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Abstract

We consider the problem of estimating the Pickands dependence function corresponding

to a multivariate distribution. A minimum distance estimator is proposed which is based on a

L2-distance between the logarithms of the empirical and an extreme-value copula. The mini-

mizer can be expressed explicitly as a linear functional of the logarithm of the empirical copula

and weak convergence of the corresponding process on the simplex is proved. In contrast to

other procedures which have recently been proposed in the literature for the nonparamet-

ric estimation of a multivariate Pickands dependence function [see Zhang et al. (2008) and

Gudendorf and Segers (2011)], the estimators constructed in this paper do not require knowl-

edge of the marginal distributions and are an alternative to the method which has recently

been suggested by Gudendorf and Segers (2012). Moreover, the minimum distance approach

allows the construction of a simple test for the hypothesis of a multivariate extreme-value

copula, which is consistent against a broad class of alternatives. The finite-sample properties

of the estimator and a multiplier bootstrap version of the test are investigated by means of a

simulation study.
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1 Introduction

Consider a d-dimensional random variable X = (X1, . . . , Xd) with continuous marginal distribution

functions F1, . . . , Fd. It is well known that the dependency between the different components of X

can be described in a margin-free way by the copula C, which is based on the representation

F (x1, . . . , xd) = C(F1(x1), . . . F (xd))

of the joint distribution function F of the random vector X [see Sklar (1959)]. A prominent class of

copulas is the class of extreme-value copulas which arise naturally as the possible limits of copulas

of component-wise maxima of independent, identically distributed or strongly mixing stationary

sequences [see Deheuvels (1984) and Hsing (1989)]. For some applications of extreme-value copulas

we refer to the work of Tawn (1988), Ghoudi et al. (1998), Coles et al. (1999) or Cebrian et al.

(2003) among others.

A (d-dimensional) copula C is an extreme-value copula if and only if there exists a copula C̃ such

that the relation

lim
n→∞

C̃(u
1/n
1 , . . . , u

1/n
d )n = C (u1, . . . , ud) (1.1)

holds for all u = (u1, . . . , ud) ∈ [0, 1]d. There exists an alternative description of multivariate

extreme-value copulas, which is based on a function on the simplex

∆d−1 :=
{
t ∈ [0, 1]d−1

∣∣∣ d−1∑
j=1

tj ≤ 1
}
.

To be precise, a copula C is an extreme-value copula if and only if there exists a function A :

∆d−1 → [1/d, 1] such that C has a representation of the form

C(u1, . . . , ud) = exp
{( d∑

j=1

log uj

)
A
( log u2∑d

j=1 log uj
, . . . ,

log ud∑d
i=1 log uj

)}
. (1.2)

The function A is called Pickands dependence function [see Pickands (1981)]. If relation (1.2) holds

true then the corresponding Pickands dependence function A is necessarily convex and satisfies

the inequalities

max
{

1−
d−1∑
j=1

tj, t1, . . . , td−1

}
≤ A(t) ≤ 1

for all t = (t1, . . . , td−1) ∈ ∆d−1. In the case d = 2 these conditions are also sufficient for A to

be a Pickands dependence function. By the representation (1.2) of the extreme-value copula C

the problem of estimating C reduces to the estimation of the (d − 1)-dimensional function A

and statistical inference for an extreme-value copula C may now be reduced to inference for its

corresponding Pickands dependence function.
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The problem of estimating Pickands dependence function nonparametrically has a long history.

Early work dates back to Pickands (1981) and Deheuvels (1991). Alternative estimators have been

proposed and investigated in the papers by Capéraà et al. (1997), Jiménez et al. (2001), Hall

and Tajvidi (2000), Segers (2007). These authors discuss the estimation of Pickands dependence

function in the bivariate case and assume knowledge of the marginal distributions. Recently Genest

and Segers (2009) and Bücher et al. (2011) proposed new estimators in the two-dimensional case

which do not require this knowledge. While Genest and Segers (2009) considered rank-based

versions of the estimators of Pickands (1981) and Capéraà et al. (1997), the approach of Bücher

et al. (2011) is based on the minimum distance principle and yields an infinite class of estimators.

The estimation problem of Pickands dependence function in the case d > 2 was studied by Zhang

et al. (2008) and Gudendorf and Segers (2011) assuming knowledge of the marginal distributions.

Their estimators are based on functionals of the transformed random variables Yij = − logFj (Xij)

(i = 1, . . . , n , j = 1, . . . , d), which were also the basis for the estimators proposed by Pickands

(1981) and Capéraà et al. (1997) in the bivariate case. Zhang et al. (2008) considered the random

variable

Zij (s) =

∧
k:k 6=j

Yik
sk

Yij
1−sj +

∧
k:k 6=j

Yik
sk

where s = (s1, . . . , sd) such that (s2, . . . , sd) ∈ ∆d−1 and s1 = 1−
∑d

j=2 sj and
∧
j∈J aj = min{aj |

j ∈ J }. They showed that the corresponding distribution function depends in a simple way on

a partial derivative of the logarithm of Pickands dependence function and proposed to estimate

Pickands dependence function by using a functional of the empirical distribution function of the

random variables Zij(s). The obtained estimator is uniformly consistent and converges point-wise

to a normal distribution.

Gudendorf and Segers (2011) discussed the random variable ξi (s) =
∧d
j=1

Yij
sj

which is Gumbel-

distributed with location parameter logA (s2, . . . , sd). They suggested to estimate Pickands de-

pendence function by the method-of-moments and also provided an endpoint correction to impose

(some of) the properties of Pickands dependence function. They also discussed the asymptotic

properties of the estimator and a way to get optimal weight functions needed in the endpoint cor-

rections. It was shown that the least squares estimator leads to weight functions which minimize

the asymptotic variance. Furthermore, Gudendorf and Segers (2011) showed that in some cases

their estimator coincides with the one proposed by Zhang et al. (2008). Recently, Gudendorf and

Segers (2012) extended this methodology of Gudendorf and Segers (2011) to the case of unknown

marginals.

