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Abstract

This paper introduces rank-based tests for the cointegrating rank in an Error Correction

Model with i.i.d. elliptical innovations. The tests are asymptotically distribution-free,

and their validity does not depend on the actual distribution of the innovations. This

result holds despite the fact that, depending on the alternatives considered, the model ex-

hibits a non-standard Locally Asymptotically Brownian Functional (LABF) and Locally

Asymptotically Mixed Normal (LAMN) local structure—a structure which we completely

characterize. Our tests, which have the general form of Lagrange multiplier tests, depend

on a reference density that can freely be chosen, and thus is not restricted to be Gaussian

as in traditional quasi-likelihood procedures. Moreover, appropriate choices of the refer-

ence density are achieving the semiparametric efficiency bounds. Simulations show that

our asymptotic analysis provides an accurate approximation to finite-sample behavior.

Our results are based on an extension, of independent interest, of two abstract results

on the convergence of statistical experiments and the asymptotic linearity of statistics to

the context of, possibly non-stationary, time series.
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1. Introduction

Since the introduction of cointegration by Granger (1981) and Engle and Granger (1987)

an extensive literature on inference for cointegration models has emerged. Traditionally,

Gaussian likelihood or moment-based procedures are used for estimation and testing

problems concerning, e.g., the cointegrating rank or the cointegrating vectors; see, e.g.,

Stock (1987), Johansen and Juselius (1990), Johansen (1988, 1991, 1995), Phillips (1991)

and Reinsel and Ahn (1992). Moreover, some papers describe (part of) the asymptotic

structure of cointegrating models from a statistical point of view, notably Phillips (1991),

Jeganathan (1997) and Hodgson (1998a, 1998b). We unify and extend these results by

providing a complete characterization of the limiting experiments (à la Le Cam) arising

within non-seasonal cointegrating Error Correction Models (ECMs) with independent

and identically elliptically distributed innovations.

The main contribution of this paper is twofold. First of all, we use the limiting

experiments to derive the form of locally and asymptotically optimal tests about the

cointegrating rank. These optimal tests take the cointegrating vectors, the short term

dynamics, and the exact form of the error distribution as nuisance parameters and turn

out to be of the Lagrange Multiplier type. Secondly, we introduce rank-based versions of

these statistics, i.e., asymptotically equivalent statistics that are based on a multivariate

notion of ranks for the innovations.

The limiting experiments that may arise are described in Proposition 2.1. For special

cases, most notably when the cointegrating rank is supposed to be known and under

the absence of a linear time trend, the model turns out to be Locally Asymptotically

Mixed Normal (LAMN) as in Hodgson (1998b). However, we demonstrate the statistical

consequences of linear time trends in the model. These lead, both within and outside the

cointegrating space, to specific directions in which the model is asymptotically Locally

Asymptotically Normal (LAN) with convergence rate T 3/2. Specifically for inference

∗Corresponding author
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about the cointegrating rank, we exploit these directions to construct locally and asymp-

totically optimal tests (optimality here is to be understood in the sense of stringency)

that turn out to be of the Lagrange Multiplier type.

There does not seem to be consensus in the literature about the role of linear time

trends in cointegration models; see, e.g., Saikkonen and Lütkepohl (2000). The main

reason for this is that existing inference procedures are non-similar, i.e., their limiting

distributions under the null hypothesis depend on the presence of a trend. This leads

some people to reject inference procedures that derive their asymptotic properties from

the linear trend. However, the standard cointegrated VAR as in our Section 1.1 does not

exclude this behavior. Without explicit additional restrictions on inference procedures,

asymptotically optimal inference procedures will achieve T 3/2 rates. The exact form

and validity of such restrictions, in our view, is an empirical question and the answer

may differ between applications. We already note here that the inference procedures

we propose are similar under the null hypothesis. Furthermore, one may also interpret

the present paper as using a particular form of asymptotic analysis to suggest inference

procedures; see also the discussion in Hallin, Van den Akker, and Werker (2011). The

simulations in Section 5 then show that their finite sample properties in many cases

compare favorably to existing tests and thus provide a useful additional toolkit to the

econometrician.

As mentioned before, our second contribution lies in the fact that our tests are rank-

based. We do not restrict attention to rank-based tests a priori, but we prove that

rank-based versions of the locally and asymptotically most stringent tests exist in the

cointegration model with elliptically and identically distributed innovations. The use

of such rank-based tests offers several advantages. First of all, the rank-based tests

are asymptotically distribution-free. Thus, critical values do not depend on the actual

distribution of the innovations. Without estimated nuisance parameters this distribution-

freeness would even hold exactly in finite samples. In general, asymptotically, it provides

a form of robustness that stabilizes finite sample sizes (see Section 5). Secondly, as an

easy corollary of our analysis, we obtain a Chernoff-Savage result showing that Gaussian

rank-based procedures uniformly improve over the pseudo-Gaussian ones.

However, probably most strikingly, the rank-based procedures enjoy a quasi- or
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pseudo-likelihood property, not only when based on Gaussian scores but irrespective

of the actual reference density used in the analysis. That is, imposing incorrectly a

density g in the analysis, while the actual underlying density is f 6= g does not invali-

date our tests in terms of their asymptotic size. This is in sharp contrast with classical

procedures. There, incorrectly imposing a Gaussian innovation density, and using appro-

priately adapted critical values, also leads to valid tests. However, incorrectly imposing,

say, a t-distribution for the innovations leads to incorrectly sized tests and, in terms of

estimation, inconsistent estimators. This drawback does not hold for our rank-based

procedures that always are appropriately sized whatever the reference density g used

and whatever the true underlying density f . This allows the researcher to select, e.g., a

fat-tailed innovation density when innovations are suspected to be fat-tailed. This will

lead to an increased local power of the test, without invalidating it when the assumed

reference density differs from the actual one.

It may be informative to compare our contribution to recent work in Boswijk, Jansson,

and Nielsen (2012). That paper improves upon likelihood ratio tests by a more careful

description of the relevant alternatives. Formally, their alternatives are specified as cones

instead of linear subspaces, much like a univariate test for a unit root generally uses the

one-sided alternative that the autocorrelation parameter is strictly smaller than unity.

That paper uses Gaussian likelihoods. We do not consider these more general cone-like

specifications of the alternative. Both approaches are complementary and, thus, could

possibly be integrated.

Before we formally introduce the model to be considered, a few remarks are in place.

First, while we ignore the possibility of seasonality or linear trends in ∆Xt, these could

be added and analyzed using the same techniques. This is largely due to the fact that

the present paper contains some technical innovations that are of independent interest,

and extend to a more general context. First, Appendix C contains a general result to

obtain Local Asymptotic Quadraticity (in the sense of Jeganathan (1995)) of time-series

models. The conditions we impose are serial extensions of the conditions needed to prove

LAN for models with independent and identically distributed observations. Therefore,

they are close to minimal. Secondly, when nuisance parameters are present and need to

be estimated, the asymptotic linearity of the statistics of interest has to be established,

4



so that the effect of using estimated initial parameters can be made explicit; for that

purpose, we generalize (Appendix C) a method of proof proposed by Van der Vaart

(1988) for statistics based on independent observations to a time series context.

1.1. The model

We consider finite realizations X(T ) := (X1, . . . , XT )
′ from a p-dimensional time se-

ries {Xt | t ∈ N} generated by the kth order vector autoregressive model written in

error-correction form (ECM)

∆Xt = ΠXt−1 +

k−1∑

j=1

Γj∆Xt−j + µ+ εt, t ∈ N, (1.1)

where ∆ is first-order differencing, X1−k, . . . , X0 are deterministic starting values,

Π ∈ Rp×p, Γ := (Γ1, . . . ,Γk−1) ∈ Rp×(k−1)p and µ ∈ Rp are parameters, and {εt}
is an i.i.d. sequence of elliptically distributed innovations (centered at the origin) with

density f. We shall assume that each component of {Xt} is integrated of order one at

most.

The assumptions we impose on this model are of two types: assumptions on the

density f of εt (the innovation density) and assumptions on the parameters µ, Γ, and Π.

1.2. Innovation densities

We assume throughout this paper that the innovations are elliptically distributed.

Thus, their density f satisfies the following assumption.

Assumption 1. (Elliptical symmetry) There exists a p× p symmetric positive definite
matrix Σ and a function f : R+ → R+ satisfying

∫∞
0 zp−1f(z)dz = 1 (the radial density)

such that

f(e) = fΣ,f (e) :=
1

ωp

√
detΣ

f (‖e‖Σ) , e ∈ R
p, (1.2)

where ωp denotes the (p−1)-dimensional Lebesgue measure of the unit sphere Sp−1 in Rp

and ‖e‖Σ := (e′Σ−1e)1/2.

Clearly, f and Σ in (1.2) are only identified up to a scale factor; the requirement

that
∫∞
0 zp−1f(z)dz = 1 thus is an identification constraint that does not imply any

loss of generality (both Σ and f , moreover, are nuisance parameters in our inferential

problems of interest). Under Assumption 1, the radial distance ‖εt‖Σ at z ∈ R+ has

density f̃p(z) := zp−1f(z); write F̃p for the corresponding distribution function. Note
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that, contrary to f̃p, and despite of its name, the radial density f is not a probability

density, as it does not integrate to one. Denoting by Σ1/2 the symmetric square root

of Σ, still under Assumption 1, Uε
t := Σ−1/2εt/‖εt‖Σ is uniformly distributed over the

unit sphere Sp−1 and independent of ‖εt‖Σ. In particular, it has mean EUε
t = 0 and

covariance matrix VarUε
t = Ip/p.

On the radial density f itself we impose the following smoothness assumption.

Assumption 2. (Radial density)

(a) The radial density f is absolutely continuous with a.e. derivative f ′, that is, there
exists a function f ′ such that for all 0 ≤ a < b

f(b)− f(a) =

∫ b

a

f ′(z)dz.

(b) The radial Fisher information

Ip(f) := Eφ2f (‖ε1‖Σ) =
∫ 1

0

φ2f

(
F̃−1
p (u)

)
du,

where φf := −f ′/f denotes the so-called location score associated with f , is finite.

(c) f(z) > 0 for all z ∈ R+.

Observe that the location score for the p-variate density f is given by

−grade log f(e) = φf (‖e‖Σ)Σ−1/2U a.e., with U = Σ−1/2e/‖e‖Σ, e ∈ R
p.

This explains our terminology for φf and Ip(f). Also, it is possible to weaken As-

sumption 2 into an assumption of quadratic mean differentiability for the mapping

e 7→ f1/2(‖e‖); this is mainly of theoretical interest, though, and we refer to Section 1 of

Hallin and Paindaveine (2002a) for details.

Let F denote the set of all radial densities satisfying Assumption 2. Note that the

existence of moments for εt is completely determined by the existence of the correspond-

ing moments for the radial density, and denote by F2 the subset of F corresponding to

radial densities with finite second moment, i.e.,

F2 :=
{
f ∈ F |

∫
ζ2f̃p(ζ)dζ =

∫
zp+1f(z)dz <∞

}
.
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1.3. Parameter restrictions

In the present paper we are interested in the case that {Xt} is integrated of order one

(I(1)), in the sense that each component of the process is at most I(1), and has no

seasonal unit roots. The number of cointegrating relationships is denoted by r and can

either be specified or unspecified. The required restrictions on the parameters are well

known (see, e.g., Johansen (1995) or Juselius (2006)); for the sake of completeness, and

to set notation, we briefly recall them here.

The characteristic polynomial AΓ,Π associated with the ECM equation (1.1) is

AΓ,Π(z) := (1− z)Ip −Πz −
k−1∑

j=1

Γj(1− z)zj, z ∈ C.

A (non-seasonal) unit root implies that Π is singular, since then 0 = |AΓ,Π(1)| = |Π|,
with rank r, 0 ≤ r ≤ p − 1. We then can write Π as a product Π = αβ′ for p × r

matrices α and β of rank r; in case r = 0, we define α = β = 0p×p. Also, let α⊥ and β⊥

be p × (p − r) matrices of rank p − r satisfying α′α⊥ = 0r×(p−r) = β′β⊥; for r = 0, we

define α⊥ = Ip = β⊥. Note that the matrices α, α⊥, β, and β⊥ are not uniquely defined

(unless r = 0). That lack of identifiability plays little role in the sequel. In case it does,

we mention it explicitly.

These parameter restrictions are formalized as follows.

Assumption 3. Using the above notation, the matrices Π = αβ′ and Γ in (1.1) are such
that

(a) rankΠ < p;

(b) if |AΓ,Π(z)| = 0 then |z| > 1 or z = 1;

(c) the (p− r) × (p− r) matrix ΨΓ,Π := α′
⊥

(
Ip −

∑k−1
j=1 Γj

)
β⊥ is non-singular.

Assumption 3(b) excludes explosive behavior and seasonal unit roots in the process {Xt}
and Assumption 3(c) is equivalent to the requirement that AΓ,Π has exactly (p− r) unit

roots.

