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STABLE LIMIT THEOREM FOR U-STATISTIC PROCESSES

INDEXED BY A RANDOM WALK

BRICE FRANKE AND MARTIN WENDLER

Abstract. Let (Sn)n∈N be a random walk in the domain of attraction of
an α-stable Lévy process and (ξ(n))n∈N a sequence of iid random variables
(called scenery). We want to investigate U -statistics indexed by the random
walk Sn, that is Un :=

∑
1≤i<j≤n h(ξ(Si), ξ(Sj)) for some symmetric bivariate

function h. We will prove the weak convergence without the assumption of
�nite variance. Additionally, under the assumption of �nite moments of order
greater than two, we will establish a law of the iterated logarithm for the
U -statistic Un.

1. Introduction

Random walks in random scenery were introduced by Kesten and Spitzer [9] and
lead to a class of self-similar processes with scaling not equal to

√
n, which is the

scaling for sums of independent or short range dependent random variables. We
want to study not partial sums, but U -statistics indexed by a stable random walk,
which is de�ned as follows:

Let (Xn)n∈N be an iid (independent identically distributed) sequence of Z-valued
random variables with EX1 = 0 and the property that the law L(X1) is in the
domain of attraction of an α-stable law Fα with 1 < α ≤ 2, i.e.: for Sn :=

∑n
m=1Xm

one has

P (n−
1
αSn ≤ x)→ Fα(x).

It is then well known that the sequence of stochastic processes

S
(n)
t := n−

1
αS[nt]; t ≥ 0, n ∈ N

converges in distribution towards an α-stable Lévy process S?t (see Skorokhod [14],
Theorem 2.7). Moreover, let (ξ(i))i∈Z be a sequence of iid random variables. Kesten
and Spitzer [9] studied the partial sum process

∑n
i=1 ξ(Si) and showed that it

converges weakly to a self similar process. Instead of partial sums, we want to
investigate the asymptotic behaviour of U -statistics, which can be regarded als
generalized partial sums. Let h be a bivariate, measurable and symmetric function,
such that

E[|h(ξ(1), ξ(2))|] <∞ and E[|h(ξ(1), ξ(1))|] <∞.
The U -statistic indexed by the stable random walk (Sn)n∈N is the given by

Un :=
∑

1≤i<j≤n

h(ξ(Si), ξ(Sj)).

Key words and phrases. random walk; random scenery; U -statistics; stabel limits; law of the
iterated logarithm.
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A classic approach for U -statistics in the case of �nite second moments is the Hoe�-
ding decomposition [8]. Without loss of generality, we can assume that Eh(ξ(1), ξ(2)) =
0 and we can write

Un = (n− 1)

n∑
i=1

h1(ξ(Si)) +
∑

1≤i<j≤n

h2(ξ(Si), ξ(Sj))

with

h1(x) := E(h(x, ξ(1)))

h2(x, y) := h(x, y)− h1(x)− h1(y).

We call Ln :=
∑n
i=1 h1(ξ(Si)) the linear part of the U -statistic Un and Rn =∑

1≤i<j≤n h2(ξ(Si), ξ(Sj)) the remainder term. Note that under second moments,
the summands of the remainder Rn are uncorrelated.

One might expect the linear part to dominate the asymptotic behaviour (and
we will indeed show this). But this is not obvious, as the random walk in random
scenery shows some long range dependent behaviour. For other models of long
range dependence (e.g. Gaussian sequences with slowly decaying covariances), both
the linear part and the remainder term might contribute to the limit distribution.
Because of this, there are other methods like representing the U -statistics as a
functional of the empirical distribution function, see Dehling and Taqqu [5] or
Beutner and Zähle [1]. Furthermore, the Hoe�ding decomposition uses the fact
the summands of the remainder term are uncorrelated and thus it requires second
moments in its original form.

