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Abstract. Interaction effects capture the impact of one explanatory variable x1 on the

marginal effect of another explanatory variable x2. To explore interaction effects, so-

called interaction terms x1x2 are typically included in estimation specifications. While

in linear models the effect of a marginal change in the interaction term is equal to the

interaction effect, this equality generally does not hold in non-linear specifications (AI,

NORTON, 2003). This paper provides for a general derivation of interaction effects in

both linear and non-linear models and calculates the formulae of the interaction effects

resulting from HECKMAN’s sample selection model as well as the Two-Part Model, two

regression models commonly applied to data with a large fraction of either missing or

zero values in the dependent variable, respectively. Drawing on a survey of automobile

use from Germany, we argue that while it is important to test for the significance of

interaction effects, their size conveys limited substantive content. More meaningful,

and also more easy to grasp, are the conditional marginal effects pertaining to two

variables that are assumed to interact.
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1 Introduction

To explore whether the effect of an explanatory variable x1 on the expected value E[y]

of the dependent variable y depends on the size of another explanatory variable x2, it is

indispensable to estimate the interaction effect, which is formally given by the second

derivative ∂2E[y]
∂x2∂x1

. To this end, linear estimation specifications typically include so-called

interaction terms, consisting of the product z := x1x2 of two explanatory variables.

In linear contexts, the marginal effect ∂E[y]
∂(x1x2)

of the interaction term x1x2 equals the

interaction effect ∂2E[y]
∂x2∂x1

. This equality, however, generally does not extend to non-linear

specifications, as is demonstrated by AI and NORTON (2003) for the example of probit

and logit models. Furthermore, NORTON, WANG, and AI (2004) emphasize that in non-

linear models, interaction effects are generally conditional on all explanatory variables,

rather than being constant, as in the linear case.

The present paper builds on the work of these authors in two respects. First, we

calculate the formulae of the interaction effects resulting from HECKMAN’s sample se-

lection model, as well as the Two-Part Model, two commonly employed approaches

to accommodate missing or zero values in the dependent variable, respectively.1 Se-

cond, using an empirical example that applies both model types to travel survey data

collected from a sample of motorists in Germany, we illustrate several subtleties in-

herent to the substantive interpretation of interaction effects gleaned from non-linear

models. Most notably, we argue that while testing the statistical significance of an in-

teraction effect is important, the economic content of its size is limited. In this regard,

our discussion is perfectly in line with a recent article by GREENE (2010), who points

out that, apart from statistical significance, one should care about economic and policy

significance.

1Note that no canned programm is available for calculating the interaction effects resulting from

the Two-Part Model, whereas the most recent version of Stata can calculate interaction terms for the

HECKMAN model. Yet, Stata code does not handle cases when a variable appears in multiple interaction

terms. To fill this void, our Stata Do-files that allow for replicating our empirical example are available

upon request.
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The following section provides for a general derivation of interaction effects for

both linear and non-linear models. Section 3 presents a concise comparison of the Two-

Part and HECKMAN model. Sections 4 and 5 derive the specific formulae of the inter-

action effects of the Heckit and the Two-Part model, followed by the presentation of an

example in Section 6. The last section summarizes and concludes.

2 Interaction Effects

To provide a general derivation of interaction effects in both linear and non-linear mo-

dels, we closely follow AI and NORTON (2003) and NORTON, WANG, and AI (2004).

2.1 Linear Models

We begin by drawing on the following linear specification of the expected value of

dependent variable y:

E := E[y|x1, x2, w] = β1x1 + β2x2 + β12x1x2 + wTβ, (1)

where the parameters β1, β2, β12, as well as the vector β are unknown and vector w

excludes x1 and x2. Likewise, β1, β2, and β12 are excluded from vector β.

Assuming that x1 and x2 are continuous variables, the marginal effect of x1 on the

expected value E is dependent on x2 if β12 6= 0:

∂E
∂x1

= β1 + β12x2. (2)

The impact of a marginal change in x2 on the marginal effect of x1, in other words the

interaction effect, is then obtained from taking the derivative of (2) with respect to x2:

∂2E
∂x2∂x1

= β12. (3)

In linear specifications, therefore, the interaction effect ∂2E
∂x2∂x1

equals the marginal ef-

fect ∂E
∂(x1x2)

of the interaction term x1x2. For non-linear models, however, this equality

generally does not hold, as is demonstrated in the subsequent section.
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2.2 Non-Linear Models

Instead of expectation (1), we now depart from

E := E[y|x1, x2, w] = F(β1x1 + β2x2 + β12x1x2 + wTβ) = F(u), (4)

where F(u) is a non-linear function of its argument u := β1x1 + β2x2 + β12x1x2 + wTβ.

In the Probit model, for example, F(u) equals the cumulative normal distribution Φ(u).

We now derive general formulae for the interaction effects resulting from non-linear

models if (i) x1 and x2 are both continuous variables, (ii) both are dummy variables,

and (iii) x1 is continuous, while x2 is a dummy variable.

