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Abstract

In this paper we investigate the problem of designing experiments for weighted

least squares analysis in the Michaelis Menten model. We study the structure of exact

D-optimal designs in a model with an autoregressive error structure. Explicit results

for locally D-optimal are derived for the case where 2 observations can be taken per

subject. Additionally standardized maximin D-optimal designs are obtained in this

case. The results illustrate the enormous difficulties to find exact optimal designs

explicitly for nonlinear regression models with correlated observations.

Keywords and Phrases: Autoregressive errors; Michaelis Menten model; exact designs,

locally D-optimal designs; standardized maximin optimal design.
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1 Introduction

The Michaelis-Menten model

η(x, a, b) =
ax

b+ x
(1.1)

is widely used as a first approximation to describing complex biological systems, as in the

study of saturable phenomena in enzyme kinetics. Its applications include such important
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areas as agriculture, biochemistry, biology, microbiology, toxicology, environmental science,

nutrition science, bio-pharmaceutical studies. In many cases η represents the velocity of

a chemical reaction, the parameter a ≥ 0 denotes the maximum velocity, the predictor

x ≥ 0 reflects the concentration of a substrate and the parameter b ≥ 0 is the half-saturated

constant, the concentration x where the velocity is half-maximal.

Some exemplary applications of the Michaelis-Menten model in different disciplines can be

found in Clench (1979) (conservation biology research), Butler and Wolkowicz (1985) (nutri-

ent uptake study), Rong and Rappaport (1996) (environmental research), Park et al. (2005)

(pharmacokinetics) or Yu and Gu (2007) (agriculture) among many others. Because of its

importance the problem of designing experiments for statistical analysis with the Michaelis

Menten model has found considerable attention in the literature. Early work dates back

to Dunn (1988) and Rasch (1990), who determined locally D-optimal designs for maximum

likelihood or least squares estimation in the Michaelis-Menten model for independent obser-

vations, respectively. Since this pioneering work several authors have continued to construct

optimal designs in this model [see Dette and Wong (1999); Lopez-Fidalgo and Wong (2002)

or Dette and Biedermann (2003) among many others], and a recent review about the state

of the art in design of experiments for independent (and uncorrelated) data can be found in

Dette et al. (2010). On the other hand the Michaelis-Menten is very often used for statistical

analysis of dependent data. Typically, the explanatory variable x here represents time and

dependencies appear naturally because observations are taken at the same subject [see López

et al. (2000) for a typical example]. Despite of the wide spread use of the Michaelis-Menten

model for analyzing correlated data - to the best knowledge of the authors - design issues in

this context have not been addressed so far.

On the other hand, the problem of designing experiments for correlated data has found

considerable interest in the literature, where mainly asymptotic optimal designs for location

models have been studied. Early work dates back to Sacks and Ylvisaker (1966, 1968),

which was extended and further developed by Bickel and Herzberg (1979); Bickel et al.

(1981). More recent references are Dette et al. (2008, 2009); Zhigljavsky et al. (2010) who

considered the design problem for correlated data in constant, linear and quadratic regression

models under various dependence structures. However, less results are available for nonlinear

regression models [see Pepelyshev (2007) or López-Fidalgo et al. (2008) for some results in

this direction], in particular we are not aware of optimum designs for the Michaelis-Menten

model in the case of correlated data.

It is the purpose of the present paper to provide insight into this design problem for the au-

toregressive error structure. We study D-optimal design problems for weighted least squares

analysis of correlated data with the Michaelis-Menten model. It turns out that the design

problem for the Michaelis-Menten model in the case of dependencies is substantially more

complicated. In Section 2 we introduce the basic terminology and present some explicit

results on locally D-optimal designs for the Michaelis-Menten model with two (correlated)
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measurements per subject. These designs require prior information about the non-linear

parameters of the model [see Chernoff (1953)] and usually serve as benchmark for the com-

monly used designs. They also form the basis for more robust design strategies as Bayesian or

standardized maxmin optimal designs [see Chaloner and Verdinelli (1995) or Dette (1997)].

