Σ to the p-dimensional space of the maximal invariant v(1), . . . , v(p). Right-
hand orthogonal transformations of the form gIp,d, d ∈ On−j , do not yield any further reduction in the
parameter space. So, we may not need to require tests to be invariant to right-hand orthogonal transforma-
tions. However, as shown by the following lemma, tests which are not invariant under right-hand orthogonal
transformations are, in fact, randomized T (Z2)-measurable tests which are invariant under both left- and
right-hand orthogonal transformations.
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Lemma 3.1 For each test φ invariant to left-hand orthogonal transformations, there exists (up to zero-
measure sets) a unique randomized test φ∗ measurable with respect to the maximal invariant T (Z2), hence
invariant under both left- and right-hand orthogonal transformations, which has the same power function
as φ, that is, such that EΣφ

∗ = EΣφ for all Σ.

Most tests in the literature are based on the eigenvalues T (Z2) of the sample covariance matrix, but not
all of them. An example of a test which is invariant under left-hand but not under right-hand orthogonal
transformations is the test proposed by Cai and Ma (2012), based on a statistic of the form ψ (Z ′2Z2). The
following proposition provides a representation result for such tests.

Proposition 3.6 Consider a test φ rejecting the null hypothesis H0 : Σ = Ip whenever the statistic ψ (Z ′2Z2)
exceeds the critical value cα, where cα is such that EΣ=Ipφ = α. Then, the test φ∗ (T ) = 1−FT (cα), where Ft
is the distribution function of ψ conditional on T (Z2) = t, has the same power function as φ.

Example 3 (cont.): This example involves testing whether one eigenvalue or several of them lie above
the bulk of the remaining ones, such as H0 : r(1) ≤ ar(2) against H1 : r(1) > ar(2) for some given constant
a ≥ 1. This testing problem can be linked to the methods of estimation of the number of factors based
on the evidence of a separation of some of the largest eigenvalues from the bulk (Hallin and Liska (2007),
Onatski (2010), Alessi et al. (2010), and Ahn and Horenstein (2012)).

The model (9) does not contain additional regressors. The relevant group again is G2, acting on Y = Z2,
with maximal invariant T (Z2). The maximal invariant in the parameter space is the (ordered) collections of
the p eigenvalues of Σ and n eigenvalues of Ω. The T (Z2)-based LRTs are minimax for hypotheses involving
the eigenvectors of Σ and the eigenvectors of Ω. The T (Z2)-based LRTs use information not only from a
few of the largest sample eigenvalues, but from all of them. We leave it to future research to compare the
T (Z2)-based LRTs to the standard LRT and modifications thereof (e.g., Moon and Weidner (2012)) when
both p and n tend to infinity.

Example 4 (cont.): In the testing problem (10), the relevant group is G = {gc,d| c ∈ G+
m, d ∈ On−1},

where G+
m is the set of m×m lower triangular matrices with positive diagonal elements, and

gc,dZ2 = (I2 ⊗ c)Z2d
′,

so that

gc,dZ2
d
=

[
cΣ

1/2
1 0

0 cΣ
1/2
2

]
W2d

′.

The action on (Σ1,Σ2) of the induced group Ḡ = {ḡc,d| c ∈ G+
m, d ∈ On−1} is thus

ḡc,d (Σ1,Σ2) =
(
cΣ1c

′, cΣ2c
′). (25)

The probability density of Z2 under θ = (Σ1,Σ2), evaluated at z, is

pθ (z) = (2π)
−p(n−1)/2 |Σ1|−(n−1)/2 |Σ2|−(n−1)/2

exp

{
−1

2
tr
[
Σ−1(σ)Z2Z

′
2

]}
.

For g = gc,d, the density under ḡθ of gZ2 evaluated at gz is

pḡc,d (gc,dz) = pcΣ1c′,cΣ2c′ ((I2 ⊗ c)zd ′)

= (2π)
p(n−1)/2 |cΣ1c

′|−(n−1)/2 |cΣ2c
′|−(n−1)/2

(26)

× exp

{
−1

2
tr
[(
I2 ⊗ c′−1

)
Σ−1(σ)

(
I2 ⊗ c−1

)
(I2 ⊗ c)Z2d

′dZ ′2(I2 ⊗ c′)
]}

.

We can partition each c ∈ G+
m as

c =

[
c11 0
c21 c22

]
,
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where c11 ∈ G+
m−1, c21 is a 1× (m− 1) vector, and c22 a scalar. Hence, c−1 in (26) is

c−1 =

[
c−1
11 0

−c−1
22 c21c

−1
11 c−1

22

]
.

