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Abstract

The present paper analyses the dependence structure between WTI
and Brent crude oil spot log-returns using modern copula techniques.
In a first step we apply several single equation models to the marginals
to account for autocorrelation and volatility clustering. Second, to se-
lect both copulas and tail copulas characterising the joint dynamics
between the time series we implement and evaluate newly introduced
bootstrap-based goodness-of-fit tests. Based on each approach, a com-
prehensive backtesting is performed by simulating and comparing the
risk measures Value-at-Risk and Expected Shortfall with historical val-
ues.
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1 Introduction

The modelling of stochastic dependence in energy and commodity
markets via copulas has become increasingly common in applications.
Grégoire et al. (2008) analyse the dependence structure of log-returns
of futures on crude oil and natural gas, Accioly and Aiube (2008)
study the co-movement of crude oil and gasoline prices, while Re-
boredo (2011) focuses on the dependence structure between crude oil
benchmark prices. Using weekly data the article examines whether
crude oil markets are rather globalised or regionalised. Having esti-
mated each log-return time series individually, the author accounts for
the dependence between the different crude oil grades by fitting var-
ious copula families to the error terms. The unknown parameters of
the copula functions are obtained via maximum likelihood whereas the
decision which model performs best relies on an adjusted information
criterion and a pseudo-likelihood ratio test. Additionally, and directly
linked to the estimated copula parameters, coefficients for upper and
lower tail dependence are provided.

According to Jaschke et al. (2012) a general goodness-of-fit test for
copulas does not necessarily provide a good model of tail dependence
as most of these procedures take the whole support of the distribution
into account and therefore, adopting copula inference techniques for
modelling joint extreme events can be very misleading for risk man-
agement purposes. Using tail copulas Jéschke et al. (2012) account
for all possible scenarios of joint extreme outcomes and thus decou-
ples the decision to select an appropriate model describing the overall
dependence from the analysis of the joint dynamics in the tail of the
underlying distribution.

The present paper follows this route and extends the current state
of knowledge within a couple of areas. First and foremost, we ap-
ply the partial derivatives multiplier bootstrap goodness-of-fit test for
tail copulas (Biicher and Dette, 2012) to the log-returns of two crude
oil grades. To better compare the findings to a traditional copula fit
we present both the best model characterising the overall dependence
structure using a bootstrap-based goodness-of-fit test for copulas and
the newly introduced Copula Information Criterion (Grgnneberg and
Hjort, 2012). Moreover, from a risk management perspective it is indis-
pensable to capture the joint behaviour of certain assets within energy
portfolios. More precisely, following Jaschke et al. (2012), a thorough
understanding of energy portfolio risk requires an adequate assessment
of the probability that large negative co-movements occur together, i.
e. lower tail dependence. Therefore, the present paper introduces a
wide and comprehensive backtesting framework for two of the most



commonly applied risk measures, i. e. Value-at-Risk and Expected
Shortfall. To the best of our knowledge, the problem of modelling
and assessing risk measures in energy portfolios using the described
modern copula techniques has not yet been addressed before. The
paper’s claim to cover a topic of broad applicability and high prac-
tical relevance is backed by extensive guidelines from a practitioner’s
point of view as well as detailed comments concerning the empirical
implementation.

The present analysis uses a large data set of daily quotes of WTI
Cushing Crude Oil Spot and the Bloomberg European Dated Brent.
Quotes of WTT are commonly used as a reference spot price for U.S.
crude oil whereas the price for Brent serves as a benchmark for Euro-
pean crude oil. Both oil grades belong to the class of light and sweet
crude oils, i. e. they are characterised by their low density and their
low sulphur content. Although Brent is not as light or as sweet as
WTTI, it is still a high-grade crude for subsequent processing and thus,
both crude oils are not completely, but to a great extent, generally
treated as interchangeable.

Due to these differences in quality, WTI futures were usually traded
at a small premium to Brent futures. From early on in 2011 the devel-
opment of the spread between the two futures has attracted the energy
and finance markets’ attention. In fact, Brent did not only trade over
WTI, but also the spread of the futures widened notably, which is
reason enough to analyse the dependence structure between the two
crude oil grades from a probabilistic point of a view.

The paper is organised as follows: Section 2 briefly introduces the
well-known copula framework and reviews the closely related concept
of tail copulas with their corresponding non-parametric estimates. Sec-
tion 3 models the individual time series of both crude oil grades, ac-
counting for serial dependence in the data. Section 4 describes the
applied rank-based goodness-of-fit tests for copulas and tail copulas,
respectively. Section 5 provides an instruction how to put the de-
scribed theory into practise. Section 6 backtests the findings using the
example of risk measures. Finally, Section 7 summarises the results
and the used methods.

2 Preliminaries

2.1 Copulas and tail dependence

The theory of copulas investigates the dependence structure of multi-
variate distribution functions. As this article focuses on co-movements
between the WTI and Brent crude oil futures, we state all further def-



initions and results for the bivariate case only. From a probabilistic
perspective, a copula is a joint distribution function with uniformly
distributed margins on the interval [0, 1]. To begin with, we consider
a random vector (X,Y’) with continuous marginal distribution func-
tions F(x) := P[X < z] and G(y) :=P[Y <yl, z,y € R, respectively.
The theoretical foundation for the application of copulas is provided
by Sklar’s theorem (Sklar, 1959), according to which there exists a
unique copula C, called the copula of X and Y, such that

IP[X <zY < y] = C(F(x>vG(y))7 (1)

for all x,y € R. Conversely, if C' is a copula and F' and G are distribu-
tion functions, then the function defined by Equation (1) is a bivariate
distribution function with margins F' and G, respectively. It can be
shown that

Clu,v) =P[U <u,V <] =P[X < F (), Y <GV@),  (2)

for all u,v € [0,1], where F(-1) and G- denote the quasi-inverses of
F and G, respectively, i. e.

FY () = inf{z e R | F(z) > u}, (3)

for all u € [0,1] (analogously for G). Summing up, copulas allow for a
step-wise modelling of the joint distribution whose dependence struc-
ture is independent of the respective marginal distributions. Further
details can be found in Nelsen (2006).

Having set the copula framework, we are now able to introduce the
concept of tail copulas which provides a generalised approach to model
dependencies of extreme events. Following Schmidt and Stadtmiiller
(2006), the lower tail copula Ay, associated with X and Y is a function
of their copula C and is defined by

- C(t, ty)
A =1 4
L(z,y) = lim ——==, (4)
if the above limit exists for all (z,y) € R% := [0,00]? \ {(o0,0)}.