Under Assumption 3, the following version of the Granger-Johansen representation

theorem (see Theorem 3.2 in Nielsen (2009)) holds: letting

CΓ,Π := β⊥Ψ
−1
Γ,Πα

′
⊥
, (1.3)
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the process {Xt} generated by the ECM equation (1.1) admits the representation

Xt = (CΓ,Πµ)t+ CΓ,Π

t∑

s=1

εs + Yt + aµ,Γ,Π, (1.4)

where

(i) the deterministic starting value aµ,Γ,Π is

aµ,Γ,Π = CΓ,Π

((
Ip −

k−1∑

j=1

Γj

)
X0 +

k−2∑

ℓ=0

k−1∑

j=ℓ+1

Γj∆X−ℓ

)
; (1.5)

(ii) the process Yt is given by Yt = ΥVt with the p× (r + (k − 1)p) matrix

Υ :=
(
(Ip − CΓ,Π(Ip −

∑k−1
j=1 Γj))β(β

′β)−1 −C∑k−1
j=1 Γj · · · −C∑k−1

j=k−1 Γj

)
,

and the process V ′
t := ((β′Xt)

′, (∆Xt)
′, . . . , (∆Xt−k+2)

′) satisfying

Vt = ΞVt−1 +




β′

Ip

0(k−2)p×p


 εt,

where all eigenvalues of Ξ are all less than 1 in absolute value.

Also observe, for later reference, that CΓ,Πµ is an element of the column space of β⊥.

Let Θ denote the set of admissible values of the parameter ϑ := (µ,Γ,Π), i.e., those

values of ϑ where µ ∈ Rp is unrestricted, but Γ and Π are such that Assumption 3 holds.

Write P
(T )
ϑ;Σ,f or P

(T )
µ,Γ,Π;Σ,f for the distribution of (X1, . . . , XT ) generated by the ECM

equation (1.1), conditional on the starting values X−k+1, . . . , X0, under the Euclidean

parameter values (ϑ; Σ) = (µ,Γ,Π;Σ) and the infinite-dimensional parameter f .

For all ϑ and Σ > 0, define the residuals

ǫt = ǫt(ϑ) := ∆Xt −ΠXt−1 −
k−1∑

j=1

Γj∆Xt−j − µ (1.6)

and the corresponding sphericized unit vectors (playing the role of multivariate signs)

Ut = Ut(ϑ; Σ) :=
1

‖ǫt(ϑ)‖Σ
Σ−1/2ǫt(ϑ), (1.7)

with the convention that Ut := 0 in case ǫt = 0. Note that, if ϑ is the true parameter

value, that is, under P
(T )
ϑ;Σ,f , ǫt(ϑ) and Ut(ϑ; Σ) coincide with εt and U

ε
t , respectively.
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1.4. Rank-based inference

Throughout, (Σ, f) plays the role of a nuisance, ϑ being the parameter of interest. In

principle, (Σ, f) either should be included in the list of parameters indexing local limit-

ing experiments, or it should enter the definition of tangent spaces in the treatment of

semiparametric efficiency. However, as we shall see in Section 4, the testing problems

we consider are adaptive with respect to (Σ, f). As a consequence, we do not have to

discuss paths with respect to Σ and f in our local experiments.

To motivate the statistics we propose, we now consider the model in which Σ is known

and f is unknown, i.e. the semiparametric model

P(T ) := {P(T )
ϑ;Σ,f | ϑ ∈ Θ, f ∈ F2}.

Semiparametric efficiency bounds (in the sense of Bickel et al. (1993)), whether at some

chosen reference density g ∈ F2 or uniformly over all densities g ∈ F2, provide the

relevant optimality concept and represent the best performance one can hope for. The

reason for treating Σ here as known is that this allows us to motivate our statistics

by invariance arguments. Indeed, general results by Hallin and Werker (2003) indicate

that if

(a) the parametric fixed-f submodels P(T )
f := {P(T )

ϑ;Σ,f | ϑ ∈ Θ}, f ∈ F , are Locally

Asymptotically Normal (LAN, with respect to ϑ), with central sequence ∆
(T )
ϑ;Σ,f ,

and

(b) the nonparametric fixed-ϑ submodels P(T )
ϑ := {P(T )

ϑ;Σ,f | f ∈ F}, ϑ ∈ Θ, are gener-

ated by some group of transformations G(T )
ϑ;Σ acting on X(T ), with maximal invari-

ant M
(T )
ϑ;Σ (typically, a combination of residual ranks and signs),

then, inference procedures reaching, as T → ∞, the semiparametric efficiency bounds

at P
(T )
ϑ;Σ,g for given g ∈ F can be based on the conditional expectation

∆
˜
(T )
ϑ;Σ,g := Eϑ;Σ,g

[
∆

(T )
ϑ;Σ,g| M

(T )
ϑ;Σ

]
(1.8)

(where Eϑ;Σ,g stands for expectation under P
(T )
ϑ;Σ,g). In other words, ∆

˜
(T )
ϑ;Σ,g, at ϑ and g,

is a version of the semiparametrically efficient central sequence for the semiparamet-

ric model P(T ). The fact that it is measurable with respect to the maximal invariant
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of a generating group implies that, contrary to the traditional semiparametrically ef-

ficient central sequence resulting from tangent space projection, it is distribution-free

under P(T )
ϑ . Inference based on ∆

˜
(T )
ϑ;Σ,g thus remains valid irrespective of the actual den-

sity f , and g here plays the role of a reference density, to be chosen by the researcher.

Still without affecting validity, the same reference density also can be substituted with

an estimator f̂ (T ) of f ; we refer to Hallin and Werker (2003) for details.

In the present context the maximal invariant M
(T )
ϑ;Σ happens to be the T -tuple of

multivariate signs Ut(ϑ; Σ) defined in (1.7), along with the ranksR
(T )
t (ϑ; Σ) of the residual

moduli ‖ǫt(ϑ)‖Σ (see (1.6)). Those multivariate signed ranks have been successfully used

in a series of papers by Hallin and Paindaveine (2002a, 2002b, 2005a, 2005b), Hallin,

Oja, and Paindaveine (2006) and Hallin, Paindaveine, and Verdebout (2010, 2012) for

various problems (hypothesis testing and point estimation) in multivariate analysis and

multivariate time series. All these papers consider models for which (a) is satisfied.

However, for the cointegration model (a) is not satisfied as only specific submodels are

LAN (see Section 2). Invoking adaptivity arguments, we show that it is nevertheless

possible to develop efficient tests using signed ranks.

Finally, we note that ranks have been used in the context of cointegration before by

Breitung and Gouriéroux (1997) and Breitung (2001). Those papers, however, consider

testing for nonlinear forms of cointegration, while we focus on optimal inference within

linear semiparametric cointegration models.

1.5. Outline of the paper

The remainder of this paper is organized as follows. Section 2 unifies and generalizes

results on the (local) limit experiments resulting from the ECM model (1.1). These limit

experiments allow us to rely on existing theory about (optimal) asymptotic inference, see,

e.g., Strasser (1985), Le Cam (1986), Le Cam and Yang (1990), or Van der Vaart (2000).

It turns out that the central sequence relevant for testing hypotheses on the cointegrating

rank is of a specific form. In Section 3 we provide a rank-based version of that central

sequence, and study its properties under fixed distributions and under local alternatives.

In particular, we pay attention to the effect of using aligned ranks, i.e., those based on

estimated residuals instead of innovations. These results are subsequently used in Sec-

tion 4 to derive asymptotically distribution-free most-stringent rank-based tests about
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the cointegrating rank; for the sake of completeness, and the purpose of comparisons, we

also provide the explicit form of the corresponding optimal pseudo- or quasi-Gaussian

tests. Section 5 provides a small simulation study that shows that our asymptotic anal-

ysis indeed provides a decent approximation to the actual finite-sample distributions.

Finally, various appendices contain some results of independent interest and the most

technical proofs. Appendices A and B establish the main results about the various lim-

iting experiments and the asymptotic behavior of our rank-based statistics, respectively.

Appendix C generalizes two known abstract results on likelihood ratio expansions and

asymptotic linearity of statistics for models with independent observations to, possibly

non-stationary, time series models. This also leads to results on the asymptotic behavior

of statistics under local alternatives that are not of the classical Gaussian shift type.

Finally, additional and more detailed simulation results are provided in Appendix D.

2. Limit experiments

In this section, we review, extend, and unify existing results on the (local) limit experi-

ments (à la Le Cam) induced by the ECM model (1.1). We are interested in those limit

experiments for several reasons. First, asymptotic efficiencies (parametric and semipara-

metric) of tests and estimators are defined via those limits. Secondly, the limit experi-

ments allow us to perform local power calculations by applying Le Cam’s third lemma.

Third, limit experiments often suggest how efficient procedures can be constructed. Fi-

nally, simulations show that these limit experiments indeed yield good approximations

of the actual finite-sample distributions of the statistics of interest.

Two main results on limit experiments for the ECM model are available in the lit-

erature. The first one is for the so-called triangular models studied by Phillips (1991)

and Jeganathan (1997); the second one deals with cointegration models with known

cointegrating rank and no trend—see Hodgson (1998b). The triangular models lead to

limiting experiments of the Locally Asymptotically Brownian Functional (LABF) form.

Fairly little is known about optimal inference in that type of experiment; see, however,

Gushchin (1996), Jansson (2008), Müller (2012), and Ploberger and Phillips (2012) for

some results. In this section, we identify exactly which local parameter directions lead,

in the ECM model with elliptical noise, to this LABF behavior. Hodgson (1998b), in the
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case of an ECM model with known cointegrating rank and without trend, derives, under

an assumption of central symmetry on the innovation density f, a Locally Asymptotically

Mixed Normal (LAMN) limiting behavior. Our results extend Hodgson (1998b) in that

they also allow for inference on the cointegrating rank in the presence of a linear time

trend. Possibly somewhat surprisingly, the LAMN property is lost in the presence of

such a trend (see the discussion below Corollary 2.1).

Both the LABF and LAMN limit experiments are special cases of Locally Asymp-

totically Quadratic (LAQ) experiments, see Jeganathan (1995), which often arise in the

context of (nearly) non-stationary time series (see, however, Drost, Van den Akker, and

Werker (2009) for a unit root problem leading to a non-LAQ limit experiment). Propo-

sition 2.1 states that the ECM model is LAQ.

2.1. Locally Asymptotically Quadratic limits

To derive the local limiting experiments, we analyze the (limiting) behavior of likelihood

ratios for local perturbations ϑ(T ) := (µ(T ),Γ(T ),Π(T )) of ϑ = (µ,Γ,Π) ∈ Θ. Note

that, since Θ is not an open set, it may happen that ϑ(T ) does not belong to Θ and

possibly corresponds, for instance, with explosive root alternatives. The results we are

deriving nevertheless also hold for such alternatives. The model we are investigating is,

in that sense, slightly larger than the one parametrized by Θ; this is, however, common

practice in the cointegration literature—see, e.g. Johansen (1995) on Gaussian maximum

likelihood estimators.

We parametrize those local perturbations in a way that allows us to identify exactly

which parameter directions (which local subexperiments) lead to LAN, LAMN, or LABF

behavior3. The inference problems we discuss in this paper turn out to be adaptive with

respect to Σ, so that local alternatives for Σ need not be considered, and adaptive with

respect to f , so that semiparametric and parametric efficiency coincide (see Sections 4).

Our local perturbations are defined as follows. Building on the factorization Π = αβ′,

where α and β are full rank p×r matrices, we define local (in the vicinity of ϑ = (µ,Γ,Π))

alternatives ϑ(T ) of the form (µ(T ),Γ(T ),Π(T )), with

µ(T ) = µ(T )
m := µ+ T−1/2m, Γ(T ) = Γ

(T )
G := Γ + T−1/2G, (2.1)

3We are grateful to Peter Boswijk for his concrete suggestions at this point.
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and

Π(T ) = Π
(T )
A,b,B,d,D := α

(T )
A β

(T )′
b,B + T−3/2α⊥d(CΓ,Πµ)

′ + T−1α⊥Dβ
′
⊥
, (2.2)

with local parameters m ∈ Rp, G1, . . . , Gk−1 ∈ Rp×p, d ∈ Rp−r, D ∈ R(p−r)×(p−r),

and α
(T )
A and β

(T )
B of the form

α(T ) = α
(T )
A := α+ T−1/2A, β(T ) = β

(T )
b,B := β + T−3/2(CΓ,Πµ)b

′ + T−1β⊥B
′, (2.3)

for A ∈ Rp×r, b ∈ Rr, and B ∈ Rr×(p−r).

The local perturbations for µ, Γ and α are standard root-T perturbations, and lead

to asymptotically normal behavior. The local alternatives for the cointegrating vectors β

modify the cointegrating space without essentially affecting the cointegrating dimen-

sion r. These alternatives are specified (at rate T 3/2, and provided that CΓ,Πµ 6= 0) by

the r-dimensional vector b and (at slower rate T ) by the r×(p−r)-dimensional matrix B.

As CΓ,Πµ lies in the column space of β⊥, b and B are not separately identified. There-

fore, we throughout restrict B to be linearly constrained such that β⊥B
′ ⊥ (CΓ,Πµ).

Also note that α and β are not separately identified, as only their product Π = αβ′ is,

which implies that the interpretation of the local parameters A, b, and B depends on the

factorization adopted for Π and the chosen versions for α⊥ and β⊥. This, however, has

no further consequences for the remainder of the paper.