From (13),

pḡθ (gz) = pθ (z)χg (z) with χg (z) = |c|−2(n−1)
=
( m∏
i=1

cii

)−2(n−1)

, (27)

where cii is the (i, i)-entry of c ∈ G+
m.

We now obtain a maximal invariant statistic for G (assume m ≤ 2 (n− 1)).

Proposition 3.7 Define the m×2 (n− 1) matrix Z+
2 = [Z21, Z22] where Z21 and Z22 are the first and last m

rows of Z2, respectively2. Write Z+
2 as Z+

2 = c2w
′
2, where c2 ∈ G+

m and w2 ∈ Fm,2(n−1), and partition w′2
into two m× (n− 1) submatrices: w′2 = [w′21, w

′
22] . Maximal invariants in the sample and parameter spaces

are [
w′21w21 w′21w22

w′21w22 w′22w22

]
and Σ

−1/2
1 Σ2Σ

−1/2
1 ,

respectively.

Invariance under G has several important implications for testing procedures. First, the invariance
argument reduces the composite null hypothesis in the original problem to a simple one: controlling size
is thus straightforward if we restrict to invariant tests (actually, it is important to be invariant under the
subgroup G = {gc,In−1

| c ∈ G+
m} only; invariance to right-hand multiplication by orthogonal matrices simply

entails data reduction). Second, the invariance argument reduces the dimension of the parameter space by
one half. This reduction may yield considerable power gains for the LRT based on the maximal invariant.
For example, consider testing

H0 : Σ2 = Σ1 against H1 : Σ2 = ξΣ1, (28)

where ξ is some fixed number and Σ1 is unspecified. The group of transformations Ḡ acts transitively on
both the null hypothesis and the alternative. The optimal invariant test then is given by the following
proposition.

Proposition 3.8 An α-level uniformly most powerful invariant test for (28) is the test rejecting H0 when-
ever ∫

exp

{
−1

2
tr
(
c
[
Z21Z

′
21 + ξ−1Z22Z

′
22

]
c′
)}( m∏

i=1

cii

)−2(n−1)

dc∫
exp

{
−1

2
tr (c [Z21Z

′
21 + Z22Z

′
22] c′)

}( m∏
i=1

cii

)−2(n−1)

dc

> cα,

where cα is chosen so that the size under H0 is α.

This test is the LRT based on the maximal invariant for G, and has constant risk function. We can
then obtain a minimax result as an application of the Hunt-Stein theorem, even though G is not a compact
group.

Finally, recall that Proposition 3.1 shows that the standard LRT procedure for (28) is invariant. Hence,
the maximal invariant-based LRT dominates the standard LRT for the alternative H1 : Σ2 = ξΣ1. This

statement can easily be generalized to alternatives of the form H1 : Σ2 = Σ
1/2
1 ΩΣ

1/2
1 , where Ω is an

arbitrary fixed positive definite m×m matrix.

2 Z+
2 “stacks horizontally” the m× (n− 1) upper and lower halves of Z2; while Z2 is 2m× (n− 1), Z+

2 is m× 2(n− 1).
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4. Monte Carlo Simulations

This section uses Monte Carlo simulations to compare the finite sample power functions of the standard
LRT on one hand, and of the LRT based on T (Z2) and on M (Z2) on the other hand. We focus on testing

H0 : h = 0 against H1 : h > 0,

when the data Z2 ∼ N
(
0, σ2In ⊗ (Ip + V hV ′)

)
satisfy the spiked covariance model with scalar h. As ex-

plained above, Z2 can be interpreted as a part of the canonically transformed data generated from an
unconditional factor model.

We consider the cases of specified and unspecified σ2. When σ2 is specified, we set it to σ2 = 1 without
loss of generality. In such a case, we compare the standard LRT with the LRT based on the maximal
invariant statistic T (Z2). The corresponding test statistic is defined as

LRT = 2

[
max
h∈R+

0

ln qTh (T (Z2))− ln qT0 (T (Z2))

]
,

where qTh (t) denotes the density of T (Z2) under parameter value h evaluated at t ∈ Rp.
In the case where σ2 is left unspecified, we compare the standard LRT with the LRT based on the

maximal invariant statistic M (Z2). The corresponding test statistic is defined as

LRM = 2

[
max
h∈R+

0

ln qMh (M (Z2))− ln qM0 (M (Z2))

]
,

where qMh (m) denotes the density of M (Z2) under parameter value h evaluated at m ∈ Rp−1.
The computation of LRT requires a numerical evaluation of the density qTh (T (Z2)). As Proposition 3.5

shows, this density can, in principle, be obtained by numerical integration

qTh (T (Z2)) =

∫
Rk×k

∫
Fk,p×Fk,n−j

pγ(y),σ,V u′ϕ(y),ω (Z2) H (dV × dω) p
f ′2f2
u,h,σ (dy) .