Using the Hoe�ding decomposition and truncation arguments, Heinrich and Wolf
studied U -statistics without �nite second moments. An alternative approach using
point processes was used by Dabrowski et al. [4]. The U -statistic indexed by a
random walk was examined by Cabus and Guillotin-Plantard [2] and Guillotin-
Plantard and Ladret [6], but only in the case of �nite fourth moments. Our �rst
aim is to show the convergence of the U -statistic process indexed by Sn towards
stable, long-range dependent, selfsimilar processes in the case that this moment
condition does not hold.

Furthermore, we want to establish a law of the iterated logarithm for the U -
statistic process indexed by Sn, extending results from Lewis [12] and Zhang [15]
for the partial sum indexed by a random walk.

2. Main Results

Our �rst theorem will establish the weak convergence of the U -statistic process
not assuming that the summands of the linear part have second (or even higher)
moments:

Theorem 1. Assume that the law L(X1) is in the domain of attraction of an α-
stable law Fα with 1 < α ≤ 2 and that the law L(h1(ξ(1))) is in the domain of attrac-

tion of an β-stable law Fβ with 1 < β ≤ 2. Furthermore, let E|h(ξ(1), ξ(2))|η <∞
with η = 2β′

1+β′ for a β′ > β. Then we have the weak convergence(
n−2+

1
α−

1
αβU[nt]

)
t∈[0,1]

→ (∆t)t∈[0,1],

with ∆t as de�ned in Kesten and Spitzer [9].
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It is possible that η < β, that means that the summands h of the U -statistic
might have less moments than h1. Without loss of generality, we can assume that
η < β, so E|h1(ξ(1))|η <∞.

To give the de�nition of the process (∆t)t∈[0,1], we have to introduce some no-
tation. Let (Tt(x))t≥0 be the local time of the limit process (S?t )t≥0 of the rescaled

partial sum (n−
1
α

∑[nt]
i=1Xi)t≥0, that means∫ t

0

1[a,b)(S
?
s )ds =

∫ b

a

Tt(x)dx

almost surely. Let (Z+(t))t≥0 and (Z−(t))t≥0 be to independent copies of the limit

process of the rescaled partial sum process
(
n−

1
β
∑[nt]
i=1 h1(ξ(i))

)
t≥0

. Then the limit

process of the random walk in random scenery is de�ned as

∆t =

∫ ∞
0

Tt(x)dZ+(x) +

∫ ∞
0

Tt(−x)dZ−(x).

For random walks in random scenery, Lewis [12] and Khoshnevisan and Lewis
[10] proved the law of the iterated logarithm. This was improved by Csáki et al.
[3] and Zhang [15] using strong approximation methods. In our second theorem,
we will extend these results to U -statistics:

Theorem 2. Let the assumption of Theorem 1 hold with α = β = 2 and additional

E|h1(ξ(i))|p <∞ and E|Xi|p <∞ for some p > 2. Then

lim sup
n→∞

Un

n
7
4 (log log n)

3
4

=
2

1
4 Var(ξ)

1
2

3 Var(X)
1
4

lim inf
n→∞

Un

n
7
4 (log log n)

3
4

= −2
1
4 Var(ξ)

1
2

3 Var(X)
1
4

almost surely.

3. Auxiliary Results

We de�ne the occupation times Nn(x) :=
∑n
i=1 1{Si=x}.

Lemma 3.1. For k, p ≥ 1

E

(∑
x∈Z

Np
n(x)

)k
= O(nkp(1−

1
α )+k 1

α )

This is Lemma 2.1 of Guillotin-Plantard, Ladret [6]

Proposition 3.2. Under the conditions of Theorem 1, we hvae that

max
k≤n

Rk = o(n1−
1
α+ 1

αβ )

almost surely.

Proof. We de�ne al = 2
l 1+β

′
αβ′ and the truncated kernel

h0,l(x, y) :=

{
h(x, y) if |h(x, y)| ≤ al
0 else

.
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We also need the Hoe�ding decomposition for the truncated kernel:

h1,l(x) := E(h0,l(x, ξ(1)))

h2,l(x, y) := h0,l(x, y)− h1,l(x)− h1,l(y).