The constraint β⊥B
′ ⊥ (CΓ,Πµ) also illustrates the rationale for splitting the local

perturbations of β into b and B. From (1.4) we see that, under Pϑ;Σ,f , β
′Xt is stationary

and has zero drift (as β′CΓ,Πµ = 0). For local perturbations β(T ) of β induced by B

(at rate T ), this still holds (under Pϑ;Σ,f ); indeed, β
(T )′Xt remains stationary since the

additional effect of B on the drift is T−1Bβ′
⊥
CΓ,Πµ = 0. On the other hand, the local

perturbations β(T ) of β induced (at rate T 3/2) by b lead (under Pϑ;Σ,f , and provided

that CΓ,Πµ 6= 0) to non-zero drifts in β(T )′Xt, of magnitude T−3/2b(CΓ,Πµ)
′CΓ,Πµ =

T−3/2b |CΓ,Πµ|2. These effects on the drifts also explain the different localizing rates

for b and B.

In order to study local perturbations that affect the cointegrating rank, we similarly

use the local parameters d and D in (2.2). For the same reason as above, and with the

same interpretation, we throughout linearly restrictD by imposing (whenever CΓ,Πµ 6= 0)

that β⊥D
′ ⊥ (CΓ,Πµ).
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This local parametrization Π
(T )
A,b,B,d,D allows us (see Proposition 2.1 below) to derive

a LAQ property that covers the ECM model with specified cointegration rank (corre-

sponding to the restriction d = 0 = D) as well as the ECM model with unspecified

cointegration rank (corresponding to local alternatives with d 6= 0, in case CΓ,Πµ 6= 0

or D 6= 0). Note that the parametrization is such that both d 6= 0 and D 6= 0 increase

the rank of Π; in case d 6= 0 and D = 0, however, the rank of Π increases by one unit

exactly.

In order to obtain convenient expressions for the central sequence ∆
(T )
ϑ and the finite-

sample Fisher information J
(T )
ϑ featuring in our LAQ result, let us introduce some partial

sum processes: for all u ∈ [0, 1] and ϑ ∈ Θ, define (with ǫt = ǫt(ϑ), Ut = Ut(ϑ,Σ)

and Yt = Yt(ϑ) from (1.4))

W (T )
ǫ (u) :=

1√
T

[uT ]∑

t=1

ǫt, W
(T )
φ (u) :=

1√
T

[uT ]∑

t=1

Σ−1/2Utφf (‖ǫt‖Σ), (2.4)

W
(T )
∆X⊗φ,j(u) :=

1√
T

[uT ]∑

t=1

∆Xt−j ⊗ Σ−1/2Utφf (‖ǫt‖Σ), j = 1, . . . , k − 1, (2.5)

and

W
(T )
Y ⊗φ(u) :=

1√
T

[uT ]∑

t=1

Yt−1 ⊗ Σ−1/2Utφf (‖ǫt‖Σ), (2.6)

where A⊗BC stands for A⊗(BC) – see, e.g., Magnus and Neudecker (1988). Lemma A.1

establishes the limiting Brownian behavior, under P
(T )
ϑ;Σ,f , of these partial sums, and pro-

vides explicit expressions for their covariance structure. These results are not surprising,

but we include a proof for completeness.

Associated with each parameter µ, Γ1, . . . ,Γk−1, and α (hence, with each local

parameter m, G1, . . . , Gk−1, and A) are components of the central sequence denoted

by ∆
(T )
µ ,∆

(T )
Γ1
, . . . ,∆

(T )
Γk−1

, and ∆
(T )
α , respectively. For the matrix-valued parameters,

that central sequence should be interpreted as that of the corresponding vectorized ma-

trix. Thus, for instance, ∆
(T )
α actually is the central sequence for vec(α) perturbed

into vec(α) + T−1/2 vec(A); whenever possible, however, we avoid such heavy nota-

tion as ∆
(T )
vec(α). As we split the local parameters associated with β′ and β′

⊥
into (b, B)

and (d,D), respectively, we write ∆
(T )
b , ∆

(T )
B , ∆

(T )
d , and ∆

(T )
D for the corresponding ele-
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ments of the central sequence4. This, at the same time, also distinguishes the parameters

of interest from the nuisances µ, Γ1, . . . ,Γk−1, and α.

The central sequence ∆
(T )
ϑ = (∆

(T )′
µ ,∆

(T )′
Γ1
, . . . ,∆

(T )′
Γk−1

,∆
(T )′
α ,∆

(T )′
b ,∆

(T )′
B ,∆

(T )′
d ,∆

(T )′
D )′

and finite-sample Fisher information J
(T )
ϑ appearing in Proposition 2.1 below are

∆
(T )
ϑ :=

T∑

t=1




Z
(1)
Tt (ϑ)⊗ Ip

Z
(2)
Tt (ϑ)⊗ α′

Z
(2)
Tt (ϑ) ⊗ α′

⊥


Σ−1/2Ut(ϑ)φf (‖ǫt(ϑ)‖Σ), (2.7)

and

J
(T )
ϑ :=

Ip(f)

p

T∑

t=1




Z
(1)
Tt Z

(1)′

Tt ⊗ Σ−1 Z
(1)
Tt Z

(2)′

Tt ⊗Σ−1α Z
(1)
Tt Z

(2)′

Tt ⊗ Σ−1α⊥

Z
(2)
Tt Z

(2)′

Tt ⊗ α′Σ−1α Z
(2)
Tt Z

(2)′

Tt ⊗ α′Σ−1α⊥

Z
(2)
Tt Z

(2)′

Tt ⊗ α′
⊥Σ

−1α⊥


 , (2.8)

respectively, where

Z
(1)
Tt = Z

(1)
Tt (ϑ) :=




T−1/2

T−1/2∆Xt−1

...

T−1/2∆Xt−k+1

T−1/2β′Xt−1




and Z
(2)
Tt = Z

(2)
Tt (ϑ) :=

(
T−3/2(CΓ,Πµ)

′Xt−1

T−1β′
⊥ (Xt−1 − (t− 1)CΓ,Πµ)

)
.

(2.9)

Remark 2.1. While a formal derivation of the central sequence is given in the proof of

Proposition 2.1 below, the form of ∆
(T )
ϑ in (2.7) also follows by pointwise differentiation

of the log likelihood. Such differentiation does not yield the terms−(t− 1)CΓ,Πµ in the

lower entries of Z
(2)
Tt (ϑ). However, these terms, corresponding to B and D, vanish in the

expansion of the likelihood ratio due to the imposed orthogonality

vec(B)′ (β′
⊥
CΓ,Πµ⊗ α′) = vec (αBβ′

⊥
CΓ,Πµ)

′
= 0

and the corresponding condition for D. ✷

The central sequence ∆
(T )
ϑ can also be expressed in terms of the partial sum pro-

cesses (2.4)-(2.6):

∆(T )
µ = W

(T )
φ (1), ∆

(T )
Γj

= W
(T )
∆X⊗φ,j(1), 1 ≤ j ≤ k − 1, ∆(T )

α = (β′ ⊗ Ip)W
(T )
Y⊗φ(1), (2.10)

∆
(T )
b = |CΓ,Πµ|

2

∫ 1

0

idT (u−)d(α′
W

(T )
φ )(u) + T

−1/2

∫ 1

0

(CΓ,Πµ)
′(CΓ,ΠW

(T )
ǫ (u−))d(α′

W
(T )
φ )(u)

4All those central sequence components depend on ϑ, Σ and f , which we omit for notational simplicity.

The subscripts µ, Γ1, . . . in ∆
(T )
µ , ∆

(T )
Γ1

, . . . thus only play the role of labels. So do the subscripts b, B, . . .

in ∆
(T )
b , ∆

(T )
B , . . ., which should not be misinterpreted as indicating any functional relation between a

local parameter as b and a central sequence component ∆
(T )
b .
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+ T
−1((CΓ,Πµ)

′ ⊗ α
′)W

(T )
Y⊗φ(1) + T

−1(CΓ,Πµ)
′
aΓ,Π,µα

′
W

(T )
φ (1), (2.11)

∆
(T )
B =

∫ 1

0

β
′
⊥CΓ,ΠW

(T )
ǫ (u−)⊗ Ird(α

′
W

(T )
φ )(u) + T

−1(β′
⊥ ⊗ α

′)W
(T )
Y ⊗φ(1)

+ T
−1(β′

⊥aΓ,Π,µ ⊗ α
′
W

(T )
φ (1)), (2.12)

∆
(T )
d = |CΓ,Πµ|

2

∫ 1

0

idT (u−)d(α′
⊥W

(T )
φ )(u) + T

−1/2

∫ 1

0

(CΓ,Πµ)
′(CΓ,ΠW

(T )
ǫ (u−))d(α′

⊥W
(T )
φ )(u)

+ T
−1((CΓ,Πµ)

′ ⊗ α
′
⊥)W

(T )
Y ⊗φ(1) + T

−1(CΓ,Πµ)
′
aΓ,Π,µα

′
⊥W

(T )
φ (1), (2.13)

∆
(T )
D =

∫ 1

0

β
′
⊥CΓ,ΠW

(T )
ǫ (u−)⊗ Ip−rd(α

′
⊥W

(T )
φ )(u) + T

−1(β′
⊥ ⊗ α

′
⊥)W

(T )
Y⊗φ(1)

+ T
−1(β′

⊥aΓ,Π,µ ⊗ α
′
⊥W

(T )
φ (1)), (2.14)

where idT denotes the cadlag function idT (u) := [uT ]/T , which converges to the identity

function id(u) := u on [0, 1].

We are able now to formulate the main result of this section, which provides a com-

plete characterization of the possible limiting local experiments in the ECM model (1.1).

In essence, the proof of this result consists of two steps. The first step establishes a

quadratic expansion of the log-likelihood ratio, where the central sequence appears in

the first-order term and the finite-sample Fisher information in the second-order one.

The second step provides the joint limiting behavior, in distribution, of the central se-

quence and the finite-sample Fisher information. In view of the representations above,

that asymptotic distribution follows from a standard application of the literature on

convergence to stochastic integrals. We refer the reader to Appendix A for the proof.

The proof of the first step follows from an application of Proposition C.4, of indepen-

dent interest, which generalizes LAN results based on differentiability in quadratic mean

(DQM) for models with independent observations to the time series context with possibly

non-LAN limits.

Proposition 2.1. Let Assumptions 1-3 hold, ϑ ∈ Θ, and f ∈ F2. Consider a sequence
of perturbations

h′T := (m′
T , (vecGT )

′, (vecAT )
′, b′T , (vecBT )

′, d′T , (vecDT )
′),

with hT bounded, β⊥B
′
T ⊥ (CΓ,Πµ), and β⊥D

′
T ⊥ (CΓ,Πµ), which defines a local param-

eter sequence ϑ(T ), see (2.1)-(2.3). Then we have, under P
(T )
ϑ;Σ,f , as T → ∞,

log
dP

(T )

ϑ(T );Σ,f

dP
(T )
ϑ;Σ,f

= h′T∆
(T )
ϑ − 1

2
h′TJ

(T )
ϑ hT + oP (1). (2.15)
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Under P
(T )
ϑ;Σ,f , (∆

(T )
ϑ , J

(T )
ϑ ) converges in distribution5 to (∆, J) satisfying

E exp (h′∆− h′Jh/2) = 1,

where ∆′ := (∆′
µ,∆

′
Γ1
, . . . ,∆′

Γk−1
,∆′

α,∆
′
b,∆

′
B,∆

′
d,∆

′
D) with, for j = 1, . . . , k − 1,

∆µ :=Wφ(1), ∆Γj :=W∆X⊗φ,j(1), ∆α := (β′ ⊗ Ip)WY ⊗φ(1),

and

∆b := |CΓ,Πµ|2
∫ 1

0

ud(α′Wφ)(u), ∆B :=

∫ 1

0

(β′
⊥
CΓ,ΠWǫ(u)⊗ Ir) d(α

′Wφ)(u),

∆d := |CΓ,Πµ|2
∫ 1

0

ud(α′
⊥
Wφ)(u), ∆D :=

∫ 1

0

(β′
⊥
CΓ,ΠWǫ(u)⊗ Ip−r)d(α

′
⊥
Wφ)(u),

respectively. As for J , it decomposes into blocks in a conform way: the block correspond-
ing to (∆′

µ,∆
′
Γ1
, . . . ,∆′

Γk−1
,∆′

α,∆
′
b,∆

′
d)

′ is given by the covariance matrix of this random

vector (that part of J thus is deterministic, and only depends on ϑ); the block correspond-
ing to (∆′

B,∆
′
D)′ is random (its distribution does not involve the local parameters, and

only depends on ϑ). The full definition of J is explicitly provided in Appendix A.1.

