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Abstract

We consider the problem of model selection for quantile regression analysis where

a particular purpose of the modeling procedure has to be taken into account. Typical

examples include estimation of the area under the curve in pharmacokinetics or esti-

mation of the minimum effective dose in phase II clinical trials. A focused information

criterion for quantile regression is developed, analyzed and investigated by means of a

simulation study.

Keywords and Phrases: quantile regression, model selection focused information criterion

AMS Subject Classification: 62J02, 62F12

1 Introduction

Quantile regression was introduced by Koenker and Bassett (1978) as an alternative to least

squares estimation and yields a far-reaching extension of regression analysis by estimating

families of conditional quantile curves. Since its introduction, quantile regression has found

great attraction in statistics because of its ease of interpretation, its robustness and its nu-

merous applications which include such important areas as medicine, economics, environment

modeling, toxicology or engineering [see Buchinsky (1994); Cade et al. (1999) or Wei et al.

(2006) among many others]. For a detailed description of quantile regression analysis we refer

to the monograph of Koenker (2005), which also provides a variety of additional examples.

In a concrete application the parametric specification of a quantile regression model might

be difficult and several authors have proposed nonparametric methods to investigate condi-

tional quantiles [see Yu and Jones (1998), Dette and Volgushev (2008) and Chernozhukov
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et al. (2010) among many others]. However, nonparametric methods involve the choice of a

regularization parameter and for high dimensional predictors these methods are not feasible

because of the curse of dimensionality. Parametric models provide an attractive alternative

because they do not suffer from these drawbacks. On the other hand, in the application

of these models the problem of model selection and validation is a very important issue,

because a misspecification of the regression model may lead to an invalid statistical analysis.

Machado (1993) considered a modification of the Schwarz (1978) criterion for general M -

estimates, Ronchetti (1985) studied such a variant for the Akaike information criterion [see

Akaike (1973)]. Koenker (2005) proposed to use the Akaike criterion for quantile regression,

which usually overestimates the dimension but has advantages with respect to prediction.

More recently, several authors have worked on penalized quantile regression in the context

of variable selection in sparse quantile regression models [see Zou and Yuan (2008); Wu and

Liu (2009); Shows et al. (2010)].

The work of the present paper is motivated by some recent application of nonlinear median

regression with the EMAX model in pharmacokinetics [see Callies et al. (2004) or Chien et al.

(2005) among others]. In studies of this type quantities such as area under the curve (AUC) or

minimum effective dose (MED) are of main interest and model selection should take this into

account. Example 2.1, see Section 2, is one such situation where a dose response relationship

is modeled by nonlinear quantile regression and a clear target is involved. Different dose

response models are considered with the specific purpose of using the selected model to

estimate the minimal effective dose, i.e. the target, the minimal dose for which a specified

minimum effect is achieved.

The existing variable selection methods have in common that they do not take the purpose of

the modeling procedure into account. The focused information criterion (FIC, Claeskens and

Hjort, 2003, 2008b), is especially designed to find the best model for the estimation of such a

target. The criterion estimates the mean squared error (MSE) of the focus or target estimator

and selects that model for which this quantity is the smallest. The FIC has been developed

first for parametric likelihood models with maximum likelihood estimation, and has later

been extended towards semiparametric models (Claeskens and Carroll, 2007), generalized

additive partial linear models (Zhang and Liang, 2011), time series models (Claeskens et al.,

2007), Cox proportional hazard regression models (Hjort and Claeskens, 2006), volatility

forecasting (Brownlees and Gallo, 2008), to name a few.

Therefore, the purpose of the present paper is to develop a methodology for focused model

selection in quantile regression analysis. The basic terminology is introduced in Section 2,

where we also present a motivating example from a phase II dose finding study. Section 3

provides some asymptotic properties of the quantile regression estimate under local alterna-

tives. A rigorous statement of these properties is – to the best knowledge of the authors –

not available in the literature. In Section 4 we use these results to define a focused infor-

mation criterion for quantile regression models. The methodology is illustrated by a small

simulation study and by the analysis of a data example in Section 5. Finally, some of the

more technical arguments are referred to an appendix in Section 7.
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2 Preliminaries

Let F (y|x) denote the conditional distribution function of a random variable Y for a given

predictor x. For a given τ ∈ (0, 1) we consider the common nonlinear quantile regression

model

Qτ (x) = F−1(τ |x) = g(x; β),

where the regression function g(x; β) depends on a q-dimensional vector of parameters β :=

(β1, . . . , βp, βp+1, . . . , βq)
t ∈ Θ ⊂ Rq and an explanatory variable x ∈ X . In order to address

the problem of model selection we follow Claeskens and Hjort (2003) and assume that the

specification of the parameter β generates several sub-models, where each of the sub-models

contains the first part of the vector β, that is β0 := (β1, . . . , βp)
t (Claeskens and Hjort (2003)

call this the narrow model and call these parameters “protected” parameters). The following

example illustrates this assumption for the class of competing models.

Example. 2.1 Consider the Hill model

g(x; β) = β4 +
β1x

β3

ββ32 + xβ3
, (2.1)

which is widely used in pharmacokinetics and dose response studies [for some applications

see Chien et al. (2005); Park et al. (2005); Blake et al. (2008) among many others]. The

“simplest” model to describe the velocity of a chemical reaction or a dose response relation-

ship is a sub-model of (2.1) and is obtained by the choice β3 = 1 and β4 = 0, namely the

Michaelis Menten-model

g(x; β1, β2, 1, 0) =
β1x

β2 + x
. (2.2)

The model (2.2) corresponds to the narrow model (note that we have p = 2, q = 4 in the

general terminology). Moreover, there are several other interesting models which arise as

special cases of the Hill model. A famous competitor is the EMAX model which is obtained

for β3 = 1, that is

g(x; β1, β2, 1, β4) = β4 +
β1x

β2 + x
. (2.3)

Similarly, if no placebo effect is assumed, this can by addressed by the choice β4 = 0, i.e.

g(x; β1, β2, β3, 0) =
β1x

β3

ββ32 + xβ3
. (2.4)

The models (2.1) - (2.4) are frequently used for modeling dose response relationships and a

typical problem in this context is to estimate the minimal effective dose (MED), that is the

smallest dose level, such that a minimum effect, say ∆ is achieved. In the present context

this means that we are interested in the quantity µ(β) = g−1(∆, β), which is given by(ββ32 (∆− β4)

β1 + β4 −∆

)1/β3
,

β2∆

β1 −∆
,
β2(∆− β4)

β1 + β4 −∆
,
( ββ32 ∆

β1 −∆

)1/β3
, (2.5)
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for the models (2.1), (2.2), (2.3) and (2.4), respectively. If this is the main goal of the

experiment (which is typically the case in phase II clinical trials or in toxicological studies),

model selection should take this target into account.

