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Abstract

In this paper nonparametric methods to assess the multivariate Lévy measure
are introduced. Starting from high-frequency observations of a Lévy process X, we
construct estimators for its tail integrals and the Pareto Lévy copula and prove weak
convergence of these estimators in certain function spaces. Given n observations of
increments over intervals of length ∆n, the rate of convergence is k−1/2

n for kn = n∆n

which is natural concerning inference on the Lévy measure. Analytic properties of the
Pareto Lévy copula which, to the best of our knowledge, have not been mentioned
before in the literature are provided as well. We conclude with a short simulation
study on the performance of our estimators.
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1 Introduction

The modeling and estimation of dependencies is attracting an increasing attention over
the last decades in various fields of science like mathematical finance, actuarial science or
hydrology, among others.

In discrete time models, one of the most popular approaches is the concept of copulas
which allows to separate the effects of dependence of a random vector from its univariate
marginal behavior. In the bivariate case, the copula of a continuous random vector (X,Y )
is the unique function C : [0, 1]2 → [0, 1] for which

P[X ≤ x, Y ≤ y] = C
(
P[X ≤ x],P[Y ≤ y]

)
.

This formula, known as Sklar’s Theorem, is usually interpreted in the way that the copula
completely characterizes the stochastic dependence between X and Y and hence represents
the primary object of interest for investigating dependencies. For introductions to the
concept of copulas in the aforementioned fields of science see McNeil et al. (2005), Frees
and Valdez (1998), Genest and Favre (2007) and references therein. The books of Joe
(1997) and Nelsen (2006) provide compendiums on the mathematical background and on
various parametric models. The huge amount of applications gave rise to a great demand
for statistical methods, of which semi- and nonparametric estimation in discrete time i.i.d.
models has been investigated in Genest et al. (1995), Fermanian et al. (2004) and Segers
(2011). Nonparametric generalizations to the case of serially dependent stationary time
series have recently been considered in Bücher and Volgushev (2011).

On the other hand, a huge amount of models in applied stochastics relies on an under-
lying process which is defined in continuous time. A basic tool in this framework is the
class of (multidimensional) Lévy processes which provides a flexible way to model empir-
ically observed behaviour and includes prime examples such as Brownian motion and the
(compound) Poisson process. Statistical methods in this context depend on the nature of
the observation schemes which are usually classified as high frequency and low frequency
setups. In both areas the literature on nonparametrics has grown considerably over the
last decade. To mention only a few approaches we refer to Jacod (2007) and Figueroa-
López (2009) for the case of high frequency observations, whereas seminal papers in the
low frequency setting are due to Neumann and Reiß (2009) and recently to Nickl and Reiß
(2012).

Our aim in this work is to combine both strands of the literature and to provide non-
parametric methods to estimate the dependence structure of a multivariate Lévy process.
For the sake of brevity we will concentrate on the bivariate case solely, but extensions
to the general d-dimensional setting are straightforward to obtain as well. Thus, let
X = (X(1), X(2)) be a two-dimensional Lévy process with Lévy-Itô decomposition

Xt = at+ Bt +
∫ t

0

∫
‖u‖≤1

u ? (µ− µ̄)(ds, du) +
∫ t

0

∫
‖u‖>1

u ? µ(ds, du), (1.1)

where a ∈ R2 is a drift vector, B is a bivariate Brownian motion with some covariance
matrix Σ, and µ and µ̄ are the jump measure of the Lévy process and its compensator,
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respectively. It is well-known that the compensator takes the form µ̄(ds, du) = ds ν(du),
where ν is the so called Lévy measure of X. Given the choice of the truncation function
h(u) = 1{‖u‖>1}, the law of X is uniquely determined by the Lévy triplet (a,Σ, ν).

As noted above, in the framework of statistics for stochastic processes it is inevitable
to lose some words on the underlying observation scheme. We decide to work in a high
frequency setting which means in the simplest case that at stage n one is able to observe
one realization of the process X at the equidistant times i∆n, i = 0, . . . , n, for a mesh
∆n → 0. An outlook on extensions to a more general setup including irregularly spaced
data and asynchronous observations will be provided in a concluding section at the end
of the paper. Within the class of high frequency settings a further distinction regards the
nature of the covered time horizon. Usually we have either n∆n = T , corresponding to
a finite time horizon (a trading day, say), whereas n∆n → ∞ means that the process is
eventually observed on the entire time span [0,∞).

Due to the independence of the continuous part and the jump part of a Lévy process,
the analysis of the stochastic nature of X canonically splits into inference on the covariance
matrix Σ and inference on the jump measure ν, since no joint contribution of the two
components is involved. However, estimation of the characteristics of the Brownian part
of X with our without additional jumps is well understood in the high frequency setup
(among others, see Jacod (2008) for a thorough theory on the behaviour of more general
Itô semimartingales), so our focus in this paper will be on the jump dependence of the
two components. In analogy to standard copulas for random vectors we will employ a
concept of a Lévy copula to capture the dependence structure within ν which dates back
to Cont and Tankov (2004) and Kallsen and Tankov (2006). We will follow a slightly
different approach due to Klüppelberg and Resnick (2008) and Eder and Klüppelberg
(2012), however, and focus on nonparametric methods to assess the closely related Pareto
Lévy copula.

Besides parametric approaches to infer the (Pareto) Lévy copula such as Esmaeili and
Klüppelberg (2011), nonparametric methods in this area are hardly available. To the best
of our knowledge, the only concept is due to the unpublished work of Laeven (2011) who
constructs an estimator for the Lévy copula based on a representation in the limit involving
ordinary copulas and provides some asymptotic properties, but for which no explicit proof
is available. On the other hand, since the (Pareto) Lévy copula captures the tendency
of the process to have joint (largely negative) jumps, the need for reliable nonparametric
estimators is evident from practice, particularly with a view on finance. This convinces
us that there is a clear gap in the literature which we aim to fill in this work.

In contrast to Laeven’s method, our approach will be based directly on the defining
relation of the Pareto Lévy copula Γ which involves tail integrals of both the Lévy measure
and its marginals. For simplicity, we will focus on the spectrally positive case only, that
is we assume that X has only positive jumps in both directions, or equivalently that the
Lévy measure ν has support on [0,∞)2\{(0, 0)}. Γ will then naturally be a function on the
same space. In the case where all tail integrals are continuous, we obtain a representation
of Γ as a functional of those, and we propose to estimate Γ by using appropriate estimators
for the tail integrals. It turns out that in order to do so, we are forced to work in the high
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frequency setting with infinite time horizon, that is n∆n → ∞. Under some rather mild
assumptions we are then able to prove weak convergence of a suitably standardized version
of Γ̂ − Γ in a certain function space, which will be our main result. As a by-product we
obtain a Donsker theorem for the bivariate Lévy measure as well, a result which is similar
in spirit to the recent work of Nickl and Reiß (2012), but in a high-frequency setting rather
than a low-frequency world.

The paper is organized as follows: Section 2 is devoted to a brief discussion on jump
dependence of bivariate Lévy processes. We summarize the concept of Pareto Lévy cop-
ulas and derive some of their analytical properties. In Section 3 we define estimators for
bivariate tail integrals, as well as for their associated Pareto Lévy copulas. Weak conver-
gence of these estimators is discussed in Section 4. A brief discussion of our results and a
small simulation study are provided in Section 5, whereas some conclusions are given in
Section 6. Finally, some technical results are postponed to Section 7.

2 Jump dependence and the Pareto Lévy copula

Suppose that we are given a bivariate Lévy process X of the form (1.1) where ν denotes its
Lévy measure. As already stated in the introduction, one assumption will be that ν has
support on [0,∞)2\{(0, 0)}, which means that both components of X only have positive
jumps. This condition is for notational convenience in first place, as we will see later that
one can follow a similar approach in order to estimate the jump dependence in the other
three quadrants as well.