The present paper is devoted to the construction of an alternative class of estimators of Pickands

dependence function in the general multivariate case d ≥ 2, which also do not require knowledge of

the marginal distribution. For this purpose we will use the minimum distance approach proposed
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in Bücher et al. (2011), which allows us to construct an infinite dimensional class of estimators,

which depend in a linear way on the logarithm of the d-dimensional empirical copula. Because

this statistic does not require knowledge of the marginals the resulting estimator of Pickands

dependence function does automatically not depend on the marginal distributions of X. We also

briefly discuss the properties of our methods in the case of dependent data.

Moreover, the minimum distance approach also allows us to construct a simple test for the hypoth-

esis that a given copula is an extreme-value copula. In this case the distance between the copula

and its best approximation by an extreme-value copula is 0, and as a consequence a consistent

estimator of the minimum distance should be small. Therefore the hypothesis of an extreme-value

copula can be rejected for large values of this estimator. A multiplier bootstrap for the approx-

imation of the critical values is proposed and its consistency proved. Moreover, we demonstrate

that the new bootstrap is also applicable in the context of dependent data. Alternative tests for

extreme-value dependence in dimension d > 2 in the case of independent data have recently been

proposed by Kojadinovic et al. (2011) [for tests in dimension d = 2 for independent data see, e.g.,

Ghoudi et al. (1998); Ben Ghorbal et al. (2009); Kojadinovic and Yan (2010); Bücher et al. (2011);

Genest et al. (2011); Quessy (2011)].

The remaining part of the paper is organized as follows. In Section 2 we present the necessary

notation and define the class of minimum distance estimators. The main asymptotic properties

are given in Section 3, while the corresponding test for the hypothesis of an extreme value copula

is investigated in Section 4. Here we also establish consistency of the multiplier bootstrap such

that critical values can easily be calculated by numerical simulation. The finite-sample properties

of the new estimators and the test are investigated in Section 5, where we also present a brief

comparison with the estimators proposed by Gudendorf and Segers (2012). Finally some technical

details are deferred to an Appendix in Section 5.

2 Measuring deviations from an extreme-value copula

Throughout this paper we define A as the set of all functions A : ∆d−1 → [1/d, 1] and Π is the

independence copula, that is Π (u1, . . . , ud) =
∏d

j=1 uj. For most statements in this paper we

will assume that the copula C satisfies C ≥ Π (or a slight modification of this statement). This

assumption is equivalent to positive quadrant dependence of the random variables, that is for every

(x1, . . . , xd) ∈ Rd we have

P (X1 ≤ x1, . . . , Xd ≤ xd) ≥
d∏
j=1

P (Xj ≤ xj) .

Obviously it holds for any extreme-value copula because of the lower bound of Pickands dependence

function. Following Bücher et al. (2011) the construction of minimum distance estimators for

4



Pickands dependence function is based on a weighted L2-distance

Mh (C,A) =

∫
(0,1)×∆d−1

{
logC

(
y1−t1−...−td−1 , yt1 , . . . , ytd−1

)
− log (y)A (t)

}2
h (y) d (y, t) , (2.1)

where h : [0, 1] → R+ is a continuous weight function and t = (t1, . . . , td−1) ∈ ∆d−1. The result

below gives an explicit expression of the best L2-approximation of the logarithm of a copula

satisfying this condition.

Theorem 2.1. Assume that the copula C satisfies C ≥ Πκ for some κ ≥ 1 and that the weight

function h satisfies
∫ 1

0
(log y)2 h (y) dy <∞. Then

A∗ = argmin{Mh (C,A) | A ∈ A}

is well-defined and given by

A∗ (t) = B−1
h

∫ 1

0

logC (y1−t1−...−td−1 , yt1 , . . . , ytd−1)

log y
h∗ (y) dy, (2.2)

where we use the notations

h∗ (y) = log2 (y)h (y) (2.3)

and Bh =
∫ 1

0
(log y)2 h (y) dy =

∫ 1

0
h∗ (y) dy . Moreover, if C ≥ Π, the function A∗ defined in (2.2)

satisfies

max
{

1−
d−1∑
j=1

tj, t1, . . . , td−1

}
≤ A∗ (t) ≤ 1.

Proof. Since C ≥ Πκ we obtain

1 ≥ C
(
y1−t1−...−td−1 , yt1 , . . . , ytd−1

)
≥ Π

(
y1−t1−...−td−1 , yt1 , . . . , ytd−1

)κ
= yκ

and thus

0 ≥ log
(
C
(
y1−t1−...−td−1 , yt1 , . . . , ytd−1

))
≥ κ log y.

This yields | logC (y1−t1−...−td−1 , yt1 , . . . , ytd−1) | ≤ κ| log y| and therefore the integral in (2.2) exists.

By Fubini’s theorem the weighted L2-distance can be rewritten as

Mh (C,A) =

∫
∆d−1

∫ 1

0

( logC (y1−t1−...−td−1 , yt1 , . . . , ytd−1)

log y
− A (t)

)2

log2 (y)h (y) dy dt,

and now the first part of the assertion is obvious.

For a proof of the second part we make use of the upper Fréchet-Hoeffding-bound and obtain

A∗ (t) ≥ B−1
h

∫ 1

0

log min{y1−t1−...−td−1 , yt1 , . . . , ytd−1}
log y

h∗ (y) dy
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= B−1
h

∫ 1

0

max
{

1−
d−1∑
j=1

tj, t1, . . . , td−1

}
h∗ (y) dy = max

{
1−

d−1∑
j=1

tj, t1, . . . , td−1

}
.