The aim of this paper is to derive a focused model choice criterion for quantile regression

analysis, which addresses problems of this type. For this purpose we propose to choose a

subset from (βp+1, . . . , βq) such that the MSE for estimating a certain focus parameter

µ := µ(β1, . . . , βp, βp+1, . . . , βq) (2.6)

by the chosen quantile regression model is minimal. In order to find this “best” model, we

will determine the MSE of the estimator µ̂S for each possible sub-model, where S denotes

any subset from (βp+1, . . . , βq)
t. Throughout the text, βS will denote a parameter vector

for the model which includes all parameters from the narrow model plus the parameters

contained in a set S ⊂ {p+ 1, . . . , q}, that is βS = (β1, . . . , βp, (βj)j∈S)t. Note that βS ∈ ΘS,

where ΘS ⊂ Rp+|S| denotes the canonical projection of Θ corresponding to the parameters

from the sub-model S. We will use the notation g(x; βS) for the model g(x; β), which is

obtained for the vector β = (β1, . . . , βp, γ0,Sc , (βj)j∈S)t, where for a given set S the vector

γ0,S consists of the parameters of a q − p-dimensional vector γ0 corresponding to the sub-

model S and Sc denotes the complement of S. Here, the values of γ0 are always chosen such

that g(x; β1, . . . , βp, γ0) gives the narrow model. For example, in a linear regression model

where γ corresponds to the regression coefficients, we choose γ0 = (0, . . . , 0)t, whereas in

Example 2.1 where the narrow model is given by (2.2) and the full model is given by (2.1)

we have (γ0,1, γ0,2) = (1, 0). Other functions of the parameter β are interpreted in the same

way if their argument is βS. In order to emphasize that all parameters are included in the

quantile regression model we use the notation g(x; βfull) and we also introduce the vectors

β0,full = (β1, . . . , βp, γ0)t,

β0,S = (β1, . . . , βp, γ0,S)t.

Throughout this paper let n denote the sample size and δ be a vector of dimension q − p.
Following Claeskens and Hjort (2003) we assume that the unknown “true” parameter, say

βtrue, is of the form

βtrue = (β1, . . . , βp, γ0 +
δ√
n

)t. (2.7)

If a particular quantile regression model has been specified (by the choice of an appropriate

set S), the quantile regression estimate on the basis of n observations Y1, . . . , Yn at experi-

mental conditions x1, . . . , xn is defined as the minimizer of the function

n∑
i=1

ρτ (Yi − g(xi; βS)) (2.8)

where ρτ (z) := τI(z ≥ 0)z + (τ − 1)I(z < 0)z denotes the check function [see Koenker

(2005)].
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3 Asymptotic properties

In this section we study the asymptotic properties of quantile regression estimates under local

alternatives of the form (2.7), which are required for the derivation of a focussed information

criterion for quantile regression. For this purpose we assume that the following assumptions

are satisfied.

(A0) The parameter space Θ and the design space X are compact.

(A1) (i) Y1, . . . , Yn are independent random variables with densities f1n(·|x1), . . . , fnn(·|xn)

such that for each x ∈ X the function fin(·|x) is continuous. Fin denotes the corre-

sponding distribution function, while f̃in(u) = fin(u + g(xi; β0,S)|xi) is the density of

the regression error ui,S := Yi − g(xi; β0,S) with corresponding distribution function

F̃in.

(ii) fin(g(xi; βtrue)) 6= 0 for i = 1, 2, . . . , n ; n ∈ N.

(iii) The densities fin are uniformly bounded by a constant 0 < K <∞.

(iv) The densities f̃in(u) are differentiable with respect to u and |f̃ ′in(u)| ≤ K2 in a

neighborhood of zero, where the constant K2 does not depend on n.

(A2) g(x; βfull) is twice continuously differentiable with respect to the parameter vector βfull
for all x ∈ X . For a given sub-model S we denote the corresponding derivatives by

m(xi, β0,S) =
∂g(xi; βS)

∂βtS

∣∣∣
βS=β0,S

, M(xi, β
∗
S) =

(∂2g(xi; βS)

∂βS∂βtS

)∣∣∣
βS=β∗

S

where β∗S is a suitable value between βS and β0,S := (β1, . . . , βp, γ0,S)t, which will be

specified in the concrete applications.

(A3) (i) There exists a positive definite matrix V such that

lim
n→∞

1

n

n∑
i=1

m(xi, β0,full)m(xi, β0,full)
t = V.

(ii) There exists a positive definite matrix Q such that

lim
n→∞

1

n

n∑
i=1

fin(g(xi; βtrue))m(xi, β0,full)m(xi, β0,full)
t = Q :=

(
Q00 Q10

Q01 Q11

)
,

where Q00 is a p × p-matrix which corresponds to the narrow model and Q11 denotes

a q × q-matrix corresponding to the additional parameters of the full model.

(A4) Fin(g(xi; βtrue)) = τ for all i = 1, . . . , n.
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(A5) There exist constants 0 < k1, k2 <∞ such that for all β1, β0,full ∈ Θ and for n > n0

k1‖β2 − β0,full‖2 ≤ 1

n

n∑
i=1

[g(xi; β2)− g(xi; β0,full)]
2 ≤ k2‖β2 − β0,full‖2.