However, this approach is impractical in situations where n and/or p are large. Therefore, we use a computa-
tionally simpler formula (Onatski et al. (2011, formula 2.9)) which expresses the ratio qTh (T (Z2)) /qT0 (T (Z2))
as the contour integral

(hn/2)
−(p−2)/2

(1 + h)
(p−n−2)/2

Γ (p/2)
1

2πi

∮
K

exp(
n

2

h

1 + h
z)

p∏
j=1

(
z − l(j)/n

)− 1
2 dz,

where K is an arbitrary contour in the complex plane that starts at −∞, encircles counter-clockwise the
eigenvalues l(1)/n, ..., l(p)/n of Z2Z

′
2/n, and goes back to −∞. For the computation of LRM , we use a similar

contour integral formula (Onatski et al. (2011, formula 2.10)).
It is straightforward to show that the standard LRT statistic in the case of specified σ2 equals

LRs = n
(
l(1)/n− 1− log(l(1)/n)

)
if l(1)/n > 1, and LRs = 0 otherwise. Here the superscript “s” is used as a reminder that σ2 is specified. In
the case of unspecified σ2, we use notation LRu. It can be shown that

LRu = n (p− 1) log (p− 1)− n log
p∑p

j=1 l(j)/l(1)
− n (p− 1) log

(
p− p∑p

j=1 l(j)/l(1)

)

if p/
∑p
j=1 l(j)/l(1) > 1, and LRu = 0 otherwise. We omit the derivation of the above two formulae to save

space.
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n = p = 40 n = p = 200 n = p = 1000 n = p =∞
h LRs LRT N-P LRs LRT N-P LRs LRT N-P LRs LRT N-P
0.00 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.11 0.11 0.11 0.10 0.11 0.11
0.21 0.10 0.11 0.10 0.10 0.10 0.11 0.11 0.11 0.11 0.10 0.12 0.13
0.32 0.11 0.11 0.11 0.10 0.10 0.12 0.11 0.12 0.12 0.10 0.13 0.15
0.42 0.11 0.12 0.12 0.10 0.11 0.13 0.12 0.13 0.13 0.10 0.14 0.17
0.53 0.12 0.13 0.14 0.11 0.13 0.14 0.12 0.14 0.15 0.10 0.16 0.19
0.63 0.14 0.15 0.16 0.12 0.14 0.16 0.12 0.16 0.17 0.10 0.18 0.22
0.74 0.16 0.18 0.19 0.14 0.18 0.19 0.13 0.19 0.20 0.10 0.22 0.26
0.84 0.21 0.23 0.23 0.18 0.23 0.24 0.16 0.24 0.25 0.10 0.27 0.31
0.95 0.28 0.31 0.30 0.26 0.32 0.34 0.25 0.35 0.36 0.10 0.39 0.42
1.05 0.37 0.40 0.40 0.42 0.48 0.48 0.52 0.60 0.61 1.00 1.00 1.00
1.16 0.49 0.52 0.51 0.65 0.68 0.68 0.90 0.91 0.92 1.00 1.00 1.00
1.26 0.62 0.64 0.63 0.86 0.87 0.87 1.00 1.00 1.00 1.00 1.00 1.00
1.37 0.73 0.75 0.75 0.97 0.96 0.97 1.00 1.00 1.00 1.00 1.00 1.00
1.47 0.83 0.84 0.84 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00
1.58 0.90 0.90 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.68 0.95 0.95 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.79 0.97 0.97 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.90 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2.00 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 1: Finite sample power functions for the standard LRT (columns LRs) and LRT based on T (Z2) (columns LRT ). The
finite sample and asymptotic power envelopes are given in columns marked “N-P”.