With a similar calculation and the assumption C ≥ Π we obtain the upper bound.

A possible choice for the weight function is given by h(y) = −yk/ log y, where k ≥ 0, see Example

2.5 in Bücher et al. (2011). In Section 5 we consider this weight function with k = 0.5.

If the copula C is not an extreme-value copula the function A∗ has not necessarily to be convex

for any copula satisfying C ≥ Π [see Bücher et al. (2011)]. However, for every copula satisfying

C ≥ Πκ for some κ ≥ 1 the equality Mh(C,A
∗) = 0 holds if and only if the copula C is an

extreme-value copula with Pickands dependence function A∗. This property will be useful for the

construction of a test for the hypothesis that C is an extreme-value copula, which will be discussed

in Section 4. For this purpose we will need an empirical analogue of the “best approximation” A∗

which is constructed and investigated in the following section.

3 Weak convergence of minimal distance estimators

Throughout the remaining part of this paper let X1, . . . ,Xn denote independent identically dis-

tributed Rd-valued random variables. We define the components of each observation by Xi =

(Xi1, . . . , Xid) (i = 1, . . . , n) and assume that all marginal distribution functions of Xi are contin-

uous. The copula of Xi can easily be estimated in a nonparametric way by the empirical copula

[see, e.g., Rüschendorf (1976)] which is defined for u = (u1, . . . , ud) by

Cn(u) =
1

n

n∑
i=1

I{Ûi1 ≤ u1, . . . Ûid ≤ ud}, (3.1)

where Ûij = 1
n+1

∑n
k=1 I{Xkj ≤ Xij} denote the normalized ranks of Xij amongst X1j, . . . , Xnj.

Following Bücher et al. (2011) we use Theorem 2.1 to construct an infinite class of estimators for

Pickands dependence function by replacing the unknown copula with the empirical copula. To

avoid zero in the logarithm we use a modification of the empirical copula. We set C̃n = Cn ∨ n−γ

where γ > 1
2

and obtain the estimator

Ân,h (t) = B−1
h

∫ 1

0

log C̃n (y1−t1−...−td−1 , yt1 , . . . , ytd−1)

log y
h∗ (y) dy. (3.2)

The weak convergence of the empirical process
√
n(Cn−C) was investigated by Rüschendorf (1976)

and Fermanian et al. (2004) among others under various assumptions on the partial derivatives of

the copula C. Recently Segers (2012) proved the weak convergence of the empirical copula process

Cn =
√
n (Cn − C) GC in (`∞ [0, 1]d , ‖ · ‖∞) (3.3)
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under a rather weak assumption, which is satisfied for many copulas, that is

∂jC (u) exists and is continuous on {u ∈ [0, 1]d | uj ∈ (0, 1)} (3.4)

for every j = 1, . . . , d. The limiting process GC in (3.3) depends on the unknown copula and is

given by

GC (u) = BC (u)−
d∑
j=1

∂jC (u)BC (1, . . . , 1, uj, 1, . . . , 1) , (3.5)

where we set ∂jC (u) = 0, j = 1, . . . , d for the boundary points {u ∈ [0, 1]d | uj ∈ {0, 1}}. Here,

BC is a centered Gaussian field on [0, 1]d with covariance structure

r (u,v) = Cov (BC (u) ,BC (v)) = C (u ∧ v)− C (u)C (v) ,

and the minimum is understood component-wise. Note that it can be shown that (3.4) holds for any

extreme-value copula with continuously differentiable Pickands dependence function. The following

result describes the asymptotic properties of the new estimators Ân,h for Pickands dependence

function. Weak convergence takes place in the space of all bounded functions on the unit simplex

∆d−1, equipped with the topology induced by the sup-norm ‖ · ‖∞. The proof is given in the

Appendix.

Theorem 3.1. If the copula C ≥ Π satisfies condition (3.4), and the weight function h∗ satisfies∥∥∥∥ h∗log

∥∥∥∥
∞
<∞ and

∫ 1

0

h∗ (y) (− log y)−1 y−λdy <∞ (3.6)

for some λ > 1, then we have for any γ ∈
(

1
2
, λ

2

)
as n→∞

√
n(Ân,h − A∗) AC,h (3.7)

in `∞ (∆d−1), where the limiting process is defined by

AC,h = B−1
h

∫ 1

0

GC(y1−t1−...−td−1 , yt1 , . . . , ytd−1)

C(y1−t1−...−td−1 , yt1 , . . . , ytd−1)

h∗ (y)

log y
dy.

Remark 3.2. A careful inspection of the proof of this result shows that weak convergence of the

empirical copula process lies at the heart of its proof. Since the latter converges under fairly more

general conditions on the serial dependence of a stationary time series, the i.i.d. assumption on the

series X1, . . . ,Xn can be easily dropped. Exploiting the results in Bücher and Volgushev (2011),

the assertion of Theorem 3.1 holds true for every stationary sequence of random vectors provided

Condition 2.1 in that reference is met. This condition is so mild that all usual concepts of weak

serial dependence are included, e.g., strong mixing or absolute regularity of a time series at a mild
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polynomial decay of the corresponding coefficients. For details we refer to Bücher and Volgushev

(2011). The only difference to the i.i.d. case is reflected in a differing asymptotic covariance of the

process BC which is now given by

Cov(BC(u),BC(v)) =
∑
j∈Z

Cov(I{U0 ≤ u}, I{Uj ≤ v}),

and which, of course, reduces to C (u ∧ v)− C (u)C (v) in the i.i.d. setting.