Note that the second subscript n is used here for the distribution functions Fin (and corre-

sponding densities fin) in order to point out that we are working under the assumption (2.7)

of local alternatives. Moreover, it should be pointed out here that a similar assumption as

(A5) was also used by Jureckova (1994) in order to ensure identifiability of the parameter

β0, that is

k1‖β2 − β1‖2 ≤ 1

n

n∑
i=1

[g(xi; β2)− g(xi; β1)]2 ≤ k2‖β2 − β1‖2, (3.1)

for all β1, β2 ∈ Θ. However, for some important nonlinear models, this condition may

not be fulfilled. A typical example is model (2.1), where we have g(x; 0, β2, β3, β4) = β4

independent of the values of β2 and β3. However, for the derivation of the asymptotic results

in this chapter it is actually enough to assume that (3.1) holds only for the “pseudo-true”

parameter β0,full, which corresponds to assumption (A5).

3.1 Consistency of the quantile regression estimator

In this section, we will prove that under the local alternatives of the form (2.7) the estimated

regression quantile β̂S in a given submodel S converges in probability to β0,S. The precise

statement is the following result.

Theorem. 3.1 Assume that (A1) – (A5) and (2.7) are satisfied. For any submodel S, the

statistic β̂S is a consistent estimator for β0,S, i.e.

β̂S − β0,S = oP (1) as n→∞.

Proof. Define

∆i(βS) = g(xi; βS)− g(xi; β0,S), (3.2)

then a Taylor expansion (using assumptions (A0), (A2) and (2.7) ) gives

∆i(βtrue) = m(xi, β0,full)
t δ̃√
n

+
δ̃√
n

t
1

2
M(xi, β̃i)

δ̃√
n

= O(n−1/2), (3.3)

where we used the notation δ̃ = (0, . . . , 0, δ)t and β̃i satisfies ‖β̃i−β0,full‖ ≤ ‖βtrue−β0,full‖.
This yields (using assumptions (A0) - (A2)) for some α satisfying |α| ≤ |∆i(βtrue)|

rn,τ (xi) := F̃in(∆i(βtrue))− F̃in(0) = f̃in(0)
(
m(xi, β0,full)

t +
δ̃√
n

t
1

2
M(xi, β̃i)

) δ̃√
n

+
1

2
f̃ ′in(α)

(
m(xi, β0,full)

t δ̃√
n

+
δ̃√
n

t
1

2
M(xi, β̃i)

δ̃√
n

)2

= O(
1√
n

). (3.4)
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Now recall the definition of ui,S in (A1) and note that the estimated regression quantile β̂S
minimizes the objective function

Zn(βS) :=
1

n

n∑
i=1

[ρτ (Yi − g(xi; βS))− ρτ (ui,S)] . (3.5)

We first calculate the expectation of E[Zn(βS)] as

E[Zn(βS)] =
1

n

n∑
i=1

∫
R

[
(τ − 1{s≤∆i(βS)})(s−∆i(βS)) + (1{s≤0} − τ)s

]
dF̃in(s)

=
1

n

n∑
i=1

{
−
∫ ∆i(βS)

−∞
s dF̃in(s) +

∫ 0

−∞
s dF̃in(s) + ∆i(βS)F̃in(∆i(βS))− τ∆i(βS)

}
=

1

n

n∑
i=1

{∫ 0

∆i(βS)

s dF̃in(s) + ∆i(βS)(F̃in(∆i(βS))− F̃in(0))

+ ∆i(βS)(F̃in(0)− F̃in(∆i(βtrue)))
}

=
1

n

n∑
i=1

∫ 0

∆i(βS)

(s−∆i(βS)) dF̃in(s) +O(
1√
n

), (3.6)

where the last identity follows from (3.4). Note that the integral in the last line is always

positive, except in the case ∆i(βS) = 0 which corresponds to the choice βS = β0,S. Further-

more, the identifiability assumption (A5) guarantees that for sufficiently large n and any

parameter βS ∈ ΘS different from β0,S we have

1

n

n∑
i=1

(∫ 0

∆i(βS)

(s−∆i(βS)) dFni(s)

)
> 0. (3.7)

This implies that for sufficiently large n the sum in (3.6) will only be zero for βS = β0,S

and will be strictly positive otherwise. The key step for completing the proof is a uniform

convergence property of the criterion function. More precisely, we will show in the Appendix

that

sup
βS∈ΘS

|Zn(βS)− E[Zn(βS)]| P→ 0. (3.8)

Because Zn is minimized at β̂S, we have

Zn(β̂S) ≤ Zn(β0,S) = 0. (3.9)

Then from (3.7), (3.8) and (3.9) follows the statement of the Theorem, i.e. ‖β̂S − β0,S‖ =

oP (1). 2

3.2 Weak convergence under local alternatives

In this section we derive the asymptotic distribution of the quantile regression estimator β̂S
for each sub-model S under local alternatives of the form (2.7), which is the key step for

defining the FIC in every sub-model.
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Theorem. 3.2 Under assumptions (A1) - (A5) and (2.7) we have

√
n(β̂S − β0,S)

D→ NS ∼ N
(
Q−1
S

(
Q01

πSQ11

)
δ, τ(1− τ)Q−1

S VSQ
−1
S

)
,

where N (µ,Σ) denotes a normal distribution with mean µ and covariance matrix Σ,

QS = lim
n→∞

1

n

n∑
i=1

fin(g(xi; θ0,S)m(xi, β0,S)m(xi, β0,S)t,

VS = lim
n→∞

1

n

n∑
i=1

m(xi, β0,S)m(xi, β0,S)t,

and πS is a |S|×p-projection matrix consisting of ones and zeros which simply extracts from

Q11 the rows corresponding to the sub-model S.