We introduce the following notation:

L̃l,n :=

n∑
i=1

h1,l(ξ(Si))

Ũl,n :=
∑

1≤i<j≤n

h0,l(ξ(Si), ξ(Sj))

R̃l,n :=
∑

1≤i<j≤n

h2,l(ξ(Si), ξ(Sj))

Recall the Hoe�ding decomposition

Un = (n− 1)Ln +Rn.

Similar, we have that

Ũl,n = (n− 1)L̃l,n + R̃l,n.

We now obtain the following representation for the remainder term:

Rn = Un − (n− 1)Ln = (Un − Ũl,n)− (n− 1)Ln + Ũl,n

= (Un−Ũl,n)−(n−1)Ln+(n−1)L̃l,n+R̃l,n = (Un−Ũl,n)−(n−1)(Ln−L̃l,n)+R̃l,n

We will treat the three summands separately, so we have to show that

(1)

max
n≤2l

|Un − Ũl,n| = oa.s.(2
l(2− 1

α+ 1
αβ )),

(2)

max
n≤2l

2l|Ln − L̃l,n| = oa.s.(2
l(1− 1

α+ 1
αβ )),

(3)

max
n≤2l

|R̃l,n| = oa.s.(2
l(2− 1

α+ 1
αβ )).

With a.s. we indicate that the convergence holds almost surely. In the proof of (1),
we have to deal with the problem that we might have S(i) = S(j) for i 6= j, so we
will treat these two cases separately:

|Un − Ũl,n| ≤

∣∣∣∣∣∣∣∣
∑

1≤i<j≤n
S(i) 6=S(j)

(h(ξ(Si), ξ(Sj))− h0,l(ξ(Si), ξ(Sj)))

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
∑

1≤i<j≤n
S(i)=S(j)

(h(ξ(Si), ξ(Sj))− h0,l(ξ(Si), ξ(Sj)))

∣∣∣∣∣∣∣∣ = |Al,n|+ |Bl,n|
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In order to establish bounds for the maximum, we have to control the increments
of Al,n. Let n1, n2 ∈ N with n1 ≤ n2 ≤ 2l, then

Al,n2
−Al,n1

=
∑

1≤i<j≤n
n1<j≤n2

S(i)6=S(j)

(h(ξ(Si), ξ(Sj))− h0,l(ξ(Si), ξ(Sj))),

so we have at most 2l(n2 − n1) summands of Al,n2
−Al,n1

and for every summand

E |h(ξ(Si), ξ(Sj))− h0,l(ξ(Si), ξ(Sj))| = E|h(ξ(1), ξ(2))1{|h(ξ(1),ξ(2))|>al}|

≤ a1−ηl E|h(ξ(1), ξ(2))1{|h(ξ(1),ξ(2))|>al}|
η ≤ a1−ηl E|h(ξ(1), ξ(2))|η.

Consequently, we have by the triangular inequality that

E|Al,n2 −Al,n1 | ≤ 2l(n2 − n1)E|h(ξ(1), ξ(2))1{|h(ξ(1),ξ(2))|>al}|

≤ 2l(n2 − n1)a1−ηl E|h(ξ(1), ξ(2))|η.

We can write Al,n =
∑n
i=1(Ai,n − Ai−1,n) (with Al,0 := 0) and in the same way

Al,n2 − Al,n1 =
∑n2

i=n1+1(Ai,n − Ai−1,n), so we can apply the maximal inequality

in Theorem 3 of Móricz [13] and obtain

E

∣∣∣∣max
k≤2l

Al,n

∣∣∣∣ ≤ C22la1−ηl l

for some constant C. Recall that al = 2
l 1+β

′
αβ′ and η = 2β′

1+β′ , so 1 − η = 1−β′
1+β′ . It

follows from the Markov inequality that

∞∑
l=1

P

(
1

2l(2−
1
α+ 1

αβ )
max
k≤2l

Al,n ≥ ε
)
≤ C

ε

∞∑
l=1

22la1−ηl l

2l(2−
1
α+ 1

αβ )