(i) If F(u) is a twice differentiable function, with the first and second derivatives

being denoted by F′(u) and F′′(u), respectively, the marginal effect with respect to x1

reads:
∂E
∂x1

=
∂F(u)

∂x1
= F′(u)

∂u
∂x1

= F′(u)(β1 + β12x2), (5)

while the interaction effect of two continuous variables x1 and x2 is symmetric and

given by

∂2E
∂x2∂x1

=
∂

∂x2

(
∂E
∂x1

)
=

∂

∂x2

(
∂F(u)

∂x1

)
= F′(u)β12 + (β1 + β12x2)(β2 + β12x1)F′′(u).

(6)

As, in general, (β1 + β12x2)(β2 + β12x1)F′′(u) 6= 0, the interaction effect ∂2E
∂x2∂x1

generally

differs from the marginal effect ∂E
∂(x1x2)

of the interaction term z = x1x2:

∂E
∂(x1x2)

=
∂E
∂z

= F′(u)
∂u
∂z

= F′(u)β12. (7)

(ii) If x1 and x2 are dummy variables, the discrete interaction effect, which in

analogy to ∂2E
∂x2∂x1

shall be designated by ∆2E
∆x2∆x1

, is given by the discrete change in E due

to a unitary change in both x1 and x2, ∆x1 = 1, ∆x2 = 1:

∆2E
∆x2∆x1

:=
∆

∆x2

(
∆E
∆x1

)
=

∆
∆x2

(E[y|x1 = 1, x2, w]− E[y|x1 = 0, x2, w])

= {E[y|x1 = 1, x2 = 1, w]− E[y|x1 = 0, x2 = 1, w]} (8)

−{E[y|x1 = 1, x2 = 0, w]− E[y|x1 = 0, x2 = 0, w]}.
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Note that the discrete interaction effects are symmetric: ∆2E
∆x2∆x1

= ∆2E
∆x1∆x2

, as can be seen

from (8) by rearranging the terms in the middle of the double difference. Using the

non-linear representation of expected value (4), the general expression (8) translates

into:

∆2E
∆x2∆x1

= {F(β1 + β2 + β12 + wTβ))− F(β2 + wTβ)} − F(β1 + wTβ) + F(wTβ). (9)

(iii) If x1 is a continuous variable and x2 is a dummy variable, the mixed interac-

tion effect ∆
∆x2

( ∂E
∂x1

) can be computed on the basis of the marginal effect (5) as follows:

∆
∆x2

(
∂E
∂x1

)
:=

∆
∆x2

(
∂F(u)

∂x1

)
=

∂F(u)
∂x1

∣∣∣∣
x2=1
− ∂F(u)

∂x1

∣∣∣∣
x2=1

(10)

= F′(β1x1 + β2 + β12x1 + wTβ)(β1 + β12)− F′(β1x1 + wTβ)β1.

The symmetry observed for the cases when both variables are either continuous or

dummies also holds true for the mixed interaction effects: ∂
∂x1

( ∆E
∆x2

) = ∆
∆x2

( ∂E
∂x1

).2

All in all, it bears noting that for linear functions such as F(u) = u, for which

F′(u) = 1, all three kinds of interaction effects collapse to β12. Furthermore, we shall

re-emphasize the point raised by AI and NORTON (2003:124) that, in contrast to linear

specifications, the interaction effect gleaned from non-linear models is generally non-

vanishing even if no interaction term is included, that is, if β12 = 0.

Finally, for the special case of the Probit model, the interaction effects are given

by (6), (9), and (10) if F(u) is replaced by the cumulative standard normal distributi-

on Φ(u), F′(u) is replaced by the density function of the standard normal distributi-

on, φ(u) := exp{−u2/2}/
√

2π, and F′′(u) is replaced by φ′(u) = −uφ(u). Similarly,

formulae (6), (9), and (10) can be applied to the Logit model if F(u) is replaced by

Λ(u) := 1/(1 + exp{−u}), F′(u) is replaced by Λ′(u) = Λ(u)(1−Λ(u)), and F′′(u) is

substituted by Λ′′(u) = (Λ(u)(1−Λ(u)))′ = Λ(u)(1−Λ(u))(1− 2Λ(u)).

2Yet, note that ∆
∆x2

( ∂E
∂x1

) 6= ∂
∂x2

( ∆E
∆x1

).
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3 Two-Part and Heckit Models

To accommodate the feature of a large proportion of missing or zero values in depen-

dent variables, two-stage estimation procedures such as HECKMAN’s (1979) sample

selection or the Two-Part model (2PM) are frequently employed. Confusion reigns, ho-

wever, about the proper use of these models. Above all, this confusion originates from

frequently incorrect interpretations of the zero values of the outcome variable. The-

se zeros may indicate (1) exogenous censoring3, where the dependent variable can, in

principle, take on negative values, but instead only zeros and positive values are ob-

served, (2) true zeros, as is the case for, say, automobile and health expenditures, or (3)

missing data, as in the analysis of hours worked or wages in labor economics.