Proof. By a Taylor expansion at the point β0,S, the quantity ∆i defined in (3.2) can be

written in terms of v :=
√
n(βS − β0,S):

∆i(v) =
1√
n
m(xi, β0,S)tv +

1

2n
vtM(xi, β

∗
S)v, (3.10)

where βS, β
∗
S ∈ ΘS satisfy ‖β∗S − β0,S‖ ≤ ‖βS − β0,S‖. Inserting ∆i(v) into the definition

(3.5), we obtain the slightly modified objective function

Gn(v) :=
n∑
i=1

[
1{ui,S≤0}(1− τ)∆i(v)− 1{ui,S>0}τ∆i(v)

+1{0<ui,S≤∆i(v)}(∆i(v)− ui,S) + 1{∆i(v)≤ui,S≤0}(ui,S −∆i(v))

]
= −vtΓn,S +

n∑
i=1

bi(v), (3.11)

where the random variables Γn,S and bi(v) are defined by

Γn,S :=
n∑
i=1

ψτ (ui,S)

[
1√
n
m(xi, β0,S) +

1

2n
M(xi, β

∗
i,S)v

]
, (3.12)

bi(v) := 1{0<ui,S≤∆i(v)}(∆i(v)− ui,S) + 1{∆i(v)≤ui,S≤0}(ui,S −∆i(v)),

respectively, and

ψτ (ui,S) := τ1{ui,S≥0} + (τ − 1)1{ui,S<0},

denotes the “derivative” of the check function ρτ . Note that Gn(v) is now minimized at

T̂n :=
√
n(β̂S−β0,S). In the Appendix we will derive the following asymptotic properties for

the terms in this expansion.
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• For any v ∈ Rp+|S| we have

vtΓn,S
D→ vtWS, (3.13)

where

WS ∼ N
(( Q01

πSQ11

)
δ, τ(1− τ)VS

)
.

• For any v ∈ Rp+|S| we have

n∑
i=1

bi(v) =
1

2
vtQn,Sv +O(n−1/2‖v‖3) +OP (n−1/6‖v‖3/2) +O(n−1‖v‖4), (3.14)

where

Qn,S =
1

n

n∑
i=1

f̃in(0)m(xi, β0,S)m(xi, β0,S)t.

Note that (3.14) provides a quadratic approximation of the function

Gn(v) = −vtΓn,S +
1

2
vtQn,Sv +O(n−1/2‖v‖3) +OP (n−1/6‖v‖3/2) +O(n−1‖v‖4),

which will be used to establish a Bahadur-type representation for the statistic T̂n =
√
n(β̂S−

β0,S). More precisely, we will show in the Appendix that T̂n is stochastically bounded, that

is

‖T̂n‖ = OP (1). (3.15)

Therefore Gn(T̂n) has the following stochastic expansion

Gn(T̂n) = −T̂ tnΓn,S +
1

2
T̂ tnQn,ST̂n + oP (1). (3.16)

By (3.13) the term Un := Q−1
n,SΓn,S is asymptotically normal distributed. In particular ‖Un‖

is also stochastically bounded and satisfies U t
nΓn,S = U t

nQn,SUn, which yields

Gn(Un) = −1

2
U t
nQn,SUn + oP (1). (3.17)

From (3.16) and (3.17) it therefore follows that

Gn(T̂n)−Gn(Un) = −T̂ tnΓn,S +
1

2
T̂ tnQn,ST̂n +

1

2
U t
nQn,SUn + oP (1)

=
1

2
(T̂n − Un)tQn,S(T̂n − Un) + oP (1). (3.18)

Note that by the definition of T̂n the left-hand-side of the above equation is always non-

positive, while the first term in the last row on the right-hand-side is always positive due to

the positive definiteness of Qn,S. Consequently, we obtain ‖T̂n − Un‖ = oP (1), i.e.

T̂n =
√
n(β̂S − β0,S) = Un + oP (1) = Q−1

n,SΓn,S + oP (1).

Therefore the asymptotic normality of T̂n directly follows from (3.13). 2
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4 The FIC for quantile regression

From Theorem 3.2, an expression for the FIC can be derived by similar arguments as in

Claeskens and Hjort (2003). By applying the Delta method we get the asymptotic distribu-

tion of the estimator µ̂S in the submodel S

√
n(µ̂S − µtrue) =

√
n(µ(β̂S)− µ(β0,S)) +

√
n(µ(β0,S)− µ(βtrue))

D→ NS −
∂µ

∂βfull

t

δ̃ (4.1)

with

NS ∼ N
( ∂µ
∂βS

t

Q−1
S

(
Q01

πSQ11

)
δ,
∂µ

∂βS

t

τ(1− τ)Q−1
S VSQ

−1
S

∂µ

∂βS

)
(4.2)

and δ̃ = (0, ..., 0, δ)t. Here as well as in the following steps, all partial derivatives ∂µ
∂βfull

and
∂µ
∂βS

are evaluated at β = β0,full and β = β0,S, respectively. This yields for the MSE of (4.1)

MSES =
∂µ

∂βS

t

Q−1
S

(
Q01

πSQ11

)
δδt
(
Q01

πSQ11

)t
(Q−1

S )t
∂µ

∂βS
− 2

∂µ

∂βS

t

Q−1
S

(
Q01

πSQ11

)
δ
∂µ

∂βfull

t

δ̃

+

(
∂µ

∂βfull

t

δ̃

)2

+
∂µ

∂βS

t

τ(1− τ)Q−1
S VSQ

−1
S

∂µ

∂βS
.

Because the third term in this expression does not depend on the particular sub-model we

finally define the FIC for the quantile regression estimator as

FICS =
∂µ

∂βS

t[
Q−1
S

(
Q01

πSQ11

)
δδt
(
Q01

πSQ11

)t
(Q−1

S )t + τ(1− τ)Q−1
S VSQ

−1
S

] ∂µ
∂βS

−2
∂µ

∂βS

t

Q−1
S

(
Q01

πSQ11

)
δ
∂µ

∂βfull

t

δ̃. (4.3)

It remains to estimate the unknown quantities in this expression such that the FIC can be

calculated from the data. The key step here is to find an estimator of the matrices QS which

is consistent under local alternatives. Using the regression “errors”

ε̂i = Yi − g(xi; β̂1, . . . , β̂q),

(β̂1, . . . , β̂q are estimated in the full model) Kim and White (2003) suggested to estimate the

matrix QS by

Q̂S =
1

2ĉnn

n∑
i=1

1{−ĉn≤ε̂i≤ĉn}m(xi, β̂0,S)m(xi, β̂0,S)t.