Considered analytically, A;, describes the directional derivative of the
copula C' along the vector (z,y) € R% at the point (0,0). According
to Schmidt and Stadtmiiller (2006), the lower tail copula admits the
homogeneous structure among its components, i. e.

Ap(sz,sy) = sAp(z,y), s>0, (5)

for all (z,y) € R%. Regarding this property, we conclude that evaluat-
ing the lower tail copula on the unit circle in the first quadrant contains



all information about the directional derivatives of the copula C at the
origin. Once these values are calculated the missing ones can be ob-
tained by linear continuation according to Equation (5). Moreover, in
the following we assume that the lower tail copula is non-zero in some
point (o, yo) € R and thus non-zero everywhere on R% (see Schmidt
and Stadtmiiller, 2006, Theorem 1).

The next part allows for embedding the well-known concept of tail
dependence (see among others Caillault and Guéégan, 2005; Frahm
et al., 2005; Chui and Wu, 2009) into the framework of tail copulas.
More precisely, two random variables X and Y are called lower tail
dependent if the limit

Api=Ar(1,1) = lim PIX < FOY@) | Y <GEYwW)]  (6)

u—07t

exists and lies in the interval (0,1]. In case A\, = 0, X and Y exhibit
no lower tail dependence. Regarding the scope of this article, tail
dependence can be viewed as the limiting likelihood of an commodity
return falling below its Value at Risk at a certain level, given that
another commodity return has fallen below its Value at Risk at the
same level. As pointed out in Jéschke et al. (2012), the so-called lower
tail dependence coefficient Ay, is not able to thoroughly capture the
joint behaviour in the lower tail of the distribution. Nevertheless, it is
widely used as a simple and intuitive scalar measure for dependence
between extreme losses of commodity returns.

2.2 Non-parametric estimates

In preparation for the rank-based goodness-of-fit tests in Section 4 we
introduce non-parametric estimators for the copula C' and the lower
tail copula Ay, respectively. For this purpose we consider a sample
(X1,Y1),...,(Xp,Yp) from a pair (X,Y) of continuous random vari-
ables. Then the normalised rank-based representation (u,v;) of the
sample data (X4, Y;), t =1,...,T, is defined by

"y — rank(X}) and o = rank(Y;)

T+1 T+1 Q

Assuming a time-independent dependence structure, the empirical cop-
ula C7 (Deheuvels, 1979) is given by

1

@T(u,v) =7 Z]l(ut < u,v <), (8)

t=1

where 1(A) denotes the indicator function of a set A. As argued in
Genest and Favre (2007), the empirical Copula C7p is the best sample-

6



based non-parametric representation of the copula C, which itself char-
acterises the dependence structure of the random vector (X,Y’). More-
over, for any given pair (u,v), aT(u,v) serves as a consistent rank-
based estimator of C'(u,v) that is asymptotically normally distributed
with mean C'(u,v) (see Segers, 2012a).

To be able to adequately assess the risk of joint extreme losses, we
now introduce the lower empirical tail copula Ap according to Schmidt
and Stadtmdiiller (2006). This non-parametric estimator is defined by

N T~ (kx ky
AL(x7y) = E (T’T)
1
k

with some parameter k € {1,...,7} to be chosen by the statisti-
cian. As proved in Schmidt and Stadtmiiller (2006), the estimator
Ay, exhibits weak convergence and strong consistency provided that
k= k(T) - oo and k/T — 0 for T — oo (and other regularity
conditions, quod vide Huang, 1992). From an analytical perspective
the lower empirical tail copula Ay can be viewed as the slope of the
secant of the empirical copula Cr containing the points (0,0) and
(kx/T,ky/T) for x® + y*> =1, x,y > 0.

At the same time, the lower empirical tail copula yields a convenient
method for the non-trivial task of estimating the lower tail dependence
coefficient Az, (see Schmidt and Stadtmiiller, 2006). To be precise,

~ ~

AL = Ap(1,1), (10)

which again illustrates that the lower tail copula is an intuitive gener-
alisation of the lower tail dependence coeflicient.

3 Modelling marginal time series

Since the copula is a function of the marginal distributions, an ade-
quate modelling of the individual time series is crucial for estimating
the dependence structure between two commodities. Recently, sev-
eral empirical studies have analysed the modelling of univariate time
series for crude oil spot and futures prices considering different data
frequencies (see among others Kang et al., 2009; Mohammadi and Su,
2010; Chang et al., 2010). For the purpose of the present study it
is preferable to use daily returns over weekly returns to investigate
joint extreme events, as weekly returns tend to smoothen returns es-
pecially in the tails of the distribution whose structure we are trying to



capture here. Consequently, our data set covers daily closing quotes
of the WTI Cushing Crude Oil Spot and the Bloomberg European
Dated Brent from October 2, 2006 to October 1, 2010, collected from
Bloomberg’s Financial Information Services.

First, to test the time series for weak stationarity we perform unit
root tests on the logarithmic spot prices. Following the strategy pro-
posed in Perron (1988), the realised Augmented Dickey-Fuller tests
indicate that the null hypothesis of a unit root cannot be rejected for
both WTT Crude Oil and European Brent. In a second step we apply
the test to the first differences of the log time series. Here, the null
hypothesis of nonstationarity can clearly be rejected at the 0.1% level,
i. e. the log time series of both crude oil commodities are integrated
of order one. Accordingly, the following investigation focuses on the
log-returns 1, = log(P;) — log(P;—1). Figure 1 (see over) shows the
log-returns for both series.

To check for temporal dependence within the individual time se-
ries, we apply standard Ljung-Box tests to the observed and squared
observed log-returns for three different lags (lag 1, lag 5 and lag 10).
While for both series, in the case of squared observations, the null hy-
pothesis that none of the autocorrelation coefficients up to the specified
lag are different from zero can clearly be rejected at the 0.1% level of
significance, the p-values for the non-squared observations are given by
(0.239,0.017,0.004) for the WTI log-returns and (0.167,0.121,0.052)
for the Brent log-returns, respectively. Furthermore, applying the La-
grange multiplier test proposed by Engle (1982) rejects the null hy-
pothesis of no ARCH effects for all lags at the 0.1% level.