For a clear distinction, it is helpful to employ the nomenclature of actual versus

potential outcomes introduced by DOW and NORTON (2003). In this terminology, the

actual outcome designates a fully observed variable, with zero values for, say, health

expenditures representing true zeros and indicating that actually no money for health

care is expended. If instead zero values indicate observations for which values of the

dependent variable, such as wages, are missing, these authors use the term potential

outcome for this variable. It is a latent variable that is merely partially observed, in this

instance when wages are positive. In the context of our empirical example presented

in Section 6, the potential outcome addresses the distance an individual would poten-

tially drive with a car irrespective of actual car use, while the actual outcome is the

observed distance driven over a certain time period. It becomes immediately clear that

in our example the actual outcome provides for the more natural interpretation than

the potential outcome.

Although HECKMAN’s sample selection model, which is frequently called Heckit,

can be used to estimate actual outcomes, this interpretation requires several extra cal-

culations beyond what is commonly provided by statistical software packages (DOW,

NORTON, 2003:6). As an alternative, DUAN et al. (1984) proposed the 2PM, arguing that

3In this case, which is outside the scope of this article, the so-called Tobit model is the standard

estimation procedure.
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it often has lower mean squared error than the Heckit estimator when analyzing actual

outcomes. In a similar vein, it is argued by DOW and NORTON (2003:6) that for this pur-

pose, the Heckit incorporates features that make it often perform worse than the 2PM

estimator, because the Heckit was designed to address selection bias in the analysis of

potential rather than actual outcomes. On the other hand, the 2PM would suffer from

selection bias if observations with zeros in the dependent variable to indicate missing

values differ systematically from those with observed values (DOW, NORTON, 2003:6).

Before applying the Heckit and the 2PM two-stage estimation procedures, we

shall briefly summarize the corresponding model structures. The Heckit orders obser-

vations of the dependent variable y into two regimes, where the first stage defines a

dichotomous variable R, indicating the regime into which the observation falls:

R = 1, if R∗ = x1
Tτ + ε1 > 0 and R = 0, if R∗ ≤ 0, (11)

where R∗ is a latent variable, vector x1 includes its determinants, τ is a vector of asso-

ciated parameters, and ε1 is an error term assumed to have a standard normal distri-

bution. R = 1 indicates that y > 0, whereas otherwise R = 0 if values of y are either

missing or missing values are denoted by zero. For the 2PM, the actual outcomes y

can also be ordered into two regimes, with R = 1 denoting positive outcomes (y > 0),

whereas R = 0 is equivalent to y = 0.

Both model types include a Probit estimation of the probability of having posi-

tive outcomes (regime R = 1) as the first stage of the two-stage estimation procedure

(selection equation):

P(y > 0|x1) = Φ(x1
Tτ). (12)

The second stage of both model types involves estimating the parameters β of interest

via an OLS regression conditional on R = 1, i. e. y > 0 (conditional equation):

E[y|R = 1, x2] = E[y|y > 0, x2] = x2
Tβ + E(ε2|y > 0, x2), (13)

where x2 includes the determinants of the dependent variable y, and ε2 is another error

term.
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The prediction of the dependent variable y consists of two parts, with the first

part resulting from the first stage (12), P(y > 0) = Φ(x1
Tτ), and the second part being

the conditional expectation E[y|y > 0] from the second stage (13):

E[y] = P(y > 0) · E[y|y > 0] + P(y = 0) · E[y|y = 0] = P(y > 0) · E[y|y > 0].

In the 2PM, where it is assumed that E(ε2|y > 0, x2) = 0 and, hence, E[y|y > 0, x2] =

x2
Tβ, the unconditional expectation E[y] is given by:

E[y] = Φ(x1
Tτ) · x2

Tβ. (14)

By contrast, the second stage OLS regression of the Heckit model includes the inverse

MILLS ratio, λ(x1
Tτ)) := ϕ(x1

Tτ)
Φ(x1Tτ) , as an additional regressor to control for sample

selectivity:4

E[y|y > 0] = x2
Tβ + βλ · λ(x1

Tτ), (15)

where βλ is called the sample-selection parameter and the inverse MILLS ratio is pro-

portional to E(ε2|y > 0, x2) 6= 0 when ε2 is assumed to be normally distributed with

constant variance: Var(ε2) = σ2.

Finally, it bears noting that it is advisable to include so-called exclusion restricti-

ons when estimating the Heckit model, implying that the sets of regressors x1 and x2 of

both stages differ at least in one variable. This ensures that the model is well-identified,

thereby avoiding multi-collinearity problems due to the inclusion of the inverse MILLS

ratio in equation (15). In contrast, such exclusion restrictions are unnecessary in the

2PM, so that in practice both sets of regressors can be identical: x1 = x2.