Here ĉn denotes the bandwidth of the estimator which is in some way (e.g. by cross-

validation) determined from the data. The other terms in (4.3) can be estimated similarly

as in Claeskens and Hjort (2003), e.g.

V̂S =
1

n

n∑
i=1

m(xi, β̂0,S)m(xi, β̂0,S)t.
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Finally, we have to estimate the term δδt. By Theorem 3.2 we have shown that

Dn :=
√
n((β̂p+1 − γ0,1), . . . , (β̂q − γ0,p−q))

t D→ D ∼ N (δ,K),

where K denotes the (q − p) × (q − p)-matrix obtained by taking the last q − p rows and

columns from the matrix τ(1−τ)Q−1V Q−1. Therefore, DDt has mean δδt+K, and, following

Claeskens and Hjort (2003), we propose to use the estimator

ˆδδt = DDt − K̂,

which should be truncated to zero when the result is negative definite. An estimator K̂ can

be obtained directly by taking the corresponding rows and columns of τ(1 − τ)Q̂−1V̂ Q̂−1

of the estimated covariance matrix of the full model. Finally, the derivatives of µ can be

estimated by plug-in-estimators, using estimates for β̂0,S from the full model.

5 Finite sample properties

5.1 Simulation results

In this section, we present a small simulation study investigating the finite sample properties

of the FIC for the class of quantile regression models introduced in Example 2.1. All results

are based on 2000 simulation runs. For the distribution of the “error” ε = Y − g(x, η)

we assume three scenarios: a normal distribution with mean 0 and variance σ2 = 0.01, a

Cauchy distribution with location parameter a = 0 and scale parameter b = 0.07, and in a

third setting we address the problem of heteroscedasticity. Here we assume that the errors

are normal distributed with mean 0 and standard deviation (depending on the explanatory

variable x)

σ(x) = τ0 +
τ1

1 + e−τ2x
, (5.1)

where τ0 = −0.1, τ1 = 0.24 and τ2 = 0.15. This variance function is proposed by Lim

et al. (2010) for dose-response-modeling. In our first example we consider the case of two

competing models, the Michaelis-Menten-model defined in (2.2) and the Hill model without

intercept given by (2.4). We generate data from the model (2.4) with parameter values

β1 = 0.417, β2 = 25 and β3 = 1.75. As experimental design we choose six different dose

levels equidistantly over the dose range [0mg, 150mg] and assign 32 observations to each

dose level. The parameters are estimated using median regression (i.e. τ = 0.5). From

these results we obtain a robust estimate for the focus parameter µ, the minimal effective

dose (MED) defined in (2.5) with ∆ = 0.1. We investigate the performance of the FIC for

choosing between the Michaelis-Menten-model (2.2) and the Hill model (2.4). In each step,

we calculate the FIC for both models with model (2.2) as the narrow model. An estimator

µ̂ is then obtained from the model with the lowest FIC value. In order to compare the FIC

to more conventional information measures such as AIC and BIC, in each replication step

11



we also estimate µ using the model selected by AIC and BIC. In the median regression case,

the AIC and BIC for the candidate model S are obtained as

AICS = n log(σ̂) + p, BICS = n log(σ̂) +
1

2
p log(n),

where σ̂ = 1
n

∑n
i=1 |yi− g(xi; β̂S)|, p denotes the number of parameters in the model S and n

the number of observations [for details see Hurvich and Tsai (1990)]. For a comparison of the

different model selection procedures we compute the absolute errors of the post-selection-

estimators for µ

|µ̂FIC,i − µtrue| , |µ̂AIC,i − µtrue| , |µ̂BIC,i − µtrue| , (5.2)

where µ̂FIC , µ̂AIC and µ̂BIC denote the estimators of the focus µ, where the model has

been chosen by FIC, AIC and BIC, respectively. Finally, it is counted how many times in

2000 simulation runs the FIC obtains a better estimator then AIC (FIC<AIC) and BIC

(FIC<BIC) and vice-versa. The first row of Table 1 shows the results for homoscedastic

normal distributed errors, the second row displays the results for heteroscedastic errors with

variance function (5.1) and the third row shows the results for Cauchy-distributed errors.

εi FIC<AIC FIC=AIC AIC<FIC FIC<BIC FIC=BIC AIC<BIC

N (0, 0.01) 657 1085 258 1149 475 376

N (0, σ2(xi)) 579 1222 199 1176 469 355

C(0, 0.07) 1062 571 367 1200 304 496

Table 1: Comparison of the absolute error of the estimate of the MED, where the model

is chosen by FIC and AIC (left part) and FIC and BIC (right part). Data are generated

from model (2.4) and the models (2.2) and (2.4) are compared for estimating the MED. The

symbol FIC<AIC means that the absolute deviation of the estimate of the focus is smaller

for the FIC criterion as for AIC and the symbols FIC=AIC, AIC<FIC, FIC<BIC etc. are

interpreted in the same way.

Median MAD

FIC AIC BIC FIC AIC BIC

N (0, 0.01) 1.76 1.96 3.12 1.04 1.22 1.53

N (0, σ2(xi)) 3.62 4.29 5.24 1.96 1.92 1.38

C(0, 0.07) 4.25 5.70 5.73 2.43 0.98 0.96

Table 2: Median and median absolute deviation of the absolute errors of the estimates of the

focus µ obtained from the FIC-, AIC- and BIC-criterion.

In this example it is clearly seen that in the majority of cases the FIC selects a model which is

better than the model chosen by AIC and BIC. Roughly speaking, FIC finds a better model

than BIC in more than half of the simulation runs for all considered error distributions. In

12



Table 2 we display the median and median absolute deviation of the absolute errors (5.2)

of estimators obtained from the different model selection procedures. We observe that the

absolute error of FIC is the smallest, while the BIC yields the largest median of the absolute

errors. The differences are substantial. For the MAD the situation is not so clear. While

the FIC yields the smallest MAD for homoscedastic normal distributed errors, the BIC is

superior in the case of the Cauchy distribution.