In the case of uncorrelated data, one of the runs of an optimal design always has to be taken

at the largest point of the design space. One important result of this paper is that in the

case of dependencies this statement is not necessarily correct. We derive a sufficient condi-

tion which guarantees that one of the observations of the locally D-optimal design has to be

taken at the largest point of the design space. We demonstrate that in general this is not the

case. In particular we give examples of locally D-optimal designs, where both observations

have to be taken at two interior points of the design space. In Section 3 we present some

numerical results of locally D-optimal designs in the case, where 3 or 4 observations are

taken for each subject and make a similar observation. Section 4 is devoted to the problem

of constructing standardized maximin optimal designs [see Dette (1997)], which require less

precise knowledge about the unknown parameters. Finally some technical details are given

in the Appendix.

2 Locally D-optimal designs

Consider the non-linear regression model (1.1) and assume that n subjects are investigated,

where for each subject m replications are allowed, that is

Yi,j = η(xi,j, a, b) + εi,j =
axi,j
b+ xi,j

+ εi,j , j = 1, . . . ,m; i = 1, . . . , n (2.1)

where ε1,1, . . . , εn,n are normally distributed random variables. We assume that observations

from different subjects are independent, but dependencies may appear for the observations

from the same subject that is

Cov(εi,j, εi′,k) = δi,i′σ
2λ|xi,j−xi′,k| , j, k = 1, . . . ,m; i, i′ = 1, . . . , n (2.2)

where δi,i′ denotes Kronecker’s delta. Throughout this paper we are interested in optimal

designs for maximum likelihood estimation of the parameter (a, b) in the Michaelis Menten

model (2.1), where we consider the parameters σ2 and λ ∈ (0, 1) as nuisance parameters. A

standard calculation shows that for a large sample size the covariance matrix of the maximum

likelihood estimator can be approximated (up to a constant, which does not depend on the

design) by the matrix M−1, where

M =
n∑
i=1

zTi Σ−1i zi (2.3)
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where the matrices zi ∈ R2×m Σi ∈ Rm×m are defined by

zi =
(( xi,j

b+ xi,j
,− axi,j

(b+ xi,j)2

)T)
j=1,...,m

Σi = σ2
(
λ|xi,j−xi,k|

)
j,k=1,...,m

An optimal design maximizes a concave and monotone function of the matrix M defined

(2.3) and there are numerous criteria which could be used to discriminate between competing

designs [Pukelsheim (2006)]. Throughout this paper we consider the D-optimality criterion,

which determines the design such that the determinant of the matrix (2.3) is maximal. It

is easy to see that the D-optimal design does not depend on the parameters σ2 and a and

for this reason we put without loss of generality σ2 = a = 1 throughout this paper. We

also assume without loss of generality that the design space is given by the interval [0, 1],

D-optimal designs on other intervals can easily be obtained by a linear transformation.

Note that a design maximizing the determinant of the matrix M still depends on the pa-

rameter b and λ. Therefore these designs require prior information about the non-linear

parameters of the model and are called locally D-optimal designs [see Chernoff (1953)].

They usually serve as benchmark for the commonly used designs and locally optimal designs

also form the basis for more robust design strategies as Bayesian or standardized maxmin

optimal designs [see Chaloner and Verdinelli (1995) or Dette (1997)]. Robust designs will be

discussed in Section 4.

We assume that all subjects are treated under the same experimental conditions and the ob-

servations of each subject have to be done at the same time, that is x1,j = x2,j = ... = xn,j.

It is then easy to see that we may assume n = 1 for the determination of a D-optimal design

without loss of generality. This simplifies the optimization problem substantially. Never-

theless a closed form of the determinant of the matrix M as a function of the experimental

conditions x1,1, . . . , x1,m is very complicated. In the following we will therefore discuss the

optimization problem with two observations per subject.

2.1 Locally D-optimal designs with 2 observations per subject

In this section we consider the case m = 2 and use for the sake of simplicity the notations

u = x1,1 and x = x1,2 and assume that u < x. A straightforward calculation yields for the

determinant of the matrix M in (2.3)

C(x, u) =
(D(x, u))2

1− λ2(x−u)
, (2.4)

where the function D is given by

D(x, u) =
xu(x− u)

(b+ x)2 (b+ u)2
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The following result provides the general structure of the locally D-optimal design in the

case where the parameter b is not too small and the parameter λ in the correlation structure

(2.2) is arbitrary.