We implement the Monte Carlo exercises for p = n = 40, 200, and 1, 000. For each of these sample
sizes, we first make 10,000 draws of Z2 ∼ N (0, In ⊗ Ip) , each time computing LRT , LRs, LRM , and LRu

statistics. We take the 9,000-th order statistics of the resulting values of LRT , LRs, LRM , and LRu as the
critical values of the corresponding tests with finite sample size 10%. We also compute the critical values
for the tests with finite sample size 5%.

To compute the finite sample powers of the tests, we make 10,000 draws of Z2 ∼ N (0, In ⊗ (Ip + V hV ′))
with V ′ = (1, 0, ..., 0) for each of the 20 equally spaced points on the grid h = 0 : (2/19) : 2. For each
draw, we compute the values of LRT , LRs, LRM , and LRu statistics. The finite sample powers of the
corresponding tests equal the proportions of the values, out of 10,000, that fall above the corresponding
critical values.

Table 1 reports the finite sample power functions of the LRT based on T (Z2) (columns LRT ) and of the
standard LRT (columns LRs) of finite sample size 10% for p = n = 40, 200, and 1, 000. It also reports the
values of the finite sample power envelopes for invariant tests (columns N-P, for Neyman-Pearson). By the
Neyman-Pearson lemma, the value of such an envelope at h can be obtained by computing the finite sample
power of the test that rejects the null hypothesis whenever qTh (T (Z2)) /qT0 (T (Z2)) > C, where C is such
that the probability of type-I error equals 10%. We compute this power at the grid points for h using the
above contour integral representation of qTh (T (Z2)) /qT0 (T (Z2)).

The asymptotic power envelope as n = p go to infinity as well as the asymptotic power of the LRT and
LRT based on T (Z2) (Onatski et al. (2011)) are reported in the last three columns of the table. The results
for the 5% size tests are similar, and, to save space, we report them only in the supplementary material file.

We see that, as the sample size increases, both the LRT based on T (Z2) and the standard LRT have
power functions approaching one for h > 1. In contrast, when h < 1, the power of the standard LRT
decreases with the sample size, whereas the power of the LRT based on T (Z2) remains close to the power
envelope. This is consistent with Onatski et al (2012) (see the last three columns of the table), who show
that the asymptotic power of the LRT based on T (Z2), as n, p go to infinity so that p/n → c ∈ (0,∞), is
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n = p = 40 n = p = 200 n = p = 1000 n = p =∞
h LRu LRM N-P LRu LRM N-P LRu LRM N-P LRu LRM N-P
0.00 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
0.11 0.10 0.10 0.09 0.09 0.10 0.10 0.11 0.11 0.10 0.10 0.10 0.10
0.21 0.10 0.10 0.10 0.09 0.10 0.10 0.11 0.11 0.11 0.10 0.10 0.10
0.32 0.10 0.10 0.10 0.09 0.10 0.10 0.11 0.11 0.11 0.10 0.11 0.11
0.42 0.10 0.10 0.10 0.09 0.10 0.10 0.11 0.11 0.11 0.10 0.11 0.12
0.53 0.10 0.11 0.11 0.10 0.10 0.11 0.11 0.12 0.11 0.10 0.12 0.13
0.63 0.11 0.12 0.12 0.10 0.11 0.11 0.11 0.12 0.12 0.10 0.13 0.15
0.74 0.13 0.13 0.13 0.11 0.13 0.13 0.12 0.14 0.14 0.10 0.15 0.17
0.84 0.16 0.16 0.16 0.14 0.16 0.16 0.14 0.17 0.17 0.10 0.19 0.22
0.95 0.21 0.21 0.21 0.22 0.24 0.24 0.22 0.27 0.27 0.10 0.30 0.33
1.05 0.28 0.29 0.29 0.36 0.39 0.39 0.48 0.52 0.53 1.00 1.00 1.00
1.16 0.39 0.39 0.39 0.59 0.61 0.61 0.88 0.88 0.89 1.00 1.00 1.00
1.26 0.51 0.51 0.51 0.82 0.83 0.83 1.00 1.00 1.00 1.00 1.00 1.00
1.37 0.64 0.64 0.64 0.95 0.95 0.96 1.00 1.00 1.00 1.00 1.00 1.00
1.47 0.76 0.76 0.76 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00
1.58 0.85 0.85 0.85 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.68 0.91 0.91 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.79 0.95 0.95 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.90 0.97 0.97 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2.00 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 2: Finite sample power functions for the standard LRT (columns LRu) and LRT based on M(Z2) (columns LRM ). The
finite sample and asymptotic power envelopes are given in columns marked “N-P”.

close to the asymptotic power envelope, whereas the asymptotic power of any test based on l(1) only, such
as the standard LRT, equals the asymptotic size in the region h ∈ (0,

√
c).