Summing up, the findings show that the assumption of an i.i.d.
sample is unrealistic. Thus, to account for autocorrelation and volatil-
ity clustering in the marginal series we employ ARMA (a, b)-processes,
a,b € {0,1}, for modelling the conditional mean equation in com-
bination with GARCH(p, q), APARCH(p, q), GJRGARCH(p, ¢q) and
EGARCH(p, ¢)-models where p,q € {1,2,3}. Additionally, following
Liu (2011), we introduce exogenous variables into the conditional mean
equation to explain the log-return time series. As energy prices are
highly affected by imbalances of supply and demand, a representative
indicator for this balance is given by the change in the energy inven-
tory. Consequently, the applied model uses weekly U.S. stock data of
commercial crude oil which is released by the Department of Energy.
While Liu (2011) fits weekly published figures of the energy inventory
data are fitted to daily granularity using piecewise linear interpolation,
we assume that the market is merely influenced on a single trading day;,
i. e. the weekly publication date. For details see Kemp (2010) and
Fattouh (2010). Besides, the modelling allows various distributions
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Figure 1: Log-returns of WTI Cushing Crude Oil Spot (top) and Bloomberg
European Dated Brent (bottom).

for the error term, specifically the normal, the generalized error, the
Student’s t-distribution and their skewed extensions.

For illustration, we next consider the ARMA (a, b)-EGARCH(p, q)-
model from Nelsen (1991) with underlying fundamental factors:

a b
T4 :u+5ut+29ﬂ“t—i+€t+z¢j€t—j (11)

i=1 j=1
where
woeR, abeN,
0;eR, i=1,...,a, P;€R, j=1,...,b

and p; denotes the log-returns of the U.S. crude oil stock. The condi-
tional variance process of the innovations e; = o¢2; is given by

p
log (07) = w+ Y aiz—i + vil|z—i| — E(|z1-i]))
=1

q
+ Z Bjlog (atz_j)

Jj=1

(12)



where

p,qeEN, w>0,
041207 i:17"'7p7 5]207 jzla"'vqu
veR, i=1,...,p,

and E/(|z|) denotes the unconditional expected value of the absolute
standardised innovations |z|.

The selection of an appropriate model requires criteria which are
a priori specified. To be precise, all estimated parameters should be
significant at the 1% level. Furthermore, standard Box-Pierce and
Ljung-Box tests on the standardised and squared standardised resid-
uals for three different lags (lag 1, lag 5 and lag 10) should indicate
that the null hypothesis, that none of the autocorrelation coefficients
up to the certain lag are different from zero, cannot be rejected at the
10% level. The same threshold should be valid when applying Engle’s
Lagrange multiplier test for all lags up to and including lag 10. In addi-
tion we consider the information criteria AIC, BIC, SIC and HQIC as
well as the corresponding QQ-plot of the standardised residuals. The
modelling is carried out using the functionality of Ghalanos (2011).

Taking these previously mentioned criteria into account we con-
clude that the ARMA(0,0)-EGARCH(2,3)-model including the expla-
natory variable and the skewed generalized error distribution ade-
quately describes the data generating process Wy, t = 1,...,T of the
daily WTT spot log-returns:

W, =2.596 x 107* — 3.216 x 10! 1y
+ UtXta
log (07) = —3.438 x 107! — 1.260 x 107" X;_4
—1.267 x 1071X,_,

(13)
42.458 x 1071 (| X;_1| — 7.961 x 1071)
+2.243 x 1071 (| X;_o| — 7.961 x 1071)
—6.701 x 10~ ' log (07_;) 4+ 9.745 x 10~ " log (07_,)
+6.494 x 107! log (07_3) .
Consequently, the standardised residuals X1, ..., X7 can be viewed as

a random sample from a skewed generalized error distribution with
skewness parameter ¢ = 0.958 and shape parameter v = 1.960; for
details on the skewed generalized error distribution see Wiirtz et al.
(2006).

At the same time, the ARMA(1,1)-EGARCH(2,3)-model includ-
ing the explanatory variable and the skewed generalized error dis-
tribution provides the best fit to the daily Brent spot log-returns

10
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Figure 2: Standardised residuals of both WTI Cushing Crude Oil Spot (top)
and Bloomberg European Dated Brent (bottom) log-return time series.

Bit=1,....T:

By =3.064 x 107 — 2.315 x 101
—7.893 x 107'B,_
+ 0.V, +7.641 x 10 Loy Y1,

log (07) = —2.803 x 107" — 1.026 x 107'Y;_4

~1.076 x 1071Y; 5 (14)
4+ 1.343 x 1071 (|Y;_1| — 7.920 x 1071)
+8.270 x 107 2(|Y;_o| — 7.920 x 107 1)
—7.586 x 10~ ' log (07_;) 4+ 9.098 x 10~ " log (07_,)
+8.117 x 107 log (07_3) .

Therefore, we conclude that the standardised residuals Y7,..., Y are

randomly drawn from a skewed generalized error distribution with

skewness parameter ¢ = 0.921 and shape parameter v = 1.873. Fig-
ure 2 exhibits the standardised residuals which provide the basis for

11



the following investigations for both WTI and Brent log-return time
series. The corresponding QQ-plots are shown in Figure 3 (see over).
Although a few outliers do not fit the straight line, it seems safe to
conclude that the respective residuals follow the specified distributions.

4 Rank-based goodness-of-fit tests

Having modelled the individual time series, we are now able to inves-
tigate the dependence structure between the WTI and Brent crude
oil log-returns. For this, we first apply a one-level bootstrap-based
goodness-of-fit test for copulas (Genest and Rémillard, 2008) which
takes the whole support of the joint distribution into account. In a
second step, we directly estimate the lower tail copula with a multi-
plier bootstrap along the lines of Biicher and Dette (2012). For an
introduction to bootstrap-based goodness-of-fit tests see Stute et al.
(1993). The next subsections show how to implement these procedures.

4.1 Bootstrap procedures for copulas

There are several rank-based tests of the appropriateness of copula
families when modelling the dependence structure between two random
variables. Following Genest and Rémillard (2008) we consider an open
set O C R and the parametric copula class

Cc={Cy|0e 0}

Hence, the test for the null hypothesis that Cy belongs to a certain
parametric class is given by

Ho: CgeC, Hi:Cy¢C. (15)

The test statistic sums up the squared deviations between the empirical
copula Cp and C > VIS

T ~ 2
St =3 (Crur, ve) = Gy, (ur,v0)) (16)

t=1

where (u¢, v¢) denotes the rank-based representation of the standard-
ised residuals (X¢,Y;), see Equation (7).