Let us review some recent concepts on jump dependence. The basic quantity in this
framework is the bivariate tail integral U of ν, which for the moment will be defined as a
function from [0,∞]2\{(0, 0)} to R given by

U(x) = ν([x1,∞]× [x2,∞]), x = (x1, x2). (2.1)

From the theory of Lévy processes it is well-known that this quantity gives the average
amount of jumps of X which fall into the interval [x1,∞] × [x2,∞] during a time period
of length one. Since X has càdlàg paths, U(x) is necessarily finite. In the same way, we
are able to introduce marginal tail integrals. Precisely, let Ui : [0,∞] → [0,∞], i = 1, 2,
be defined via

U1(x1) = ν([x1,∞]× R) and U2(x2) = ν(R× [x2,∞]). (2.2)

Again, Ui(xi) is finite for xi > 0, but in the infinite activity case we have Ui(0) = ∞
and since this is typically satisfied for Lévy processes, we will assume such a property for
i = 1, 2 as well.

It is obvious that the entire information about ν is contained in the tail integral U .
Therefore, just as for regular copulas, one might be interested in splitting U into several
functions which are related to the jump behaviour of X in the marginals (naturally given by
the univariate tail integrals Ui) and a Lévy copula C which captures the specific tendency
of X to have joint jumps. Having this intuition in mind, Cont and Tankov provided the
following definition.



Nonparametric inference on Lévy measures and copulas 5

Definition 2.1 A bivariate Lévy copula for Lévy processes with positive jumps is a func-
tion C : [0,∞]2 \ {(∞,∞)} → [0,∞) which

(i) is grounded, that is C(x, 0) = C(0, x) = 0 for all x ∈ [0,∞];

(ii) has uniform margins, so C(x,∞) = C(∞, x) = x for all x ∈ [0,∞);

(iii) is 2-increasing, that is C(x1, x2)−C(x1, y2)−C(y1, x2)+C(y1, y2) ≥ 0 for all x1 ≤ y1

and x2 ≤ y2.

The main result on Lévy copulas is a version of the famous Sklar’s theorem which
states that for each tail integral U with marginals U1 and U2 there exists a Lévy copula
C such that

U(x) = C(U1(x1), U2(x2)), x = (x1, x2) ∈ [0,∞]2 \ {(0, 0)},

holds. Similarly to the usual copula, C is uniquely defined if U1 and U2 are continuous.
Therefore continuity of Ui is a natural condition in order to secure that the concept of
copulas is appropriate, and it becomes our third main assumption. Also, if both marginal
tail integrals are strictly decreasing, we obtain a representation of C via

C(u) = U(U−1
1 (u1), U−1

2 (u2)), u = (u1, u2) ∈ [0,∞]2 \ {(∞,∞)}. (2.3)

We will see later that some smoothness assumptions on ν are necessary for estimation
purposes from which strict monotonicity of the marginal tail integrals follows.

The inverse statement of Sklar’s theorem is true as well, which states that knowledge
of the marginals Ui and the Lévy copula C determines U completely and thus in turn ν.
A drawback of the approach of Cont and Tankov (2004) is, however, that C is not a tail
integral – in contrast to the regular copula of a random vector which couples marginal
distribution functions and is a bivariate distribution function itself. This circumstance
makes the interpretation of a Lévy copula quite difficult, and for that reason it appears
to be natural to focus on an alternative notion of copula in this setting.

Definition 2.2 A bivariate Pareto Lévy copula for Lévy processes with positive jumps is
a function Γ : [0,∞]2 \ {(0, 0)} → [0,∞) which

(i) is grounded, that is Γ(u,∞) = Γ(∞, u) = 0 for all u ∈ (0,∞];

(ii) has Pareto margins, so Γ(u, 0) = Γ(0, u) = 1/u for all u ∈ (0,∞];

(iii) is 2-increasing.

As usual, we set 1/∞ = 0 and vice versa. Following Eder and Klüppelberg (2012),
Sklar’s theorem now reads as follows: Given U and its marginals, we have

U(x) = Γ (1/U1(x1), 1/U2(x2)) , x = (x1, x2) ∈ [0,∞]2 \ {(0, 0)} (2.4)
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for some unique Pareto Lévy copula Γ, and we obtain the relation

Γ(u) = U
(
U−1

1 (1/u1), U−1
2 (1/u2)

)
, u = (u1, u2) ∈ [0,∞]2 \ {(0, 0)}. (2.5)

The difference to the approach of Cont and Tankov (2004) is that the marginals of Γ
correspond to Pareto tails, which are the tail integrals of a 1-stable Lévy process on the
positive half line. Since Γ is 2-increasing as well, it is a simple task to deduce that it
satisfies the properties of a tail integral of a spectrally positive Lévy process as claimed.
Thus the Pareto Lévy copula allows for the interpretation that the marginals of ν are
standardized to the Lévy measures of a 1-stable Lévy process, which is similar in spirit to
the ordinary copula concept where marginals are standardized to uniform distributions.

Finally, we collect some basic properties of Pareto Lévy copulas, some of which already
have been stated in Cont and Tankov (2004) and Kallsen and Tankov (2006) in the context
of Lévy copulas.

Proposition 2.3 Every Pareto Lévy copula Γ has the following properties.

(i) (‘Lipschitz continuity’) |Γ(u)− Γ(v)| ≤
∣∣∣ 1
u1
− 1

v1

∣∣∣+
∣∣∣ 1
u2
− 1

v2

∣∣∣.
(ii) (Monotonicity) Γ is 2-increasing and the functions Γ(u, ·) and Γ(·, u) are non-

increasing for each fixed u ≥ 0.

(iii) (‘Fréchet-Hoeffding bounds’) Γ⊥ ≤ Γ ≤ Γ‖, where Γ⊥(u) = u−1
1 1{u2=0} +

u−1
2 1{u1=0} and Γ‖(u) = (u1 ∨ u2)−1 denote the Pareto Lévy copulas correspond-

ing to independence and to perfect positive dependence, respectively.

(iv) (Partial derivatives) Γ̇1(u1, 0) = −u−2
1 and Γ̇1(u1,∞) = 0. For fixed u2 ∈ (0,∞),

the partial derivative Γ̇1(u1, u2) exists for almost all u1 ∈ (0,∞) and for such u1 and
u2

0 ≥ Γ̇1(u1, u2) ≥ −u−2
1 .

Similarly, Γ̇2(0, u2) = −u−2
2 , Γ̇(∞, u2) = 0 and for each u1 ∈ (0,∞) the partial

derivative Γ̇2(u1, u2) exists for almost all u2 ∈ (0,∞) with

0 ≥ Γ̇2(u1, u2) ≥ −u−2
2 .

Furthermore, the mappings u2 7→ Γ̇1(u1, u2) and u1 7→ Γ̇1(u1, u2) are defined and
non-decreasing almost everywhere.

Proof. Observing Γ(u) = C(1/u1, 1/u2) with the Lévy copula C assertion (i) follows
from Lemma 3.2 in Kallsen and Tankov (2006). Assertion (ii) follows from the fact that
Γ is 2-increasing and grounded by Definition 2.2. The lower bound in (iii) is obvious. By
Theorem 5.1 in Kallsen and Tankov (2006) we have Γ(u) = limt→0 t

−1Ct(t/u1, t/u2) for
some (ordinary) copulas Ct : [0, 1]2 → [0, 1]. It is well-known that every copula is bounded
above by the Fréchet-Hoeffding bound M(u) = u1 ∧ u2, whence setting Ct = M for all
t yields assertion (iii). Regarding (iv) we only consider Γ̇1. The assertion is obvious for
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u2 ∈ {0,∞}. Monotonicity of u1 7→ Γ(u1, u2) for each u2 proves existence of Γ̇1(u1, u2) ≤ 0
for almost all u1 ∈ (0,∞) and all u2 ∈ (0,∞). Moreover, for each such u1, u2 by Lipschitz
continuity,

|Γ̇1(u1, u2)| = lim
t→0

∣∣∣∣Γ(u1 + t, u2)− Γ(u1, u2)
t

∣∣∣∣ ≤ lim
t→0

∣∣∣∣1/(u1 + t)− 1/u1

t

∣∣∣∣ =
1
u2

1

.