Note that the result of Theorem 3.1 is correct even in the case where C is not an extreme-

value copula because the centering in (3.7) uses the best approximation with respect to the L2-

distance. The discussed estimator Ân,h in general will neither be convex nor will it necessarily

satisfy the boundary conditions of a multivariate Pickands dependence function. To ensure the

latter restriction, one can replace the estimator Ân,h by the statistic

max
{

1−
d−1∑
j=1

tj, t1, . . . td−1,min{Ân,h (t) , 1}
}
.

Furthermore, to provide convexity, the greatest convex minorant of this statistics can be used.

As a consequence the estimator Ân,h is replaced by a convex estimator with a smaller sup-norm

between the true Pickands dependence function and the corresponding estimator, see Wang (1986).

An alternative way to achieve convexity and to correct for boundary properties of Ân,h is the

calculation of the L2-projection on the space of partially linear functions satisfying these properties.

This proposal was investigated by Fils-Villetard et al. (2008) and decreases the L2-distance instead

of the sup-norm.

Finally, we would like to point that none of these procedures guarantee that the modified estimator

is in fact a Pickands dependence function, because these properties do not characterize Pickands

dependence function in the case d ≥ 3.

4 A test for extreme-value dependence

To construct a test for extreme-value dependence we reconsider the L2-distance Mh (C,A∗) defined

in (2.1). The following result will motivate the choice of the test statistic.

Lemma 4.1. If h is a strictly positive weight function with h∗ ∈ L1 (0, 1), then C ≥ Πκ for some

κ ≥ 1 is an extreme-value copula if and only if

min{Mh (C,A) | A ∈ A} = Mh (C,A∗) = 0.

Proof. If C is an extreme-value copula then A∗ is the Pickands dependence function of the

copula C and the weighted L2-distance is equal to 0.
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Now assume Mh (C,A∗) = 0. With the definition of the L2-distance we obtain

logC(y1−t1−...−td−1 , yt1 , . . . , ytd−1) = log(y)A∗ (t)

almost surely with respect to the Lebesgue measure on the set (0, 1)×∆d−1. Since the functions

logC(y1−t1−...−td−1 , yt1 , . . . , ytd−1) and (log y)A∗ (t) are continuous functions, the equality holds on

the whole domain. This yields with a transformation for every u1, . . . , ud ∈ (0, 1]

C(u1, . . . , ud) = exp
{( d∑

j=1

log uj

)
A∗
( log u2∑d

j=1 log uj
, . . .

log ud∑d
i=1 log uj

)}
.

and it can easily be shown that this identity also holds on the boundary. As a consequence, C is

max-stable and thus an extreme-value copula.

Lemma 4.1 suggests to use Mh(C̃n, Ân,h) as a test statistic for the hypothesis

H0 : C is an extreme-value copula (4.1)

and to reject the null hypothesis for large values of Mh(C̃n, Ân,h). We now will investigate the

asymptotic distribution of the test statistic under the null hypothesis and the alternative.

Theorem 4.2. Let C be an extreme-value copula satisfying condition (3.4) with Pickands depen-

dence function A. If the weight function h is strictly positive, satisfies (3.6) and additionally the

conditions

‖h‖∞ <∞ and

∫ 1

0

h (y)

yλ
dy <∞ (4.2)

hold for some λ > 2, then we have for any γ ∈
(

1
2
, λ

4

)
as n→∞

nMh(C̃n, Ân,h) Z0,

where the random variable Z0 is defined by

Z0 :=

∫
∆d−1

∫ 1

0

{
GC(y1−t1−...−td−1 , yt1 , . . . , ytd−1)

C(y1−t1−...−td−1 , yt1 , . . . , ytd−1)

}2

h(y) dy dt−Bh

∫
∆d−1

A2
C,h (t) dt,

and the constant Bh and the process AC,h are defined in Theorem 3.1.

The following result will give the asymptotic distribution of the test statistic under the alternative.

Note that this is the case if and only if Mh (C,A∗) > 0.

Theorem 4.3. Let C ≥ Π be a copula satisfying condition (3.4) such that Mh (C,A∗) > 0 . If the

strictly positive weight function h and the function h∗ defined in (2.3) satisfy the conditions (3.6)

and (4.2) for some λ > 1, then we have for any γ ∈ (1
2
, 1+λ

4
∧ λ

2
) as n→∞

√
n(Mh(C̃n, Ân,h)−Mh(C,A

∗)) Z1.
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Here the random variable Z1 is defined by

Z1 := 2

∫
∆d−1

∫ 1

0

GC(y1−t1−...−td−1 , yt1 , . . . , ytd−1)

C(y1−t1−...−td−1 , yt1 , . . . , ytd−1)
ν (y, t) dy dt

with weight function

ν (y, t) =
{

logC(y1−
∑d−1

i=1 ti , yt1 , . . . , ytd−1)− log(y)A∗(t)
}
h(y).

Remark 4.4.

a) Again, the i.i.d. assumption on X1, . . . ,Xn in both preceding Theorems can be relaxed to weak

serial dependence and strong stationarity, see Remark 3.2 above.

b) From Theorem 4.2 and 4.3 we obtain an asymptotic level α test for the hypothesis (4.1) by

rejecting the null hypothesis H0 if

nMh(C̃n, Ân,h) > z1−α,

where z1−α denotes the (1− α)-quantile of the distribution of the random variable Z0. By Lemma 4.1

and Theorem 4.3 the test is (at least) consistent against all alternatives C ≥ Π satisfying assump-

tion (3.4).

c) Note that the random variable Z1 in Theorem 4.3 is normal distributed, with mean 0 and

variance, say σ2. Consequently the power of the test is approximately given by

P (nMh(C̃n, Ân,h) > z1−α) ≈ 1− Φ
( z1−α√

nσ
−
√
n
Mh(C,A

∗)

σ

)
≈ Φ

(√
n
Mh(C,A

∗)

σ

)
,

where A∗ is defined in (2.2) and Φ denotes the standard normal distribution function. Thus the

power of the test is an increasing function with respect to n depending on the quantity Mh(C,A∗)
σ

,

see Bücher et al. (2011).