To compute the optimal parameter estimate éT for a given cop-
ula family we use a monotone relation between the parameter § and
Kendall’s tau, one of the commonly applied rank-based correlation

12
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Figure 3: QQ-plots of standardised residuals for WTI Cushing Crude Oil
Spot (top) and Bloomberg European Dated Brent (bottom).
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measures (Nelsen (2006), chap. 5). For example, in case of all non-
degenerated elliptical copulas — in particular the Gaussian and the
t-copula — the correlation parameter 6 can be calculated by

0 =sin(17/2). (17)

For the t-copula we estimate the degrees of freedom v by maximum
likelihood, keeping the correlation parameter 6 constant, i. e.

U = arg Vénéaé Zlog ch(u,vr)) (18)
where 69 denotes the density of a t-copula with correlation parameter
0 and degrees of freedom v. This method was chosen for its consis-
tency with the other estimators as described above and also because
it was found to give very similar estimates to the full maximum likeli-
hood procedure (Demarta and McNeil, 2005). Evaluating the empiri-
cal equivalent of Kendall’s tau yields 77 = 0.705, and thus 67 = 0.895
and D = 0.531, respectively. For comparison only, we find Spearman’s
rho, another rank-based correlation measure, pr = 0.878, and Pear-
son’s product-moment correlation coefficient 77 = 0.875. See Genest
and Favre (2007) for a detailed description of these quantities.

Figure 4 (see over) shows a scatter plot of the 1,001 pairs (u, v¢) of
standardised residuals. It reveals a strong tendency of u; and vy (and
thus of X; and Y};) to vary together, without regarding their marginal
distributions. This is not surprising as the log-returns originate from
similar types of crude oil. More importantly, on the other hand,
we notice that the dependence structure between the two commodi-
ties differs clearly from the Fréchet-Hoeffding upper bound, namely
C(u,v) = min(u, v), which would indicate that Y is almost surely an
increasing function of X. The latter fact suggests a small opportu-
nity for diversification in the current framework, i. e. reducing the
unsystematic risk by investing in a variety of assets.

The following one-level parametric bootstrap-based goodness-of-fit
test yields approximated p-values assuming that the copula belongs
to the selected parametric copula class. The algorithm (Genest and
Rémillard, 2008) proceeds as follows:

1. transform the standardised residuals (X, Y;),¢ = 1,...,T into

their rank-based representation vectors (ug,vi), t =1,...,T;
2. evaluate the empirical copula Cp for all rank vectors (ut, vt),
t=1,...,T:
T
6 (ug, vy) Z w; < ug, v; < vp); (19)
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Figure 4: Scatter plot of the rank-based representation of the standardised
residuals.

3. compute the optimal parameter estimate éT by inversion of the
empirical equivalent of Kendall’s tau 7p;

4. calculate S7. according to (16);

5. choose N € N sufficiently large and repeat the following steps for
each k € {1,...,N}:

(a) generate a random sample (Xj ¢, Yi,),t = 1,...,T, of the
copula CéT and compute the corresponding rank vectors
(U, vge) fort =1,...,T;

(b) evaluate the empirical copula for all simulated rank vectors
(uk7t,vk7t), t=1,...,T:

T

. 1

O (ks Uht) = > L(upi < g, vki < vrg); (20)
=1

15



(c) use the same method as in Step 3 to construct a rank-based
estimator 0y 7 for 0;

(d) compute

T
S]%T = Z (ak,T(uk,ta Uk,t) - Cé

t=1

(wiove)) s (21)

k, T

6. calculate
1
~ > 1 (Skr > S7) (22)
k=1

to obtain an approximated p-value of the goodness-of-fit test.

For an overview of goodness-of-fit tests for copulas see Genest et al.
(2009).

4.2 Multiplier bootstrap

Initially, let Az be the empirical lower tail copula of our dataset of
standardised residuals (X¢,Y;), t = 1,...,T, and Ay be an arbitrary
lower tail copula. Following Biicher and Dette (2012) we introduce a
distance ¢ between Ay and Af by

. /2 2
o(Ar,Ar) :—/ <AL(COSSOaSin(P)_AL(COSSoysm(P)) dep
0
(23)

-/ " (30 - 80 e,

where
Af(p) = Ar(cosp,sinp), A7 (p) = Ar(cosp,sin ).

Analytically speaking, ¢ describes the squared distance between the
empirical lower tail copula Ay, and the arbitrary lower tail copula Ay,
corresponding to the metric induced by the L?-norm evaluated on the
unit circle in the first quadrant. In the following this set is denoted by
Ky = {(cosyp,sing): ¢ € [0,7/2]}.

For the purpose of estimating the lower tail copula of the time
series (X, Y;), t = 1,...,T, we consider an open set O C R and the
one-parameter class £ = {Ar(;0) | § € O}. Then, the test for the
hypothesis that A;, belongs to a certain parametric class is given by

Ho: AL € ﬁ, Hq: AL ¢ L. (24)

16



We estimate the optimal parameter 6 by applying the minimum dis-
tance estimator

Op = arg min o (AL, Ar(s 9)) , (25)

where o denotes the distance defined in (23) and Ay the empirical
lower tail copula. The reference statistic of the test is given by

S .~ ko <AL7AL('§ 6’AT))
k[ (M0~ M)

To construct multiplier bootstrap critical values, we introduce i.i.d.
nonnegative random variables &, independent of (X, Y;), t =1,...,T,
with mean g in (0,00) and finite variance o which satisfy the con-

dition [ \/P(|&| > x)dz < co. A multiplier bootstrap analogue of
Equation (9) can then be defined by

1 & kx ky
72 L < < 2
k& g <ut_T+1’Ut_T+1>’ (27)

where &p = T71 ZZ;I & denotes the mean of &1,...,&p. As proposed
in Biicher and Dette (2012) we will use Laplacian(0,2) multipliers,
more precisely, the discrete random variables & are i.i.d. with proba-
bility density function P(0) = P(2) = 1/2, which obviously fulfil the
mentioned conditions.