In fact, the finite sample power of the LRT based on T (Z2) is so close to the corresponding power envelope
that the numerical accuracy of the Monte Carlo based on 10,000 replications is sometimes not sufficient to
guarantee that the estimates reported in columns LRT are strictly smaller than the corresponding estimates
in columns N-P. For example, for h = 0.95 and n = p = 40, the estimated power of the LRT based on T (Z2)
is 0.31, whereas the estimated value of the power envelope is 0.30. The standard deviations of the estimates
in Table 1 must be no smaller than the standard deviation of the average of 10,000 i.i.d. Bernoulli random
variables with 0.5 probability of success, which equals

√
1/40, 000 = 0.005. The estimates in Table 1 are

rounded to the closest number with two digits after the decimal point. Hence, even when the power of the
LRT based on T (Z2) is smaller than the corresponding power envelope by 0.01, we must occasionally see
the reported estimates in columns LRT larger than the corresponding estimates in columns N-P.

Table 2 is an equivalent of Table 1 for the LRT based on M (Z2) and the standard LRT when σ2 is
left unspecified. It is qualitatively similar to Table 1 although the asymptotic and the finite sample power
envelopes are substantially lower for h < 1.

5. Conclusion

Previous authors have noted that the LRT may not perform well in finite samples. There are several
alternative tests, but they lack optimality motivation and can also have bad power when the number of pa-
rameters is large. Muirhead (2005) provides an excellent discussion of likelihood ratio tests and modifications
thereof when testing covariance matrices, and on inference problems for principal components.

This paper considers a linear panel data framework which incorporates a few statistical and econometrics
models. Group action in the sample space yields a maximal invariant statistic. Its distribution depends
on nuisance parameters only through the maximal invariant in the parameter space. The density of the
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maximal invariant is largely used as means to derive the finite-sample power of several statistics; see Anderson
(1984). Here, we propose to use the maximal invariant density to construct a likelihood ratio test. This is
our marginal likelihood approach to solve the incidental parameter problem. The group action also yields
invariant measures in the parameter space. Integrating the data likelihood for the invariant measures also
eliminates the incidental parameters. It also gives the density ratio of the maximal invariant statistic, so the
likelihood ratio test based on the marginal distribution of the maximal invariant coincides with the likelihood
ratio test based on parameter integration. Combining the invariant measures with prior distributions for
the remaining parameters also gives a class of admissible tests.

All results are for finite samples only, but intend to resolve the incidental parameter problem when both
panel data dimensions are large. For example, Onatski et al. (2011, 2012) show that the maximal invariant
likelihood ratio test asymptotically has good power in the spiked covariance model, whereas the standard
likelihood ratio test has no power at all. It would be interesting to derive the asymptotic behavior of the
maximal invariant likelihood ratio test for other models—including the examples of testing sphericity and
equality of covariance matrices discussed in this paper. The likelihood ratio representation in terms of
Haar measures (as in Proposition 3.8) can simplify the asymptotic derivation. We leave this task for future
research.

Acknowledgements. Marc Hallin acknowledges the support of the Sonderforschungsbereich “Statistical
modeling of non-linear dynamic processes” (SFB 823) of the Deutsche Forschungsgemeinschaft, and a Dis-
covery Grant of the Australian Research Council. Marcelo Moreira’s research is supported by CNPq and
the NSF via grant number SES-0819761.

6. Appendix: Proofs

Proof of Proposition 3.1. Since pḡθ (gZ2) = pθ (Z2)χg (Z2), and since ḡΘ0 = Θ0 and ḡΘ1 = Θ1, the
Z2-based LRT statistic (16) takes the form

LR(Z2) = 2

[
max
θ∈Θ1

ln
(
pḡθ (gZ2) /χg (Z2)

)
− max
θ∈Θ0

ln
(
pḡθ (gZ2)/χg (Z2)

)]
= 2

[
max
θ∈Θ1

ln pḡθ (gZ2)− max
θ∈Θ0

ln pḡθ (gZ2)

]
= 2

[
max
θ∈Θ1

ln pθ (gZ2)− max
θ∈Θ0

ln pθ (gZ2)

]
= LR(gZ2). �

Proof of Proposition 3.3. The singular value decomposition for Z2 is

Z2 = c2η(T (Z2))d′2, c2 ∈ Op, d2 ∈ On−j , (29)

where η(T (Z2)) is a rectangular diagonal matrix with diagonal elements the square roots of the ordered
eigenvalues of Z2Z