For the construction of the test we need the (1− α)-quantile of the distribution of the random

variable Z0. Unfortunately, this distribution depends on the unknown copula C and therefore it

cannot be explicitly determined. However, we can easily construct a test if we approximate the

distribution of the random variable Z0 by the multiplier bootstrap [see Rémillard and Scaillet

(2009), Bücher and Dette (2010) and Segers (2012)].

To this end, let ∂̂jCn (u) be an estimator for ∂jC (u) which is uniformly bounded in n and u and

for any δ ∈ (0, 1/2) satisfies the condition

sup
u∈[0,1]d:uj∈[δ,1−δ]

|∂̂jCn (u)− ∂jC (u) | P−→ 0,

10



as n → ∞. It is easily seen, that for instance the following estimator based on finite differencing

of the empirical copula satisfies these conditions:

∂̂jCn (u) =


Cn(u+hnej)−Cn(u−hnej)

2hn
if uj ∈ [hn, 1− hn]

∂̂jCn (u1, . . . , uj−1, hn, uj+1, . . . , ud) if uj ∈ [0, hn)

∂̂jCn (u1, . . . , uj−1, 1− hn, uj+1, . . . , ud) if uj ∈ (1− hn, 1] ,

where hn → 0 is a bandwidth such that infn hn
√
n > 0 and where ej denotes the jth unit vector

in Rd.

Now, let ξ1, ξ2, ... denote independent identically distributed random variables with mean 0 and

variance 1 independent from X1,X2, ... satisfying
∫∞

0

√
P (|ξ1| > x)dx <∞. Define

αξn (u) =
1√
n

n∑
i=1

ξi

{
I{Ûi,1 ≤ u1, . . . , Ûi,d ≤ ud} − Cn (u)

}
and set

Cξ
n(u) = αξn(u)−

d∑
j=1

∂̂jCn (u)αξn(1, . . . , 1, uj, 1, . . . , 1).

It follows from the results in Segers (2012) that if C satisfies condition (3.4), then

(Cn,Cξ
n) (GC ,G

′

C)

in (` [0, 1]d , ‖ · ‖∞)2, where GC denotes the process defined in (3.5) and G′C is an independent copy

of this process. By the results in Bücher and Ruppert (2012) we also obtain conditional weak

convergence of Cξ
n given the data in probability, which we denote by

Cξ
n

P
 
ξ

GC .

For details on that type of convergence we refer to the monograph Kosorok (2008). Our final result

now shows that the multiplier bootstrap procedure can be used to obtain a valid approximation

for the distribution of the random variable Z0.

Theorem 4.5. Assume the Copula C ≥ Π satisfies condition (3.4). If the weight function h

satisfies the conditions in Theorem 4.2 and the function y 7→ h∗ (y)(y log y)−2 is uniformly bounded,

then we get for the random variable

Ẑn =

∫
∆d−1

∫ 1

0

{
Cξ
n(y1−t1−...−td−1 , yt1 , . . . , ytd−1)

C̃n(y1−t1−...−td−1 , yt1 , . . . , ytd−1)

}2

h(y) dy dt

−B−1
h

∫
∆d−1

{∫ 1

0

Cξ
n(y1−t1−...−td−1 , yt1 , . . . , ytd−1)

C̃n(y1−t1−...−td−1 , yt1 , . . . , ytd−1)

h∗(y)

log y
dy

}2

dt

the weak conditional convergence Ẑn
P
 
ξ

Z0.
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Proof. Due to the assumptions on the weight function all integrals in the definition of Z0 are

proper and therefore the mapping (GC , C) 7→ Z0(GC , C) is continuous. Hence, the result follows

from Cξ
n

P
 
ξ

GC and the continuous mapping theorem for the bootstrap, see, e.g., Theorem 10.8

in Kosorok (2008).

The bootstrap test is now obtained as follows. Repeating the procedure B times yields a sample

Ẑn (1) , . . . , Ẑn (B) that is approximately distributed according to Z0. This suggests to reject the

null hypothesis if

nMh(C̃n, Ân,h) > ẑ1−α,

where ẑ1−α denotes the empirical (1− α)-quantile of this sample. It follows from Theorem 4.5 that

the test holds its level α asymptotically and that it is consistent. The finite-sample performance

of the test is investigated in the following section.

Remark 4.6. By the results in Bücher and Ruppert (2012) a block multiplier bootstrap can be

used to obtain a valid bootstrap approximation of Z0 in the case of strongly mixing stationary

time series. We omit the details for the sake of brevity.

5 Finite-sample properties

This section is devoted to a simulation study regarding the finite-sample properties of the proposed

estimators and tests for extreme-value copulas. We begin our discussion with the performance of

the estimators. For that purpose we consider the trivariate extreme-value copula of logistic type

as presented in Tawn (1990) with Pickands dependence function defined for t = (t1, t2) ∈ ∆2 by