(26)

Having determined the multipliers, we are now able to formulate
the process

P @,y) = SR (Af (29) ~ Ar(e,y)
. (28)
Z ( - 1) <“t = Tk+ Trr"s Tk43:1>

which will be part of the partial derivatives multiplier bootstrap (pdm-
bootstrap) process. Furthermore, following Rémillard and Scaillet
(2009), we compute consistent estimates for the partial derivatives of
the lower tail copula as follows:

AL(‘/E + hay) - AL(J" B h’a y)

o o7 , h<x<oo,
O Ap(z,y) =< . (29)
Ap(z +2h,y) — Ar(0,y) v <h
2h M 7

17



where h ~ k71/2 tends to 0 with increasing sample size. In case z =
00, we set Oy Ar(00,y) = 0. In the same vain, we define Oy Ar(z,y).
Summing up, this yields the process

o™, y) = B (2, y)
— BoA1(z,y)Br(z, ) (30)
— 8, AL (x,y)Br(00, y),

which only depends on the standardised residuals of the log-return
time series and the multipliers &1,...,&p.

Finally, let dg(x,y) = OpAL(z,y;0) denote the partial derivative of
the lower tail copula with respect to 8 € O. Given some regularity
conditions it can be easily shown that this partial derivative function
is also homogeneous. The pdm-bootstrap statistic is obtained as

/2 72 2
dm dm/ dm/
spm = [T a0 -0 ) [, (a4 )de ) d,
0 T 0
(31)
where
i dm/ ¥ .
Yo, (9) = A7 165 (), o " () = of (cos o, sin )
and

1 /2 Ve 2 Z :
A= [ (5,0) de 8 (0) = by (cospsing). (32)

Note that we only consider one-parameter families of tail copulas and
therefore Equation (32) is also one-dimensional. For a detailed de-
scription of the required regularity conditions and a more theoretical
view see Biicher and Dette (2012).

The following goodness-of-fit test based on the partial derivatives
multiplier bootstrap (Biicher and Dette, 2012) yields approximated
p-values assuming that the respective lower tail copula has a specific
parametric form. The detailed algorithm proceeds as follows:

1. transform the standardised residuals (Xy,Y;),t = 1,...,T into
their rank-based representation vectors (ug, v¢), t =1,..., 7T}

2. discretise the unit circle in the first quadrant K and choose the
parameter k£ in relation to the sample size T' for calculating the
empirical tail copula A%(p) according to (9);

3. for the purpose of evaluating the reference statistic (26) compute
the optimal parameter estimate 67 by applying the minimum
distance estimator (25);
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4. to prepare for the next steps estimate the partial derivatives of
the selected lower tail copula via (29) and approximate (32) using
central difference quotients, if applicable;

5. choose N € N sufficiently large and repeat the following steps for
each je{l,...,N}:

(a) generate a random sample &;1,...,&; of the random vari-
ables £1,...,&r as described above;
(b) compute the statistics a%ﬂm = B (g0, ... &) for every

(x,y) € K4 using the updated multiplier bootstrap ana-
logue of the empirical lower tail copula (27), the evaluated
process Bgdm from Equation (28) and the calculated partial
derivatives from Step 4;

(c) evaluate

2
s = [ (401~ 5,60) [, (@040t ) dp

according to (31);

6. calculate
1N
BRI CHAEC (33)
j=1

to obtain an approximated p-value of the goodness-of-fit test.

5 Empirical results

The following subsections provide guide how to implement the method-
ology above. First, we apply the parametric bootstrap-based goodness-
of-fit test to suitable classes of copulas. Having rejected certain copula
models according to a predefined level of significance, we use a newly
introduced information criterion for copulas to find the best fit to the
crude oil log-returns. In a second step a closed-form expression of the
lower tail copula is derived and several possibly suitable one-parametric
models are presented. The results of the goodness-of-fit test based on
the partial derivatives multiplier bootstrap finalise the tail copula fit.

5.1 Copula selection

The goodness-of-fit test from Section 4.1 requires a preselection of
possible one-parametric copula classes. The structure of the scatter
plot in Figure 4 suggests to limit the range to symmetric copulas, i. e.
C(u,v) = C(v,u) for all (u,v) in [0,1]%. In addition to two elliptical

19



copula ‘ p-value ‘ Or-value

Frank 0.000 11.649
(4.1.14) 0.001 2.891
Plackett 0.012 47.150
Gaussian 0.052 0.895
(4.1.12) 0.065 2.261
t (Or = 5.313) 0.074 0.895

Table 1: Test results (N = 2,000 bootstrap iterations) for the goodness-of-fit
of different copula models in ascending order (p-value).

copulas, Gaussian and ¢, we fit the widely used Plackett copula and
three Archimedean copulas. Within the latter class we choose the
Frank family and two relatively unknown strict copulas from (4.1.12)
and (4.1.14) in Nelsen (2006), Table 4.1, with corresponding functions
given by

-1

Cy(u,v) = <1 + {(u‘l — 1)+ (7 - 1)9} 1/0) (34)
and
Co(u,v) = (1 + [(ufl/e — 1) 4 (v - 1)9} 1/9> 79, (35)

respectively, 6 € [1,00). Both copulas share the same limit case C, =
min(u, v), which is not Archimedean anymore.

Table 1 summarises the results (p-values) of the goodness-of-fit
tests for the above mentioned copula classes together with their es-
timated optimal parameter 6r. For the Plackett copula, where no
explicit expression for the parameter 6 is available, we apply penalised
splines to approximate the function (7) using an appropriately cho-
sen grid of @ values (Kojadinovic and Yan, 2010). Figure 5 (see over)
presents scatter plots of n = 1,001 sampling points from simulations
for all copula families under consideration, éT as listed in Table 1.
From these scatter plots alone, it is nearly impossible to draw definite
conclusion about the goodness-of-fit.

The results of the parametric bootstrap procedure indicate that
neither the Frank family nor the copula (4.1.14), and to a great extent,
the Plackett copula seem to be appropriate to model the dependence
structure between the residuals of the crude oil log-returns. On the
contrary, at a 5% level of significance, the null hypothesis cannot be
rejected for any of the remaining three candidates. At this point we

20



Figure 5: Simulation of Frank copula (top left), copula (4.1.14) (center left),
Plackett copula (bottom left), Gaussian copula (top right), copula (4.1.12)
(center right) and t-copula (bottom right).
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copula ‘ CIC-value ‘ f-value ‘ (1(h)-value

Gaussian 1,454 0.877 729.75
(4.1.12) 1,471 2.088 743.61
t (7 =5.101) 1,522 0.880 764.36

Table 2: Cross-validation Copula Information Criterion values for the re-
maining copula models in ascending order (CIC-value).

emphasise, as the actual investigation focuses on the behaviour of joint
extreme events, it is fairly unlikely to achieve p-values higher than 10%,
while, at the same time, not trimming or winsorising the original data
in order to mitigate the effects of (marginal) extreme outliers.
However, as the p-values are ’only’ inverse measures of the strength
of evidence against the null hypothesis Hg, we need to select the most
appropriate model from the remaining candidates. Following Grgn-
neberg and Hjort (2012), we implement the generally applicable cross-
validation Copula Information Criterion for the left three copula fam-
ilies. In contrast to the common used formula AIC = 2{7 . — 2,
where {7 max is defined as the maximiser of the pseudo likelihood

T
er(0) = 3" log (colur,vr))
t=1

the cross-validation CIC corrects for finite-sample bias introduced by
the rank-based non-parametric modelling of the marginals. For a more
detailed view on the different model selection criteria see Claeskens and
Hjort (2008).