4 Interaction Effects in Heckit Models

The second stage of the Heckit model relies upon the conditional expectation

E = E[y|x1, x2, w1, w2, y > 0] = u2 + βλ · λ(u1), (16)
4While the Heckit model consists of the two-stage estimation procedure described above, modern

computer software has made the full information maximum likelihood (FIML) variant, referred to as

the Heckman model, the most often used.
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where u1 := τ1x1 + τ2x2 + τ12x1x2 + w1
Tτ, u2 := β1x1 + β2x2 + β12x1x2 + w2

Tβ, and

λ(u1) := ϕ(u1)
Φ(u1)

denotes the inverse MILLS ratio, βλ is the respective coefficient, and w1

and w2 both exclude x1 and x2. Likewise, the parameters τ1, τ2 and τ12 are not included

in vector τ, nor are β1, β2, and β12 part of vector β. Finally, note that in both u1 and

u2 we include the same interaction term x1x2, while, of course, the interaction terms

occurring in u1 and u2 could also be different.

Before deriving the formulae for the interaction effects, it should be recognized

that

λ′(u1) =
−u1ϕ(u1)Φ(u1)− ϕ2(u1)

Φ2(u1)
= −[λ(u1)]2 − u1 · λ(u1)

and

λ′′(u1) = −2λ(u1) · λ′(u1)− λ(u1)− u1 · λ′(u1) = −[2λ(u1) + u1] · λ′(u1)− λ(u1).

(i) To calculate the interaction effect of two continuous variables, we first need to cal-

culate the marginal effect:

∂E
∂x1

= (β1 + β12x2) + βλ · λ′(u1) · (τ1 + τ12x2). (17)

Apparently, marginal effects resulting from non-linear models generally depend on all

other variables. As elaborated in the empirical example below, the correct calculation

of the marginal effect ∂E
∂x1

necessitates that the derivatives τ12x2 and β12x2 of the inter-

action terms must be taken into account.

Note also that, as is pointed out by AI and NORTON (2003:123), it would be in-

correct to calculate the interaction effect by taking the marginal effect of the interaction

term z = x1x2:
∂E
∂z

= β12 + βλ · λ′(u1) · τ12. (18)

The correct interaction effect can instead by obtained by taking the derivative of (17)

with respect to x2:

∂2E
∂x2∂x1

= β12 + βλ · {λ′′(u1) · (τ2 + τ12x1) · (τ1 + τ12x2) + λ′(u1) · τ12}. (19)
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Note that the derivatives given by (18) and (19) are generally different and would only

be identical if λ′′(u1) · (τ2 + τ12x1) · (τ1 + τ12x2) = 0.

(ii) On the basis of the marginal effect (17), the mixed interaction effect ∆
∆x2

( ∂E
∂x1

) is given

by:

∆
∆x2

(
∂E
∂x1

)
=

∂E
∂x1

∣∣∣∣
x2=1
− ∂E

∂x1

∣∣∣∣
x2=0

(20)

= (β1 + β12) + βλ · λ′(τ1x1 + τ2 + τ12x1 + w1
Tτ) · (τ1 + τ12)

−β1 − βλ · λ′(τ1x1 + w1
Tτ) · τ1

= β12 + βλ · {λ′(τ1x1 + τ2 + τ12x1 + w1
Tτ) · (τ1 + τ12)

−λ′(τ1x1 + w1
Tτ) · τ1}.

(iii) Using expectation (16), the discrete interaction effect reads as follows:

∆2E
∆x2∆x1

= {[E[y|x1 = 1, x2 = 1, w1, w2]− E[y|x1 = 0, x2 = 1, w1, w2]}

−{[E[y|x1 = 1, x2 = 0, w1, w2]− E[y|x1 = 0, x2 = 0, w1, w2]}

= β12 + βλ{λ(τ1 + τ2 + τ12 + w1
Tτ)− λ(τ2 + w1

Tτ) (21)

−λ(τ1 + w1
Tτ) + λ(w1

Tτ)}.

Note that in all three cases the interaction effect collapses to the coefficient β12 of the

interaction term if βλ = 0, that is, when the inverse MILLS ratio is neglected and the

Heckit model degenerates to the classical linear regression model.

5 Interaction Effects in Two-Part Models

In this section, we derive the formulae for the interaction effects resulting from Two-

Part Models (2PM) for the special case that variable x1 interacts with two, rather than

only one other variable, as in the previous section. To this end, we use a more detailed

version of the unconditional expectation (14),

E := E[y|x1, x2, x3, w1, w2] = Φ(u1)u2,
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where now u1 := τ1x1 + τ2x2 + τ3x3 + τ12x1x2 + τ13x1x3 + w1
Tτ, u2 := β1x1 + β2x2 +

β3x3 + β12x1x2 + β13x1x3 + w2
Tβ, and w1 and w2 neither include x1, nor x2 and x3.

Likewise, the parameters τ1, τ2, τ3, τ12, and τ13 are not included in vector τ, nor are

β1, β2, β3, β12, and β13 part of vector β. We derive formulae for the interaction effects if

(i) x1 and x2 are both continuous variables, (ii) x1 is continuous, while x2 is a dummy

variable, and (iii) both are dummy variables.