Remark 2.2. Proposition 2.1 and Le Cam’s first Lemma (see, e.g., Lemma 6.2 in Van

der Vaart (2000)) jointly imply that the sequences of probability measures P
(T )

ϑ(T );Σ,f

and P
(T )
ϑ;Σ,f , T ∈ N, are contiguous. Consequently, in expressions like (2.15), we do not

have to worry whether oP ’s or OP ’s are taken at the null or at local alternatives of

the form P
(T )

ϑ(T );Σ,f
. Throughout, this consequence of contiguity is used without further

mention. ✷

Remark 2.3. The Brownian motions CΓ,ΠWǫ and α′Wφ are independent, since

E

[
CΓ,Πεt

(
α′Σ−1/2Utφf (‖εt‖Σ)

)′]
= E [CΓ,ΠIpα] = 0

in view of the fact that E‖εt‖Σφf (‖εt‖Σ) = p and CΓ,Πα = 0 (see (1.3)). ✷

Remark 2.4. Note that the Fisher Information matrix in Proposition 2.1, both in finite-

sample form J
(T )
ϑ and in the limit J , is somewhat involved. However, while its structure

is used to classify the various limiting experiments, the exact forms are not needed in
the rank-based test statistics of Sections 4. ✷

2.2. Special cases

Proposition 2.1 provides a complete picture of all possible local experiments in the ECM

model (1.1). More precisely, it identifies how the local parameters m, G, A, b, B, d

and D lead to various types of limiting experiments. From the form of the corresponding

5Throughout, we use the notation (AT , BT )
d
→ (A,B) as shorthand for (vec(AT )′, vec(BT )′)′

d
→

(vec(A)′, vec(B)′)′.
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central sequence in Proposition 2.1, we see that the behavior induced by D is of the

LABF type. Putting D = 0 leads to the following corollary, Part (iii) of which will be

used in Section 4 to construct optimal tests for the cointegrating rank.

Corollary 2.1. Let Assumptions 1-3 hold, ϑ ∈ Θ, and f ∈ F2. Then,

(i) the sequences of local subexperiments associated with perturbations of the form (2.1)-
(2.3) with α′

⊥
m = 0 and D = 0 are Asymptotically Mixed Normal whenever

α′
⊥
µ = 0;

(ii) the sequences of local subexperiments associated with perturbations of the form (2.1)-
(2.3) with m = 0, G = 0, A = 0, d = 0, and D = 0 are Asymptotically Mixed
Normal (with respect to the remaining local parameters b and B);

(iii) the sequences of local subexperiments associated with perturbations of the form (2.1)-
(2.3) with B = 0 and D = 0 are Asymptotically Normal.

Remark 2.5. Part (i) of this corollary is equivalent to a previous LAMN result by Hodg-
son (1998b). Without imposing α′

⊥
µ = 0 and, for the corresponding local parameter

α′
⊥
m = 0, the sequence of local subexperiments corresponding to D = 0 is not LAMN.

This somewhat surprising result is due to the fact that, conditionally on Jµ,Γ,α,b,B,d,
∆µ,Γ,α,b,B,d is no longer zero-mean Gaussian due to, for instance, the non-zero corre-
lation between Wǫ and Wφ. A detailed study of the statistical consequences of this
phenomenon, and thereby the construction of optimal tests on the cointegrating vectors,
is beyond the scope of the present paper. Note that, in Part (ii) above, with respect to
the local parameters b and B only, we do obtain LAMN as CΓ,ΠWǫ, which is the only
source of randomness in Jb,B, and α

′Wφ are mutually independent (Remark 2.3).

Most relevant for the present paper is Part (iii) above. This (pure) LAN result, and

the corresponding nonstandard rates T 3/2, do not seem to have been noted in the litera-

ture. We will exploit this result in Section 4 to derive optimal tests for the cointegrating

rank.

3. Rank-based inference

The complete characterization of the possible limit experiments for the cointegration

model (1.1) allows us to derive locally and asymptotically efficient tests for hypotheses

on the cointegrating rank. As explained in the introduction, we will base these tests

on optimal rank-based procedures derived in the LAN limit experiment associated with

some reference density g and parameter perturbations satisfying B = 0 = D, i.e., in the

situation of Corollary 2.1(iii)—except for the fact that g needs not be equal to f . This

approach offers several advantages, similar to the rank-based unit root tests proposed in

18



Hallin, Van den Akker, and Werker (2011). First, we can use standard LAN projection

results in order to derive the scores to be used in the rank-based procedures. Secondly,

the restriction to D = 0 is innocuous as far as validity, i.e., the asymptotic size of

our tests, is concerned. Concerning (local) powers, they easily follow (see part (iv) of

Proposition 3.1) from an application of Le Cam’s third lemma. Such approach is also

feasible for local perturbations with nonzero D (hence, in a non-LAN context), but leads

to fairly uninformative and complicated expressions. With respect to nonzero B we

show that our test is actually adaptive. Thirdly, our procedures are valid for arbitrary

reference density g (satisfying Assumption 5 below, which is extremely mild), not only

the Gaussian one. This is in contrast to classical QMLE procedures that generally loose

their size or consistency properties when based on non-Gaussian reference densities. As

for the the power of our procedures, it obviously does depend on the chosen reference

density, and choices that are close to the actual density lead to more powerful tests.

Finally, our procedures are asymptotically distribution-free. More precisely, would

the signs and ranks they are based on be computed from exact residuals (namely, un-

der P
(T )
ϑ;Σ,f , our procedures would be strictly distribution-free. In practice, however, ϑ

and Σ are not (fully) specified under the null hypotheses of interest, and estimated resid-

uals ‖ǫt(ϑ̂(T ))‖Σ̂(T ) , yielding aligned signs and aligned ranks, will be substituted for the

exact ones. The resulting procedures then remain asymptotically distribution-free, in

the sense that the relevant aligned test statistics are asymptotically equivalent to the

(unimplementable) exact and strictly distribution-free ones.

3.1. Ranks and signs as maximal invariants

As explained in Section 1.4, our rank-based semiparametric approach relies on two struc-

tural assumptions related with (a) the nature of fixed-f local experiments, and (b) the

existence of a generating group for fixed-ϑ submodels. Our rank-based tests then are

achieving semiparametric efficiency at the selected reference density g. The nature of

local experiments involved has been studied in Section 2. In this section, we briefly ex-

plain which ranks and which signs enter into the picture, via assumption (b), as maximal

invariants.

Fixing ϑ and Σ (recall that Σ, at this stage, is considered a fixed quantity), consider
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the group G(T )
ϑ;Σ, ◦ of transformations Gmϑ;Σ acting on RpT and indexed by m ∈ M, with

M :=
{
m : R+ → R

+| m(0) = 0, lim
z→∞

m(z) = ∞, m continuous, monotone increasing
}
,

where Gmϑ;Σ is mapping the series X(T ) with p-dimensional observations Xt onto the

transformed series Xm;(T ) := Gmϑ;Σ(X
(T )) with p-dimensional observations

Xm

t := (Ip +Π)Xm

t−1 +

k−1∑

j=1

Γj∆X
m

t−j + µ+m(‖ǫt(ϑ)‖Σ)Σ1/2Ut(ϑ; Σ), t = 1, . . . , T

(a recursive definition, with the k deterministic starting values remaining unchanged).

Letting m = G̃−1
p ◦F̃p, it is easy to see that the joint distribution of X(T ) is P

(T )
ϑ;Σ,f if and

only if the joint distribution of Gmϑ;Σ(X
(T )) is P

(T )
ϑ;Σ,g, so that G(T )

ϑ;Σ, ◦ is a generating group

for P(T )
ϑ , with maximal6 invariant (U1(ϑ; Σ), . . . , UT (ϑ; Σ);R

(T )
1 (ϑ; Σ), . . . , R

(T )
T (ϑ; Σ)),

where R
(T )
t (ϑ; Σ) denotes the rank of ‖ǫt(ϑ)‖Σ among ‖ǫ1(ϑ)‖Σ, . . . , ‖ǫn(ϑ)‖Σ.

3.2. Rank-based inference

The statistics of interest in Section 4 are functions of

S
(T )
f (ϑ; Σ) := T−1/2

T∑

t=1

(
t

T + 1
− 1

2

)
Ut(ϑ; Σ)φf (‖ǫt(ϑ)‖Σ) , (3.1)

with ǫt(ϑ) and Ut(ϑ; Σ) defined in (1.6) and (1.7). The rank-based version of this statistic,

for reference density g, is

S
˜
(T )
g (ϑ; Σ) := T−1/2

T∑

t=1

(
t

T + 1
− 1

2

)
Ut(ϑ; Σ)φg

(
G̃−1

p

(
R

(T )
t (ϑ; Σ)

T + 1

))
. (3.2)

As
∑T

t=1 (t/(T + 1)− 1/2) = 0, S
˜
(T )
g (ϑ; Σ) is centered (under Pϑ;Σ,f). A straightforward

adaptation of traditional results on linear rank statistics (see, e.g., Hájek and Sidák

(1967), Section V.1.6) shows that the so-called approximate score form (3.2) of S
˜
(T )
g is

6For the maximal invariance of (U1(ϑ; Σ), . . . , UT (ϑ; Σ);R
(T )
1 (ϑ; Σ), . . . , R

(T )
T (ϑ; Σ)), it is required to

show that two points x and y in the observation space belong to the same orbit of G
(T )
ϑ;Σ if and only if they

yield the same Ui’s and the same Ri’s. That belonging to the same orbit implies having the same Ui’s
and the same Ri’s is straightforward. The converse (two points x and y sharing the same Ui’s and the
same Ri’s belong to the same orbit) is shown to hold by exhibiting a transformation that belongs to the
group and maps x onto y. Such a transformation can be constructed exactly as in the traditional one-
dimensional signed-rank case—see Lehmann and Romano (2005, p.242)—by considering the (monotone,
due to their common ranking) piecewise linear function m ∈ M that maps d1(x) to d1(y), ..., and dT (x)
to dT (y), with linear interpolation in between).
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asymptotically equivalent (i.e., the difference is oP (1) under Pϑ;Σ,g) to the exact score

form (cf. Equation 1.8)

T−1/2
T∑

t=1

(
t

T + 1
− 1

2

)
Eϑ;Σ,g

[
Ut(ϑ; Σ)φg (‖ǫt(ϑ)‖Σ)

∣∣∣ Ut(ϑ; Σ), R
(T )
t (ϑ; Σ)

]
. (3.3)

The main results we need on the asymptotic behavior of S
˜
(T )
g (ϑ; Σ) are summarized in

Proposition 3.1 below. As already mentioned, since in practice Σ is unknown, the statis-

tic S
˜
(T )
g (ϑ; Σ̂(T )), where Σ̂(T ) is an estimator of Σ, will be used rather than S

˜
(T )
g (ϑ,Σ)

itself; the statements in Proposition 3.1 accordingly are in terms of S
˜
(T )
g (ϑ; Σ̂(T )). Some

mild assumptions, however, are to be made on the estimator Σ̂(T ).

Assumption 4. The sequence Σ̂(T ) is such that

(i) for some a ∈ R+, T
1/2(Σ̂(T ) − aΣ) is OP (1) under P

(T )
ϑ;Σ,f , as T → ∞;

(ii) Σ̂(T ) is a measurable function of the ǫt(ϑ)’s, and invariant under their permutations
and reflections with respect to the origin.

All concepts of scatter considered in the literature, among which the empirical co-

variance matrix, Tyler (1987)’s robust estimator, as well as the R-estimators of Hallin,

Oja, and Paindaveine (2006) (when computed from the ǫt(ϑ)’s) satisfy Assumption 4.

For all results on rank-based statistics, we moreover need the following classical as-

sumption on the reference density g.

Assumption 5. The (radial) reference density g satisfies Assumption 1, and is such
that φg is the difference of two continuous and monotone increasing functions.

Finally, in Proposition 3.1 (iv) and (v) below, we are making an assumption of local

asymptotic discreteness. This concept is well known for root-T consistent estimators, but

needs a refinement in order to handle the T and T 3/2 consistency rates in the cointegrating

vectors β. Moreover, the analysis is complicated by the fact that these rates are associ-

ated with directions that themselves depend on an unknown parameter, namely CΓ,Πµ.

We therefore formulate the definition of local asymptotic discreteness in a somewhat non-

standard form. A rate-optimal estimator θ̂(T ) =
(
µ̂(T ), Γ̂(T ), α̂(T )β̂(T )′) of θ =

(
µ,Γ,Π

)

is called locally asymptotically discrete if it satisfies the following assumption7.

7As α and β as well as α̂(T ) and β̂(T ) are not uniquely identified, we implicitly impose that it is
possible to select versions of these objects such that the assumption holds.
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Assumption 6. The estimation errors T 1/2
(
µ̂(T )−µ

)
, T 1/2

(
Γ̂(T )−Γ

)
, T 1/2

(
α̂(T )−α

)
,

T
(
β̂(T ) − β

)
, and T 3/2

(
β̂(T ) − β

)′
CΓ,Πµ all are OP (1), under P

(T )
ϑ;Σ,f (rate optimality).

Moreover, for any M > 0, the number of distinct possible values of these estimation
errors in balls of radius M , centered at the origin, is eventually bounded as T → ∞.

Remark 3.1. In standard situations, where all parameters are estimable at rate T 1/2,
any T 1/2-consistent estimator can be turned into a locally asymptotically discrete one by
simply rounding each element to the closest point in the grid

{
kT−1/2 : k ∈ Z

}
. Such

rounding does not affect T 1/2-consistency and leads to the desired discreteness. In our
model, the same approach can be adopted for the parameters µ, Γ, and α, but not for β.
Therefore, we introduce a refined discretization algorithm for β in order to obtain the
desired discreteness while preserving the T 3/2 consistency property of β̂(T )′CΓ,Πµ (as an
estimator of β′CΓ,Πµ = 0).