A(t) = (θ1/αs
1/α
1 + φ1/αs

1/α
2 )α + (θ1/αs

1/α
2 + φ1/αs

1/α
3 )α + (θ1/αs

1/α
3 + φ1/αs

1/α
1 )α

+ ψ(s
1/α
1 + s

1/α
2 + s

1/α
3 )α + 1− θ − φ− ψ,

where s = (s1, s2, s3) := (1 − t1 − t2, t1, t2) and (α, θ, φ, ψ) ∈ (0, 1] × [0, 1]3. For the sake of

comparison with existing simulation studies in the literature [see Gudendorf and Segers (2012)] we

considered the parameters (θ, φ, ψ) = (0, 0, 1) corresponding to a symmetric copula model (also

widely known as the Gumbel–Hougaard copula) and (θ, φ, ψ) = (0.6, 0.3, 0) corresponding to an

asymmetric logistic copula. The parameter α was chosen from the set {0.3, 0.5, 0.7, 0.9}.
Regarding the choice of the weight function we followed the proposal in Bücher et al. (2011)

and considered the function h(y) = −yk/ log(y) with k = 0.5. This choice seems to be a good

compromise between a possibly difficult data-adaptive way of choosing a weight function and

anaytical tractability, see Section 3.7 in Bücher et al. (2011). Additional simulations in dimension

d = 3 (which we do not state here for the sake of a clear exposition) revealed similar effects as

12



in the two-dimensional study in the last-named reference. Furthermore, we refer to Section 3.4 in

Bücher et al. (2011) for a discussion of “optimal” weight functions.

In Tables 1 and 2 we report Monte-Carlo approximations for the mean integrated squared error

(MISE) E[
∫

(Â−A)2] for the multivariate CFG-estimator, Pickands estimator (see Gudendorf and

Segers (2012)) and the estimator introduced in the present paper which we abbreviate by BDV

according to Bücher et al. (2011). All estimators are corrected for the boundary conditions on

Pickands dependence function. The BDV-estimator is replaced by the function

max
{

1−
d−1∑
j=1

tj, t1, . . . td−1,min{Ân,h (t) , 1}
}
.

For the Pickands- and CFG-estimator we used the endpoint-corrections supposed in Gudendorf

and Segers (2012). For each scenario we simulated 1.000 samples of size n ∈ {50, 100, 200}
using the simulation algorithms in Stephenson (2003) which are implemented in the R-package

evd, Stephenson (2002). The main finings are as follows.

• The Pickands estimator is outperformed by the CFG and the BDV estimator. Regarding

only the former two estimators this finding is in-line with the simulation study in Gudendorf

and Segers (2012).

• The CFG and the BDV estimator yield comparable results with slight advantages for the

CFG estimator for strong dependence, whereas weak dependence results in more efficiency

for the BDV estimator.

[Insert Tables 1 and 2 about here]

Finally, we conducted Monte Carlo experiments to investigate the level and the power of the

test for extreme-value dependence introduced in Section 4. We fixed the dimension to d = 3 and

considered samples of size n = 200 and n = 400 where the level of the test is α = 5%. Under the null

hypothesis we simulated from the symmetric logistic type model as defined in (6.1) with parameters

(θ, φ, ψ) = (0, 0, 1) (i.e., the Gumbel–Hougaard copula). For the sake of a comparison with the

two-dimensional version of the test in Bücher et al. (2011) and with the extensive simulation study

in Kojadinovic et al. (2011) we chose the remaining parameter α in such a way that Kendall’s tau

varies in the set {0.25, 0.5, 0.75}. Under the alternative we considered the Clayton, Frank, Normal

and t-copula with four degrees of freedom and the same values for Kendall’s tau. For the multiplier

method we chose B = 100 Bootstrap-replicates. The test was carried out at the 5% significance

level and empirical rejection rates were computed from 1.000 random samples in each scenario.

The results are stated in Table 3. The main findings are as follows.

• The test seems to be globally too conservative, although the observed level improves with

increasing sample size. This effect is observed to be stronger for increasing level of dependence
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(measured by Kendall’s tau) and is in-line with other simulation studies on the multiplier

method for copulas with strong dependence.

• In terms of power the test detects all alternatives with reasonable rejection rates. Clayton

and Frank’s copula are detected more often, as it was supposed to under consideration of the

findings in Bücher et al. (2011).

[Insert Table 3 about here]
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6 Proofs

6.1 Proof of Theorem 3.1

The proof follows from a slightly more general result, which establishes weak convergence for the

weighted process

Wn,ω (t) =

∫ 1

0

log
C̃n(y1−t1−...−td−1 , yt1 , . . . , ytd−1)

C(y1−t1−...−td−1 , yt1 , . . . , ytd−1)
ω (y, t) dy, (6.1)

where the weight function ω : [0, 1] × ∆d−1 may depend on y and t. Theorem 3.1 is a simple

consequence of the following result using the weight function ω (y, t) = B−1
h

h∗(y)
log y

which does not

depend on t.

Theorem 6.1. Assume that for the weight function ω : [0, 1]×∆d−1 → R there exists a bounded

function ω : [0, 1] → R+
0 such that |ω (y, t) | ≤ ω (y) for all y ∈ [0, 1] and all t ∈ ∆d−1 and such

that ∫ 1

0

ω (y) y−λdy <∞ for some λ > 1. (6.2)

If the copula C ≥ Π satisfies (3.4) then we have for every γ ∈
(

1
2
, λ

2

)
as n→∞

√
nWn,ω (t) WC,ω (t) in `∞ (∆d−1) ,
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where the limiting process is given by

WC,ω (t) =

∫ 1

0

GC(y1−t1−...−td−1 , yt1 , . . . , ytd−1)

C(y1−t1−...−td−1 , yt1 , . . . , ytd−1)
ω (y, t) dy.

Proof of Theorem 6.1. Fix λ > 1 and γ ∈
(

1
2
, λ

2

)
. Due to Lemma 1.10.2 in Van der Vaart and

Wellner (1996), the processes
√
n(C̃n − C) and

√
n (Cn − C) will have the same weak limit.