=
C

ε

∞∑
l=1

2
l 1+β

′
αβ′

1−β′
1+β′ l

2l(−
1
α+ 1

αβ )
=
C

ε

∞∑
l=1

2
l( 1
αβ′−

1
α )
l

2l(−
1
α+ 1

αβ )
=
C

ε

∞∑
l=1

2
l( 1
αβ′−

1
αβ )l <∞,

as 1
αβ′ −

1
αβ < 0. With the Borel-Cantelli Lemma, we can now conclude that

P

(
1

2l(2−
1
α+ 1

αβ )
max
k≤2l

Al,n ≥ ε in�nitely often

)
= 0

and thus maxk≤2l Al,n = oa.s.(2
l(2− 1

α+ 1
αβ )). For Bl,n, we use the fact that the

sequences (Sn)n∈N and (ξ(n))n∈N are independent observe that

E|max
n≤2l

Bl,n| ≤ Emax
n≤2l

∑
1≤i<j≤n
S(i)=S(j)

|(h(ξ(Si), ξ(Sj))− h0,l(ξ(Si), ξ(Sj)))|

≤ E
∑

1≤i<j≤2l
S(i)=S(j)

|(h(ξ(Si), ξ(Sj))− h0,l(ξ(Si), ξ(Sj)))|

≤ E#
{

1 ≤ i < j ≤ 2l|S(i) = S(j)
}
E|h(ξ(1), ξ(1))1{|h(ξ(1),ξ(1))|>al}|

≤ E[
∑
x∈Z

N2
2l(x)]E|h(ξ(1), ξ(1))| ≤ C2l(2−

1
α )



6 B. FRANKE, M. WENDLER,

for some constant C, where we used Lemma 2.1 of Guillotin-Plantard and Ladret [6]
for the ocupation timesNn(x) :=

∑n
i=1 1{Si=x}. Again using the Markov inequality,

we arrive at
∞∑
l=1

P

(
1

2l(2−
1
α+ 1

αβ )
max
k≤2l

Bl,n ≥ ε
)
≤ C

ε

∞∑
l=1

2l(2−
1
α )

2l(2−
1
α+ 1

αβ )
≤ C

ε

∞∑
l=1

2−
1
αβ l <∞

and the Borel-Cantelli Lemma leads to maxk≤2l Bl,n = oa.s.(2
l(2− 1

α+ 1
αβ )) as above,

which completes the proof of (1). To prove (2), note that

E|h1(ξ(1))−h1,l(ξ(1))| = E|E[h(ξ(1), ξ(2))|ξ(1)]−E[h(ξ(1), ξ(2))1{|h(ξ(1),ξ(2))|≤al}|ξ(1)]|
= E|E[h(ξ(1), ξ(2))1{|h(ξ(1),ξ(2))|>al}|ξ(1)]|
≤ E

[
E
[
|h(ξ(1), ξ(2))1{|h(ξ(1),ξ(2))|>al}|

∣∣ξ(1)
]]

= E
∣∣h(ξ(1), ξ(2))1{|h(ξ(1),ξ(2))|>al}

∣∣ ≤ 1

aη−1l

E|h(ξ(1), ξ(2))|η.

With the triangular inequality and the assumption that E|h(ξ(1), ξ(2))|η < ∞, it
follows that for some constant C and any n1, n2 ∈ N with n1 ≤ n2

E|
n2∑

i=n1+1

(h1(ξ(Si))− h1,l(ξ(Si)))| ≤ C(n2 − n1)a1−ηl .

Again, we apply the maximal inequality in Theorem 3 of Móricz [13] and obtain

Emax
n≤2l

2l|Ln − L̃l,n| ≤ C22la1−ηl l

for some constant C and we can proceed in the same way as we proved almost sure
convergence as for Al,n. So it remains to show the last part (3). We will proof that

max
n≤2l

|ER̃l,n| = o(2l(2−
1
α+ 1

αβ ))

max
n≤2l

|R̃l,n − ER̃l,n| = oa.s.(2
l(2− 1

α+ 1
αβ )).