Theorem. 2.1 If b ≥ 1/3, then the locally D-optimal for the Michaelis Menten model (1.1)

with two observations per subject and correlation structure (2.2) is given by x∗ = 1 and a

second point u∗(b, λ) defined as the unique solution of the equation

b− (2b+ 1)u

u(1− u)(b+ u)
=

log(λ)λ2(1−u)

1− λ2(1−u)
. (2.5)

In particular we have

u∗(b, 0) ≤ u∗(b, λ) ≤ u∗(b, 1),

where u∗(b, 0) and u∗(b, 1) do not depend on λ and are given by

u∗(b, 0) =
b

2b+ 1
and u∗(b, 1) =

1

2

(
2 + 3b−

√
4 + 4b+ 9b2

)
, (2.6)

respectively.

Proof. For fixed u the derivative of the function C with respect to x is given by

C ′1(x, u) =
∂

∂x
C(x, u) =

2D(x, u)

(1− λ2(x−u))2
(
D′1(x, u)(1− λ2(x−u)) +D(x, u) log(λ)λ2(x−u)

)
(2.7)

and D′1(x, u) the derivative of the function D with respect to x, that is

D′1(x, u) =
u

(b+ u)2(b+ x)3
(x(2b+ u)− ub) .

An elementary calculation shows that for r, s, t ≥ 0 the function

f(λ) = r(1− λs) + t log(λ)λs,

is nonnegative if rs− t ≥ 0. Considering (2.7) this yields

rs− t = D1(x, u)2(x− u)−D(x, u) =
u(x− u)

(b+ u)2(b+ x)3
(b(3x− 2u)− x(x− 2u))

which is nonnegative, whenever

b ≥ x(x− 2u)

3x− 2u
.

Because the maximum of the right hand side is 1/3 (note that u < x ≤ 1), the function

defined in (2.7) is nonnegative, whenever b ≥ 1/3, which proves the first assertion of Theorem

2.1. For the remaining part we introduce the notation

C(u) = C(1, u) =
(D(u))2

1− λ2(1−u)
, D(u) = D(1, u) =

u(1− u)

(b+ 1)2 (b+ u)2
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Checking the roots of the logarithmic derivative of the function C(u) yields the equation

D′(u)

D(u)
=

log(λ)λ2(1−u)

1− λ2(1−u)
.

which is the same as (2.5). The right hand side is a decreasing function of λ ∈ (0, 1) which

gives
log(λ)λ2(1−u)

1− λ2(1−u)
> lim

λ→1

log(λ)λ2(1−u)

1− λ2(1−u)
= − 1

2(1− u)
.

The solution of the equation
D′(u)

D(u)
= − 1

2(1− u)

is given by the point u∗(b, 1) defined in (2.6). It is easy to see that u∗(b, 0) ≤ u∗(b, 1). Since,

by definition, D′(u) ≥ 0 if and only if u ≤ u∗(b, 0), it follows that

D′(u)

D(u)
≥ 0 >

log(λ)λ2(1−u)

1− λ2(u)
> − 1

2(1− u)
if u ≤ u∗(b, 0), (2.8)

while
D′(u)

D(u)
< − 1

2(1− u)
<

log(λ)λ2(1−u)

1− λ2(u)
if u∗(b, 1) < u ≤ 1. (2.9)

By continuity we therefore obtain from (2.9) and (2.8) the existence of a point u∗(b, λ),which

solves (2.5) and satisfies u∗(b, 0) = b
2b+1
≤ u∗(b, λ) ≤ u∗(b, 1). The proof of Theorem 2.1 will

now be concluded by showing that (2.5) has at most one solution. For this purpose we will

show in Appendix 5.2 that the the derivative of the function

h(u) =
1

1− u
+

log(λ)λ2(1−u)

1− λ2(1−u)
,

with respect to u is nonnegative for all u ∈ [0, 1]. Therefore the function h is strictly

increasing. On the other hand a straightforward calculation yields that the function

`(u) =
D′(u)

D(u)
+

1

1− u
=

1

u
− 2

b+ u

is strictly decreasing in u ∈ [0, u∗(b, 1)]. Because equation (2.5) is equivalent to h(u) = `(u)

there is exactly one solution of (2.5) and the proof of Theorem 2.1 is completed. 2

In the following we are interested in the D-efficiency of designs using the largest point x = 1

and some u, that is

eff(u, b, λ) =
( C(u)

C(u∗(b, λ))

)1/2
.