′
2. It follows that

pHγ,σ (Z2) =

∫
Fk,p×Fk,n−j

pγ,σ,λ,ω (c2η(T (Z2))d′2) H(dλ× dω) (30)

=

∫
Fk,p×Fk,n−j

pγ,σ,c′2λ,d ′2ω (η(T (Z2))) H(dλ× dω)

=

∫
Fk,p×Fk,n−j

pγ,σ,λ,ω (η(T (Z2))) H(dλ× dω) = pH
γ,σ (η(T (Z2))) .

The distribution under θ = (γ, σ, λ, ω) of T = T (Z2) only depends on γ and σ; for any Borel set B
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in Rp×(n−j),

Pγ,σ(T ∈ B) = Pγ,σ,λ,ω(T (Z2) ∈ B) =

∫
Fk,p×Fk,n−j

Pγ,σ,λ,ω(T (Z2) ∈ B) H(dλ× dω)

=

∫
Fk,p×Fk,n−j

Pγ,σ,λ,ω(Z2 ∈ T−1(B)) H(dλ× dω)

=

∫
Fk,p×Fk,n−j

∫
T−1(B)

pγ,σ,λ,ω(z)µ(dz) H(dλ× dω).

Hence, from the Fubini-Tonelli Theorem,

Pγ,σ(T ∈ B) =

∫
T−1(B)

∫
Fk,p×Fk,n−j

pγ,σ,λ,ω(z) H(dλ× dω)µ(dz)

=

∫
T−1(B)

pH
γ,σ(z)µ(dz)

=

∫
T−1(B)

pH
γ,σ(η(T (z)))µ(dz) =

∫
B

pH
γ,σ(η(t))µT−1(dt),

which completes the proof. �

Proof of Proposition 3.4. The solution δ∗ of (21) is the minimizer over C of∫
Rp×(n−j)

∫
Fk,p×Fk,n−j

∫
Rk×Rr

L(γ, σ; δ(z)) pγ,σ,λ,ω (z) dzH(dλ× dω)W (dγ × dσ).

If the loss function is integrable (which is the case in a hypothesis testing context), this expression, by the
Tonelli-Fubini Theorem and Proposition 3.3, equals∫

Rk×Rr

∫
Rp×(n−j)

L(γ, σ; δ(z)) pH
γ,σ (z) W (dγ × dσ) dz =∫

Rk×Rr

∫
Rp×(n−j)

L(γ, σ; δ(z)) pH
γ,σ (η(T (z))) W (dγ × dσ) dz.

Hence, δ∗ depends on Z2 only through T (Z2). It remains to show that δ∗ satisfies

δ∗ = arg min
δ∈C

sup
λ∈Fk,p, ω∈Fk,n−j

∫
Rk×Rr

R (γ, σ, λ, ω; δ) W (dγ × dσ).

This, however, follows from the fact that δ∗ is a function of the maximal invariant T (Z2) for G2 (so that its
risk does not depend on (λ, ω)), where G2 is a compact group (see, for instance, Ferguson (1967, p. 156)).
The proof below follows along the same lines as in Chamberlain (2007) and Chamberlain and Moreira (2009).
For any decision rule δ ∈ C,

sup
λ∈F1,N , ω∈F1,T−J

∫
Rk×Rr

R (γ, σ, λ, ω; δ) W (dγ × dσ)

≥
∫
Rk×Rr

∫
Fk,p×Fk,n−j

R (γ, σ, λ, ω; δ) W (dγ × dσ) H(dλ× dω)

≥
∫
Rk×Rr

∫
Fk,p×Fk,n−j

R (γ, σ, λ, ω; δ∗) W (dγ × dσ) H(dλ× dω).

Since the risk of δ∗ does not depend on (λ, ω), this last expression equals

sup
λ∈Fk,p, ω∈Fk,n−j

∫
Rk×Rr

R (γ, σ, λ, ω; δ∗) W (dγ × dσ). �
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Proof of Proposition 3.5. (i) Let λ = V u′ϕ (f ′2f2) , γ = γ (f ′2f2) and ω = ω (f2). Since λ̃ = V u′, λγω is a
singular value decomposition of λ̃f ′2, and since Z2 = λ̃f ′2 + σW2, the density of Z2 at z conditional on f2 is

p
Z2|f2
λ̃,σ,f2

(z) = pγ(f ′2f2),σ,V u′ϕ(f ′2f2),ω(f2) (z) ,

whereas the unconditional density is

qσ,V,h(z) =

∫
R(n−j)×k

pγ(x′x),σ,V u′ϕ(x′x),ω(x) (z) Pf2u,h,σ (dx) , (31)

where Pf2u,h,σ (dx) is the measure on R(n−j)×k induced by f2
d
= N (0,Σ⊗ In−j).