Finally, fix v2 ≤ u2 and consider u1 7→ Γ(u1, v2)−Γ(u1, u2). This mapping is non-increasing
according to part (ii), and hence its first derivative Γ̇1(u1, v2) − Γ̇1(u1, u2) exists almost
everywhere and is non-positive. This proves the final assertion. 2

3 Estimation of bivariate tail integrals and Pareto Lévy cop-
ulas

In the following we are interested in the construction of an estimator Γ̂ for Γ which is
based on relation (2.5) and empirical versions of the tail integrals U , U1 and U2. Such
estimators have for instance been discussed in Figueroa-López (2008) in the univariate
setting, and we will transfer them naturally to the bivariate case.

Before we introduce these empirical versions, is turns out to be convenient to change
the domain of U slightly. Since by assumption no negative jumps are involved, we have

ν([x1,∞]× [0,∞]) = ν([x1,∞]× [−∞,∞])

for each x1 > 0, and similarly for the second component. Therefore it is equally well
possible to define U in the same way as before, but as a function U : H→ R, where

H = (0,∞]2 ∪ ({−∞} × (0,∞]) ∪ ((0,∞]× {−∞}) .

Note that U corresponds on the stripes through −∞ to the marginal tail integrals U1 and
U2, respectively.

Our estimator for the function U will be defined on H as well, and precisely we set

Un(x) =
1
kn

n∑
j=1

1{∆n
jX

(1)≥x1,∆n
jX

(2)≥x2}, x = (x1, x2), (3.1)

where kn = n∆n and ∆n
jX

(i) = X
(i)
j∆n
− X

(i)
(j−1)∆n

denotes the j-th increment of X(i),
i = 1, 2. Having the role of the stripes through −∞ in mind, we obtain empirical versions
of the univariate tail integrals through

Un,1(x1) = Un(x1,−∞) =
1
kn

n∑
j=1

1{∆n
jX

(i)≥x1}, x1 ∈ (0,∞], (3.2)

and analogously for Un,2. Weak convergence of Un in an appropriate function space is
established in Proposition 4.2 below.
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The underlying idea behind Un is rather natural, given the interpretation of U as
the average number of jumps of a certain size during the unit interval. Stationarity
and indepedence of increments of a Lévy process ensure that the same behaviour is to
be expected over intervals of arbitrary size, as long as U is standardized accordingly.
Therefore a canonical idea is to count joint large increments of X(1) and X(2), as they
indicate joint large jumps over the corresponding time interval, and this is precisely what
Un does. Note that in order for Un to be consistent, it is necessary to be in the high-
frequency setting with infinite time horizon, that is kn →∞. On each fixed time interval
[0, T ] there are only finitely many jumps larger than a given size, which is clearly not
sufficient to draw inference on the entire distribution of the jumps.

In order to construct an empirical version of (2.5) a notion of a generalized inverse
function is of importance. For any f : (0,∞]→ [0,∞) which is monotonically decreasing,
left-continuous and satisfies f(∞) = 0 we define f− : (0,∞]→ [0,∞) via

f−(z) = inf{x > 0 | f(x) ≤ z}. (3.3)

Definition 3.1 Let U be the tail integral of a bivariate Lévy process with positive jumps
and U1, U2 be its marginal tail integrals. Using their empirical versions (3.1) and (3.2)
we define the empirical Pareto Lévy copula as

Γ̂n(u) = Un

(
U−n,1(1/u1), U−n,2(1/u2)

)
, u = (u1, u2) ∈ [0,∞]2 \ {(0, 0)}, (3.4)

where U−n,i is the generalized inverse function of Un,i as defined in (3.3), with the convention
that U−n,i(1/∞) = U−n,i(0) = ∞ and where a = a1{a>0} − ∞1{a=0} for some a ∈ [0,∞].
Finally, we set Un(−∞,−∞) = n/kn.

Remark 3.2 In order to understand why a has to be introduced, suppose that we are
intested in estimating Γ(u1, 0) (even though it is known to take the value 1/u1). Our
estimator becomes Un(U−n,1(1/u1),−∞) then, which is in general close to 1/u1 due to the
definition of Un,1. On the other hand, if we forget about a, we obtain Un(U−n,1(1/u1), 0)
which only counts those increments of X where the first component exceeds U−n,1(1/u1) and
the second one is non-negative. Due to the existence of a Brownian part in X, however,
we cannot expect these two estimators to be close, since a number of increments in the
second component is indeed negative and thus this estimator is considerably small than
Γ̂(u1, 0). 2

Remark 3.3 In the general case of arbitrary jumps a similar construction allows the
estimation of Γ in the interior of each of the four quadrants separately. Indeed, Eder and
Klüppelberg (2012) give a general notion of tail integrals and Pareto Lévy copulas in their
Definition 4, and from Sklar’s theorem in this context (which is their Theorem 1) we know
that the same relation as (2.5) holds for u ∈ (R\{0})2 and determines Γ uniquely. For the
sake of brevity we dispense with the entire theory in this setting. 2
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4 Results on weak convergence

Our aim in this section is to prove a result on weak convergence of the estimator Γ̂n, but as
a by-product we obtain such a claim for Un as well. Before we come to the main theorem,
let us briefly resume our assumptions on ν which mostly have already been given in the
previous paragraphs.

Assumption 4.1 Let X be a bivariate Lévy process with the representation (1.1). The
following assumptions on ν are in order:

(i) ν has support on [0,∞)2\{(0, 0)}.

(ii) On this set it takes the form ν(du) = s(u)du for a positive Lévy density s which
satisfies

sup
u∈Mη

(|s(u)|+ ‖∇s(u)‖) <∞

for any η ∈ (0,∞)2, where

Mη = (η,∞)2 ∪ ({0} × (η,∞)) ∪ ((η,∞)× {0})

and ∇s denotes the gradient of s on (η,∞)2 and the univariate derivative on the
stripes through 0, respectively.

(iii) ν has infinite activity, that is ν([0,∞)× [0,∞)) =∞.

Assumption 4.1 (ii) had not been stated previously. It is used to prove a second order
condition regarding the difference between U and the expectation of Un for which we
generalize a result due to Figueroa-López and Houdré (2009) from the univariate setting
to the multidimensional case. Continuity and (strict) monotonicity of the marginal tail
integrals as claimed before are obvious consequences of it.

We begin with a result on weak convergence of Un, and to this end we have to define
the function space on which the asymptotics take place. Let B∞(H) be the space of all
functions f : H → R which are bounded on any subset of H that is bounded away from
the origin and from the points (−∞, 0) and (0,−∞). We consider the metric inducing the
topology of uniform convergence on those subsets, defined by

d(f, g) =
∞∑
k=1

2−k (‖f − g‖Tk ∧ 1) ,

where Tk = [1/k,∞]2∪({−∞}×[1/k,∞])∪([1/k,∞]×{−∞}) and ‖f‖Tk = supu∈Tk |f(u)|.
This space is a complete metric space, and a sequence converges in B∞(H), if and only if
it converges uniformly on each Tk.
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Proposition 4.2 Assume that X is a Lévy process satisfying Assumption 4.1. If the
observation scheme meets the conditions

∆n → 0, kn →∞,
√
kn∆n → 0, (4.1)

then we have

γn(x) =
√
kn {Un(x)− U(x)} w−→ B(x)

in (B∞(H), d), where B is a tight, centered Gaussian process with covariance

E [B(x)B(y)] = U(x ∨ y) = U(x1 ∨ y1, x1 ∨ y2).

The sample paths of B are uniformly continuous on each Tk with respect to the pseudo
distance

ρ(x,y) = E
[
(B(x)− B(y))2

]1/2
= {U(x) + U(y)− 2U(x ∨ y)}1/2 = |U(x)− U(y)|1/2 .

For the proof of Proposition 4.2 the following lemma is extremely useful. Its univariate
version is a special case of a more general result in Figueroa-López and Houdré (2009).

Lemma 4.3 Suppose that Assumption 4.1 holds and let δ > 0 be fixed. Then there exist
constants K = K(δ) and t0 = t0(δ) such that the uniform bound∣∣∣P(X(1)

t ≥ x1, X
(2)
t ≥ x2)− tν([x1,∞)× [x2,∞))

∣∣∣ < Kt2

holds for all x = (x1, x2) ∈ [δ,∞]2 ∪ ({−∞} × [δ,∞]) ∪ ([δ,∞]× {−∞}) and 0 < t < t0.