(i) To calculate the interaction effect ∂2E
∂x2∂x1

, we once again need to calculate the marginal

effect:

∂E
∂x1

= (τ1 + τ12x2 + τ13x3) · ϕ(u1) · u2 + Φ(u1) · (β1 + β12x2 + β13x3). (22)

By taking the derivative with respect to x2 and employing ϕ′(u1) = −u1ϕ(u1),

we get the interaction effect of two continuous variables x1 and x2:

∂2E
∂x2∂x1

= τ12 · ϕ(u1) · u2 − (τ1 + τ12x2 + τ13x3) · (τ2 + τ12x1) · ϕ(u1) · u1 · u2

+(τ1 + τ12x2 + τ13x3) · ϕ(u1) · (β2 + β12x1) (23)

+(τ2 + τ12x1) · ϕ(u1) · (β1 + β12x2 + β13x3) + Φ(u1) · β12.

(ii) The mixed interaction effect ∆
∆x2

( ∂E
∂x1

) follows immediately from the marginal effect

(22):

∆
∆x2

(
∂E
∂x1

)
=

∂E
∂x1

∣∣∣∣
x2=1
− ∂E

∂x1

∣∣∣∣
x2=0

= (τ1 + τ12 + τ13x3) · ϕ(τ1x1 + τ2 + τ3x3 + τ12x1 + τ13x1x3 + w1
Tτ) ·

·{β1x1 + β2 + β3x3 + β12x1 + β13x1x3 + w2
Tβ}

+Φ(τ1x1 + τ2 + τ3x3 + τ12x1 + τ13x1x3 + w1
Tτ) · (β1 + β12 + β13x3)

−(τ1 + τ13x3) · ϕ(τ1x1 + τ3x3 + τ13x1x3 + w1
Tτ) · (24)

·{β1x1 + β3x3 + β13x1x3 + w2
Tβ}

−Φ(τ1x1 + τ3x3 + τ13x1x3 + w1
Tτ) · (β1 + β13x3).

(iii) Applying formula (8) to E[y|x1, x2, x3, w1, w2], the discrete interaction effect ∆2E
∆x2∆x1
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is obtained as follows:

∆2E
∆x2∆x1

= {[E[y|x1 = 1, x2 = 1, w1, w2]− E[y|x1 = 0, x2 = 1, w1, w2]}

−{[E[y|x1 = 1, x2 = 0, w1, w2]− E[y|x1 = 0, x2 = 0, w1, w2]}

= Φ(τ1 + τ2 + τ3x3 + τ12 + τ13x3 + w1
Tτ)

·{β1 + β2 + β3x3 + β12 + β13x3 + w2
Tβ} (25)

−Φ(τ2 + τ3x3 + w1
Tτ) · {β2 + β3x3 + w2

Tβ}

−Φ(τ1 + (τ3 + τ13)x3 + w1
Tτ) · {β1 + (β3 + β13)x3 + w2

Tβ}

+Φ(τ3x3 + w1
Tτ) · {β3x3 + w2

Tβ}.

6 Empirical Example

To illustrate the estimation of the interaction effects gleaned from both a Heckit and a

Two-Part Model (2PM), we employ household data drawn from the German Mobility

Panel (MOP 2011) using the following specifications for the 2PM:

E[s] = Φ(x1
Tτ) · {x2

Tβ} (26)

and for the Heckit model:

E[s] = x2
Tβ + βλ ·

φ(x1
Tτ)

Φ(x1Tτ)
, (27)

where the dependent variable s is the daily distance driven for non-work travel and the

sets of explanatory variables x1 and x2 include the individual and household attributes

that are hypothesized to influence the extent of this travel.

Note again that in the 2PM, the variable sets x1 and x2 can be identical, while

for the Heckit model they must differ in at least one variable (exclusion restriction), as

otherwise the Heckit would solely be identified through its non-linearity. In our empi-

rical example, we include three variables that serve to satisfy the exclusion restriction:

a dummy indicating whether the household has access to a private parking space, a con-

tinuous measure of walking minutes to the nearest public transit stop, and a dummy
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indicating whether this stop is serviced by rail transit (as opposed to bus). Because each

of these variables is intended to capture the fixed costs of forgoing automobile travel,

they are included in the (1. stage) Probit model of automobile use, but excluded from

the (2. stage) estimation of distance traveled. Variable definitions and descriptive sta-

tistics are presented in Table A1 in Appendix A. A detailed data description can be

found in FRONDEL, PETERS, VANCE (2008) or FRONDEL, VANCE (2009, 2010).

The key attributes of interest in our example are the individual’s age, the number

(#) of children, and the dummy variable enoughcars indicating whether the individual

lives in a household in which the number of cars is at least equal to the number of li-

censed drivers. These variables are of particular interest because of major demographic

and socioeconomic changes underway in Germany whose implications for transporta-

tion are potentially profound. By 2050, for example, Germany’s population is projected

to shrink by roughly 16% (STABUA, 2006), a trend that will be paralleled by an incre-

asingly older age structure of the German population. At the same time, the preva-

lence of automobiles in Germany has been steadily rising; between 2002 and 2007 the

number of privately owned automobiles increased 5%, from 39.6 to 41.6 million (KBA,

2011). To explore how the role of demographics and car availability are mediated by

gender in dictating access to and use of the car, these variables are interacted with a

female dummy variable.