The following result gives a lower bound for this efficiency. In particular we obtain a bound

for the designs with experimental conditions u∗(b, 1) and 1 which does not depend on the

parameter λ.

6



b 0.33 0.67 1 2 5 10

E(b) 0.9854 0.9663 0.9519 0.9282 0.9069 0.8983

Table 1: Lower bounds for the D-efficiency of the design with experimental conditions u∗(b, 1)

and 1

Corollary. 2.2 If b ≥ 1/3 then we have for any u < x ≤ 1

eff(u, b, λ) ≥ D(u)

D(u∗(b, 0))

(1− λ2(1−u∗(b,1))

1− λ2(1−u)
)1/2

.

In particular

eff(u∗(b, 1), b, λ) ≥ E(b) :=
D(u∗(b, 1))

D(u∗(b, 0))
.

Proof. It is easy to see that the function D(u) = D(1, u) is maximized for u∗(b, 0). This

implies for any 1 ≥ x ≥ u ≥ 0

C(x, u) =
(D(x, u))2

1− λ2(x−u)
≤ (D(1, u∗(b, λ)))2

1− λ2(1−u∗(b,λ)
≤ (D(u∗(b, 0))2

1− λ2(1−u∗(b,λ))
≤ (D(u∗(b, 0))2

1− λ2(1−u∗(b,1))
,

and the assertion follows from the definition of the efficiency. 2

Table 3 gives the lower bound of the D-efficiency for the design which advises the experi-

menter to take observations at the points u∗(b, 1) and 1 for some selected values of b ≥ 1/3.

Note that the ”true” efficiency of this design is larger than the bound from the table.

For example, if b = 5 and λ = 0.5, numerical derivation gives u∗(b, λ) = 0.5562. Note that

u∗(5, 0) = 0.4545 while u∗(5, 1) = 0.6101. We further calculate that C(u∗(b, λ)) = 1.0736,

while C(u∗(5, 1)) = 1.0556. Therefore, the true efficiency of the design with experimental

conditions u∗(5, 1) = 0.6101 and 1 is
√

1.0556/1.0736 = 0.9916, while the lower bound is

given by 0.9069. Nevertheless, the results from Table 3 show that the designs with experi-

ments at u∗(b, 1) and 1 perform rather well, even when the lower bound is used. We will use

this bound in Section 4 to find standardized maximin optimal designs.

2.2 Improved bounds for b

In the previous section we have shown that in the case b ≥ 1
3

the locally D-optimal design

for the Michaelis-Menten model with correlation structure (2.2) uses the largest point in the

design space x = 1 as an experimental condition, independently of the parameter λ ∈ [0, 1].

In this section we show that the bound can be improved for a specific value of λ (the case

b ≥ 1
3

actually corresponds to the case λ→ 1). We will demonstrate that there is a threshold
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b∗(λ) depending on λ ∈ [0, 1], such that the locally D-optimal design is supported at the

point x = 1 whenever b > b∗(λ). To be precise, consider the logarithmic derivative of the

function C defined in (2.4)

hλ(x, u) =
1

2

∂

∂x
logC(x, u) =

1

x
+

1

x− u
− 2

b+ x
+
λ2(x−u) log(λ)

1− λ2(x−u)
.

It then follows from the proof of Theorem 2.1 that it is only possible to have an optimal

design (x∗, u∗) with u∗ < x∗ < 1 if hλ(x, u) < 0 for some u ≤ x < 1. We have seen in

Theorem 2.1 that if b ≥ b∗(1) := 1
3
, this is impossible for any 0 ≤ λ < 1. We now derive a

smaller bound b∗(λ) for a fixed λ.

For this purpose we show in Appendix 5.1 that for any λ ∈ (0, 1) and for any x ≤ 1, we have

hλ(x, u) ≥ hλ(x, 0) =
2b

(b+ x)x
+
λ2x log λ

1− λ2x
. (2.10)

As a consequence of this inequality we obtain that the condition hλ(x, 0) > 0 for all x < 1

implies that the locally D-optimal design (x∗, u∗) for the Michaelis-Menten model (2.1) with

correlation structure (2.2) satisfies x∗ = 1. Observing that the equation hλ(x, 0) = 0 has

exactly one solution with respect to b, the condition is equivalent to the inequality

b > b∗(λ) := sup
0≤x≤1

gλ(x),

where the function gλ is defined by

gλ(x) =
(− log λ)λ2xx2

2(1− λ2x) + (log λ)λ2xx
.