Table 2 shows the maximum pseudo likelihood estimator together
with its corresponding likelihood and the cross-validation Copula In-
formation Criterion value. Using the maximal CIC-value as a criterion
to select the model with the best fit to the data, we conclude that the
t-copula, with correlation parameter éT = 0.895 and degrees of free-
dom oy = 5.313, best describes the dependence between the WTI
and Brent crude oil log-returns. Note that in this case evaluating the
frequently applied AIC formula would lead to the same decision.

5.2 Tail copula fit

Implementing the goodness-of-fit test for tail copulas described in Sec-
tion 4.2 requires some background. In order to derive a closed-form
expression of the lower tail copula (in contrast to the limit definition
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in Equation (4)), let (U,V) be a random vector with uniformly dis-
tributed margins on the interval [0, 1] and joint distribution

Calu,v) = exp (log(uv)A ( log(v) )) (36)

log(uv)

where A: [0,1] — [1/2,1] is called Pickands dependence function. C4
can be identified with the class of extreme-value copulas which arise
naturally as limits of copulas of componentwise maxima in independent
random samples and provide a convenient framework for modelling
the dependence structure between extreme events (see Gudendorf and
Segers, 2010). Following Pickands (1981) the extreme-value copula
Ca(u,v) is a copula if and only if the function A: [0,1] — [1/2,1] is a
convex function which satisfies max(t,1 —t) < A(¢) < 1. Next, it can
be shown that the joint distribution of the random vector (1-U,1—-V)
is given by the survival copula

Ca(u,v) =u+v—1+Ca(1—u,1-0). (37)

From the homogeneous structure of the lower tail copula in Equa-
tion (5) it is sufficient to consider the restriction of these functions
to the unit simplex A; = {(u,v) € [0,1]? : u+v = 1} (see Segers,
2012b). By substituting Equation (37) in Equation (4) and applying
I’Hépital’s rule, a tedious but straightforward calculation yields

Ap(l —z,z) = lim Caltl t_ z), tz)
t—0

=1-— A(x) (38)

for the lower tail copula of the random vector (1 — U, 1 — V). Finally,
by renaming variables and the homogeneity property the entire lower
tail copula can be obtained as Ap(1 —t,t) = 1 — A(t) with Pickands
dependence function A(t). The latter implies the existence of an one-
to-one and onto relationship between lower tail copulas and Pickands
dependence functions.

Consequently, the next part focuses on different classes of Pickands
dependence functions. The structure of the empirical estimate Ayp, see
Equation (9), evaluated on the unit circle in the first quadrant, in
Figure 6 (see Page 25) suggests to limit the range to symmetric lower
tail copulas. Below, we seek to cover a spectrum as wide as possible
via

(i) the logistic or Gumbel model (Gumbel, 1960), defined by

Ar(l—tt)=1— ((1—t)9+t9>1/9, 0 e l,00),

which belongs, amongst other, to the survival copula of the well-
known Gumbel-Hougaard copula,
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(i) the negative logistic or Galambos model (Galambos, 1975), given
by

Ap(1—t,t) = ((1 — )" +t’9)_1/9, 0 € (0,00),

that is the lower tail copula of, amongst other, the Clayton cop-
ula, the survival copula of the Galambos copula, and the copula
family (4.1.12),

(iii) the mixed model (Tawn, 1988), defined by
Ap(1—tt)=0(1—1t)t, 0€]|0,1],

which constitutes the complete class of quadratic functions for
differentiable parametric models; in the case 6 = 1, A, belongs,
amongst other, to the copula family (4.1.14),

(iv) the Hiisler-Reiss model (Husler and Reiss, 1989), vis.

ALQ—t,t)=1—(1-1)® <9+2191°g <1t_t>>

1 t

with ® denoting the standard normal cumulative distribution
function; Ay, is, amongst other, the lower tail copula of the sur-
vival copula of the Hiisler-Reiss copula.

Note that the list does not contain the well-known class of t-extreme-
value copulas CY, (see Demarta and McNeil, 2005). Following their
remarks the correspondent Pickands dependence function is not par-
ticularly convenient for practical application. Demarta and McNeil
(2005) show empirically, that for each fixed (0, ) in the t-model, there
exists a parameter 6 from either the Gumbel or the Galambos model
such that the resulting curves are indistinguishable.

Referring back to the applied copula models in Section 5.1 and
digressing, the relationship between the lower tail copula of the ¢-
copula and the t-extreme-value copula can be obtained as:

AL (1 —s,8) =log (Cﬁ, (e_(l_s), e_5>)
=1-—A(s) se€][0,1].

(39)

The latter can be proven (also in a general setting) using the natural
definition of extreme-value copulas (Gudendorf and Segers, 2010A), ap-
plying the Taylor expansion and finally, considering the identity C' = C
for radially symmetric copulas (Nelsen, 2006). Equation (39) shows
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Figure 6: Plot of the empirical lower tail copula A (amber), Gumbel model
(blue line), mixed model (light blue) and the overall range (grey dashed line)
for both the Pickands framework (top) and the tail copula approach (bottom).
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model ‘ p-value ‘ Op-value ‘ ;\L(éT)-value

Mixed 0.000 1.000 0.500
Hiisler-Reiss 0.146 0.343 0.732
Galambos 0.242 2.251 0.735
Gumbel 0.290 2.961 0.736

Table 3: Test results (N = 10,000 bootstrap iterations) for the derivatives
multiplier bootstrap of different lower tail copulas in ascending order (p-
value).

that, in order to avoid the complexity of the univariate t-distribution,
the lower tail copula of the t-copula can again be accurately approxi-
mated by the simpler Gumbel or Galambos models. Furthermore, nei-
ther the Frank copula, nor the Plackett copula, nor the Gaussian cop-
ula allow for lower tail dependence and thus Az, = 0 for all (z,y) € R%.