Before we come to the result on Γ̂, let us introduce an oracle estimator for Γ. We set

Γ̃n(u) = Un
(
U−1

1 (1/u1), U−1
2 (1/u2)

)
, u = (u1, u2) ∈ [0,∞]2 \ {(0, 0)}, (4.2)

which means that we replace the inverses of the empirical marginal tail integrals by the un-
observable true ones. Thanks to Proposition 4.2 we obtain weak convergence of a restricted
version of this intermediate estimator in the space B∞((0,∞]2) of all real functions on
(0,∞]2 that are bounded on sets which are bounded away from the origin. In a similar sprit
as before, we equip this space with the metric d(f, g) =

∑∞
k=1 2−k (‖f − g‖Tk ∧ 1), where

Tk = [1/k,∞]2. Setting x = (U−1
1 (1/u1), U−1

2 (1/u2)) and observing that U−1
i (k) ≥ k′ > 0,

the continuous mapping theorem immediately yields the following result.

Corollary 4.4 Under the conditions of Proposition 4.2 we have

α̃n(u) =
√
kn

(
Γ̃n(u)− Γ(u)

)
w−→ B

(
U−1

1 (1/u1), U−1
2 (1/u2)

)
in (B∞((0,∞]2), d) with B as defined in Proposition 4.2.
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From a statistical point of view there is no loss in information when estimating Γ(u)
on (0,∞]2 instead of the entire domain [0,∞]2 \ {(0, 0)}, since a Pareto Lévy copula is
grounded by definition and thus known on stripes through 0. This remark remains valid
for the final result of this section as well, which is on weak convergence of the estimator
Γ̂n(u).

Theorem 4.5 Assume that X is a Lévy process satisfying Assumption 4.1. If (4.1) holds,
then we have

αn(u) =
√
kn

(
Γ̂n(u)− Γ(u)

)
w−→ G(u)

in (B∞((0,∞]2), d). Here the process G is defined as

G(u) = G̃(u) + u2
1 Γ̇1(u) G̃(u1,−∞) + u2

2 Γ̇2(u) G̃(−∞, u2), (4.3)

where G̃ denotes a tight centered Gaussian field on H with covariance structure

E
[
G̃(u)G̃(v)

]
= Γ(u ∨ v) = Γ(u1 ∨ v1, u2 ∨ v2)

using the convention Γ(u,−∞) = Γ(−∞, u) = 1/u. The sample paths of G̃ are uniformly
continuous on each Tk with respect to the pseudo distance

ρ(u,v) = E
[(

G̃(u)− G̃(v)
)2
]1/2

= |Γ(u)− Γ(v)|1/2 .

If both coordinates of u are distinct from ∞, then Γ̇i(u) exists as a consequence of
(2.5) and Assumption 4.1, and G(u) is well-defined. On the other hand, if one of the
components equals ∞, we have G̃(u) = 0 almost surely; and also Γ̇1(u1,∞) = 0 and
Γ̇2(∞, u2) = 0 from Proposition 2.3. Hence, the right hand side of (4.3) is well-defined as
well, and we have G(u) = 0 almost surely in this case.

Proof of Lemma 4.3. For main parts the proof is almost similar to the one of the
result in Figueroa-López and Houdré (2009) which is why we will only give the main steps
and restrict ourselves to the genuine bivariate case of x1, x2 6= −∞. First, let ε < (δ/2∧1)
and pick a smooth function cε : R2 → R satisfying

1[−ε/2,ε/2](‖u‖) ≤ cε(u) ≤ 1[−ε,ε](‖u‖).

Here and throughout the proof, ‖ · ‖ denotes the Euklidian norm on R2. We also de-
fine the function c̄ε via c̄ε(u) = 1 − cε(u). It is straightforward to see that there exist
independent processes Xε and X̃ε such that X ∼ Xε + X̃ε and where X̃ε is a com-
pound Poisson process with intensity λε =

∫
c̄ε(u)ν(du) and jump distribution fε(du) =

c̄ε(u)ν(du)/λε and Xε is a Lévy process with triplet (bε,Σ, cε(u)ν(du)), where we set
bε = b−

∫
1{‖u‖≤1}uc̄ε(u)ν(du).

Since our result is a distributional one only, it is possible to work with this particular
representation of X in the following. Call N ε

t the number of jumps of X̃ε up to time t.
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Define f(u) = 1{u≥x} in a componentwise sense. Using the law of total expectation we
then have

E[f(Xt)] =
∞∑
k=0

e−λεt
(λεt)k

k!
E[f(Xt)|N ε

t = k] = e−λεtE[f(Xε
t )] + e−λεtλεtE[f(Xε

t + ξ1)]

+
∞∑
k=2

e−λεt
(λεt)k

k!
E

[
f

(
Xε
t +

k∑
l=1

ξl

)]
,

where the ξl are i.i.d. ∼ fε. As noted before, we may proceed similarly to Figueroa-López
and Houdré (2009) now: Using their equation (3.3), the condition ε < δ/2 ensures the
existence of K and t0, both depending on δ only, such that

e−λεtE[f(Xε
t )] ≤ P(X(ε,1)

t ≥ δ) < Kt2

for all 0 < t < t0, where X(ε,1) denotes the first component of Xε. Also,

e−λεt
∞∑
k=2

(λεt)k

k!
< Kt2.

It therefore remains to focus on E[f(Xε
t + ξ1)]. The distribution of ξ1 is s(u)c̄ε(u)du/λε,

and as a consequence of Assumption 4.1 (ii) it follows that

g(u) = E[f(u + ξ1)] = P(u1 + ξ
(1)
1 ≥ x1, u2 + ξ

(2)
1 ≥ x2)

is twice continuously differentiable with bounded derivatives. Using independence of Xε

and ξ1, it is sufficient to discuss E[g(Xε
t )], for which we can use Itô formula now: For

arbitrary Y we have

g(Yt) = g(Y0) +
∫ t

0
∇g(Ys−)dYs +

1
2

∑
1≤i,j≤2

gij(Ys−)d[Y i, Y j ]cs

+
∑

0<s≤t
(g(Ys)− g(Ys−)−∇g(Ys−)∆Ys)) , (4.4)

where the quadratic covariation [Y i, Y j ]cs becomes Σijs in case of a Lévy process and ∆Ys

is the jump size at time s. Also, ∇g and gij denote the gradient and the corresponding
partial derivatives of g. Plugging in Xε for Y we discuss each of the four summands above
separately: first, u ≥ x implies ‖u‖ ≥ ‖x‖ ≥ δ > ε, and thus

g(Xε
0) = g(0) = P(ξ(1)

1 ≥ x1, ξ
(2)
1 ≥ x2) =

1
λε

∫
1{u≥x}s(u)c̄ε(u)du

=
1
λε

∫
1{u≥x}s(u)du =

1
λε
ν([x1,∞)× [x2,∞)).

Second, the Lévy triplet of Xε is (bε,Σ, cε(u)ν(du)). From ε < 1 we conclude that Xε

does not admit jumps larger than 1, and therefore dXε
s consists of three summands, of

which two correspond to martingales. Therefore∣∣∣∣E [∫ t

0
∇g(Xε

s−)dXε
s

]∣∣∣∣ ≤ ∫ t

0

∣∣E[∇g(Xε
s−)]bε

∣∣ ds < Kt
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due to boundedness of the first derivatives of g. We may proceed similarly for the third
term in (4.4), whereas conditioning on Xε

s− gives∑
0<s≤t

E
[
g(Xε

s)− g(Xε
s−)−∇g(Xε

s−)∆Xε
s

]
=

∫ t

0

∫
E[g(Xε

s− + u)− g(Xε
s−)−∇g(Xε

s−)u]cε(u)ν(du)ds

for the final quantity. Multidimensional Taylor formula proves that the inner integrand
above may be bounded by K‖u‖2. Since ν is a Lévy measure, we obtain∣∣E[g(Xε

t )]−
1
λε
ν([x1,∞)× [x2,∞))

∣∣ < Kt.