Table 1 reports the results from a Heckit model for two model specifications, one

in which several interaction terms are included and another in which these are omitted

entirely. To focus on the salient results, we refrain here from reporting the estimation

results of the (1. stage) Probit model and instead present both the coefficient estimates

of the (2. stage) OLS regression, as well as the marginal and interaction effects of the ex-

planatory variables on distance driven resulting from the Heckit model. The presented

estimates of the Heckit are based on the calculation of the mean of the individual mar-

ginal effects for each observation in the data. Moreover, given that the marginal and

interaction effects are comprised of multiple parameters that make analytical compu-

tation of the variance impossible, bootstrapping was used to calculate the standard
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errors.5

Table 1: Heckit Estimation Results on Distance driven.

Interaction Terms Included: No Interaction Terms:

τ12 6= 0, β12 6= 0 τ12 = β12 = 0

Coeff.s Errors Effects Errors Coeff.s Errors Effects Errors

female ∗-1.280 (0.577) ∗∗-1.614 (0.201) ∗∗-1.571 (0.302) ∗∗ -1.515 (0.208)

employed -0.222 (0.618) ∗∗-1.285 (0.355) -0.221 (0.592) ∗∗ -1.168 (0.346)

commute distance ∗∗ 0.040 (0.008) ∗∗ 0.289 (0.006) ∗∗ 0.041 (0.008) ∗∗ 0.029 (0.006)

age ∗∗-0.066 (0.020) ∗∗-0.037 (0.011) ∗∗-0.061 (0.018) ∗∗ -0.038 (0.011)

age × # children 0.013 (0.019) 0.005 (0.016) – – ∗∗ -0.0012 (0.0005)

high-school diploma ∗∗ 1.000 (0.318) ∗∗ 1.055 (0.270) ∗∗ 1.003 (0.315) ∗∗ 1.088 (0.280)

# children ∗-1.833 (0.981) -0.218 (0.157) ∗∗-1.277 (0.457) ∗ -0.262 (0.132)

# employed -0.099 (0.245) -0.048 (0.199) -0.091 (0.242) -0.077 (0.197)

enoughcars -0.178 (0.570) ∗∗ 1.390 (0.233) -0.397 (0.776) ∗∗ 1.365 (0.235)

female × enoughcars -0.569 (0.901) ∗∗ 1.276 (0.436) – – -0.005 (0.006)

city region ∗∗-0.942 (0.301) ∗∗-0.661 (0.222) ∗∗-0.933 (0.302) ∗∗ -0.660 (0.221)

Inverse MILLS ratio ∗∗-7.840 (3.214) – – ∗∗-7.569 (3.196) – –

# observations used for estimation: 44,842

Note: ∗ denotes significance at the 5 %-level and ∗∗ at the 1 %-level, respectively. Estimates of the marginal and

interaction effects are average effects that have been computed by averaging the marginal effects over the observations.

Turning first to the model that includes the interaction terms, the OLS estimates

and associated marginal effects of the Heckit are seen to differ markedly, both with re-

spect to their magnitude and statistical significance. For some of the variables, such as

employed and enoughcars, statistically significant estimates of the marginal effects cor-

respond to insignificant coefficient estimates, while for # children the converse is true.

Apparently, testing the hypothesis that a marginal effect equals zero is not equivalent

to the hypothesis that the variable in question is not a statistically significant deter-

minant of the outcome. This is due to the fact that marginal effects are a non-linear

function of all the coefficients of the model. Given this distinction, it bears noting that

5An alternative method for calculating the standard error, which employs a Taylor expansion, is the

Delta method; see Vance (2009) for a comparison of the Delta method with bootstrapping.
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GREENE (2010: 292, 2007: E18-23) argues that significance tests should be based on the

coefficients, rather than on the marginal effects.

In a similar vein, it appears to be particularly important to distinguish between

interaction terms and interaction effects: For example, while the estimate of the coeffi-

cient of the interaction term female × enoughcars does not statistically differ from zero,

the associated interaction effect is significantly positive. Although no interaction terms

are included in the specification presented on the right-hand panel, at least in one ca-

se, for the interaction of age and # children, the corresponding interaction effect, which

is calculated using formula (19) and setting τ12 = β12 = 0, is still significantly diffe-

rent from zero. This serves to highlight the fact that the marginal effect of a variable x1

depends on variable x2, even when no interaction term x1x2 is included in the model.

Moreover, we now illustrate that the statistical significance of interaction effects

warrants testing. For example, with enoughcars=1 designating that there are at least

as many cars as licensed drivers in a household, the interaction effect of 1.276 of the

dummy variables female and enoughcars indicates a statistically significant difference

of the conditional marginal effects of a sufficient versus an insufficient number of cars

among male and female persons, and hence signals gender competition for cars. More

generally, the interaction effect shows how the partial effect of a variable x1, such as

the binary variable enoughcars, varies with a change in another variable x2, for instance

a regime switch in the gender variable female, and vice versa. Despite this straight-

forward qualitative interpretation, though, the size of an interaction effect is hard to

grasp.