In the second example we consider a larger class of models including models (2.1) and (2.3)

so that model selection is now performed for the four models (2.1) - (2.4). Data are again

generated from model (2.4) and the errors are assumed to have the same distributions as

in the first example. The experimental design is also identical to the design from the first

example. The focus parameter µ is the MED defined by equations (2.5) for ∆ = 0.1.

Similarly as in the previous example, the Michaelis-Menten-model (2.2) is the narrow model

and we count how many times the FIC selects a better model than AIC (FIC<AIC) and

BIC (FIC<BIC) and vice-versa. It is seen from Table 3 that also in this example the FIC

chooses a better model for the estimation of the MED than AIC or BIC in a large number

of cases. It yields twice more often a smaller error than the AIC. Compared to the BIC the

superiority of the FIC is even more substantial, in particular under heteroscedasticity.

εi FIC<AIC FIC=AIC AIC<FIC FIC<BIC FIC=BIC BIC<FIC

N (0, 0.01) 813 838 349 962 602 436

N (0, σ2(xi)) 395 1418 187 1063 677 260

C(0, 0.07) 835 828 337 988 613 399

Table 3: Comparison of the absolute error of the estimate of the MED, where the model

is chosen by FIC and AIC (left part) and FIC and BIC (right part). Data are generated

from model (2.4) and models (2.1) - (2.4) are compared for estimating the MED. The symbol

FIC<AIC means that the absolute deviation of the estimate of the focus is smaller for the FIC

criterion as for AIC and the symbols FIC=AIC, AIC<FIC, FIC<BIC etc. are interpreted

in the same way.

Finally, we have also generated data for the case where the true model is the Michaelis-

Menten model defined in (2.2) with β1 = 0.417 and β2 = 25. The corresponding results are

displayed in Table 4, where models (2.1) - (2.4) are considered as competitors. While in this

case the FIC and AIC have similar properties for normal distributed errors (for iid errors, the

FIC seems to be somewhat better), the FIC performs worse than AIC and BIC for Cauchy

distributed errors. In particular, BIC is better than FIC for all error distributions. However,

taking into account that the FIC performs substantially better than both AIC and BIC in

the case where the Hill model is the “true” model we recommend the FIC if the minimum

effective dose has to be estimated with one of the models (2.1) - (2.4).
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εi FIC<AIC FIC=AIC AIC<FIC FIC<BIC FIC=BIC BIC<FIC

N (0, 0.01) 655 797 548 389 796 815

N (0, σ2(xi)) 876 217 907 881 82 1037

C(0, 0.07) 364 905 731 317 908 775

Table 4: Comparison of the absolute error of the estimate of the MED, where the model is

chosen by FIC and AIC (left part) and FIC and BIC (right part). Data are generated from

the Michaelis Menten model (2.2) and models (2.2) - (2.4) are compared for estimating the

MED. The symbol FIC<AIC means that the absolute deviation of the estimate of the focus is

smaller for the FIC criterion as for AIC and the symbols FIC=AIC, AIC<FIC, FIC<BIC

etc. are interpreted in the same way.

5.2 Application of the FIC in a clinical dose response study

For an empirical illustration we consider a data example from a dose response study, which

has recently been investigated by Callies et al. (2004). Zosuquidar is an inhibitor of P-

glycoprotein which is administered in combination with chemotherapeutic agents in order

to increase tumor cell exposure to chemotherapy. In this study median regression is used to

estimate the relationship between the plasma concentration of Zosuquidar and the percentage

of P-glycoprotein inhibition [for details see Callies et al. (2004)]. As a consequence the

intercept β4 in model (2.1) is zero, so that either the Michaelis Menten model (2.2) or the

Hill model with no intercept (2.4) are candidates to describe the dose response relationship.

The focus parameter in question is the IC90, the dose where 90% of maximum P-glycoprotein

inhibition are realized, that is ∆ = 90. Figure 1 shows the data, the fitted median regression

curves and the location of the IC90 for both models. We observe substantial differences
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Figure 1: Zosuquidar data with estimated median regression curves from the Hill and

Michaelis Menten model.

14



between the estimates of the IC90 obtained from the two models and therefore model selection

for estimating the IC90 is of importance in this study. We use the FIC to decide whether

the Hill slope β3 is included in the model or not. The resulting FIC values are 1.21 · 107 for

the Michaelis Menten model (2.2) and 4.38 ·106 for model (2.4). Thus, the IC90 is estimated

using the Hill model with no intercept, which gives a value of ˆIC90 = 183.19. Finally we

note that the AIC also selects the Hill model with no intercept in this example, while BIC

favors the Michaelis Menten model with only two parameters.

6 Discussion

The work in this paper was motivated by the problem of selecting a model to determine the

minimal effective dose in a dose response study on the basis of median regression analysis.

For this purpose we have extended the available theory for estimation under local misspecifi-

cation from a likelihood setting towards quantile regression models and developed a focused

information criterion (FIC), which takes the specific target of the statistical analysis into

account for the process of model selection. Simulation studies demonstrate that this way

of selection indeed often results in estimators of the effective dose with smaller error than

those obtained by standard selection methods such as AIC and BIC. The presented focused

information criterion in this paper is applicable in more generality in nonlinear quantile

regression models, hence not only for minimal effective dose determination.

In general the focus might depend also on the particular covariate information x, hence

µ = µ(β;x). In such cases, the derived FIC expression is specific to the given value of x,

and ‘subject-specific’ model searches could be performed. When this level of detail is not

wanted, a model search may be performed keeping the idea of the focus as in the present

paper, though averaging the risk function over a wanted domain of values for the covariate

x (e.g. when x represents the age, one could consider a range of values (20, 60), or one

could perform the selection for all women in the dataset, or for all treated patients in a

clinical trial, etc.). Claeskens and Hjort (2008a) work this out for the class of generalized

linear models. Instead of considering the MSE at one particular covariate value, one could

consider the loss function for model S in the following way

Ln(S) = n

∫
{µ̂S(β;x)− µtrue(β;x)}2 dWn(x),

where a weight function Wn determines a distribution of relevant x values, which might for

example be an empirical distribution over the observed sample. A similar idea could be

applied in this setting of nonlinear quantile estimation.