From |1− exp(−λεt)| < Kt for 0 < t < t0 the conclusion follows. 2

Proof of Proposition 4.2. Before we begin with the proof, note that due to Theorem
1.6.1 in van der Vaart and Wellner (2007) weak convergence in B∞((0,∞]2) is equivalent
to weak convergence on each `∞(Tk), which is the space of all bounded functions on Tk
endowed with the uniform norm. Therefore it is possible to fix one such Tk throughout
the rest of the proof.

Let us introduce some additional notation. We define a class of functions Fn = {fn,x :
x ∈ Tk} via

fn,x(p) =
√
n/kn

(
1{p≥x≥(0,0)} + 1{p1≥x1,x2=−∞} + 1{p1≥x2,x1=−∞}

)
.

Furthermore, we set

γn(x) =
√
kn (Un(x)− E[Un(x)]) = n−1/2

n∑
j=1

(
fn,x(∆n

jX)− E[fn,x(∆n
jX)]

)
.

A consequence of Lemma 4.3 is that it is sufficient to discuss weak convergence of γn(x)
only. Indeed, let x ∈ Tk. Then by stationarity of increments of X and using kn = n∆n we
have

E[Un(x)]− U(x) = ∆−1
n P

(
∆n

1X
(1) ≥ x1,∆n

1X
(2) ≥ x2

)
− ν([x1,∞)× [x2,∞)).

This quantity is bounded by K∆n due to Lemma 4.3, so the growth condition
√
kn∆n → 0

ensures that
√
kn(γn(x)− γn(x)) is uniformly small on each fixed Tk.

In order to prove γn(x) w−→ B(x) on `∞(Tk) we will employ Theorem 11.20 in Kosorok
(2008) for which several intermediate results have to be shown. To begin with, set

Fn(p) =
√
n/kn1{p∈Tk},

which is a sequence of integrable (with respect to any probability measure) envelopes.
The first two steps are related to the class of functions Fn. We start with the proof of an
entropy condition, namely

lim sup
n→∞

sup
Q

∫ 1

0

√
logN(ε‖Fn‖Q,2,Fn, L2(Q))dε <∞, (4.5)
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where N denotes the covering number of the set Fn and the supremum runs over all
probability measures Q with finite support such that ‖Fn‖Q,2 =

(∫
F 2
n(p)dQ(p)

)1/2
> 0.

Thanks to the special form of Fn, this result is a simple consequence of Lemma 11.21 in
Kosorok (2008): it suffices to check that each Fn is a VC-class with VC-index 5. This
follows from the fact that each finite subset of H of size 5 has either a subset of 3 elements
in [0,∞]2\{(0, 0)}, or a subset of two elements in one of the stripes through −∞. In neither
of the cases theses subsets can be shattered by the sets deduced from the indicators in the
definition of fn,x.

The second condition to check is that Fn is almost measurable Suslin, and it follows
from Lemma 11.15 and the discussion on page 224 in Kosorok (2008) that it is sufficient
to prove separability of Fn, that is the existence of a countable subset Tn,k of Tk such that

P∗
(

sup
x∈Tk

inf
y∈Tn,k

∣∣fn,x(∆n
jX)− fn,y(∆n

jX)
∣∣ > 0

)
= 0.

Here, P∗ denotes the outer expectation, since measurability of the event within the brackets
is not ensured. Set Tn,k = Tk ∩ Q2. Then for each ω and each x ∈ Tk, there exists a
y ∈ Tn,k such that fn,x(∆n

jX(ω)) = fn,y(∆n
jX(ω)), since the fn,x are indicator functions.

This proves separability of Fn.

The remaining steps regard the behaviour of the variances and covariances of the fn,x
and their envelopes. We have

lim
n→∞

E[γn(x)γn(y)] = lim
n→∞

E[fn,x(∆n
jX)fn,y(∆n

jX)] = U(x ∨ y) (4.6)

as well as

lim
n→∞

E[F 2
n(∆n

jX)] ≤ U(1/k,−∞) + U(−∞, 1/k)

and

lim
n→∞

E[F 2
n(∆n

jX)1{Fn(∆n
j X)>ε

√
n}] ≤ lim

n→∞
E[F 2

n(∆n
jX)]

(
ε
√
kn
)−1 → 0.

Finally, as in (4.6) we have for x,y ∈ Tk that

ρn(x,y) =
(
E
[(
fn,x(∆n

jX)− fn,y(∆n
jX)

)2])1/2

→ (U(x) + U(y)− 2U(x ∨ y))1/2 = ρ(x,y),

and due to Lemma 4.3 the convergence holds uniformly as well. This completes the proof.
2

Proof of Theorem 4.5. Let B0
∞((0,∞]2) ⊂ B∞((0,∞]2) and B0

∞((0,∞]) ⊂
B∞((0,∞]) denote the space of all tail integrals of bivariate Lévy measures concentrated
on the first quadrant or of univariate Lévy measures concentrated on (0,∞], respec-
tively. Consider the mapping Φ : B0

∞((0,∞]2)× (B0
∞((0,∞]))2 → B∞((0,∞]2), defined by
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Φ = Φ3 ◦ Φ2 ◦ Φ1 with

Φ1 :B0
∞((0,∞]2)× (B0

∞((0,∞]))2 → B0
∞((0,∞]2)× (B−∞((0,∞]))2

(U,U1, U2) 7→ (U,U−1 , U
−
2 )

Φ2 :B0
∞((0,∞]2)× (B−∞((0,∞]))2 → B0

∞((0,∞]2)× (Bp∞([0,∞)))2

(U, V1, V2) 7→ (U, V1 ◦ P, V2 ◦ P )

Φ3 :B0
∞((0,∞]2)× (Bp∞([0,∞)))2 → B∞((0,∞]2)

(U,G1, G2) 7→ U(G1, G2),

where P (x) = 1/x and where, in the last step, Gi(∞) = ∞. Moreover, B−∞((0,∞]) ⊂
B∞((0,∞]) and Bp∞([0,∞)) ⊂ B∞([0,∞)) are defined as the images of the associated
function spaces under the respective mappings. Set also Γ̃n,1(x) = Un(U1(1/x),−∞) and
Γ̃n,2(x) = Un(−∞, U2(1/x)). The proof will now basically consist of two steps. We start
with discussing weak convergence of√

kn

(
Φ(Γ̃n, Γ̃n,1, Γ̃n,2)− Φ(Γ, P, P )

)
w−→ G, (4.7)

whereas this result is transferred to the original claim later on.

Let us begin with the proof of (4.7). This assertion follows from the functional delta
method in topological vector spaces, see van der Vaart and Wellner (1996), if we prove
first that √

kn

{
(Γ̃n, Γ̃n,1, Γ̃n,2)− (Γ, P, P )

}
w−→ (G̃, G̃(·,−∞), G̃(−∞, ·))

in B∞((0,∞]2)× (B∞((0,∞]))2 and second that Φ is Hadamard-differentiable at (Γ, P, P )
tangentially to suitable subspaces with derivative(

Φ′(Γ,P,P )(U,U1, U2)
)

(u) = U(u) + u2
1 Γ̇1(u)U1(u1) + u2

2 Γ̇2(u)U2(u2), (4.8)

where the summands involving the partial derivatives on the right-hand side are defined as
0 if one of the coordinates of u equals ∞. The first claim follows easily from Proposition
4.2 and the continuous mapping theorem. Regarding the second assertion we need to
clarify the metrics on the corresponding spaces. The canonical definitions are

d(f, g) =
∞∑
k=1

2−k (‖f − g‖Tk ∧ 1) ,

where Tk = [1/k,∞]2 in case of B∞((0,∞]2), while Tk = [1/k,∞] and Tk = [0, k]
for B∞((0,∞]) and B∞([0,∞)), respectively. Unfortunately, the mapping Φ1 is not
Hadamard-differentiable with respect to these metrics (see the proof of Lemma 7.2 be-
low for details), whence we need to consider the weaker modifications

d2(f, g) =
∞∑
k=1

2−k (‖f − g‖Sk ∧ 1) ,
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where Sk = ([1/k, k] ∪ {∞})2 in case of B∞((0,∞]2), while Sk = [1/k, k] ∪ {∞} and
Sk = {0}∪ [1/k, k] for B∞((0,∞]) and B∞([0,∞)), respectively. With these modifications,
it follows from Lemma 7.1 and the chain rule that

Φ : (B0
∞((0,∞]2, d)× (B0

∞((0,∞]), d)2 → (B0
∞((0,∞]2, d2)

is Hadamard-differentiable at (Γ, P, P ) with derivative as specified in (4.8) tangentially to

D0 = {(U,U1, U2) ∈ C((0,∞]2)× (C((0,∞]))2 | Uj(∞) = 0, lim
x→0

x2Uj(x) = 0}. (4.9)

Here, C((0,∞]2) and C((0,∞]) denote the set of all functions on (0,∞]2 and (0,∞] that
are continuous with respect to the pseudo metrics ρ(u,v) = |Γ(u)−Γ(v)|1/2 and ρ(u, v) =
|1/u−1/v|1/2, respectively. Hence, observing (G̃, G̃(·,−∞), G̃(−∞, ·)) ∈ D0, the functional
delta method yields √

kn

(
Φ(Γ̃n, Γ̃n,1, Γ̃n,2)− Φ(Γ, P, P )

)
w−→ G

in (B∞((0,∞]2), d2).