For i = 1, 2, ... we consider the following random functions in `∞ (∆d−1) :

Wn (t) :=

∫ 1

0

√
n
{

log C̃n(y1−t1−...−td−1 , yt1 , . . . , ytd−1)

− logC(y1−t1−...−td−1 , yt1 , . . . , ytd−1)
}
ω (y, t) dy

Wi,n (t) :=

∫ 1

1/i

√
n
{

log C̃n(y1−t1−...−td−1 , yt1 , . . . , ytd−1)

− logC(y1−t1−...−td−1 , yt1 , . . . , ytd−1)
}
ω (y, t) dy

W (t) :=

∫ 1

0

GC(y1−t1−...−td−1 , yt1 , . . . , ytd−1)

C(y1−t1−...−td−1 , yt1 , . . . , ytd−1)
ω (y, t) dy

Wi (t) :=

∫ 1

1/i

GC(y1−t1−...−td−1 , yt1 , . . . , ytd−1)

C(y1−t1−...−td−1 , yt1 , . . . , ytd−1)
ω (y, t) dy

With this notation we have to show the following three assertions :

(i) Wi,n  Wi in `∞(∆d−1) for n→∞,

(ii) Wi  W in `∞(∆d−1) for i→∞,

(iii) for every ε > 0: limi→∞ limn→∞P∗
(

supt∈∆d−1
|Wi,n(t)−Wn(t)| > ε

)
= 0,

then Lemma B.1 in Bücher et al. (2011) yields the convergence Wn  W in `∞ (∆d−1).

We begin with the proof of assertion (i). For this purpose we set Ti = [1/i, 1]d for i ∈ N and

consider the mapping

Φ1 :

DΦ1 → `∞ (Ti)

f 7→ log ◦f,

where the domain is defined by DΦ1 := {f ∈ `∞ (Ti) | infx∈Ti |f (x) | > 0}. Due to Lemma 12.2

in Kosorok (2008), it follows that Φ1 is Hadamard-differentiable at C tangentially to `∞ (Ti) with

derivative Φ
′
1,C (f) = f

C
. Since C̃n ≥ n−γ and C ≥ Π, we have C̃n, C ∈ DΦ1 and with the functional

delta method we obtain

√
n(log C̃n − logC)  

GC

C
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for n→∞ in `∞ (Ti). Now we consider the mapping

Φ2 :

`∞ (Ti)→ `∞ ([1/i, 1]×∆d−1)

f 7→ f ◦ φ
,

where the mapping φ : [1/i, 1]×∆d−1 → Ti is defined by

φ (y, t) = (y1−t1−...−td−1 , yt1 , . . . , ytd−1).

For Φ2 the following inequality holds:

‖Φ2 (f)− Φ2 (g) ‖∞ = sup
y∈[1/i,1],t∈∆d−1

|f ◦ φ (y, t)− g ◦ φ (y, t) |

≤ sup
x∈Ti
|f (x)− g (x) | = ‖f − g‖∞.

This implies that Φ2 is Lipschitz-continuous. By the continuous mapping theorem and the bound-

edness of the weight function ω we obtain

√
n
{

log C̃n(y1−t1−...−td−1 , yt1 , . . . , ytd−1)− logC(y1−t1−...−td−1 , yt1 , . . . , ytd−1)
}
ω(y, t)

 
GC(y1−t1−...−td−1 , yt1 , . . . , ytd−1)

C(y1−t1−...−td−1 , yt1 , . . . , ytd−1)
ω(y, t)

in `∞
(
[1
i
, 1]×∆d−1

)
. By integration with respect to y ∈ [1/i, 1] assertion (i) follows.

Assertion (ii) follows directly from the observation, that the process GC is bounded on [0, 1]d and

from the fact, that the function

t 7→ ω (y, t)

C (y1−t1−...−td−1 , yt1 , . . . , ytd−1)

can be bounded by the integrable function ω (y) y−1. The proof of (iii) is obtained by the same

arguments as given in Bücher et al. (2011) in the case d = 2 and is therefore omitted.

6.2 Proof of Theorem 4.2

Since integration is continuous, it suffices to show the weak convergence W̄n (t)  W̄ (t) in

`∞ (∆d−1), where we define

W̄n (t) =

∫ 1

0

n

(
log

C̃n(y1−t1−...−td−1 , yt1 , . . . , ytd−1)

C(y1−t1−...−td−1 , yt1 , . . . , ytd−1)

)2

h(y) dy − nBh(Ân,h (t)− A (t))2

W̄ (t) =

∫ 1

0

(
GC(y1−t1−...−td−1 , yt1 , . . . , ytd−1)

C(y1−t1−...−td−1 , yt1 , . . . , ytd−1)

)2

h(y) dy −BhA2
C,h (t) .
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Now we will proceed similar to the proof of Theorem 6.1 and consider

W̄i,n(t) =

∫ 1

1/i

n

(
log

C̃n(y1−t1−...−td−1 , yt1 , . . . , ytd−1)

C(y1−t1−...−td−1 , yt1 , . . . , ytd−1)

)2

h(y) dy

−B−1
h

(∫ 1

1/i

√
n log

C̃n(y1−t1−...−td−1 , yt1 , . . . , ytd−1)

C(y1−t1−...−td−1 , yt1 , . . . , ytd−1)

h∗ (y)

log y
dy

)2

W̄i (t) =

∫ 1

1/i

(
GC(y1−t1−...−td−1 , yt1 , . . . , ytd−1)

C(y1−t1−...−td−1 , yt1 , . . . , ytd−1)

)2

h(y) dy

−B−1
h

(∫ 1

1/i

GC(y1−t1−...−td−1 , yt1 , . . . , ytd−1)

C(y1−t1−...−td−1 , yt1 , . . . , ytd−1)

h∗ (y)

log y
dy

)2

.