Care should be taken when implementing the derivatives multi-
plier bootstrap with respect to the different applied norms. Whereas
the Pickands dependence functions are defined within the L'-norm
framework, the minimum distance estimator in Equation (25) is for-
mulated using the L?-norm. Furthermore, the transformation of the
radian coordinate ¢ € [0,7/2] to t € [0,1] can be obtained by t =
tan(y)/(14tan(y)). According to Biicher and Dette (2012) we choose
the parameter k equal to 200. The results of this computationally ef-
ficient goodness-of-fit test for tail copulas based on the partial deriva-
tives multiplier bootstrap are summarised in Table 3. In addition to
the p-value, the table lists the minimum distance estimator 61 and
the estimated lower tail dependence coeflicient A L(éT), which is ob-
tained by evaluating the lower tail copula at the point ¢t = (1/2,1/2)
multiplied with the factor v/2.

While the mixed model is definitely not appropriate for the joint
behaviour in the lower tails, the null hypothesis, at a 5% level of signif-
icance, cannot be rejected for any of the remaining three candidates.
We decide to use the smallest distance between the empirical lower tail
dependence coefficient A = 0.757 and the estimated lower tail depen-
dence coefficient \ L(éT) as criterion to select the model with the best
fit to the data in the lower tails, which turns out to be the logistic or
Gumbel model with éT = 2.961. Note that both the Hiisler-Reiss and
the Galambos models also seem appropriate to model the structure of
the lower tail dependence.

Although the lower tail copula of the t-copula can be accurately
approximated with the Gumbel model, it is a far cry from saying that
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the joint dynamics in the lower tail of the t-copula (fp = 0.895, ip =
5.313) from Section 5.1 are identical to the corresponding behaviour
of the Gumbel model (§7 = 2.961). This can be explained by the
completely different ways of estimating the model parameters in both
subsections. Figure 6 (see Page 25) shows the plot of the empirical
lower tail copula A L, the selected Gumbel model, the unsuitable mixed
model and the overall range for both the Pickands framework and the
tail copula setting.

6 Risk measures and backtesting

Returning to the initial question, and having selected both the copula
and tail copula model, we are now interested in the risk measurement
of a portfolio consisting of an arbitrary convex combination of the
WTTI and Brent crude oil. For this purpose, we simulate the common
risk parameters Value-at-Risk and Expected Shortfall. According to
Jorion (2006) the Value-at-Risk summarises the worst loss over a target
horizon that will not be exceeded with a given level of confidence, or
more formally, it describes the quantile of the projected distribution
of gains or losses over the target horizon. If « is the selected level
of confidence, the Value-at-Risk corresponds to the 1 — a lower tail
level. Extending this concept, the Expected Shortfall (also known as
Conditional Value-at-Risk) for a given level of confidence « is defined
as the expected loss, given the loss is larger or equal to the Value-at-
Risk (Deutsch, 2009).

Following Rank and Siegl (2002) we first generate n pairs (u,v) of
observations of U(0,1) distributed random variables U and V whose
joint distribution function is either given by the t-copula (éT = 0.895,
vp = 5.313) from Section 5.1 or the survival copula of the Gumbel cop-
ula (éT = 2.961) from Section 5.2. The simulation is carried out using
the functionality of Kojadinovic (2010) and Yan (2007). To obtain
the required marginal distributions we apply the inverse distribution
functions, estimated in Section 3, to the sample (u,v). Accordingly,
the n obtained pairs (x;,¥;), i = 1,...,n, form scenarios of possible
logarithmic changes of the two crude oil grades, while at the same
time, having preserved the desired dependence structure.

For the purpose of simulating the Value-at-Risk we consider a sim-
ple linear portfolio position with weighting factors wq,ws € [0,1] and
we = 1 —wy. The logarithmic change a; of the (simulated) portfolio at
time t is given by

ar = Wi Wi 4+ wo By, (40)

where the univariate WTI crude oil model W; is described in Equa-
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Figure 7: Out of sample one day-ahead simulated portfolio (wy; = ws = 0.5)
Value-at-Risk for a given level of confidence o = 95% for the Gumbel model
(amber) and the realised (observed) returns (blue).

tion (13) and the Brent analogue B, in Equation (14), respectively.
To sum up, the applied Monte Carlo method generates n scenarios
for each day t, and evaluates the present value change of a portfolio
under each scenario. Finally, calculating the 1 — « quantile yields the
daily Value-at-Risk with level of confidence a. Note that within a
non-rolling target horizon framework, and having once modelled the
univariate time series, the only remaining task is to simulate the stan-
dardised residuals (z;,y;), ¢ = 1,...,n, and substitute these values
into the corresponding model equation.

Figure 7 shows the out of sample one day-ahead simulated port-
folio (wi = wa = 0.5) Value-at-Risk for a given level of confidence
a = 95% for the estimated Gumbel model in combination with the
realised (observed) returns (quod vide Palaro and Hotta, 2006). To be
able to judge the effectiveness of the applied Value-at-Risk model, we
compare the simulated (predicted) and empirical number of outliers,
where the actual loss exceeds the Value-at-Risk (Rank and Siegl, 2002).
Consequently, from a risk management point of view, this backtesting
approach is easily comprehensible and allows for the required trans-
parency. To benchmark the simulated Value-at-Risk with a fully de-
terministic approach we apply historical simulation. The freedom from
model assumptions is one of the primary advantages of this method
(Deutsch, 2009). Based on the given time series and the target horizon
of T' = 250 business days we compute 751 daily Value-at-Risk estimates
for the confidence level vector a; (o = 95%, ag = 97.5%, az = 99%).
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11—« ‘ w1 ‘ wa ‘ t-copula ‘ Gumbel ‘historical

0.050 0.50 | 0.50 | 0.059 (44) | 0.056 (42) | 0.067 (50)
0.025 0.50 | 0.50 | 0.021 (16) | 0.021 (16) | 0.052 (39)
0.010 0.50 | 0.50 | 0.008 (06) | 0.008 (06) | 0.021 (16)
0.050 0.25 | 0.75 | 0.056 (42) | 0.055 (41) | 0.063 (47)
0.025 0.25 | 0.75 | 0.017 (13) | 0.019 (14) | 0.048 (36)
0.010 0.25 | 0.75 | 0.011 (08) | 0.009 (07) | 0.025 (19)
0.050 0.75 | 0.25 | 0.056 (42) | 0.055 (41) | 0.069 (52)
0.025 0.75 | 0.25 | 0.027 (20) | 0.024 (18) | 0.045 (34)
0.010 0.75 | 0.25 | 0.011 (08) | 0.011 (08) | 0.016 (12)
0.050 average 0.007 0.005 0.016
0.025 average 0.005 0.004 0.023
0.010 average 0.001 0.001 0.011
average | average 0.003 0.002 0.015
ranking ‘ 2 ‘ 1 ‘ 3

Table 4: Relative number (absolute number) of backtest outliers 1 — & for
the different applied Value-at-Risk simulations with level of confidence 1 — «,
weighted average error |& — a| and error ranking.