We will use the approximation Theorem 4.2 in Billingsley (1968), adapted to the
concept of weak convergence in the sense of Hoffmann-Jørgensen, to transfer this result
to weak convergence in (`∞([η,∞]2), ‖ · ‖∞) for all η > 0 and hence in (B∞((0,∞]2), d).
To this end, define

Wn(u) =
√
kn(Φ(Γ̃n, Γ̃n,1, Γ̃n,2)− Φ(Γ, P, P ))(u)

and

Wn,M (u) =
√
kn(Φ(Γ̃n, Γ̃n,1, Γ̃n,2)− Φ(Γ, P, P ))(u)1{u∈[η,M ]2}.

Then Wn,M (u) w−→ GM (u) := G(u)1{u∈[η,M ]2} for n → ∞ and GM (u) w−→ G(u) for
M →∞ in (`∞([η,∞])2, ‖ · ‖∞), and it remains to prove that

lim
M→∞

lim sup
n→∞

P∗
(

sup
u1>M or u2>M

|
√
kn(Φ(Γ̃n, Γ̃n,1, Γ̃n,2)− Φ(Γ, P, P ))(u)| > ε

)
= 0.

Noting that Φ(Γ, P, P ) = Γ the probability can be bounded by

P∗
(

sup
u1≥M/2 or u2≥M/2

|
√
kn(Γ̃n − Γ)(u)| > ε

)
+ P∗

(
∃u with u1 > M or u2 > M : Γ̃−ni ◦ P (ui) < M/2, i = 1, 2

)
.

The Portmanteau Theorem implies that the lim sup of the first probability converges to
0 for M → ∞ using Proposition 4.2. Furthermore, some thoughts reveal that Γ̃−n,i(z) =
1/(Ui(U−n,i(z))) for all z > 0. Due to monotonicity of Γ̃−ni ◦ P , the second probability is
bounded by P(Γ̃−ni◦P (M) ≤M/2, i = 1, 2), which thus converges to 0 for n→∞ observing
that Γ̃−ni ◦ P (M) = M + oP (1).
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In the final step we will prove
√
kn(Γ̂n − Γ) w−→ G in each (`∞([η,∞]2), ‖ · ‖∞), for

which we heavily rely on the fact that the same result holds for the statistic discussed
above. A consequence of the identity Γ̃−n,i(z) = 1/(Ui(U−n,i(z))) is that Φ(Γ̃n, Γ̃n,1, Γ̃n,2)(u)
and Γ̂n(u) coincide as long as U−n,i(1/ui) 6= 0 for i = 1, 2. By monotonicity it is therefore
sufficient to prove that the probability of U−n,i(1/η) = 0 becomes small, which is precisely

lim
n→∞

P
(
U−n,i(1/η) = 0

)
= 0.

To this end, let Ni(n) denote the number of positive increments of X(i). By definition
of the generalized inverse function in (3.3) we have that U−n,i(1/η) = 0 is equivalent to
1/η ≥ Ni(n)/kn or Ni(n) ≤ kn/η. Furthermore, letting Mi(n) be the number of positive
increments of the process Z(i)

t = ait+B
(i)
t , we see that it is sufficient to prove

lim
n→∞

P (Mi(n) ≤ kn/η) = 0,

since X does not admit negative jumps. Note that we have

P
(

∆n
jZ

(i) > 0
)

= P
(

∆n
jB

(i) > −ai∆n

)
= P

(
N > −ai∆1/2

n

)
=

1
2

+ o(1),

where N is a standard Gaussian variable. Let n be large enough in order for the probability
above to be larger than 1/3. For such n we conclude easily that

P (Mi(n) ≤ kn/η) ≤ P (Bin(n, 1/3) ≤ kn/η)→ 0,

e.g., from Markov inequality and (4.1). This finishes the proof. 2

5 Discussion and simulations

5.1 An asymptotic comparison

Suppose a statistician has knowledge of the marginal tail integrals. In this case, the results
in Section 4 provide two competitive asymptotically unbiased estimators for the Pareto
Lévy copula, namely the oracle estimator Γ̃n exploiting knowledge of the marginals and
the empirical Pareto Lévy copula Γ̂n ignoring this additional information. The following
proposition gives a partial answer to the question of which estimator is (asymptotically)
preferable. Perhaps surprisingly, ignoring the additional knowledge decreases the asymp-
totic variance under certain growth conditions on Γ. A similar observation has recently
been made in the context of copula estimation, see Genest and Segers (2010).

Proposition 5.1 Suppose that the Pareto Lévy copula Γ has continuous first order partial
derivatives and that the functions

u1 7→ u1 Γ(u1, u2) =
Γ(u1, u2)
Γ(u1, 0)

, u2 7→ u2 Γ(u1, u2) =
Γ(u1, u2)
Γ(0, u2)

(5.1)
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are non-decreasing for fixed u2 ∈ (0,∞] and u1 ∈ (0,∞], respectively. Then the Gaussian
fields G and G̃ satisfy the inequality

Cov{G(u),G(v)} ≤ Cov{G̃(u), G̃(v)}

for all u,v ∈ (0,∞]2. Particularly, Var{G(u)} ≤ Var{G̃(u)}.

Proof. The proof is rather straightforward whence we restrict ourselves to the main
idea. We have Cov(G(u),G(v)) − Cov(G̃(u), G̃(v)) =

∑8
i=1Ai where Ai = Ai(u,v) is

defined as

A1 = u2
1Γ̇1(u) v2

1Γ̇1(v) 1/(u1 ∨ v1) A5 = u2
1Γ̇1(u) Γ(u1 ∨ v1, v2)

A2 = u2
1Γ̇1(u) v2

2Γ̇2(v) Γ(u1, v2) A6 = u2
2Γ̇2(u) Γ(v1, u2 ∨ v2)

A3 = u2
2Γ̇2(u) v2

1Γ̇1(v) Γ(v1, u2) A7 = v2
1Γ̇1(v) Γ(u1 ∨ v1, u2)

A4 = u2
2Γ̇2(u) v2

2Γ̇2(v) 1/(u2 ∨ v2) A8 = v2
2Γ̇2(v) Γ(u1, u2 ∨ v2).