To be precise, consider an estimator β̂(T ) satisfying the consistency properties as in
the statement of Assumption 6. For example, the reduced-rank regression estimator
discussed in Johansen (1995) would do, see his Lemma 13.2. In a first step, round each

element of β̂(T ) to a T−3/2-grid, that is, to the closest point in
{
kT−3/2 : k ∈ Z

}
. In order

not to clutter notation, we still denote this rounded estimator by β̂(T ) and observe that
this first step preserves the T and T 3/2 consistency properties of the original estimator.
It also ensures that T 3/2

(
β̂(T ) − β

)′
CΓ,Πµ, as T → ∞, only has a bounded number of

possible values within balls of radiusM . However, T
(
β̂(T )−β

)
in general still will take an

unbounded number (of the order of T 1/2, to be precise) of possible values over such balls.
We, therefore, apply a second discretization step, of order T , to each of the columns
of β̂(T ), in such a way that the T 3/2 consistency of β̂(T )′CΓ,Πµ is preserved. Choose

j = 1, . . . , r and consider column β̂
(T )
j . We now essentially project β̂

(T )
j sequentially

(p − r − 1) times on the closest of a series of parallel hyperplanes generated by the
(p − r − 1) columns of β⊥ that are orthogonal to CΓ,Πµ and at distance of order T−1.
This general idea is complicated by the fact that both β⊥ and CΓ,Πµ must be estimated,
while the grid to be used is not allowed to be random.

Concretely, for this second discretization of β̂
(T )
j , we note that, on the basis of As-

sumption 6, one can readily construct a T 1/2-consistent estimator of rank (p − r − 1)
for β⊥ − (CΓ,Πµ)(CΓ,Πµ)

′β⊥/|CΓ,Πµ|2. Choose vectors Âl, l = 1, . . . , p− r− 1, that gen-

erate the same column space. Subsequently, we discretize each of the elements of Âl on
a T−1/2-grid. These discretized columns are, again for notational convenience, denoted

by Âl. Note that Â′
lCΓ,Πµ = OP (T

−1/2), under P
(T )
ϑ;Σ,f . Now, perform in fact (p− r− 1)

discretization steps on β̂
(T )
j by sequentially projecting on the closest of the hyperplanes

kT−1Âl+
[
Âl

]
⊥
, l = 1, . . . , p−r−1. The relevant insight is that such projections will not

affect the T 3/2 consistency of β̂
(T )′
j CΓ,Πµ, as they affect β̂

(T )
j by a quantity ηÂl for some

η ∈ (−1/T, 1/T ) which, still under P
(T )
ϑ;Σ,f , entails ηÂ

′
lCΓ,Πµ = OP (T

−3/2). Moreover,

after all of these (p− r− 1) projections have been carried out, the resulting T
(
β̂(T ) − β

)

(again, for notational simplicity, we keep the same notation for the discretized estimator
as for the original one) only takes a bounded number of possible values over balls of
radius M , due to the earlier T 1/2-discretization of Âl, l = 1, . . . , p− r − 1.

It should be insisted, though, that local asymptotic discreteness is needed in formal
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asymptotic statements, but has no practical implications. Certainly, one should not
bother to discretize estimators in practice: see pages 125 or 188 of Le Cam and Yang
(1990) for a discussion on this point.

The proof of the following proposition is given in Appendix B.

Proposition 3.1. Let Assumptions 1-5 hold, ϑ ∈ Θ and f ∈ F2. Consider a sequence
of perturbations

h′T :=
(
m′

T , (vecGT )
′, (vecAT )

′, b′T , (vecBT )
′, d′T , (vecDT )

′
)
, (3.4)

with hT bounded, β⊥B
′
T ⊥ (CΓ,Πµ), and β⊥D

′
T ⊥ (CΓ,Πµ), which defines a local pa-

rameter sequence ϑ(T ) by (2.1)-(2.3). Then (all limits below are taken for T → ∞),

(i) (asymptotic representation) under P
(T )

ϑ(T );Σ,f
,

S
˜
(T )
g (ϑ(T ); Σ̂(T )) = T−1/2

T∑

t=1

( t

T + 1
− 1

2

)
Ut(ϑ

(T ),Σ)φg

(
G̃−1

p

(
F̃p

(
‖ǫt(ϑ(T ))‖Σ

)))

+ oP (1) =: S(T )
g (ϑ(T ); Σ) + oP (1); (3.5)

(ii) (asymptotic normality under the null) under P
(T )
ϑ;Σ,f , S˜

(T )
g (ϑ; Σ̂(T )) is asymptotically

normal, with mean zero and variance 1
12pIp(g)Ip;

(iii) (asymptotic normality under alternatives) if also BT = 0 = DT , S˜
(T )
g (ϑ; Σ̂(T )) is

asymptotically normal under P
(T )

ϑ(T );Σ,f
, with mean

1

12p
Ip(f, g)|CΓ,Πµ|2Σ−1/2(αb + α⊥d), (3.6)

where

Ip(f, g) :=
∫ 1

0

φf (F̃
−1
p (u))φg(G̃

−1
p (u))du, (3.7)

and variance 1
12pIp(g)Ip;

(iv) (asymptotic linearity) we have, under P
(T )
ϑ;Σ,f ,

S
˜
(T )
g (ϑ(T ); Σ̂(T ))− S

˜
(T )
g (ϑ; Σ̂(T )) = −Ip(f, g)

1

pT 1/2

T∑

t=1

(
t

T + 1
− 1

2

)
vTt + oP (1), (3.8)

with vTt = (vTt,1, . . . , vTt,p)
′, where (ej stands for the jth unit vector in Rp’s

canonical basis)

vTt,j := h′T




Z
(1)
Tt (ϑ)⊗ Σ−1/2ej

Z
(2)
Tt (ϑ)⊗ α′Σ−1/2ej

Z
(2)
Tt (ϑ)⊗ α′

⊥
Σ−1/2ej


 , j = 1, . . . , p,

and Z
(1)
Tt , Z

(2)
Tt are defined in (2.9);
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(v) the asymptotic linearity property (3.8) remains valid if ϑ(T ) is replaced with a locally

asymptotically discrete (in the sense of Assumption 6) random sequence ϑ̂(T ).

Remark 3.2. Observe that Part (iii) of the above proposition assumes BT = 0 = DT . The
reason is that nonzero BT perturbations lead to mixed normal limits and nonzero DT

perturbations to limits as in continuous time Ornstein-Uhlenbeck processes. As a result,

the limiting distribution of S
˜
(T )
g (ϑ(T ); Σ̂(T )) is no longer a shifted Gaussian distribution.

While exact calculations are possible, they do not necessarily provide much insight and,
therefore, are omitted. Note that the use of aligned ranks, of course, implies that the
estimators used may deviate from the actual data generating process in the B and/or D
directions. Thus, the assumptions BT = 0 and DT = 0 are not made in parts (iv) and (v)
of the proposition. ✷

From Proposition 3.1, we see that the rank-based statistic S
˜
(T )
g is well-behaved even

under completely misspecified reference density. Under correctly specified reference

density (g = f), the rank-based statistic S
˜
(T )
g is equivalent to the parametric statis-

tic S
(T )
f = S

(T )
f , hence has the same properties as the latter, which justifies its in-

terpretation as a rank-based version of S
(T )
f . Note that the asymptotic representation

result in Part (i) shows that estimating the scatter matrix Σ has no asymptotic impact

on S
˜
(T )
g (ϑ(T ); Σ̂(T )), neither under the null nor under contiguous alternatives.

4. Testing the cointegrating rank

In this section, we use the limiting behavior of local experiments in the ECM model (1.1),

as obtained in Section 2, along with the asymptotic results on rank-based statistics of

Section 3, to construct a locally and asymptotically optimal test about the cointegrating

rank r. Since the radial density f remains unspecified, this testing problem is of a

semiparametric nature. Nevertheless, we show that the tests we are proposing, which are

asymptotically distribution-free under the null hypothesis, achieve parametric efficiency

in the subexperiments described in Corollary 2.1(iii), under correctly specified reference

densities g = f .

4.1. Local experiments and efficient central sequences

Formally, we consider the problem of testing the null hypothesis H : r = r0 that the

cointegrating rank is r0 against the alternative H ′ : r = r0 + 1. This global hypothesis

(expressed in terms of the global parameter ϑ) yields, at any ϑ satisfying H , a local form

that involves the local parameters, namely, H : d = 0 = D and H ′ : d 6= 0 or D 6= 0,

24



with the parameters m, G, A, b, and B, the scatter matrix Σ, and the radial density f ,

playing the role of nuisance parameters.

As the local asymptotic behavior of the ECM model with respect to D is of the

LABF type, for which no precise optimality results exist, we actually seek optimality,

at any ϑ satisfying H , against alternatives of the (local) form H ′ : d 6= 0, D = 0,

that is, in constrained local experiments of the form considered in Corollary 2.1(iii).

Subsequently, we show that adaptivity is achieved with respect to B and Σ. Since,

moreover, f is unspecified, we consider constrained local experiments associated with

some chosen reference density g. Finally, in order to avoid degenerate Fisher information,

we restrict to those values of ϑ such that CΓ,Πµ 6= 0. While their optimality properties

are restricted to those subexperiments, restricted ϑ values and chosen radial density g,

we stress that the validity of our tests extends to arbitrary ϑ and f (since they are

rank-based).

Building on standard projection results, the following lemma provides the paramet-

rically efficient central sequence for testing H : r = r0 in the LAN situation of Corol-

lary 2.1(iii).

Lemma 4.1. Let ϑ ∈ Θ be such that r = r0, CΓ,Πµ 6= 0, Σ > 0, and f ∈ F2. Then,

(i) in the Gaussian shift limit experiment (with B = 0 and D = 0) considered in
Corollary 2.1(iii), the efficient score for d, when the local parameters m, G, A,
and b are treated as nuisances, is

∆⋆
d = |CΓ,Πµ|2

∫ 1

u=0

(
u− 1

2

)
d [(Ip − Pα)α⊥]

′
Wφ(u), (4.1)

where Pα denotes the (non-orthogonal) projection matrix Pα = α
(
α′Σ−1α

)−1
α′Σ−1,

with the convention that Pα = 0p×p (and α⊥ the identity) in case r0 = 0;

(ii) for the corresponding local sequence of cointegration models, under Assumptions 1–
3, a version of that efficient central sequence is

∆
(T )⋆
d = |CΓ,Πµ|2

∫ 1

u=0

(
idT (u)−

1

2

)
d [(Ip − Pα)α⊥]

′W (T )
φ (u)

= |CΓ,Πµ|2 [(Ip − Pα)α⊥]
′ Σ−1/2S

(T )
f . (4.2)

Proof. The efficient score for d is obtained as the residual of the regression, in the co-
variance structure Jµ,Γ,α,b,d, of the score for d on that for the nuisances m, G, A, and b.
Let us show that this residual is indeed ∆⋆

d given in (4.1). First, observe

∆d −∆⋆
d = |CΓ,Πµ|2

∫ 1

u=0

ud [α⊥ − [(Ip − Pα)α⊥]]
′
Wφ(u)
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+ |CΓ,Πµ|2
1

2
[(Ip − Pα)α⊥]

′
Wφ(1).

The components of the first term are in the space spanned by the components of the
score for b, the components of the second term in the space spanned by the components

of the score for m. As
∫ 1

u=0
(u− 1/2)du = 0, (4.1) moreover is orthogonal to W∆X⊗φ(1)

andWY ⊗φ(1), thus to the scores induced bym, G, and A. Finally, (4.1) is also orthogonal
to the scores induced by b, as [(Ip − Pα)α⊥]

′
Wφ(u) and α

′Wφ(u) are independent (their
covariance vanishes due to the fact that [(Ip − Pα)α⊥]

′
Σ−1α = 0). In case r0 = 0, the

result follows along the same lines for the scores induced bym and G, while those induced
by A and b need not be considered. This establishes Part (i) of the lemma; Part (ii) is
an immediate consequence.

Remark 4.1. From the above proof, we see that, in order to get the efficient central
sequence (4.2), it is sufficient to regress the central sequence for d with respect to those
for m and b. In other words, the efficient central sequence (4.2) for d when m, G, A, and
b are nuisance parameters is the same as if only m and b were nuisances and G and A
were known. In this respect, the model is adaptive to perturbations of the Γj ’s and α.

Similarly, the efficient central sequence (4.2) is also orthogonal to the score for B as,
again, [(Ip − Pα)α⊥]

′
Wφ(u) and α

′Wφ(u) are independent. This suggest that the model
is also adaptive with respect to the local parameter B, a claim which is indeed verified
by Proposition 4.2 below. This holds despite the fact that, as indicated in Corollary 2.1,
the model is not jointly LAMN with respect to m, G, A, b, B, and d.

4.2. Optimal rank-based tests

Lemma 4.1 is the basis for the construction of locally and asymptotically optimal rank-

based tests about the cointegration rank.