Another interesting topic for future research could be a study of asymptotic properties of the

estimators under a different local misspecification setting than (2.7) by no longer assuming

misspecification at the coefficient level, but rather at the level of the density functions. This

line of thought is explained for likelihood regression models in Claeskens and Hjort (2003,

Section 8) where it is assumed that

ftrue(y) = f(y; θ0, γ0){1 + r(y)/
√
n}+ o(1/

√
n),

15



for some function r(·) that satisfies∫
f(y; θ0, γ0)|r(y)|dy <∞ and

∫
f(y; θ0, γ0)r(y)dy = 0.

It is expected that theoretical properties similar to those in the present paper can be devel-

oped for such a situation.

7 Appendix: Proof of technical results

7.1 Proof of (3.8)

The proof of the uniform convergence property can be established using results of Liese

and Vajda (1994), who presented general conditions for consistency of M-estimators and

the uniform convergence of the corresponding objective functions. However, we still have to

keep in mind that we work under local alternatives of the form (2.7). We begin with a proof

of the following properties, which will be used later to establish uniform convergence of the

objective function:

(B1) The class of functions {g(x; βS)|βS ∈ ΘS} is equicontinuous on ΘS for all x ∈ X .

(B2) |Zn(βS)− E[Zn(βS)]| P→ 0 for any βS ∈ ΘS.

First, the equicontinuity (B1) is implied by assumptions (A0) and (A2) since, by the bound-

edness of m(x, β) we have for x ∈ X

|g(x; βS,1)− g(x; βS,2)| =
∣∣m(x, β∗)t(βS,1 − βS,2)

∣∣ ≤ C‖βS,1 − βS,2‖,

for some constant C > 0 (here β∗ denotes a suitable value between βS,1 and βS,2).

For a proof of (B2) we introduce the notation

zi(βS) = ρτ (Yi − g(xi; βS))− ρτ (ui,S)

= (τ − 1{ui,S<∆i(βS)})(ui,S −∆i(βS)) + (1{ui,S<0} − τ)ui,S

= 1{ui,S≤0}(1− τ)∆i(βS)− 1{ui,S>0}τ∆i(βS)

+1{0<ui,S≤∆i(βS)}(∆i(βS)− ui,S) + 1{∆i(βS)≤ui,S≤0}(ui,S −∆i(βS)). (7.1)

which gives

zi(βS)2 = 1{ui,S≤0}(1− τ)2∆2
i (βS) + 1{ui,S>0}τ

2∆2
i (βS)

+1{0<ui,S≤∆i(βS)}(∆i(βS)− ui,S)2 + 1{∆i(βS)≤ui,S≤0}(ui,S −∆i(βS))2

−21{0<ui,S≤∆i(βS)}τ∆i(βS)(∆i(βS)− ui,S)

+21{∆i(βS)≤ui,S≤0}(1− τ)∆i(βS)(ui,S −∆i(βS)). (7.2)
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Taking e.g. the expectation of the third term in the above sum yields

E
[
1{0<ui,S≤∆i(βS)}(∆i(βS)− ui,S)2

]
=

∫ ∆i(βS)

0

(∆i(βS)− s)2f̃in(s)ds ≤ K
∣∣∆i(βS)3

∣∣ .
which is bounded because ∆i(βS) is bounded by assumptions (A0) and (A2). Since the

expectations of all other terms in the sum (7.2) can be similarly bounded, we obtain that

E[zi(βS)2] is bounded (uniformly with respect to i = 1, . . . , n). Therefore it follows from

Chebychev’s inequality that

P (|Zn(βS)− E[Zn(βS)]| > ε) ≤ maxi=1,...,nE[zi(βS)2]

nε2
= o(1),

which establishes (B2).

The uniform convergence in (3.8) can now be derived from (B1) and (B2) using similar

arguments as presented in Liese and Vajda (1994). To be precise define δn(βS) := Zn(βS)−
E[Zn(βS)] and observe that for βS,1, βS,2 ∈ ΘS

|δn(βS,1)− δn(βS,2)| ≤ 2c

n

n∑
i=1

|g(xi; β1)− g(xi; β2)| ,

which follows from the Lipschitz continuity of the check function. Therefore (B1) yields for

any ε > 0 the existence of a δ > 0 such that for every β∗ ∈ ΘS,

sup
{βS :|βS−β∗|<δ}

|δn(βS)| ≤ |δn(β∗)|+ ε/2, n ∈ N.

By the compactness of ΘS there exist finitely many points β1, . . . , βK ∈ ΘS such that

sup
βS∈ΘS

|δn(βS)| ≤ |δn(βi)|+ ε/2, n ∈ N,

for some i ∈ 1, . . . , k. As a consequence, we have

lim
n→∞

P ( sup
βS∈ΘS

|δn(βS)| > ε) ≤ lim
n→∞

P (max
1≤i≤k

|δn(βi)|+ ε/2 > ε)

= lim
n→∞

P (max
1≤i≤k

|δn(βi)| > ε/2) = 0.

where the last equation follows from (B2), which implies (3.8).