The four summands on the left-hand side are non-negative, whereas the other four ones
are non-positive. For symmetry reasons we may suppose u1 ≤ v1. Distinguishing the
two cases u2 ≤ v2 and u2 > v2 some easy calculations (which frequently exploit condition
(5.1)) show that A5 + A1, A6 + A4, A7 + A3, A8 + A2 ≤ 0 in the first case, while A5 +
A2, A6 +A3, A7 +A1, A8 +A4 ≤ 0 in the second case. 2

Under the assumptions of Proposition 5.1 the condition in (5.1) is equivalent to

u1 Γ̇1(u) + Γ(u) ≥ 0, u2 Γ̇2(u) + Γ(u) ≥ 0

for each u = (u1, u2) ∈ (0,∞]2, which is easily accessible for most parametric classes of
Pareto Lévy copulas. For instance, for the Clayton Pareto Lévy copula given by

Γ(u) = (uθ1 + uθ2)−1/θ

we have

u1 Γ̇1(u) + Γ(u) = (uθ1 + uθ2)−1/θ−1uθ2, u2 Γ̇2(u) + Γ(u) = (uθ1 + uθ2)−1/θ−1uθ1

which is readily seen to be non-negative. In Figure 1 we depict the graph of the asymptotic
relative efficiency

[0, 2]2 → [0,∞),u 7→ Var{G(u)}
Var{G̃(u)}

of the oracle estimator Γ̃n to the empirical Pareto Lévy copula Γ̂n for u ∈ [0, 2]2. The
Clayton parameter is chosen as θ = 0.5. Close to the axis the relative efficiency decreases
to 0, while the maximal relative efficiency is attained on the diagonal with a value of
21/32 ≈ 0.656. Even in this best case, the difference is seen to be substantial.
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Figure 1: The graph of the asymptotic relative efficiency of Γ̃n to Γ̂n for the Clayton Pareto
Lévy copula with θ = 0.5.

5.2 Simulation study

In order to obtain an impression on the performance of the asymptotic results stated in
the previous section we will discuss some finite sample properties concerning Proposition
4.2 and Theorem 4.5. In both cases, the setting is as follows: We simulate (essentially)
two 1/2 stable subordinators, i.e., both tail integrals are given by Ui(x) = (πx)−1/2, which
are coupled by a Clayton Pareto Lévy copula with θ = 1/2. Sometimes we add two
independent Brownian motions with variance 1/2 each, sometimes we assume to observe
the pure jump processes only. Throughout the study we use n = 22, 500 observations and
run the simulation 500 times each.

What differs from setting to setting is the choice of kn, or, equivalently, of ∆n. Recall
that the rate of convergence is k−1/2

n (which in light of the results in Figueroa-López
and Houdré (2009) appears to be a natural one in the context of estimating the Lévy
measure). Hence, a larger kn suggests a better performance of the normal approximation,
whereas Lemma 4.3 indicates that the magnitude of the bias grows with kn as well. Both
intuitive properties are visible from the simulation study provided in the following and
from additional results which we do not show for the sake of brevity.

Despite the fact that we have proven weak convergence of our estimators in certain
function spaces we restrict ourselves to an analysis of the finite dimensional properties of
our estimators. Let us begin with the asympotics in Proposition 4.2 for which we estimate
U(x, x) for x = 2, 1, 0.5. Table 1 gives estimated bias and (co)variance for different choices
of kn. Note that we have Cov(B(x),B(y)) = (32π)−1/2 ≈ 0.0997 whenever x or y equals
(2, 2), whereas Cov(B(x),B(y)) = (16π)−1/2 ≈ 0.1410 if the “larger” vector is (1, 1) and
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x, y 2,2 1,1 0.5,0.5 2,0.5 2,1 1,0.5
kn bias var bias var bias var cov cov cov
50 -0.0106 0.1007 -0.0077 0.1400 0.0023 0.1915 0.0988 0.0978 0.1376
75 -0.0330 0.0972 -0.0229 0.1453 -0.0395 0.1956 0.1015 0.1001 0.1435
100 0.0168 0.1021 0.0223 0.1375 0.0341 0.1893 0.0996 0.0927 0.1300
150 0.0037 0.1061 0.0154 0.1480 0.0470 0.2180 0.1073 0.1106 0.1531
50 -0.0281 0.0893 -0.0120 0.1208 -0.0042 0.1863 0.0840 0.0854 0.1233
75 0.0252 0.0949 0.0115 0.1187 0.0226 0.1861 0.0861 0.0894 0.1216
100 0.0126 0.0922 0.0043 0.1320 0.0401 0.1940 0.0933 0.0932 0.1323
150 -0.0085 0.0929 -0.0127 0.1337 0.0277 0.1991 0.0931 0.0962 0.1371

Table 1: Empirical bias and (co)variances of
√
kn(Un(x)−U(x)) for various choices of kn.

Upper four lines: Pure subordinator; lower four lines: Subordinator + Brownian Motion.

finally Var(B(x)) = (8π)−1/2 ≈ 0.1995 for x = (0.5, 0.5).

Generally, the theoretical (co)variances are well reproduced in both situations, even
though the results look probably a bit better in the first four lines. This is of course
no surprise, since additional Brownian increments make it harder to infer on the jump
measure. In order to assess how well the normal approximation works apart from bias and
variance, Figure 2 gives QQ-plots for the medium choice of kn = 75. These plots confirm
that the finite sample properties are indeed satisfying, despite the discrete nature of the
test statistic which simply counts exceedances of certain levels and is rescaled afterwards.

Let us come to the estimation of the Pareto Lévy copula. We proceed in the same way
as before and discuss convergence of the finite dimensional distributions only. For simplic-
ity, we estimate Γ(x, x) for x = 2, 1, 0.5 again, but these are of course different quantities
now. In this case, the variances compute to Var(G(x)) = 21/(128x), which becomes ap-
proximately 0.0820 for x = 2, 0.1641 for x = 1, and 0.3281 for x = 0.5. Also, for x > y
we have Cov(G(x),G(y)) = 7/32(1/x − Γ(x, y)). Therefore Cov(G(2),G(0.5)) ≈ 0.0608,
Cov(G(2),G(1)) ≈ 0.0718, and Cov(G(1),G(0.5)) ≈ 0.1437. We state their empirical
versions in Table 2.

In this case the growth in bias for larger kn is clearly visible, and we also have a larger
bias when estimating Γ(0.5, 0.5). Overall, however, the results are satisfying again, and
we see from the QQ-plot in Figure 3 that the normal approximation works very well for
kn = 75, no matter if a Brownian motion is added or not.

6 Conclusions

In this paper we have investigated the problem of estimating both the bivariate Lévy
measure and the (Pareto) Lévy copula in a nonparametric way. Our estimators are based
on counting joint large increments of a bivariate Lévy process, and in both cases we were
able to prove weak convergence in appropriate function spaces. At least two natural
extensions of our work are of interest for future research.
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Figure 2: QQ-plots of the empirical quantiles of
√
kn(Un(x)−U(x)) divided by their sample

standard deviation vs. the theoretical quantiles of the standard normal distribution. Upper
three pictures: Pure subordinator; lower three pictures: Subordinator + Brownian Motion.

First, on the observational side several robustness issues could be discussed: The prime
question in this context is: How realistic are observations of a bivariate Lévy process at
synchronous times and equally spaced, if we are faced with real data? The simplest
extension probably is to introduce estimators in case where the observation intervals are
not of equal size. Then we stay in the context of independent increments, for which theory
of weak convergence is established as well; see e.g. Kosorok (2008). If both univariate
processes are observed at different times, the situation is less clear. It might be promising
to follow the approach due to Hayashi and Yoshida (2005) for diffusion processes then, but
mathematics appear to be tough. Finally, one could move to bivariate Itô semimartingales
for which both the Brownian part and the Lévy measure depend on a time index and
estimate local versions of ν and related quantities.

From a statistical point of view it might be interesting to construct several nonpara-
metric tests concerning the dependence structure of a multivariate Lévy process. This
could include estimation of certain functionals of Γ or U as well as tests for independence
or tests for a parametric form of these functions. For this reason, it would be important to
establish a thorough theory concerning (Pareto) Lévy copulas which relates functionals of
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x, y 2,2 1,1 0.5,0.5 2,0.5 2,1 1,0.5
kn bias var bias var bias var cov cov cov
50 0.0141 0.0827 0.0455 0.1740 0.0863 0.3520 0.0777 0.0668 0.1599
75 -0.0082 0.0874 0.0173 0.1653 0.1252 0.3428 0.0740 0.0690 0.1459
100 0.0502 0.0783 0.0894 0.1708 0.1748 0.3400 0.0685 0.0508 0.1547
150 0.0356 0.0862 0.1182 0.1646 0.3176 0.3324 0.0744 0.0698 0.1421
50 0.0345 0.0790 0.0560 0.1637 0.1021 0.3263 0.0699 0.0639 0.1389
75 0.0091 0.0886 0.0753 0.1760 0.1522 0.3508 0.0832 0.0729 0.1522
100 0.0312 0.0745 0.0776 0.1530 0.1480 0.3033 0.0610 0.0558 0.1305
150 0.0284 0.0866 0.0988 0.1694 0.2074 0.3337 0.0746 0.0725 0.1486

Table 2: Empirical bias and (co)variances of
√
k(Γ̂n(x)− Γ(x)) for various choices of kn.