Due to Lemma B.1 in Bücher et al. (2011) it suffices to show

(i) W̄i,n  W̄i in `∞(∆d−1) for n→∞,

(ii) W̄i  W̄ in `∞(∆d−1) for i→∞,

(iii) for every ε > 0: limi→∞ limn→∞P∗
(

supt∈∆d−1
|W̄i,n(t)− W̄n(t)| > ε

)
= 0.

The proof of these assertions follows by similar arguments as in Bücher et al. (2011) and is omitted

for the sake of brevity.

6.3 Proof of Theorem 4.3

We use the decomposition

Mh(C̃n, Ân,h)−Mh (C,A∗) = S1 + S2 + S3, (6.3)

where

S1 = 2

∫
∆d−1

∫ 1

0

{
C̄n (y, t)− C̄ (y, t)

}{
C̄ (y, t)− A∗ (t) (− log y)

}
h(y) dy dt,

S2 =

∫
∆d−1

∫ 1

0

{
C̄n (y, t)− C̄ (y, t)

}2
h(y) dy dt

S3 = −Bh

∫
∆d−1

{
Ân,h (t)− A∗ (t)

}2

dt

and we used the notations

C̄ (y, t) = − logC(y1−t1−...−td−1 , yt1 , . . . , ytd−1),

C̄n (y, t) = − log C̃n(y1−t1−...−td−1 , yt1 , . . . , ytd−1).
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To investigate the convergence of the first term in (6.3) we first notice that |ν (y, t) | ≤ ν̄ (y), with

ν̄ (y) := 2h∗(y)
− log y

. The assumptions of the Theorem on the weight function h imply that we van

invoke Theorem 6.1. With the continuous mapping theorem this yields
√
nS1 ; Z1 and it remains

to show that the remaining two terms S2 and S3 can be neglected. By Theorem 3.1 and the

continuous mapping theorem we have S3 = OP

(
1
n

)
and finally S2 can be estimated along similar

lines as in the proof of Theorem 4.2 in Bücher et al. (2011).
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Bücher, A. and Volgushev, S. (2011). Empirical and sequential empirical copula processes under

serial dependence. arXiv:1111.2778.
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extrêmes bidimensionnelles. Canadian Journal of Statistics, 26:187–197.

Gudendorf, G. and Segers, J. (2011). Nonparametric estimation of an extreme-value copula in

arbitrary dimensions. Journal of Multivariate Analysis, 102:37–47.

Gudendorf, G. and Segers, J. (2012). Nonparametric estimation of multivariate extreme-value

copulas. Journal of Statistical Planning and Inference, to appear.

Hall, P. and Tajvidi, N. (2000). Distribution and dependence-function estimation for bivariate

extreme-value distributions. Bernoulli, 6:835–844.

Hsing, T. (1989). Extreme value theory for multivariate stationary sequences. Journal of Multi-

variate Analysis, 29:274–291.
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Sample size Estimator α = 0.3 α = 0.5 α = 0.7 α = 0.9

n = 50 P 2.37× 10−4 6.91× 10−4 1.70× 10−3 2.91× 10−3

CFG 9.94× 10−5 4.09× 10−4 1.16× 10−3 2.26× 10−3

BDV 1.24× 10−4 5.07× 10−4 1.27× 10−3 2.04× 10−3

n = 100 P 1.01× 10−4 3.31× 10−4 7.59× 10−4 1.43× 10−3

CFG 4.12× 10−5 2.28× 10−4 6.04× 10−4 1.17× 10−3

BDV 5.46× 10−5 2.69× 10−4 6.23× 10−4 1.01× 10−3

n = 200 P 4.69× 10−5 1.59× 10−4 3.92× 10−4 7.15× 10−4

CFG 2.34× 10−5 1.07× 10−4 3.02× 10−4 5.21× 10−4

BDV 2.84× 10−5 1.20× 10−4 2.93× 10−4 4.77× 10−4

Table 1: Symmetric logistic dependence function, (θ, φ, ψ) = (0, 0, 1): Simulated MISE for the

Pickands, CFG- and BDV-estimator.

Sample size Estimator α = 0.3 α = 0.5 α = 0.7 α = 0.9

n = 50 P 1.65× 10−3 1.98× 10−3 2.49× 10−3 3.13× 10−3

CFG 1.10× 10−3 1.32× 10−3 1.77× 10−3 2.51× 10−3

BDV 1.19× 10−3 1.34× 10−3 1.67× 10−3 2.16× 10−3

n = 100 P 8.55× 10−4 9.48× 10−4 1.23× 10−3 1.53× 10−3

CFG 5.42× 10−4 6.56× 10−4 8.32× 10−4 1.19× 10−3

BDV 5.69× 10−4 6.61× 10−4 8.04× 10−4 9.86× 10−4

n = 200 P 4.05× 10−4 4.59× 10−4 5.99× 10−4 7.45× 10−4

CFG 2.85× 10−4 3.20× 10−4 4.13× 10−4 5.28× 10−4

BDV 2.91× 10−4 3.34× 10−4 3.90× 10−4 4.67× 10−4

Table 2: Asymmetric logistic dependence function, (θ, φ, ψ) = (0.6, 0.3, 0): Simulated MISE for

the Pickands, CFG- and BDV-estimator.
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Copula τ n = 200 n = 400

Gumbel 0.25 0.051 0.038

0.5 0.026 0.049

0.75 0.011 0.023

Clayton 0.25 1 1

0.5 1 1

0.75 1 1

Frank 0.25 0.668 0.917

0.5 0.9111 1

0.75 0.916 1

normal 0.25 0.591 0.831

0.50 0.639 0.932

0.75 0.306 0.820

t-copula 0.25 0.358 0.570

0.5 0.470 0.783

0.75 0.222 0.688

Table 3: Simulated rejection probabilities of the test for the null hypothesis of an extreme-value

copula where the level is 5%.
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