A key reason is that the interaction effect may be split up in either of two ways

with equal justification. The first way involves calculating the impact of sufficient cars

among females and males. For females, this is given by:

∆E
∆enoughcars

| f emale=1 = E[y|enoughcars = 1, f emale = 1, w1, w2]

−E[y|enoughcars = 0, f emale = 1, w1, w2] = 2.059∗∗,
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and for males by:

∆E
∆enoughcars

| f emale=0 = E[y|enoughcars = 1, f emale = 0, w1, w2]

−E[y|enoughcars = 0, f emale = 0, w1, w2] = 0.783,

where asterisks indicate that the first conditional marginal effect is statistically signifi-

cant at the 1% level. The difference of this pair of conditional marginal effects, which

equals the interaction effect of 1.276 reported for the variables female and enoughcars on

the left-hand panel of Table 1, differs from zero, as this interaction effect ∆2E
∆enough∆ f emale

is non-vanishing and statistically different from zero according to Table 1.

On the other hand, given that in this instance we are dealing with a double diffe-

rence, the same interaction effect of 1.276 also results from the difference of the follo-

wing two marginal effects: first, the statistically significant marginal effect

∆E
∆ f emale

|enoughcars=1 = [E[y| f emale = 1, enoughcars = 1, w1, w2]

−E[y| f emale = 0, enoughcars = 1, w1, w2] = −1.065∗∗,

which indicates that among households with a sufficient number of cars, there are

significant differences between female and male car use for non-work purposes. Mo-

reover, in households with less cars than licensed drivers, females drive 2.34 non-work

kilometers less per day than males, confirming a large body of literature on gender dif-

ferences in mobility behavior (e.g. WHITE, 1986; LEE, MCDONALD, 2003; MCDONALD,

2005):

∆E
∆ f emale

|enoughcars=0 = [E[y| f emale = 1, enoughcars = 0, w1, w2]

−E[y| f emale = 0, enoughcars = 0, w1, w2] = −2.340∗∗.

In short, we have exemplified that useful quantitative interpretations can be gleaned

from breaking the interaction effect into its constituent parts and testing the statistical

significance of each conditional marginal effect.

When comparing the empirical results obtained from the Heckit and the Two Part

Model (2PM), it cannot be emphasized enough that both models address distinct rese-

arch questions. The marginal effects of the Heckit, for instance, which are derived from
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conditional expectation (27) that incorporates the inverse MILLS ratio, are to be inter-

preted as the explanatory variables’ impact on potential outcomes (see DOW and NOR-

TON, 2003). Hence, because their interpretation is fundamentally different, we should

not expect similar results for the Heckit and the 2PM. Indeed, in several cases, e. g. for

the variables commute distance and #children, the Heckit outcomes lead to qualitatively

different conclusions than those pertaining to the effects on actual outcomes from 2PM,

which are reported in Table 2.6

In sum, our empirical example demonstrates how both models, the Heckit and

the 2PM, are able to capture the conceptually subtle issue emerging from the fact that,

in daily travel behavior, some motorists choose not to use their car, and whose recorded

driving therefore equals zero. If ignored, the presence of these null values in the data is

shown to potentially result in spurious conclusions with respect to both the magnitude

and the significance of the estimates on car mileage (FRONDEL and VANCE, 2009).

7 Summary and Conclusion

By providing a general derivation of interaction effects in both linear and non-linear

models and the specific formulae of the interaction effects gleaned from the Heckit and

the Two-Part Model (2PM), this paper has analyzed the significance of these effects.

Drawing on a survey of automobile use from Germany, we have illustrated that a non-

6Deviating from the formulae provided in Section 5, the interaction effect of the female dummy and

the variable for the number of children is calculated as follows, where x1 = female and x3 = # children:

∆
∆x1

(
∂E
∂x3

)
=

∂E
∂x3

∣∣∣∣
x1=1
− ∂E

∂x3

∣∣∣∣
x1=0

= (τ3 + τ13) · ϕ(τ1 + τ2x2 + τ3x3 + τ12x2 + τ13x3 + w1
Tτ) ·

·{β1 + β2x2 + β3x3 + β12x2 + β13x3 + w2
T β}

+Φ(τ1 + τ2x2 + τ3x3 + τ12x2 + τ13x3 + w1
Tτ) · (β1 + β13) (28)

−τ3 · ϕ(τ2x2 + τ3x3 + w1
Tτ) · {β2x2 + β3x3 + w2

T β}

−Φ(τ2x2 + τ3x3 + w1
Tτ) · β3.
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Table 2: Estimation Results of 2. Stage OLS and the Two-Part Model (2PM) on Distance

driven.