7.2 Proof of (3.13)

To simplify notation, put ci(v) := ψτ (ui,S)[ 1√
n
vtm(xi, β0,S) + 1

2n
vtM(xi, β

∗
i,S)v], so that we

have vtΓn,S =
∑n

i=1 ci(v). Recall the definition of F̃ and f̃ in assumption (A1) then a

straightforward calculation yields

E[ψτ (ui,S)] = τ(1− F̃in(0)) + (τ − 1)F̃in(0)

= Fi(g(xi; βtrue))− F̃in(0) = F̃in(∆i(βtrue))− F̃in(0). (7.3)
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This gives for the expectation of ci(v),

E[ci(v)] = [F̃in(0)− F̃in(∆i(βtrue))][
1√
n
vtm(xi, β0,S) +

1

2n
vtM(xi, β

∗
i,S)v]. (7.4)

By plugging the result from (3.4) into (7.4) and applying Assumptions (A3) and (A1)(iii),

in the local alternative framework we obtain

E[ci(v)] = f̃in(0)vtm(xi, β0,S)m(xi, β0,full)
t δ̃

n
+O(n−

3
2 ),

and, assumption (A2) implies

lim
n→∞

n∑
i=1

E[ci(v)] = vt
(
Q01

πSQ11

)
δ. (7.5)

For the calculation of the variance of ci(v) we recall the definition of rn,τ in (3.4) and use

(7.3) and assumption (A4) and get

Var[ψτ (ui,S)] = F̃in(0)− 2τ F̃in(0) + τ 2 − (τ − F̃in(0))2

= F̃in(∆i(βtrue))− rn,τ (xi)−
[
F̃in(∆i(βtrue))− rn,τ (xi)

]2

= τ(1− τ) + rn,τ (xi)(2τ − 1)− (rn,τ (xi))
2 = τ(1− τ) +O(

1√
n

). (7.6)

Therefore we obtain

Var[ci(v)] = τ(1− τ)(
1√
n
m(xi, β0,S)tv)2 + o(n−1).

uniformly with respect to i = 1, . . . , n, which yields (by Assumption (A4))

lim
n→∞

n∑
i=1

Var[ci(v)] = τ(1− τ)vtVsv. (7.7)

Note that, due to assumptions (A0), (A2) and (A3)(i), the process vtΓn,S satisfies a Lindeberg-

Condition. From this result and (7.4), statement (3.13) is then obvious.

7.3 Proof of (3.14)

First, we calculate the expectation and variance of
∑n

i=1 bi(v). To this end, assume that

∆i(v) > 0. The case where ∆i(v) ≤ 0 can be treated analogously with the same result. For

the expectation of bi(v), we obtain for some ξ with |ξ| ≤ |∆i(v)|

E[bi(v)] =

∫ ∆i(v)

0

(−s+ ∆i(v))f̃in(s) ds = f̃in(ξ)(∆i(v)2)/2

= f̃in(0)(∆i(v)2)/2 +O(n−3/2‖v‖3), (7.8)
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uniformly with respect to i = 1, . . . , n, where the last equality follows from assumption

(A1)(iv). Using the representation of ∆i(v) in (3.10) it now follows

E[
n∑
i=1

bi(v)] =
1

2
vtQn,Sv +O(n−1/2‖v‖3) +O(n−1‖v‖4).

Similarly, we have for the variance of
∑n

i=1 bi(v) (we consider again the case ∆i(v) > 0 and

remark that the calculations for ∆i(v) ≤ 0 yield the same result)

Var[
n∑
i=1

bi(v)] ≤
n∑
i=1

∫ ∆i(v)

0

(∆i(v)− s)2f̃in(s) ds ≤ K1

n∑
i=1

|∆i(v)|3

3
= O(n−1/2‖v‖3).

for some positive constant K1. Finally, an application of Chebychev’s inequality yields for

any c > 0 and v ∈ ΘS

P
(
|

n∑
i=1

bi(v)− E[
n∑
i=1

bi(v)]| ≤ cn−1/6‖v‖3/2
)

≥ 1− Var[
∑n

i=1 bi(v)]

c2n−1/3‖v‖3
≥ 1− O(n−1/2‖v‖3)

c2n−1/3‖v‖3
= 1−O(n−1/6).

which completes the proof of (3.14).

7.4 Proof of (3.15)

Assume that T̂n is not bounded, but ‖T̂n‖ (more precisely a subsequence) tends to infinity

at some rate, then the criterion function Gn evaluated at T̂n can be estimated as follows

Gn(T̂n) = An +Bn + Cn +O(n−1/2‖T̂n‖3) +OP (n−1/6‖T̂n‖3/2) +O(n−1‖T̂n‖4)

= An +Bn + Cn + oP (‖T̂n‖2), (7.9)

where Cn = 1
2
T̂ tnQn,ST̂n,

An = −T̂ tn
1√
n

n∑
i=1

ψτ (ui,S)m(xi, β0,S), Bn = T̂ tn

( 1

n

n∑
i=1

ψτ (ui,S)
1

2
M(xi, β

∗
i,S)
)
T̂n

and the estimate in (7.9) follows from Theorem 3.1, which implies ‖T̂n‖√
n

= oP (1). We obtain

by similar arguments as in the proof of (3.13) that An = OP (‖T̂n‖) = oP (‖T̂n‖2) and

Cn = OP (‖T̂n‖2).

In order to determine the order of the term Bn we define the matrices

Wi := ψτ (ui,S)
1

2
M(xi, β

∗
i,S)
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and denote by wi,jk the entries of Wi. Chebychev’s inequality and assumption (A2) yield

P
(∣∣∣ 1
n

n∑
i=1

wi,jk − E[wi,jk]
∣∣∣ > ε

)
≤ maxi=1,...,n Var[wi,jk]

nε2
≤ CjkVar[ψτ (ui,S)]

nε2

=
Cjkτ(1− τ) +O(n−1/2)

nε2
. (7.10)

for a positive constant Cjk (note that the components of the matrixM(xi, β
∗
i,S) are bounded).

On the other hand we have from (7.3) and (3.4) E[wi,jk] = O(n−1/2) which implies wi,jk =

oP (1) and as a consequence we obtain Bn = oP (‖T̂n‖2). Combining all these arguments yield

that

Gn(T̂n) =
1

2
T̂ tnQn,ST̂n(1 + op(1)).

Under assumptions (A0), (A1)(ii) and (A3), the matrices Qn,S are positive definite for suf-

ficiently large n, so that the dominating term will be positive. On the other hand we have

Gn(T̂n) ≤ Gn(0) = 0, which provides a contradiction. Consequently the assertion that T̂n is

not stochastically bounded is wrong, which establishes (3.15).
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