We obtain with a short calculation that

R̃l,n = Ũl,n − (n− 1)L̃l,n = (Ũl,n − Un) + (n− 1)(Ln − L̃l,n) +Rn

and consequently

max
n≤2l

|ER̃l,n| = max
n≤2l

∣∣∣E(Ũl,n − Un) + (n− 1)E(Ln − L̃l,n) + ERn

∣∣∣
≤ Emax

n≤2l
|Un − Ũl,n|+ (n− 1)Emax

n≤2l
|Ln − L̃l,n|+ max

n≤2l
|ERn|.

We have already shown in (1) and (2) that the �rst two summands are of or-

der o(2l(2−
1
α+ 1

αβ )). For the last summand, we use the fact that Eh2(ξ(1), ξ(2)) =
Eh(ξ(1), ξ(2))−Eh1(ξ(1))−Eh1(ξ(2)) = 0 and that E|h2,l(ξ(1), ξ(1))| ≤ E|h0,l(ξ(1), ξ(1))|+
2E|h1,l(ξ(1))| ≤ 3E|h(ξ(1), ξ(1))| <∞, so

ERn = E

 ∑
1≤i<j≤n
S(i)=S(j)

h2(ξ(Si), ξ(Sj))


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and

max
n≤2l

|ERn| ≤ max
n≤2l

E# {1 ≤ i < j ≤ n|S(i) = S(j)}E|h2(ξ(1), ξ(1))|

≤ E#
{

1 ≤ i < j ≤ 2l|S(i) = S(j)
}
E|h2(ξ(1), ξ(1))| ≤ C2l(2−

1
α ) = o(2l(2−

1
α+ 1

αβ ))

with Lemma 2.1 of Guillotin-Plantard and Ladret. To show the convergence of the
remaining part, we �rst decompose it as

R̃l,n − ER̃l,n =
∑

1≤i<j≤n
S(i)6=S(j)

(h2,l(ξ(Si), ξ(Sj))− Eh2,l(ξ(1), ξ(2)))

+
∑

1≤i<j≤n
S(i)=S(j)

(h2,l(ξ(Si), ξ(Sj))− Eh2,l(ξ(1), ξ(1))) =: Cl,n +Dl,n.

For Dl,n, we have by the independence of (Sn)n∈N and (ξ(n))n∈N

Emax
n≤2l

|Dn| ≤ E#
{

1 ≤ i < j ≤ 2l|S(i) = S(j)
}
E|h2,l(ξ(1), ξ(1))| ≤ C2l(2−

1
α )

as E|h2,l(ξ(1), ξ(1))| < ∞ and in the same way as for Bl,n we can conclude that

maxk≤2l Dl,n = oa.s.(2
l(2− 1

α+ 1
αβ )). Finally, we will deal with Cl,n. Recall that h0,l

is bounded by al, so h2,l is bounded by 3al. By the triangular inequality for the
Lη-norm, we have that

E|h2,l(ξ(1), ξ(2))|η ≤
(
‖h0,l(ξ(1), ξ(2))‖η + 2 ||h1,l(ξ(1))‖η

)η
≤
(

3 ‖h(ξ(1), ξ(2))‖η
)η
,

and as a consequence for some constant C > 0

E (h2,l(ξ(1), ξ(2)))
2 ≤ (3al)

2−ηE|h2,l(ξ(1), ξ(2))|η ≤ C2
l 1+β

′
αβ′ (2−

2β′
1+β′ ) = C2

l 2
αβ′ .