Interaction Terms Included: No Interaction Terms:

τ12 6= 0, τ13 6= 0, β12 6= 0, β13 6= 0 τ12 = τ13 = β12 = β13 = 0

2. Stage OLS 2PM 2. Stage OLS 2PM

Coeff.s Errors Effects Errors Coeff.s Errors Effects Errors

female ∗∗-2.641 (0.491) ∗ -0.224 (0.115) ∗∗-1.491 (0.298) ∗∗ -0.581 (0.114)

employed ∗∗-1.177 (0.422) ∗∗ 0.432 (0.130) ∗∗-1.212 (0.413) ∗∗ 0.502 (0.127)

commute distance ∗∗ 0.030 (0.007) 0.005 (0.003) ∗∗ 0.029 (0.007) 0.003 (0.003)

age ∗∗-0.034 (0.013) 0.005 (0.005) ∗ -0.033 (0.013) 0.005 (0.005)

female × # children 0.517 (0.294) ∗∗ 0.497 (0.179) – – ∗∗ -0.623 (0.133)

high-school diploma ∗∗ 0.981 (0.314) ∗∗ 0.432 (0.130) ∗∗ 1.024 (0.316) ∗∗ 0.502 (0.127)

# children ∗ -0.577 (0.235) ∗∗ 0.620 (0.064) -0.277 (0.157) ∗∗ 0.722 (0.063)

# employed -0.015 (0.240) -0.056 (0.097) -0.022 (0.240) 0.003 (0.095)

enoughcars 0.746 (0.422) ∗∗ 1.856 (0.108) ∗∗ 1.368 (0.292) ∗∗ 1.966 (0.107)

female × enoughcars ∗ 1.291 (0.552) ∗∗ 1.874 (0.208) – – ∗∗ -0.378 (0.034)

city region ∗ -0.713 (0.288) -0.083 (0.116) ∗ -0.712 (0.289) 0.079 (0.114)

# observations used for estimation: 17,798

Note: ∗ denotes significance at the 5 %-level and ∗∗ at the 1 %-level, respectively. In the 2PM, interaction terms,

such as female × enoughcars, stand for the interaction effect, here ∆2E
∆x2∆x1

. Estimates of the marginal and interaction

effects are average effects that have been computed by averaging individual effects over the observations.

The comparison between OLS and 2PM provided here should not be interpreted as the comparison between

estimation results that disregard the censored data and those results that consider censoring. Rather, Table 2

compares incorrectly (2. stage OLS) and correctly (2PM) calculated marginal and interaction effects.

vanishing interaction effect of two variables indicates differing marginal effects of one

variable conditional on alternative values of the other variable, as one would expect

for two interacting variables. The concrete size of an interaction effect, however, hardly

conveys any economic information. More easy to grasp are the conditional marginal

effects pertaining to two variables that are assumed to interact.

In linear specifications, so-called interaction terms, consisting of the product x1x2

of two explanatory variables, are typically included to capture the interaction effect,

that is, the impact of an explanatory variable x1 on the marginal effect of another ex-
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planatory variable x2. In non-linear models, however, the marginal effect ∂E
∂(x1x2)

of the

interaction term generally differs from the interaction effect, which is formally given by

the second derivative ∂2E
∂x2∂x1

. This difference, along with the fact that interaction effects

are generally non-vanishing even when no interaction terms are included in any non-

linear specification, raises the question as to whether interaction terms are irrelevant

in non-linear contexts.

It might be argued that it is not necessary to include any interaction term in non-

linear specifications, such as the 2PM, as in this case the marginal effect of an explana-

tory variable x1 generally depends on all other variables. This line of reasoning would

be incorrect, however, since this dependence always prevails, irrespective of whether

a particular effect of another variable x2 is taken into account by including the interac-

tion term x1x2.

This can be seen from general expression (5), describing the marginal effect of

variable x1:
∂E
∂x1

= F′(u)(β1 + β12x2).

The derivative F′(u) captures the impact of a marginal change in u = β1x1 + β2x2 +

β12x1x2 + wTβ induced by the variation of any of the included variables, whereas a

special effect of varying x2 is only to be observed if an interaction term x1x2 is included

and the respective coefficient β12 is non-vanishing. In sum, the inclusion of interaction

terms such as female × age is indispensable if one wants to meaningfully test, for ex-

ample, the hypothesis of whether there are gender-specific differences in the impact of

age on distance driven.
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Appendix A: Data

Table A1: Variable Definitions and Descriptive Statistics

Variable Definition Variable Name Mean Std. Dev.

Daily Kilometers driven for non-work purposes s 4.505 10.801

Kilometers from home to work commute distance 14.097 25.659

Dummy: 1 if person is female female 0.480 –

Dummy: 1 if person is employed in a
full-time or part-time job employed 0.573 –

Age of the person age 47.531 15.175

Dummy: 1 if person has a high school diploma high-school diploma 0.340 –

Number of children younger than 18 # children 0.553 0.894

Number of employed household members # employed 1.165 0.884

Dummy: 1 if number of cars ≥
number of licensed drivers enoughcars 0.565 –

Dummy: 1 if household resides in a city city region 0.323 0.468

Dummy: 1 if household has a
private parking space private parking 0.858 –

Walking time to the nearest public
transportation stop minutes 5.580 4.685

Dummy: 1 if the nearest public transportation
stop is serviced by rail transit rail transit 0.109 –
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