The following properties of gλ are derived in Appendix 5.3

(i) With the definition gλ(0) = 0 the function gλ is continuous on the interval [0, 1] with

gλ(x) > 0 for all x > 0.

(ii) For any fixed x > 0 the function gλ(x) is increasing with respect λ, where

lim
λ→0

gλ(x) = 0.

(iii) There exists a unique solution, say λ0, of the equation

− log λ =
4(1− λ2)

4 + λ2
(2.11)

in the interval (0, 1) with the following properties

8



λ 0.9 0.7 0.5 0.4 0.3 0.2 0.1 0.01

b∗(λ) 0.28963 0.20677 0.13061 0.09888 0.07526 0.05330 0.03935 0.01967

gλ(1) 0.28963 0.20677 0.13061 0.09561 0.06331 0.03469 0.01177 0.00023

Table 2: Some examples for the bound b∗(λ) for selective vales λ ∈ (0, 1).

(iiia) For all λ > λ0 it follows that

max
x∈(0.1)

gλ(x) = gλ(1) =
(− log λ)λ2

2(1− λ2) + (log λ)λ2
,

(iiib) For all λ ≤ λ0 it follows that maxx∈(0.1) gλ(x) = gλ(x0), where x0 is the unique

solution of the equation

(− log λ)x =
4(1− λ2x)

4 + λ2x
.

in the interval (0, 1).

A numerical calculation gives λ0 ≈ 0.4863. In Table 2 we show some representative values

of b∗(λ) and (for the sake of comparison) the values gλ(1) for some λ ∈ (0, 1) (these differ,

whenever λ < λ0). We observe that b∗(λ) and gλ(1) are increasing in λ, both with limits 0

and 1/3 if λ approaches 0 or 1, respectively. If b < b∗(λ), then the locally D-optimal design

does not necessarily use x∗ = 1 as experimental condition. Consider as an example the case

λ = 0.01 and b = 0.01. We have numerically derived the locally D-optimal design which

is given by x∗ = 0.05792 and u∗ = 0.008186 with corresponding value C(x∗, u∗) = 650.0.

Figure 1 shows the function C(x, u∗) for x ∈ (u∗, 1]. We clearly observe that the global

maximum is attained at an interior point of the interval (0, 1).

3 Designs with more observations per subject

In the case where more than 2 observations can be taken per subject, locally D-optimal

designs have to be found numerically. Exemplarily, we present in Table 3 and 4 locally D-

optimal designs for the Michaelis-Menten model with correlation structure (2.2) where 3 or 4

observations can be taken per subject. The results for 3 observations per subject are listed in

Table 3 for various values of the parameter b. We observe that in all cases the largest point in

the design space is an optimal experimental condition. Interestingly, in the case λ = 0.5 and

λ = 0.9 the locally D-optimal designs advise the experimenter to take observations at the

point 0. Despite the fact that at this point there is no information regarding the parameters

in the mean of the response, information from the correlation between different observations

can be used to improve the accuracy of the estimates for the parameters a and b. The
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Figure 1: The function C(x, u∗) in the case λ = 0.01 and b = 0.01, where u∗ = 0.008186

corresponding results for 4 observations per subject are presented in Table 4 and show a

similar behavior. It is interesting to note that for a large correlation (λ = 0.5 or λ = 0.9) the

support points in the interior of the design space are increasing with the parameter b. On

the other hand, if the correlation is smaller this is not necessarily the case (see the results

for λ = 0.1).

b λ = 0.1 λ = 0.5 λ = 0.9

0.2 .135 .536 1.000 .000 .016 1.000 .000 .056 1.000

0.7 .244 .496 1.000 .000 .176 1.000 .000 .172 1.000

1.2 .292 .549 1.000 .000 .249 1.000 .000 .244 1.000

1.7 .321 .581 1.000 .000 .297 1.000 .000 .292 1.000

2.2 .339 .602 1.000 .000 .331 1.000 .000 .326 1.000

2.7 .352 .617 1.000 .000 .355 1.000 .000 .350 1.000

Table 3: Locally D-optimal designs for the Michaelis-Menten model with 3 observations per

subject.
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b λ = 0.1 λ = 0.5 λ = 0.9