Proposition 4.2. Let Assumptions 1-5 hold, ϑ ∈ Θ be such that r = r0, Σ > 0,

and f ∈ F2. Consider the rank-based statistic S
˜
(T )
g (ϑ; Σ) in (3.2) and the quadratic form

Q
˜

(T )
g (ϑ,Σ) :=

12p

Ip(g)
S
˜
(T )
g (ϑ; Σ)′Σ−1/2

[
(Ip− Pα)α⊥

][
α
′
⊥

(
Σ−1− Σ−1

α
(
α
′Σ−1

α
)−1

α
′Σ−1

)
α⊥

]−1

×
[
(Ip − Pα)α⊥

]′
Σ−1/2

S
˜
(T )
g (ϑ; Σ), (4.3)

with Q
˜
(T )
g (ϑ,Σ) = (12p/Ip(g))

∣∣∣S
˜
(T )
g (ϑ; Σ)

∣∣∣
2

in case r0 = 0. Then,

(i) Q
˜
(T )
g (ϑ,Σ) under P

(T )
ϑ;Σ;f has a limiting χ2

p−r0 distribution;

(ii) under Pϑ(T );Σ;f , where ϑ(T ) is as in (2.1)–(2.3) with D = 0, Q
˜
(T )
g (ϑ,Σ) has a

limiting non-central χ2
p−r0 distribution with noncentrality parameter

Ip(f, g)
2

12pIp(g)
|CΓ,Πµ|

4
d
′
α
′
⊥Σ

−1
[
(Ip− Pα)α⊥

][
α
′
⊥

(
Σ−1− Σ−1

α
(
α
′Σ−1

α
)−1

α
′Σ−1

)
α⊥

]−1

×
[
(Ip − Pα)α⊥

]′
Σ−1

α⊥d, (4.4)

for r0 > 0 and
(
Ip(f, g)2/12pIp(g)

)
|CΓ,Πµ|4 ‖d‖2Σ in case r0 = 0;
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(iii) the limiting distributions above remain valid if the statistic Q
˜
(T )
g (ϑ,Σ) is computed

on the basis of estimators Σ̂(T ) and ϑ̂(T ) satisfying Assumptions 4 and 6, respec-
tively, and the constraint that r = r0;

(iv) for CΓ,Πµ 6= 0 and f = g, a locally and asymptotically z-level most stringent
test of H : d = 0 = D against H ′ : d 6= 0, D = 0 consists in rejecting H

whenever Q
˜
(T )
g (ϑ̂(T ), Σ̂(T )) exceeds the (1 − z)-quantile of a chi-square distribution

with p − r0 degrees of freedom. That test is parametrically efficient under radial
density f = g.

Proof. Part (i) follows immediately from Proposition 3.1(ii). Part (ii) follows from an
application of Le Cam’s third lemma as in Proposition 3.1(iii). Note that, without loss
of generality, we may assume B = 0, as the score associated with B depends on α′Wφ,
which is independent of [(Ip − Pα)α⊥]

′
Wφ. Thus, applying Le Cam’s third lemma as in

Theorem 6.6 in Van der Vaart (2000) and using Girsanov’s theorem, then leads to the
same distribution under the null as under local alternatives generated by B since the
sharp bracket of the score for B and [(Ip − Pα)α⊥]

′
Wφ vanishes. As a result, we obtain,

for the asymptotic mean, under Pϑ(T );Σ;f , of [(Ip − Pα)α⊥]
′ Σ−1/2S

˜
(T )
g (ϑ; Σ),

1

12p
Ip(f, g) |CΓ,Πµ|2 [(Ip − Pα)α⊥]

′
Σ−1(αb + α⊥d)

=
1

12p
Ip(f, g) |CΓ,Πµ|2 [(Ip − Pα)α⊥]

′
Σ−1α⊥d.

Part (iii) is a consequence of Proposition 3.1(iii)-(v), due to the premultiplication

of S
˜
(T )
g (ϑ; Σ) by [(Ip − Pα)α⊥]

′ Σ−1/2. More precisely, the shift in (3.8) vanishes with

respect to the local parameter B as [(Ip − Pα)α⊥]
′ Σ−1α = 0. Shifts due to d and D are

not possible, as a cointegrating rank r0 is imposed as a constraint in the construction of
the estimator. Concerning the remaining local parametersm, G, A, and b, premultiplying
the shift (3.6) by [(Ip − Pα)α⊥]

′
Σ−1/2 yields zero as well. Finally, Part (iv) follows from

the standard construction of (conditionally) most stringent tests in LAN experiments
with nuisance parameters using Lemma 4.1 and the observation that, in view of Part (iii),
equally stringent tests can be constructed when Σ and B are unknown.

Remark 4.2. If the reduced rank regression method is used, as in Johansen (1995), to

estimate ϑ under the null, the rank-based test statistics Q
˜
(T )
g (ϑ̂(T ), Σ̂(T )) are invariant

with respect to non-singular linear transformations of the data.

The rank-based test statistic Q
˜
(T )
g (ϑ,Σ) in Proposition 4.2 has several quite desirable

properties. First of all, it is exactly distribution-free under the null, due to its dependence

on the innovation ranks only. In particular, note that any scalar factor in the innovation

scatter matrix Σ would cancel out of the statistic. Also, the statistic does not depend on

the versions chosen for α and β or α⊥ and β⊥. As a result, this statistic has a constant size

over the null hypothesis. This result carries over to the asymptotic size when considering

the aligned-rank version Q
˜
(T )
g (ϑ̂(T ), Σ̂(T )). Note that the actual radial density f needs
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not be estimated for this.

The local and asymptotic power of the test, determined by the noncentrality param-

eter (4.4), does depend on the actual underlying density f , the scatter matrix Σ, the

drift CΓ,Πµ and the column spaces of α and α⊥. Again, this asymptotic power result is

not affected by the estimation of ϑ and Σ (under Assumptions 4 and 6). The power of the

test gets larger as the reference density g gets closer, as measured by Ip(f, g), to the actual
density f . Also, the power increases with larger values of |CΓ,Πµ|. For CΓ,Πµ = 0, the test

has asymptotically no power at the rate T 3/2 in the local alternatives we consider—but

note that no test ever would. However, it may very well have power against alternatives

at rate T .

Part (iv) of Proposition 4.2 asserts that, for well-chosen reference density, the rank-

based test achieves the parametric lower bound in case CΓ,Πµ 6= 0. In that case, the

limiting experiment (still, with B = 0 = D) is LAN, so that the concept of efficiency is

well defined. The notion that the power of the rank test increases as g gets closer tof

suggests the use of a pre-estimated density f̂ instead of the fixed reference density g.

This idea has been pursued in other contexts, see, e.g., Hallin and Werker (2003), and is

equally applicable in the present setting. Incidentally this shows, as was to be expected,

that the inference problem is adaptive with respect to f as well.

Quite remarkably, the dependence on f of local powers (the noncentrality parame-

ters (4.4)) is entirely characterized by the scalar cross-information quantity Ip(f, g) de-
fined in (3.7). Those cross-information quantities are exactly the same as in the location

problems considered in Hallin and Paindaveine (2002a). As a result, the Chernoff-Savage

property established in their Proposition 6 also holds here for the normal-score or van

der Waerden version of the test described in Proposition 3.1. The latter relies on the

quadratic form Q
˜
(T )
φ (ϑ̂(T ), Σ̂(T )) based on S

˜
(T )
φ (ϑ̂(T ), Σ̂(T )), where

S
˜
(T )
φ (ϑ; Σ) := T−1/2

T∑

t=1

(
t

T + 1
− 1

2

)
Ut(ϑ; Σ)

(
F−1
χ2
p

(R(T )
t (ϑ; Σ)

T + 1

))1/2
(4.5)

(here, Fχ2
p
stands for the chi-square distribution function with p degrees of freedom).

This means that the asymptotic relative efficiencies under radial density f (AREf ), with

respect to the pseudo- or quasi-Gaussian methods (based on Proposition 4.3 below), of

the van der Waerden rank-based tests (based on (4.5)), are always larger than or equal
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to one, irrespective of the actual unknown radial density f ; equality is achieved in the

Gaussian case only, that is, for Gaussian f, meaning a root chi-square (p degrees of

freedom) radial density f .

4.3. Optimal Gaussian tests

Although we throughout avoid Gaussian assumptions and emphasize the nonparamet-

ric nature of the problem, Gaussian procedures—more precisely, the pseudo- or quasi-

Gaussian ones—remain a classical benchmark. Particularizing Lemma 4.1 to the case of

a Gaussian f immediately yields a parametric Gaussian version of Proposition 4.2, with

an optimal Gaussian test of the Lagrange multiplier type. The following proposition

provides a description of that test and summarizes its properties. Proofs are a simplified

version of those of the previous section (no f -dependent asymptotic representation of the

test statistic is needed here), and details are left to the reader.

Proposition 4.3. Let ϑ ∈ Θ be such that r = r0, CΓ,Πµ 6= 0, Σ > 0, and assume that
Assumption 3 holds.

(i) Consider the Gaussian case f(e) = (2π)−p/2|Σ|−1/2 exp(− 1
2‖e‖2Σ), that is,

f(z) = 21−p/2Γ−1(p/2) exp(−z2/2) and φf (z) = z. (4.6)

Then, the efficient central sequence (4.2) of Lemma 4.1(ii) becomes

∆
(T )⋆
d† = |CΓ,Πµ|2 [(Ip − Pα)α⊥]

′
Σ−1/2S

(T )
† , (4.7)

with

S
(T )
† := S

(T )
† (ϑ,Σ) := T−1/2

T∑

t=1

( t

T + 1
− 1

2

)
Σ−1/2ǫt(ϑ).

Consider the quadratic form

Q
(T )
† (ϑ,Σ) := 12S

(T )
† (ϑ,Σ)′Σ−1/2

[
(Ip− Pα)α⊥

][
α
′
⊥

(
Σ−1− Σ−1

α
(
α
′Σ−1

α
)−1

α
′Σ−1

)
α⊥

]−1

×
[
(Ip − Pα)α⊥

]′
Σ−1/2

S
(T )
† (ϑ,Σ), (4.8)

with Q
(T )
† (ϑ,Σ) = 12

∣∣∣S(T )
† (ϑ,Σ)

∣∣∣
2

in case r0 = 0. Then,

(ii) for any f ∈ F2, Q
(T )
† (ϑ,Σ) under P

(T )
ϑ;Σ;f has an asymptotic χ2

p−r0 distribution (this

distribution is exact for f given in (4.6));

(iii) under Pϑ(T );Σ;f , where ϑ
(T ) is as in (2.1)–(2.3) with D = 0 and f ∈ F2, Q

(T )
† (ϑ,Σ)

has a limiting non-central χ2
p−r0 distribution with noncentrality parameter

I2
p(f, g)

12p2
|CΓ,Πµ|

4
d
′
α
′
⊥Σ

−1
[
(Ip− Pα)α⊥

][
α
′
⊥

(
Σ−1− Σ−1

α
(
α
′Σ−1

α
)−1

α
′Σ−1

)
α⊥

]−1
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×
[
(Ip − Pα)α⊥

]′
Σ−1

α⊥d, (4.9)

for r0 > 0, and
(
I2
p(f, g)/12p

2
)
|CΓ,Πµ|4 ‖d‖2Σ in case r0 = 0;

(iv) the limiting χ2
p−r0 and non-central χ2

p−r0 distributions in (ii) and (iii) remain

asymptotically valid for Q
(T )
† (ϑ̂(T ), Σ̂(T )), where the estimators Σ̂(T ) and ϑ̂(T ) sat-

isfy Assumptions 4 and 6, respectively, and the constraint that r = r0;

(v) when CΓ,Πµ 6= 0, the Gaussian test rejecting H whenever Q
(T )
† (ϑ̂(T ), Σ̂(T )) exceeds

the (1 − z)-quantile of a chi-square distribution with p − r0 degrees of freedom is
locally and asymptotically z-level most stringent, and reaches parametric efficiency,
against alternatives of the local form H ′ : d 6= 0, D = 0 with Gaussian radial
density f (4.6).

The tests described in Part (v) of Proposition 4.3 are Lagrange multiplier counter-

parts of Johansen’s likelihood ratio based tests (Johansen (1991), Johansen (1995)); both

qualify as pseudo-Gaussian tests, as their validity extends to all elliptical radial densities

g with finite second-order moments.

5. Monte Carlo study

This section reports the results of a small Monte Carlo study to corroborate our asymp-

totic analysis and to assess the finite-sample performances of the pseudo-Gaussian statis-

tic and the proposed rank-based statistics. We compare their performances to those of

Johansen’s LR-based tests, i.e., the maxeig (maximum eigenvalue) and the trace test.

These LR-based tests are often used in empirical work and, as documented by Hubrich,

Lütkepohl, and Saikkonen (2001), have comparatively good performances. The study is

implemented in MATLAB 7.14 and the code is available upon request. We use reduced-

rank regression8 to determine the residuals and to estimate α. The pseudo-Gaussian

test uses the empirical covariance matrix of the residuals to estimate Σ and the rank-

based tests use Tyler’s estimator of scatter9. Throughout we will use a 5% level. For

the pseudo-Gaussian statistic and the rank-based tests we use the critical values implied

by their asymptotic χ2-distributions and for the maxeig and trace test we use Matlab’s

tabulated values (computed using methods described in MacKinnon, Haug, and Michelis

(1999)).

8We use MATLAB’s Econometrics Toolbox to compute the reduced-rank regression estimators as
well as the maxeig and trace statistics.

9The iterative scheme of Randles (2000, p.1267) is used to compute Tyler’s estimator of scatter (using
the Frobenius norm and 10−10 as tolerance).
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The DGPs we consider are based on Hubrich, Lütkepohl, and Saikkonen (2001) and

Toda (1994). These DGPs are described by

∆Xt =



0(p−1)×1

1



+



 φIr 0r×(p−r)

0(p−r)×r 0(p−r)×(p−r)



Xt−1 + εt, (5.1)

where φ is a scalar. Note that α′ =
(
φIr 0r×(p−r)

)
and β′ =

(
Ir 0r×(p−r)

)
. Also

note that, for φ 6= 0, the cointegrating rank of {Xt} equals r. These DGPs can be

considered as ‘canonical forms’, since interesting models can be obtained by nonsingular

linear transformations of the data; see Hubrich, Lütkepohl, and Saikkonen (2001) and

Toda (1994) for details. Restricting to the canonical forms is legitimate because the

pseudo-Gaussian and the rank-based tests we consider, as well as the LR-based maxeig

and trace test, are all invariant with respect to such transformations.