As shown by James (1954), the distribution of a k-variate normal sample of size n−j can be decomposed
into a product of two independent distributions: a uniform distribution on Fk,n−j and a k-dimensional
Wishart distribution with n− j degrees of freedom:

Pf2u,h,σ (dx) = Hn−j (dω) P
f ′2f2
u,h,σ (dy) ,

where ω = ω (x) , Hn−j (dω) is the Haar measure on Fk,n−j , and P
f ′2f2
u,h,σ the (Wishart) measure on Rk×k

induced by f ′2f2. Substituting this into (31) yields (24).
(ii) By the Fubini-Tonelli Theorem,

qH
h,σ (z) =

∫
Fk,p

qσ,V,h(z)Hp (dV )

=

∫
Fk,n−j

∫
Rk×k

∫
Fk,p

pγ(y),σ,V u′ϕ(y),ω (z) Hn−j (dω) P
f ′2f2
u,h,σ (dy) Hp (dV )

=

∫
Rk×k

pH
γ(y),σ (z) P

f ′2f2
u,h,σ (dy) .

According to Proposition 4.1, pH
γ(y),σ (z) = pH

γ(y),σ (η(T (z))) . Therefore, qH
h,σ (z) = qH

h,σ (η(T (z))) . Following

a proof similar to that of Proposition 4.1, we obtain that qH
h,σ (η(t)) is the density of T = T (Z2) for the

unconditional model. �

Proof of Lemma 3.1. The following traditional notation is used. For any matrix A, denote by vec (A) the
column vector obtained by stacking the columns of A on top of each other. For a symmetric p×p matrix A,
let vech (A) denote the (p (p+ 1) /2)-dimensional column vector obtained from vec (A) by eliminating the
supradiagonal elements of A. The duplication matrix is the matrix Dp such that Dpvech (A) = vec (A). We
can then write the density of Z2 as

fΣ (Z2) = (2π)
− p(n−j)

2 |Σ|−
n
2 exp

{
−1

2
vech

(
Σ−1

)′
D′pDpvech (Z2Z

′
2)

}
. (32)

The matrix Dp has full column rank p, so that D′pDp is invertible. It follows from Theorem 6.3 of Lehmann
and Scheffe (1950) to the density (32) that vech (Z2Z

′
2) is minimal sufficient for Σ. Moreover, by Theo-

rem 4.3.1 of Lehmann and Romano (2005, p. 116), vech (Z2Z
′
2) is complete for the model under which the

covariance matrix Σ is unrestricted.
Write U = U (Z2) = vech (Z2Z

′
2). Consider a test φ invariant under the orthogonal group Op. Because

the maximal invariant to Op is Z ′2Z2, this test is of the form φ (Z ′2Z2). Define φ̃ (u) = E (φ (Z ′2Z2) |U = u).
This conditional expectation does not depend on Σ because U (Z2) is a sufficient statistic. Since

EΣ φ (Z ′2Z2) = EΣE (φ (Z ′2Z2) |U) = EΣ φ̃ (U) ,
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the U -measurable test φ̃ (U) has the same power function as φ (Z2
′Z2). Suppose there exists another

test φ0 (U) which has the same power as φ̃ (U): EΣ φ̃ (U) = EΣ φ0 (U) for all Σ. Then, for all Σ,

EΣ

[
φ̃ (U)− φ0 (U)

]
= 0.