0.2 .115 .229 .611 1.000 .000 .039 .129 1.000 .000 .052 .288 1.000

0.7 .219 .379 .648 1.000 .000 .101 .281 1.000 .000 .098 .272 1.000

1.2 .000 .179 .454 1.000 .000 .146 .384 1.000 .000 .143 .375 1.000

1.7 .000 .212 .501 1.000 .000 .178 .448 1.000 .000 .174 .440 1.000

2.2 .000 .234 .531 1.000 .000 .202 .489 1.000 .000 .197 .483 1.000

2.7 .000 .250 .550 1.000 .000 .219 .518 1.000 .000 .215 .513 1.000

Table 4: Locally D-optimal designs for the Michaelis-Menten model with 4 observations per

subject.

4 Standardized maximin D-optimal designs

In order to obtain designs which are robust with respect to miss-specification of the unknown

parameters we will construct standardized maximin optimal designs, which maximize a mini-

mum efficiency calculated with respect to a given interval for the parameters in the optimality

criterion [see Dette (1997)] . It is demonstrated by several authors that these designs are on

the one hand robust and on the other hand have reasonable efficiency in regions of param-

eters over which the minimum is calculated. In the present context we concentrate on the

case b ≥ 1/3 and m = 2 and will work with the lower bound for the efficiency

E(u, b, λ) =
D(u)

D(u∗(b, 0))

√
1− λ2(1−u∗(b,1))

1− λ2(1−u)
(4.1)

specified in Corollary 2.2, because an explicit solution of the locally D-optimal design prob-

lem is not available. To be precise, assume that 1/3 ≤ p ≤ q, then we call a design with

experimental conditions u and 1 standardized maximin optimal if it maximizes the function

Φ(u) = min
p≤b≤q

inf
0≤λ<1

E(u, b, λ). (4.2)

The following result specifies the maximum of the function Φ.

Theorem. 4.1 The maximum of the function Φ defined in (4.2) is given by the unique

solution u∗ of the equation

E(u, p, 0) = E(u, q, 1) (4.3)

in the interval (0, 1), which is equivalent to

(q + u)4

(p+ u)4
=

(
q(q + 1)

p(p+ 1)

)2
√

4 + 4q + 9q2 − 3q

2(1− u)
. (4.4)
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Proof. First note that the function

λ→ 1− λ2(1−ũ)

1− λ2(1−u)

corresponding to the second factor in (4.1) is decreasing and increasing if u < ũ and u > ũ,

respectively. This implies inf0≤λ<1E(u, b, λ) = min{E(u, b, 0), E(u, b, 1)}, where

E(u, b, 0) =
4b(b+ 1)u(1− u)

(b+ u)2
,

E(u, b, 1) = lim
λ→1

E(u, b, λ) =
4b(b+ 1)u(1− u)

(b+ u)2

√√
4 + 4b+ 9b2 − 3b

2(1− u)
.

Therefore the optimization problem reduces to finding a u ∈ (0, 1) to maximize

Φ(u) = min
p≤b≤q

min{E(u, b, 0), E(u, b, 1)}.

This determination is now performed in two steps:

(i) We show that the solution u∗ of (4.3) is well-defined, unique and maximizes

min{E(u, p, 0), E(u, q, 1)}.

(ii) We show that Φ(u∗) = min{E(u∗, p, 0), E(u∗, q, 1)}.

The existence and uniqueness of u∗ is shown as follows. If we consider E(u, p, 0) and E(u, q, 0)

as functions of u, then E(u, p, 0) > E(u, q, 0) if u < u0(p, q), E(u, p, 0) < E(u, q, 0) if

u > u0(p, q), and there is equality for u = u0(p, q), where

u0(p, q) = u0(q, p) =
q
√
p(p+ 1)− p

√
q(q + 1)√

q(q + 1)−
√
p(p+ 1)

,

[see Dette and Biedermann (2003)].

It is easy to see that u0(p, q) is increasing with respect to p and we therefore obtain

u0(p, q) ≤ lim
p→q

u0(p, q) = u∗(q, 0) =
q

2q + 1
< u∗(q, 1),

where u∗(q, 1) is defined in (2.6). Similarly,

u0(p, q) ≥ lim
q→p

u0(p, q) = u∗(p, 0) =
p

2p+ 1
.