In the simulation study we consider p ∈ {2, 3, 5} and φ = −.3. As innovation distri-

butions we consider N (0,Σp), t3(Σp) and t10(Σp), where Σp ∈ {Ip,Σp,c}. The matrices

Σp,c, yielding correlation between the components of εt, are given by

Σ2,c =



1 0.8

1



 , Σ3,c =




1 0.4 0.8

1 0

1


 , Σ5,c =




1 0.4 0.8 0 0

1 0 0 0

1 0 0

1 0

1




.

The choices for p = 2 and p = 3 are taken from Hubrich, Lütkepohl, and Saikkonen

(2001) (p = 5 was not considered in that study). Also in line with the setup in Hubrich,

Lütkepohl, and Saikkonen (2001), we use X0 = 0p×1 as initial values and use 50 periods

to ‘warm up’ the process (so we use X51, . . . , X50+T as observations). As sample sizes

we consider T ∈ {100, 250, 500}. To conserve space we only present the results for p = 5

with Σ5 = Σ5,c in the main text; the results for p = 2, 3 and p = 5 with Σ5 = I5 are

organized in Appendix D.

To illustrate the convergence to a χ2-distribution under the null hypothesis, Fig-

ure 1 presents a scaled histogram of simulated values of the rank-based tests Q
˜
(T )
g ,

g ∈ {φ, t3, t10}, under (5.1) for p = 5, r0 = 0, Σ5 = I5, and T = 100 along with

their limiting χ2
5-density. Table 1 presents the size of the pseudo-Gaussian test Q

(T )
† ,
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Figure 1: Simulated (25,000 replications) finite-sample, T = 100, distributions of the rank-tests (4.3),
g ∈ {φ, t3, t10}, for p = 5, r0 = 0, Σ5 = I5 compared to their limiting χ2

5-distribution.

the sizes of the rank-based tests Q
˜
(T )
g , g ∈ {φ, t3, t10}, as well as the sizes of the maxeig

and trace tests under (5.1) for p = 5, r0 ∈ {0, . . . , p − 1} and Σ5 = Σ5,c. The sizes for

Σ5 = I5 are reported in Table 4 in Appendix D. The size of the rank-based statistics is

indeed more stable than for the classical maxeig and trace statistics. For smaller sample

size (T = 100), the rank-based statistics are somewhat undersized for larger r0, while

the classical counterparts are somewhat oversized for small r0. For larger sample sizes,

all statistics are well sized.

To assess the finite-sample powers of the tests, we consider alternatives of the form10

Π
(T )
h = Π+ T−3/2α⊥d(CΓ,Πµ)

′, (5.2)

with d = −h1(p−r)×1 in (2.2). From Proposition 4.2 we know that, under these local

alternatives, the rank tests asymptotically follow a non-central χ2-distribution. As an

illustration of this weak convergence result, Figure 2 compares the finite-sample distribu-

tion of the rank-based test Q
˜
(T )
φ under (5.2) with h = 3 for p = 5, r0 = 0, f = N (0, I5),

and T = 500, to the theoretically appropriate non-central χ2-distribution. For complete-

ness, we also plot the limiting null distribution once more. Again, we conclude that our

asymptotic analysis provides a close approximation to these finite sample experiments.

Figures 3-7 present the power curves of the various tests for p = 5 and r0 =

0, . . . , 4. Each figure shows the power, as function of h in (5.2), for the sample sizes

T ∈ {100, 250, 500} and the innovation distributions f ∈ {N (0,Σ5c), t3(Σ5c), t10(Σ5c)}.
The results for the case Σ5 = I5 are presented in Figures 18-22 in Appendix D. As

mentioned before this appendix also contains the simulation results for p = 2, 3.

First of all we note that the simulation results corroborate the asymptotic result that

the power of the rank-based tests is maximal in case f = g. The figures also show that

10We use the version α′
⊥ =

(

0(p−r)×r I(p−r)×(p−r)

)

.
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Table 1: Simulated sizes (25,000 replications) of the maxeig test, trace test, pseudo-Gaussian test Q
(T )
†

and the rank-based tests (4.3), g ∈ {φ, t3, t10}, under (5.1) for p = 5, r0 ∈ {0, . . . , 4}, φ = −0.3,
f ∈ {N (0,Σ5,c), t3(Σ5,c), t10(Σ5,c)}. Clearly, for r0 = p− 1 the maxeig and trace tests are identical.

Sample size and innovation distribution
Test T = 100 T = 250 T = 500

N (0,Σ5,c) t3(Σ5,c) t10(Σ5,c) N (0,Σ5,c) t3(Σ5,c) t10(Σ5,c) N (0,Σ5,c) t3(Σ5,c) t10(Σ5,c)

r0 = 0
maxeig 0.064 0.083 0.065 0.053 0.065 0.055 0.049 0.061 0.054
trace 0.071 0.082 0.072 0.058 0.063 0.058 0.054 0.059 0.055

Q
(T )
†

0.044 0.038 0.043 0.047 0.047 0.047 0.048 0.047 0.048

Q
˜

(T )
φ 0.044 0.043 0.043 0.047 0.049 0.046 0.047 0.048 0.048

Q
˜

(T )
t3

0.045 0.042 0.046 0.050 0.047 0.047 0.048 0.048 0.049

Q
˜

(T )
t10

0.047 0.045 0.045 0.049 0.048 0.047 0.047 0.047 0.049

r0 = 1
maxeig 0.072 0.083 0.077 0.057 0.066 0.062 0.054 0.061 0.055
trace 0.082 0.091 0.084 0.061 0.070 0.065 0.054 0.060 0.057

Q
(T )
†

0.035 0.033 0.033 0.042 0.041 0.043 0.046 0.046 0.046

Q
˜

(T )
φ 0.036 0.041 0.034 0.042 0.046 0.044 0.044 0.048 0.047

Q
˜

(T )
t3

0.039 0.049 0.040 0.045 0.049 0.045 0.047 0.050 0.047

Q
˜

(T )
t10

0.037 0.045 0.037 0.043 0.049 0.045 0.045 0.049 0.048

r0 = 2
maxeig 0.029 0.040 0.031 0.053 0.060 0.054 0.051 0.056 0.052
trace 0.036 0.047 0.039 0.053 0.061 0.056 0.052 0.054 0.053

Q
(T )
†

0.022 0.021 0.022 0.038 0.039 0.041 0.044 0.044 0.045

Q
˜

(T )
φ 0.021 0.028 0.021 0.038 0.044 0.040 0.043 0.047 0.044

Q
˜

(T )
t3

0.030 0.044 0.034 0.041 0.051 0.043 0.045 0.051 0.046

Q
˜

(T )
t10

0.024 0.034 0.026 0.039 0.048 0.043 0.043 0.050 0.045

r0 = 3
maxeig 0.020 0.024 0.019 0.048 0.054 0.047 0.050 0.053 0.049
trace 0.021 0.027 0.021 0.049 0.054 0.048 0.049 0.054 0.049

Q
(T )
†

0.017 0.018 0.018 0.039 0.038 0.038 0.042 0.045 0.046

Q
˜

(T )
φ 0.016 0.022 0.017 0.038 0.041 0.039 0.042 0.046 0.045

Q
˜

(T )
t3

0.025 0.036 0.027 0.041 0.048 0.042 0.046 0.049 0.045

Q
˜

(T )
t10

0.019 0.026 0.020 0.039 0.043 0.039 0.044 0.047 0.045

r0 = 4
maxeig 0.040 0.047 0.038 0.044 0.048 0.045 0.046 0.049 0.050
trace 0.040 0.047 0.038 0.044 0.048 0.045 0.046 0.049 0.050

Q
(T )
†

0.026 0.025 0.024 0.040 0.040 0.040 0.044 0.046 0.047

Q
˜

(T )
φ

0.024 0.026 0.023 0.039 0.042 0.039 0.043 0.047 0.047

Q
˜

(T )
t3

0.031 0.039 0.032 0.041 0.046 0.044 0.045 0.048 0.048

Q
˜

(T )
t10

0.026 0.036 0.026 0.038 0.044 0.042 0.045 0.048 0.047
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Figure 2: Simulated (25,000 replications) finite-sample, T = 500, distribution of the Gaussian rank-

based test (4.3), i.e., g = φ, under the alternative Π
(T )
3 for p = 5, r0 = 0 and f = N (0, I5), compared

to its limiting distribution, χ2
5, under the null hypothesis (dashed line) and its limiting distribution,

non-central χ2
5 with non-centrality parameter 15/4, under the alternative (solid line).

the Gaussian rank-based test dominates the pseudo-Gaussian test, except for Gaussian

innovations for which they are equivalent. This is in line with the asymptotic Chernoff-

Savage result of Section 4.2. This motivates once more our interest in rank-based tests.

If we compare the performances of the pseudo-Gaussian test and the rank-based tests to

the performances of the maxeig and trace test, we can make the following observations.

For T = 250, 500 the pseudo-Gaussian test and the rank-based tests yield substantial

improvements to the maxeig test and the trace test, while for T = 100 there is no

uniform conclusion as the maxeig test and trace test tend to perform better for large

values of h. For r0 = p−1 the pseudo-Gaussian test and rank-based tests do not perform

very well for small sample sizes. Summarizing, we conclude that no uniformly valid

conclusions are possible and that the rank-based tests, which are easy to compute, nicely

complement the maxeig and trace test and thus are a useful additional toolkit to the

econometrician.
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Figure 3: Simulated (2,500 replications) finite-sample powers of the maxeig test, the trace

test, the pseudo-Gaussian test and the rank-based tests (4.3), g ∈ {φ, t3, t10}, for testing
H : r = 0 versus H′ : r = 1 under (5.2), for h ∈ {0, 2.5, 5, . . . , 50}, p = 5, T ∈ {100, 250, 500}, and
f ∈ {N (0,Σ5,c), t3(Σ5,c), t10(Σ5,c)} .
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Figure 4: Simulated (2,500 replications) finite-sample powers of the maxeig test, the trace

test, the pseudo-Gaussian test and the rank-based tests (4.3), g ∈ {φ, t3, t10}, for testing
H : r = 1 versus H′ : r = 2 under (5.2), for h ∈ {0, 2.5, 5, . . . , 50}, p = 5, T ∈ {100, 250, 500}, and
f ∈ {N (0,Σ5,c), t3(Σ5,c), t10(Σ5,c)} .
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Figure 5: Simulated (2,500 replications) finite-sample powers of the maxeig test, the trace

test, the pseudo-Gaussian test and the rank-based tests (4.3), g ∈ {φ, t3, t10}, for testing
H : r = 2 versus H′ : r = 3 under (5.2), for h ∈ {0, 2.5, 5, . . . , 50}, p = 5, T ∈ {100, 250, 500}, and
f ∈ {N (0,Σ5,c), t3(Σ5,c), t10(Σ5,c)} .
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Figure 6: Simulated (2,500 replications) finite-sample powers of the maxeig test, the trace

test, the pseudo-Gaussian test and the rank-based tests (4.3), g ∈ {φ, t3, t10}, for testing
H : r = 3 versus H′ : r = 4 under (5.2), for h ∈ {0, 2.5, 5, . . . , 50}, p = 5, T ∈ {100, 250, 500}, and
f ∈ {N (0,Σ5,c), t3(Σ5,c), t10(Σ5,c)} .
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Figure 7: Simulated (2,500 replications) finite-sample powers of the maxeig test, the trace

test, the pseudo-Gaussian test and the rank-based tests (4.3), g ∈ {φ, t3, t10}, for testing
H : r = 4 versus H′ : r = 5 under (5.2), for h ∈ {0, 2.5, 5, . . . , 50}, p = 5, T ∈ {100, 250, 500}, and
f ∈ {N (0,Σ5,c), t3(Σ5,c), t10(Σ5,c)} .
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6. Discussion and Conclusion

We analyze asymptotically optimal testing of the cointegrating rank in Error Correction

Models. We show that, in applications where non-zero trends could possibly be expected,

standard Locally Asymptotically Normal behavior can be exploited. We propose rank-

based versions of the optimal tests to exploit their advantages, in particular, their very

stable size and their QMLE property that extends beyond Gaussian reference densities.