Upper four lines: Pure subordinator; lower four lines: Subordinator + Brownian Motion.

Γ to certain dependence properties, as in the case of ordinary copulas for which standard
measures such as Kendall’s τ or Spearman’s ρ can be written as integrals over C and are
thus accessible through nonparametric estimation of the copula.

7 Auxiliary results

Lemma 7.1 Let P : (0,∞]→ [0,∞) denote the function P (x) = 1/x.

a) The mapping

Φ1 :(B0
∞((0,∞]2), d)× (B0

∞((0,∞]), d)2 → (B0
∞((0,∞]2), d)× (B−∞((0,∞]), d2)2

defined by Φ1(U,U1, U2) = (U,U−1 , U
−
2 ) is Hadamard-differentiable at (Γ, P, P ) tan-

gentially to D0,1 = D0 as defined in (4.9) with derivative

Φ′1,(Γ,P,P )(U,U1, U2) = (U, x−2
1 U1(1/x1), x−2

2 U2(1/x2)).

b) The mapping

Φ2 :(B0
∞((0,∞]2), d)× (B−∞((0,∞]), d2)2 → (B0

∞((0,∞]2), d)× (Bp∞([0,∞)), d2)2

defined by Φ2(U, V1, V2) = (U, V1 ◦ P, V2 ◦ P ) is Hadamard-differentiable at (Γ, P, P )
tangentially to D0,2 = Φ′1,(Γ,P,P )(D0,1) with derivative

Φ′2,(Γ,P,P )(U, V1, V2) = (U, V1 ◦ P, V2 ◦ P ).

c) Suppose Γ has continuous first order partial derivatives on (0,∞)2. The mapping

Φ3 :(B0
∞((0,∞]2), d)× (Bp∞([0,∞)), d2)2 → B∞((0,∞]2, d2)
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Figure 3: QQ-plots of the empirical quantiles of
√
kn(Γ̂n(x)−Γ(x)) divided by their sample

standard deviation vs. the theoretical quantiles of the standard normal distribution. Upper
three pictures: Pure subordinator; lower three pictures: Subordinator + Brownian Motion.

defined by Φ3(U,G1, G2) = U(G1, G2) is Hadamard-differentiable at (Γ, id, id) tan-
gentially to D0,3 = Φ′2,(Γ,P,P )(D0,2) with derivative

Φ′3,(Γ,id,id)(U,G1, G2)(u) = U(u) +
2∑
j=1

Γ̇j(u)Gj(uj),

where the sum on the right-hand side is defined as 0 if one of the coordinates of u
equals ∞.

Proof. The assertion in a) is a consequence of Lemma 7.2 below, whereas the assertion
in b) follows from linearity of Φ2. Regarding c) let tn → 0, (Un, Gn1, Gn2)→ (U,G1, G2) ∈
D0,3 such that (Γ + tnUn, id[0,∞) +tnGn1, id[0,∞) +tnGn2) ∈ B0

∞((0,∞]2) × (Bp∞([0,∞)))2.
First consider u ∈ Sk,1 = [1/k, k]2, which allows to decompose

t−1
n {Φ3(Γ + tnUn, id[0,∞) +tnGn1, id[0,∞) +tnGn1)− Φ3(Γ, id, id)}(u) = Ln1(u) + Ln2(u),

(7.1)
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where

Ln1(u) = t−1
n {Γ(u1 + tnGn1(u1), u2 + tnGn1(u2))− Γ(u)},

Ln2(u) = Un(u1 + tnGn1(u1), u2 + tnGn1(u2)).

Un converges uniformly on S2k,1 = [1/(2k), 2k]2 to U , which is uniformly continuous on
S2k,1. Hence, since supuj∈[1/(2k),2k] |tnGnj(uj)| → 0, we obtain supu∈Sk,1 |Ln2(u)−U(u)| →
0. It remains to consider the summand Ln1. A Taylor expansion yields

Ln1(u) =
2∑
j=1

Γ̇j(u)Gnj(uj) + rn(u),

where the remainder term is given by

rn(u) =
2∑
j=1

{Γ̇j(vn)− Γ̇j(u)}Gnj(uj)

with some intermediate point vn. Observing that |Γ̇j(u)| ≤ u−2
j ≤ k2, uniform con-

vergence of Gnj to Gj on [1/k, k] implies that the dominating term in the expansion of
Ln1 converges to

∑2
j=1 Γ̇j(u)Gj(uj), uniformly on Sk,1. By uniform continuity of Γ̇j on

Sk,1 and boundedness of Gnj we obtain rn(u) = o(1), uniformly. The other cases, i.e.,
u ∈ ([1/k, k] × {∞}) ∪ ({∞} × [1/k, k]) ∪ {(∞,∞)} are treated similarly, the details are
omitted for the sake of brevity. 2

Lemma 7.2 Let DΨ ⊂ B∞((0,∞]) consist of all functions f : (0,∞] → [0,∞) that are
non-increasing and left-continuous with f(∞) = 0. Recall (3.3) for the definition of the
generalized inverse function. Then the mapping

Ψ : (DΨ, d)→ (B∞((0,∞]), d2), f 7→ f−

is Hadamard-differentiable at P (x) = x−1 tangentially to the space

D0 =
{
h ∈ C((0,∞]) | h(∞) = 0, lim

x→0
x2h(x) = 0

}
.

with derivative (Ψ′P (h))(x) = x−2h(x−1).

Proof. Let tn ∈ R \ {0}, hn ∈ B∞((0,∞]) and h ∈ D0 such that tn → 0, d(hn, h)→ 0
and P + tnhn ∈ DΨ. It suffices to show that for each ε ∈ (0, 1),M ∈ (1,∞)

sup
z∈[ε,M ]

∣∣∣∣(P + tnhn)−(z)− z−1

tn
− z−2h(z−1)

∣∣∣∣→ 0.

For z ∈ [ε,M ] set ξn(z) = (P+tnhn)−(z). Choose n0 ∈ N such that supx≥(2M)−1 |tnhn(x)| ≤
ε/2 for all n ≥ n0. We begin the proof by showing that ξn(z) ∈ [1/(2M), 2/ε] for all n ≥ n0.
By monotonicity of ξn we obtain

ξn(z) ≤ ξn(ε) ≤ inf{x ≥ 1/(2M) | 1/x+ tnhn(x) ≤ ε}
≤ inf{x ≥ 1/(2M) | 1/x ≤ ε/2} = 2/ε.
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For the lower bound note that ξn(z) ≥ ξn(M) and set x0 = 1/(2M). Then

(P + tnhn)(x0) = 2M + tnhn(1/(2M)) ≥ 3M/2.

By monotonicity of P + tnhn we obtain (P + tnhn)(x) ≥ 3M/2 for all x ≤ x0 and hence
ξn(M) ≥ x0 = 1/(2M) as asserted.

By definition of the inverse, for εn(z) = t2n ∧ ξn(z),

(P + tnhn)(ξn(z)) ≥ z ≥ ε ∨ {(P + tnhn)(ξn(z) + εn(z))} > 0.

Some careful calculations convert the latter estimate into

tnξn(ξn + εn)hn(ξn + εn)− εn
{ε(ξn + εn)} ∨ {1 + tn(ξn + εn)hn(ξn + εn)}

≤ ξn −
1
z
≤ tnξ

2
nhn(ξn)

1 + tnξnhn(ξn)
, (7.2)

where we used the abbreviations ξn = ξn(z) and εn = εn(z). Since ξn(z) ∈ [1/(2M), 2/ε],
boundedness of hn on [1/M, 4/ε] implies supz∈[ε,M ] |ξn(z) − z−1| → 0. Dividing equation
(7.2) by tn and exploiting the facts that εn ≤ t2n and that x2h(x) is uniformly continuous
on [1/(2M), 4/ε] the assertion follows. 2
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