In particular, this means that E(u∗(q, 1), p, 0) < E(u∗(q, 1), q, 0).

Note that E(u, q, 0) > E(u, q, 1) if u < u∗(q, 1) and E(u, q, 0) < E(u, q, 1) if u > u∗(q, 1),

where u∗(q, 1) is the solution of E(u, q, 0) = E(u, q, 1). Therefore, we have

E(u, q, 1) < E(u, q, 0) ≤ E(u, p, 0), for all u ≤ u0(p, q)

12



while

E(u, q, 1) ≥ E(u, q, 0) > E(u, p, 0), for all u ≥ u∗(q, 1).

Hence, E(u, q, 1) and E(u, p, 0) must intersect at least once in the interval (u0(p, q), u∗(q, 1)).

However, note that for any fixed b, E(u, b, 0) is strictly increasing in u for u < u∗(b, 0) and

strictly decreasing for u > u∗(b, 0), while E(u, b, 1) is increasing for u < u∗(b, 1) and decreas-

ing for larger u. This implies that in the whole interval (u∗(p, 0), u∗(q, 1)) ⊃ (u0(p, q), u∗(q, 1))

the function E(u, p, 0) is decreasing while E(u, q, 1) is increasing. Hence, there can be only

one intersection point.

We denote the solution by u∗ and define M∗ = E(u∗, p, 0) = E(u∗, q, 1), where we do

not reflect the dependence of u∗ on p and q in our notation. From the monotonicity

of E(u, q, 1) on the left and of E(u, p, 0) on the right of u∗, it then follows that M∗ =

maxu min{E(u, p, 0), E(u, q, 1)}. Note that this implies that Φ(u) < M for each u 6= u∗. A

typical situation is depicted in Figure 2 for the case p = 1/2 and q = 1.

0.20 0.25 0.30 0.35 0.40 0.45 0.50

0
.7

5
0

.8
0

0
.8

5
0

.9
0

0
.9

5
1

.0
0

E(u,p,0)

E(u,q,0)

E(u,q,1)

Figure 2: The functions E(u, p, 0) (solid line), E(u, q, 1) (dashed line) and E(u, q, 0) (dotted

line) in the case p = 1/2 and q = 2.

For Step (ii) it then only remains to show that Φ(u∗) ≥M , that is

min
p≤b≤q

min{E(u∗, b, 0), E(u∗, b, 1)} = min{E(u∗, p, 0), E(u∗, q, 1)}.

It was already shown by Dette and Biedermann (2003) that for any fixed u,

min
p≤b≤q

E(u∗, b, 0) = min{E(u∗, p, 0), E(u∗, q, 0)}.

13



We now investigate the minimum of E(u∗, b, 1) in the interval [p, q]. We note that the

following arguments do not depend on the specific point u∗, but are correct for any u ∈ [0, 1].

A simple calculation shows that E(u∗, b, 0) ≤ E(u∗, b, 1) if and only if

b ≤ δ(u∗) :=
(2− u∗)u∗

2− 3u∗
.

On the other hand, a straightforward but tedious calculation shows that E(u, b, 1) is de-

creasing whenever b > δ(u∗). These arguments imply

min
p≤b≤q

min{E(u∗, b, 0), E(u∗, b, 1)} = min{ min
p≤b≤δ(u)

E(u∗, b, 0), min
δ(u)≤b≤q

E(u∗, b, 1)}

= min{E(u∗, p, 0), E(u∗, q, 0), E(u∗, q, 1)}
= min{E(u∗, p, 0), E(u∗, q, 1)},

which proves (ii) and completes the proof of Theorem (4.1). 2

p 1
3

1
3

1
3

1 1 1 5
3

5
3

5
3

q 2
3

4
3

2 4
3

2 8
3

2 8
3

10
3

u∗ .2889 .3389 .3628 .4523 .4738 .4867 .5025 .5307 .5378

E(u∗, p, 0) .9434 .8814 .8481 .9391 .9182 .9043 .9276 .9170 .9093

Table 5: The smaller support point u∗ of the standardized maximin optimal design with

respect to the criterion (4.2). The value E(u∗, p, 0) provides a lower bound of the D-efficiency

of the design which uses the experimental conditions u∗ and 1 for all b ∈ [p, q] and λ ∈ [0, 1].