Note that the latter approach takes a rolling data set of 250 (observed)
values (for each one day-ahead estimated Value-at-Risk) into account
whereas the Value-at-Risk simulations via copulas depend on the en-
tire considered time horizon. Consequently, a comparison between the
applied models is only of limited use.

Table 4 summarises the results of the backtesting for the set of
scenarios wi; (w11 = 0.50, w12 = 0.25, w13 = 0.75) with a given
level of confidence a.. Following Rank and Siegl (2002) we define the
prediction error as the absolute difference between the relative number
of outliers 1 — & and the predicted relative number 1 — ««. While the
average over the portfolios uses equal weights, the average over the level
of confidence av emphasises the tails by a weighting scheme 3; (81 =
1,82 = 2, 3 = 5). The Value-at-Risk simulation via copulas is carried
out generating n = 100,000 samples of pairs (u, v). As expected the tail
copula fit from Section 5.2 approach yields the best result whereas both
the t-copula and the survival copula of the Gumbel copula obviously
outperform the historical simulation. The latter should be regarded
with caution as outlined before. Furthermore, although the Gumbel
model yields a slightly better result than the ¢-copula both models
seem to pass the backtesting stage.

29



To further verify the validity of the t-copula and the Gumbel model
we apply the traffic light approach used by the supervising authori-
ties when auditing banks’ internal risk management models (Deutsch,
2009). For this, a confidence interval for the observed outliers has
to be constructed. It is quite obvious to assume that the number of
outliers follow a binomially distributed random variable with proba-
bility p = 1 — « and number of trials n. Within this framework the
probability of £ or more outliers is

- iBnm(i) - Z (?)ﬂ(l _p (41)

This is equal to the probability of making a type-I-error (the rejection
of a correct model) when the hypothesis is rejected if k£ or more outliers
are observed. Based on this probability the supervising authorities
establish the boundaries for three different zones, i. e. a lower bound
of the red zone (equals the upper bound of the yellow zone) for a type-
I-error of less than 0.01% and a lower bound of the yellow zone (equals
the upper bound of the green zone) for a type-I-error less than 5%.
For p=1—-0.95 = 0.05 and n = 751 this translates into the following
intervals as a function of realised outliers k

green zone, k < 47,
f(k) = < yellow zone, 48 < k <61, (42)
red zone, k > 62.

Table 4 clearly shows that both models (for each type of portfolio
weighting) are in the green zone and thus no adjustments are necessary.
Completely analogous calculations yield the same results for the cases
a =0.025 and o = 0.01.

Having assessed the Value-at-Risk for a given level of confidence «
it is straightforward to estimate the corresponding Expected Shortfall,
i. e. averaging the (1 —«)-quantile. Table 5 (see over) lists the average
relative errors between the observed outliers and the Expected Short-
fall based on the full backtesting period (751 days). Note that here the
absolute values of the relative errors are taken into account. Finally,
the concluding averages use the same weights as in the Value-at-Risk
approach.

As it can be seen from Table 5, the results are consistent with
the previous Value-at-Risk measures. Here as well, the Gumbel model
yields the overall best result having in mind that the t-copula results
are very close. For the sake of completeness, the historical simulation
shows the worst fit.
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11—« ‘ w1 ‘ wa ‘t-copula Gumbel | historical

0.050 0.50 | 0.50 0.141 0.144 0.235
0.025 0.50 | 0.50 0.129 0.131 0.284
0.010 0.50 | 0.50 0.056 0.061 0.374
0.050 0.25 | 0.75 0.168 0.170 0.261
0.025 0.25 | 0.75 0.138 0.135 0.298
0.010 0.25 | 0.75 0.097 0.087 0.548
0.050 0.75 | 0.25 0.140 0.142 0.353
0.025 0.75 | 0.25 0.111 0.108 0.415
0.010 0.75 | 0.25 0.056 0.057 0.282
0.050 average 0.150 0.152 0.283
0.025 average 0.126 0.125 0.332
0.010 average 0.070 0.068 0.401
average | average 0.094 0.093 0.369
ranking 2 1 3

Table 5: Average relative error between the observed outliers and the Ex-
pected Shortfall for the different applied Expected Shortfall simulations with
level of confidence 1 — a, weighted averages and error ranking.

7 Concluding remarks

The present paper studies the dependence structure of log-returns of
two crude oil grades, WTI Cushing Crude Oil Spot and Bloomberg
European Dated Brent, from a probabilistic point of view. The inves-
tigation focuses on lower tail dependence, i. e. on assessing the proba-
bility that large losses occur together. As a rough but not exhaustive
indicator (see Jaschke et al., 2012), the lower tail dependence coeffi-
cient is estimated as the value of the empirical lower tail copula at the
point (1,1) (Schmidt and Stadtmiiller, 2006). The resulting estimate
AL = 0.757 reveals a relatively high level of lower tail dependence.

The empirical analysis can be summarised as follows: the overall
dependence between the log-returns sample of the two crude oil grades
can be adequately described by a t-copula. When directly modelling
the joint dynamics in the lower tail via tail copulas the Gumbel model
performs best. Here, for the first time in the literature, the partial
derivatives multiplier goodness-of-fit test for tail copulas (Biicher and
Dette, 2012) is applied to energy portfolios.

From a risk management perspective it is crucial to backtest the
findings using commonly applied risk measures. Therefore, the present
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paper simulates the Value-at-Risk and Expected Shortfall for both
models and compares the results for different portfolio weights and
certain levels of confidence (Rank and Siegl, 2002). As suspected and
confirmed by the backtesting the Gumbel model slightly outperforms
the t-copula. Finally, the traffic light approach verifies the validity of
both the Gumbel model and the t-copula.
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