Because the statistic U is complete, φ̃ (u) = φ0 (U) almost surely. Hence, φ̃ (U) is unique up to zero-

measure sets. From Lemma 6.5.1 and Theorem 6.5.3 (i) in Lehmann and Romano (2005), φ̃ (U(Z2)) is

invariant to transformations by Op of Z2. The maximal invariant for Op is T (Z2); therefore, φ̃ is of the

form φ̃(U(Z2)) = φ∗ (T (Z2)). �

Proof of Theorem 3.6. From the definition of φ∗, we have

φ∗ (u) = E (I (ψ (Z ′2Z2) > cα) |Z2Z
′
2 = u)

= P (ψ (Z ′2Z2) > cα|Z2Z
′
2 = u)

= P
(
ψ (Z ′2Z2) > cα|(l(1), l(2), . . . , l(p)) = T (Z2) = t

)
= = 1− Ft (cα)

since conditional (on the invariant T (Z2)) expectations are invariant under Op transformations. �

Proof of Proposition 3.7. We use Theorem 6.2.2 of Lehmann and Romano (2005, p. 217) again. The
group G is generated by the subgroups G+

m = {gc,In−1
| c ∈ G+

m} and GOn−1 = {gIm,d| d ∈ On−1}.
On Z+

2 = Z+
2 (Z2), gc,In−1 ∈ G+

m acts by simple matrix multiplication: Z+
2 (gc,In−1Z2) = cZ+

2 (Z2).
Because m ≤ 2n, the matrix Z+

2 is a.s. full rank, and can be written uniquely as Z+
2 = c2w

′
2, where c2 ∈ G+

m

and w2 ∈ Fm,2(n−1). The statistic w2 thus is maximal invariant under G+
m. Similarly, gIm,d ∈ GOn−1 induces

on w′2 a transformation of the form

w′2 (I2 ⊗ d′) =

[
w′21

w′22

]
d′.

Using the polar decomposition of [w21 : w22]
′
, we thus obtain that the maximal invariant is[
w′21w21 w′21w22

w′21w22 w′22w22

]
.

On (Σ
−1/2
1 Σ2Σ

−1/2
1 ,Σ2), the group G+

m induces transformations of the form (Σ
−1/2
1 Σ2Σ

−1/2
1 , cΣ2c

′), defining
an induced group Ḡ+

m. Because the Cholesky decomposition of Σ2 is unique, Ḡ+
m acts transitively on Σ2

while preserving Σ
−1/2
1 Σ2Σ

−1/2
1 . Therefore, the maximal invariant is Σ

−1/2
1 Σ2Σ

−1/2
1 , as claimed. �

Proof of Proposition 3.8. Eaton (1989) shows that G+
m is a topological group. Hence, there exist unique

(up to a constant) left- and right-invariant measures to the group G. This group acts properly3 on Z2, and
transitively on (Σ1,Σ2) when Σ2 = σΣ1.

Following Andersson (1982), the optimal test rejects the null for large values of the density ratio∫ ∫
p(Σ1,ξΣ1) (gc,dZ2)

( n∏
i=1

cii

)−2(n−1)

dc ν (dd)∫ ∫
p(Σ1,Σ1) (gc,dZ2)

( n∏
i=1

cii

)−2(n−1)

dc ν (dd)

,

3A mapping ψ from Rd1 to Rd2 is called a proper mapping if, for any compact K ⊂ Rd2 , ψ−1 (K) is compact; a group of
proper mappings is said to act properly.
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where ν is the Haar probability measure on On−1. This density ratio equals∫ ∫
exp

{
− 1

2
tr
(
Σ−1

1 c
[
Z21d

′dZ ′21 + ξ−1Z22d
′dZ ′22

]
c′
)}( m∏

i=1

cii

)−2(n−1)

dc ν (dd)∫ ∫
exp

{
− 1

2
tr
(
Σ−1

1 c [Z21d
′dZ ′21 + Z22d

′dZ ′22] c′
)}( m∏

i=1

cii

)−2(n−1)

dc ν (dd)

=

∫ ∫
exp

{
− 1

2
tr
(
Σ−1

1 c
[
Z21Z

′
21 + ξ−1Z22Z

′
22

]
c′
)}( m∏

i=1

cii

)−2(n−1)

dc ν (dd)∫ ∫
exp

{
− 1

2
tr
(
Σ−1

1 c [Z21Z
′
21 + Z22Z

′
22] c′

)}( m∏
i=1

cii

)−2(n−1)

dc ν (dd)

=

∫
exp

{
− 1

2
tr
(
Σ−1

1 c
[
Z21Z

′
21 + ξ−1Z22Z

′
22

]
c′
)}( m∏

i=1

cii

)−2(n−1)

dc∫
exp

{
− 1

2
tr
(
Σ−1

1 c [Z21Z
′
21 + Z22Z

′
22] c′

)}( m∏
i=1

cii

)−2(n−1)

dc

.

Because the group acts transitively on Σ1, we can choose any value for Σ1 in the integrals above. In
particular, we get the desired result by setting Σ1 = Im. �
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