Example. 4.2 In Table 5 we show the solution of the equation (4.4) for selected values of

p and q. The last row in the table gives the lower bound for the D-efficiency in the interval

[p, q]. For example, if p = 1/3, q = 2/3, then we obtain from the first column in Table 5

u∗ = 0.2889 and

E(u∗, 1/3, 0) = E(u∗, 2/3, 1) = 0.9434.

Therefore, a design using the experimental conditions 0.2889 and 1 has a D-efficiency of at

least 94.3%, provided that the unknown parameter b is an element of the interval [1/3, 2/3]

independently of the value of the parameter λ ∈ (0, 1). It might be of interest to investigate

the efficiency of the design calculated under the assumption of uncorrelated errors, which

uses the points u0(1/3, 2/3) = 0.2402 and 1. The lower bound of the efficiency for this design

provided by (4.2) is given by 90.0%.
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5 Appendix: Technical details

5.1 Proof of (2.10)

The derivative of hλ(x, u) with respect to u is given by

∂

∂u
hλ(x, u) =

1

(x− u)2
− 2(log λ)2λ2(x−u)

(1− λ2(x−u))2
.

and the assertion follows if we are able to show that ∂
∂u
hλ(x, u) ≥ 0 for all 0 ≤ u < x ≤ 1

and for all 0 < λ < 1. In order to prove this inequality we consider for δ > 0 the function

zδ(λ) =
(− log λ)λδ

1− λ2δ
. (5.1)

Then the derivative with respect to λ is

z′δ(λ) =
λδ

λ(1− λ2δ)2
{λ2δ − δ(1 + λ2δ) log λ− 1}.

The sign of z′δ(λ) therefore is determined by the sign of fδ(λ) = λ2δ − δ(1 + λ2δ) log λ − 1.

The derivative of fδ(λ) equals

f ′δ(λ) =
δ

λ
{λ2δ(1− 2δ log λ)− 1}

and is non-positive because 1 − 2δ log λ ≤ λ−2δ. Consequently, fδ(λ) ≥ fδ(1) = 0 and,

therefore, z′δ(λ) ≥ 0 for all λ ∈ (0, 1). Therefore we conclude that

zδ(λ) ≤ lim
λ→1

zδ(λ) =
1

2δ
.

Since ∂
∂u
hλ(x, u) = 1

(x−u)2 − 2(zx−u(λ))2, we conclude that

∂

∂u
hλ(x, u) ≥ 1

(x− u)2
− 2(

1

2(x− u)
)2 > 0.

The desired inequality then easily follows. 2

5.2 Completing the proof of Theorem 2.1

The function h defined in the proof of Theorem 2.1 has derivative

∂

∂u
h(u) =

1

(1− u)2
− 2(log(λ))2λ2(1−u)

(1− λ2(1−u))2
=

1

(1− u)2
− 2(z1−u(λ))2,

where zδ(λ) is defined in (5.1). As in Appendix 5.1 it follows that ∂
∂u
h(u) > 0.
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5.3 Properties of the function gλ

The proof of (i) and (ii) is straightforward. To see (iii), consider the derivative of gλ(x) with

respect to λ, which is

g′λ(x) =
(− log λ)x

(2(λ−2x − 1) + x log λ)2
(4(λ−2x − 1) + x(log λ)(4λ−2x + 1)).

For x ∈ (0, 1], therefore g′λ(x) = 0 if and only if

`λ(x) := (− log λ)x = rλ(x) :=
4(1− λ2x)

4 + λ2x
, (5.2)

By calculating derivatives it follows that rλ(x) is concave and increasing with respect to x

while `λ(x) is linear. Hence, there exist at most two solutions of (5.2), where one of them is

x = 0. Moreover, r′λ(0) = 40
25

log(λ) and is larger than the slope of `λ and therefore there is

a second solution of (5.2) in the interval (0, 1] if and only

`λ(1) = − log λ ≥ rλ(1) =
4(1− λ2)

4 + λ2
. (5.3)

It is now easy to see that equation (2.11) has exactly one solution, say λ0, such that (5.3)

holds for all λ ≤ λ0 and the converse inequality holds for λ > λ0. Hence, gλ has exactly one

local extremum in [0, 1] if λ ≤ λ0 and there is no local extremum for λ > λ0 which proves

(iiia) and (iiib).
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