Furthermore we have the property of the Hoe�ding-decomposition that the random
variables h2,l(ξ(1), ξ(2)) and h2,l(ξ(1), ξ(3)) are uncorrelated, see Lee [11], page 30.
So we can �nd bounds for the conditional variance of the increments of Cl,n. To
simplify the notation, we write

Y (i, j) := h2,l(ξ(i), ξ(j))1{i6=j} − (Eh2,l(ξ(i), ξ(j)))1{i 6=j}

and obtain for n1 ≤ n2 ≤ 2l

E
[
(Cl,n2 − Cl,n1)

2 ∣∣(Xk)k∈N

]
= E


 ∑

1≤i<j≤n
n1<j≤n2

Y (S(i), S(j))


2 ∣∣(Xk)k∈N


=
∑
x,y∈Z
x<y

(# {1 ≤ i < j ≤ n|n1 < j ≤ n2, S(i) = x, S(j) = y}

+# {1 ≤ i < j ≤ n|n1 < j ≤ n2, S(i) = y, S(j) = x})2E(Y (x, y))2

≤ C2
l 2
αβ′ 2

∑
x,y∈Z

(Nn(x)(Nn2(y)−Nn1(y)))2.
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So the conditions of Theorem 3 of Móricz [13] hold for the (random) superadditive
function

g(Fn1,n2
) =

∑
x,y∈Z

Nn(x)2(Nn2
(y)−Nn1

(y))2.

It follows that

E

max
n≤2l

 ∑
1≤i<j≤n

Y (S(i), S(j))

2 ∣∣(Xk)k∈N

 ≤ C2
l 2
αβ′
∑
x∈Z

N2
2l(x)

∑
y∈Z

N2
2l(y)l2

Taking the expectation with respect to (Xk)k∈N, we get the following bound using
Lemma 2.1 of Guillotin-Plantard and Ladret [6] at

E

(
max
n≤2l

Cl,n

)2

= E

E
max
n≤2l

 ∑
1≤i<j≤n

Y (S(i), S(j))

2 ∣∣(Xk)k∈N




≤ C2
l 2
αβ′ l2E

(∑
x∈Z

N2
2l(x)

)2

≤ C2
l 2
αβ′ l22l(4−

2
α ) = C2

l2(2− 1
α+ 1

αβ′ )l2.

We can now use the Chebyshev inequality and arrive at

∞∑
l=1

P

(
1

2l(2−
1
α+ 1

αβ )
max
k≤2l

Cl,n ≥ ε
)
≤ C

ε2

∞∑
l=1

2
l2(2− 1

α+ 1
αβ′ )l2

2l2(2−
1
α+ 1

αβ )

≤ C

ε2

∞∑
l=1

2
l2( 1

αβ′−
1
αβ )l2 <∞

and the Borel-Cantelli Lemma completes the proof. �

4. Proofs of Main Results

Proof of Theorem 1. Recall the Hoe�ding decomposition

n−2+
1
α−

1
αβU[nt] =

n− 1

n
n−1+

1
α−

1
αβL[nt] + n−2+

1
α−

1
αβR[nt].

For the linear part, we apply Theorem 1.1 of Kesten and Spitzer [9] to the random

variables h1(ξ(i)) and conclude that
(
n−1+

1
α−

1
αβL[nt]

)
t∈[0,1]

converges weakly to

(∆t)t∈[0,1]. For the remainder term, we have proved in Proposition 3.2 that

sup
t∈[0,1]

|n−2+
1
α−

1
αβR[nt]| → 0

in probability. The statement of the theorem follows by Slutzky's theorem.
�

Proof of Theorem 2. We use again the Hoe�ding decomposition

Un

n
7
4 (log log n)

3
4

=
n− 1

n

Ln

(n log log n)
3
4

+
Rn

n
7
4 (log log n)

3
4

.

For the remainder term we use Proposition 3.2 with α = β = 2:

Rn = oa.s.(n
2− 1

2+
1
4 ) = oa.s.(n

7
4 (log log n)

3
4 ).
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As Ln =
∑n
i=1 h1(ξ(Si)), we can aplly Corollary 1 of Zhang [15]

lim sup
n→∞

± Ln

(n log log n)
3
4

=
2

1
4 Var(ξ)

1
2

3 Var(X)
1
4

almost surely, which leads to the statement of the Theorem. �
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