By fully characterizing the possible limiting experiments that arise in the Error Cor-

rection Model, interesting avenues for future research are discovered. In particular, with

respect to the cointegrating vectors, the model is only Locally Asymptotically Mixed

Normal in the absence of a linear time trend. Questions on optimal testing for these

experiments remain largely unaddressed.
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Hájek, J. and Z. Šidák (1967). Theory of Rank Tests. Academic Press, New York.
Hall, P. and C.C. Heyde (1980). Martingale limit theory and its application. Academic Press, New

York.
Hallin, M., H. Oja, and D. Paindaveine (2006). Semiparametrically efficient rank-based inference for

shape. II. Optimal R-estimation of shape. The Annals of Statistics 34, 2757–2789.
Hallin, M. and D. Paindaveine (2002a). Optimal tests for multivariate location based on interdirections

and pseudo-Mahalanobis ranks, The Annals of Statistics 30, 1103–1133.
Hallin, M. and D. Paindaveine (2002b). Optimal procedures based on interdirections and pseudo-

Mahalanobis ranks for testing multivariate elliptic white noise against ARMA dependence, Bernoulli

8, 787–815.
Hallin, M. and D. Paindaveine (2005a). Asymptotic linearity of serial and nonserial multivariate signed

rank statistics, Journal of Statistical Planning and Inference 136, 1–32.
Hallin, M. and D. Paindaveine (2005b). Affine-invariant aligned rank tests for the multivariate general

linear model with ARMA errors, Journal of Multivariate Analysis 93, 122–163.
Hallin, M. and D. Paindaveine (2006a). Asymptotic linearity of serial and nonserial multivariate signed

rank statistics, Journal of Statistical Planning and Inference 136, 1–32.
Hallin, M., D. Paindaveine, and T. Verdebout (2010). Optimal rank-based testing for principal

components. The Annals of Statistics 38, 3245–3299.
Hallin, M., D. Paindaveine, and T. Verdebout (2012). Optimal rank-based tests for common prin-

cipal components. Bernoulli to appear.
Hallin, M., R. van den Akker, and B.J.M. Werker (2011). A class of simple semiparametrically

efficient rank-based unit root tests. Journal of Econometrics 163, 200–214.
Hallin, M. and B.J.M. Werker (2003). Semiparametric efficiency, distribution-freeness, and invari-

ance. Bernoulli 9, 137–165.
Hansen, B.E. (1992). Convergence to stochastic integrals for dependent heterogeneous processes, Econo-

metric Theory 8, 489–500.
Hodgson, D.J. (1998a). Adaptive estimation of cointegrating regressions with ARMA errors, Journal

of Econometrics 85, 231–267.
Hodgson, D.J. (1998b). Adaptive estimation of error correction models, Econometric Theory 14, 44–69.
Hubrich, K., H. Lütkepohl, and P. Saikkonen (2001). A review of systems cointegration tests,

Econometric Reviews 20, 247–318.
Jacod, J. and A.N. Shiryaev (2002). Limit Theorems for Stochastic Processes. Berlin: Springer.
Jansson, M. (2008). Semiparametric power envelopes for tests of the unit root hypothesis, Econometrica

76), 1103–1142.
Jeganathan, P. (1995). Some aspects of asymptotic theory with applications to time series models,

Econometric Theory 11, 818–887.
Jeganathan, P. (1997). On asymptotic inference in linear cointegrated time series systems, Econometric

Theory 13 692–745.

38



Johansen, S. (1988). Statistical analysis of cointegration vectors, Journal of Economic Dynamics and
Control 12, 231-254.

Johansen, S. (1991). Estimation and hypothesis testing of cointegration vectors in Gaussian vector
autoregressive models, Econometrica 59, 1551–1580.

Johansen, S. (1995). Likelihood-based inference in cointegrated vector auto-regressive models. New
York: Oxford University Press.

Johansen, S. and K. Juselius (1990). Maximum likelihood estimation and inference on cointegration -
with applications to the demand for money, Oxford Bulletin of Economics and Statistics 52, 169–210.

Juselius, K., (2006). The cointegrated VAR model: methodology and applications. Oxford: Oxford
University Press.

Karatzas, I. and S.E. Shreve (1991). Brownian motion and stochastic calculus. Springer-Verlag, second
edition.

Kreiss, J-P. (1987). On adaptative estimation in stationary ARMA processes, Annals of Statistics 15,
112–133.

Le Cam, L. (1986). Asymptotic methods in statistical decision theory. New York: Springer-Verlag.
Le Cam, L. and G.L. Yang (1990). Asymptotics in statistics - some basic concepts. New York: Springer.
Lehmann, E.L. and J.P. Romano (2005). Testing statistical hypothesis. Springer.
MacKinnon, J. G., A. A. Haug, and L. Michelis (1999). Numerical distribution functions of Likelihood

Ratio tests for cointegration, Journal of Applied Econometrics 14, 563–577.
Magnus, J.R. and H. Neudecker (1988). Matrix Differential Calculus with Applications in Statistics

and Econometrics. New York: John Wiley & Sons.
Müller, U.K. (2012). Efficient tests under a weak convergence assumption, Econometrica 79, 395–435.
Nielsen, B. (2009). Test for cointegration rank in general vector autoregressions, Working paper.
Phillips, P.C.B. (1991). Optimal inference in cointegrated systems, Econometrica 59, 283–306.
Ploberger, W. and P.C.B. Phillips (2012). Optimal estimation under nonstandard conditions, Journal

of Econometrics 169, 258–265.
Randles, R.H. (2000). A simpler, affine-invariant, multivariate, distribution-free sign test, Journal of

the American Statistical Association 95, 1263–1268.
Reinsel, G.C. and S.K. Ahn (1992). Vector AR models with unit roots and reduced rank structure:

estimation, likelihood ratio test, and forecasting, Journal of Time Series Analysis 13, 353–375.
Saikkonen, P. and H. Lütkepohl (2000). Testing for the cointegrating rank of a VAR process with an

intercept, Econometric Theory 16, 373–406.
Stock, J.H. (1987). Asymptotic properties of least squares estimators of cointegrating vectors, Econo-

metrica 55 (1987), 1035–1056.
Strasser, H. (1985). Mathematical Theory of Statistics: Statistical Experiments and Asymptotic De-

cision Theory. Walter de Gruyter.
Toda, H.Y. (1994). Finite sample properties of likelihood ratio tests for cointegrating ranks when linear

trends are present, Review of Economics and Statistics 76, 66–79.
Tyler, D.E. (1987). A distribution-free M-estimator of multivariate scatter, The Annals of Statistics

15, 234–251.
Van der Vaart, A.W. (1988). Statistical Estimation in Large Parameter Spaces. CWI tract 44. Ams-

terdam: CWI.
van der Vaart, A.W. (2000). Asymptotic statistics. Cambridge: Cambridge University Press.

39



Technical Appendix to “Rank-based Tests of the

Cointegrating Rank in Semiparametric Error

Correction Models”

A. Proof of Proposition 2.1

In this appendix we present the proof of Proposition 2.1. Section A.1 introduces the

limiting Brownian motion corresponding to the partial sum processes (2.4)-(2.6) and

exploits this Brownian motion to provide the full definition of J . And Section A.2

contains the proof of Proposition 2.1. This proof exploits Proposition C.4 which provides

high-level conditions for quadratic expansions of log likelihood ratios.

Throughout this appendix we evaluate, unless mentioned otherwise, expectations,

OP ’s, and oP ’s under Pϑ;Σ,f . We repeatedly use the filtrations F(T ) :=
(
F (T )

u , u ∈ [0, 1]
)
,

T ∈ N, defined by F (T )
u := σ(εt, t ∈ N : t ≤ [uT ]), u ∈ [0, 1]. The angle-bracket

process
〈
A

(T )
i , A

(T )
j

〉
(u) and the straight-bracket process

[
A

(T )
i , A

(T )
j

]
(u) are now well-

defined for all F(T )-adapted locally square-integrable martingales and semimartingales

A
(T )
i , respectively (see, e.g., Jacod and Shiryaev (2002)). If A

(T )
i , i = 1, 2, are square-

integrable martingales of the form A
(T )
i (u) =

∑[uT ]
t=1 I

(i)
Tt with I

(i)
Tt Ft-measurable, we have[

A
(T )
1 , A

(T )
2

]
(u) =

∑[uT ]
t=1 I

(1)
Tt I

(2)′

Tt and
〈
A

(T )
1 , A

(T )
2

〉
(u) =

∑[uT ]
t=1 E

[
I
(1)
Tt I

(2)′

Tt | Ft−1

]
. Re-

call that for a square-integrable martingale with continuous sample paths the angle-

brackets and straight-brackets coincide.

A.1. Limiting behavior partial sum processes

First we note that, under Assumptions 1-3 with ϑ ∈ Θ and f ∈ F2, the vector autore-

gressive process V ′
t = ((β′Xt)

′,∆X ′
t, . . . ,∆X

′
t−k+2) from the Granger-Johansen repre-

sentation (1.4) can be given a stationary starting value under Pϑ;Σ,f . Let us denote the

probability measure under which {Vt} is stationary by P⋆
ϑ;Σ,f .

Let m = p+p+(k− 1)p2+p2 and summarize the partial sum processes (2.4)-(2.6) in

the process W(T ) taking values in DRm [0, 1], i.e. W(T )′ = (W
(T )′
ǫ ,W

(T )′
φ ,W

(T )′
∆X⊗φ,W

(T )′
Y ⊗φ)

with W
(T )′
∆X⊗φ = (W

(T )′
∆X⊗φ,1, . . . ,W

(T )′
∆X⊗φ,k−1).

Let W ′ = (W ′
ǫ ,W

′
φ,W

′
∆X⊗φ,W

′
Y ⊗φ) denote a m-variate Brownian motion with vari-

1



ance per unit of time given by:

Var


Wǫ(1)

Wφ(1)


 =




1
p

∫∞
0
rp+1f(r)dr Σ Ip

Ip
1
pIp(f)Σ−1


 ,

Var



W∆X⊗φ(1)

WY⊗φ(1)



 =
1

p
Ip(f)E⋆

ϑ;Σ,f




∆X0

...

∆X2−k

Y0







∆X0

...

∆X2−k

Y0




′

⊗ Σ−1,

and

Cov







W∆X⊗φ

WY ⊗φ



 ,



Wǫ(1)

Wφ(1)







 =



1(k−1)×1 ⊗ CΓ,Πµ

E⋆
ϑ;Σ,fY0



⊗
(
Ip

1
pIp(f)Σ−1

)
.

The following lemma shows that W(T ) weakly converges to W . The proof, an applica-

tion of a functional central limit theorem for arrays of martingale differences, is included

for completeness.

Lemma A.1. Let Assumptions 1-3 hold, ϑ ∈ Θ, and f ∈ F2. Then we have, in DRm [0, 1]

and under P
(T )
ϑ;Σ,f ,

W(T ) ⇒ W (A.1)

and, still under Pϑ;Σ,f , we have

〈
W(T ),W(T )

〉
(1) =

[
W(T ),W(T )

]
(1) + oP (1) = Var (W(1)) + oP (1). (A.2)

Proof. Introduce U
(1)
t = (ε′t, (Σ

−1/2Uε
t φf (‖εt‖Σ))′)′, U (2)

t = vt−1 ⊗ Σ−1/2Uε
t φf (‖εt‖Σ)

with vt−1 = (∆X ′
t−1, . . . ,∆X

′
t−k+1, Y

′
t−1)

′. Note that W(T ) = (W(T )′
1 ,W(T )′

2 )′ with

W(T )
i (u) = T−1/2

∑[uT ]
t=1 U

(i)
t and partition W = (W ′

1,W ′
2)

′ accordingly. An application
of Theorem VIII.3.33 in Jacod and Shiryaev (2002) shows that (A.1) and (A.2) hold if,
for all u ∈ [0, 1], i, j ∈ {1, 2} and δ > 0,

〈
W(T )

i ,W(T )
j

〉
(u) =

1

T

[uT ]∑

t=1

E
[
U

(i)
t U

(j)′
t | Ft−1

]
P→ uCov(Wi(1),Wj(1)) (A.3)

and

1

T

T∑

t=1

E

[∣∣∣U (i)
t

∣∣∣
2

1
{∣∣∣U (i)

t

∣∣∣ > δ
√
T
}∣∣∣∣Ft−1

]
P→ 0. (A.4)

2



We start with (A.3). Fix u ∈ [0, 1]. For i = j = 1 (A.3) is immediate from the weak
law of large numbers (using the independence of Uε

t and ‖εt‖Σ and using the equality
E‖εt‖Σφf (‖εt‖Σ) = p). For i = j = 2 we have

1

T

[uT ]∑

t=1

E
[
U

(2)
t U

(2)′
t | Ft−1

]
=

1

p
Ip(f)


 1

T

[uT ]∑

t=1

vt−1v
′
t−1


 ⊗ Σ−1

and for i = 2 and j = 1 we obtain

1

T

[uT ]∑

t=1

E
[
U

(2)
t U

(1)′
t | Ft−1

]
=

1

T

[uT ]∑

t=1

vt−1 ⊗ Cov

(
Wφ(1),

(
Wǫ(1)
Wφ(1)

))
.

Because {vt} is a stable vector autoregressive process of the order 1 with finite second
moments we have

1

T

[uT ]∑

t=1

vt−1
P→ uE⋆

ϑ;Σ,f




∆X0

...
∆X2−k

Y0


 and

1

T

[uT ]∑

t=1

vt−1v
′
t−1

P→ uE⋆
ϑ;Σ,f




∆X0

...
∆X2−k

Y0







∆X0

...
∆X2−k

Y0




′

.

Note that ∆Xt = CΓ,Πµ + CΓ,Πεt + ∆Yt. We thus have E⋆
ϑ;Σ,f∆Xt = CΓ,Πµ which

completes the verification of (A.3).
Next we verify (A.4). For i = 1 (A.4) is immediate (the L1 norm of the left-hand-side

converges to 0 by an application of the dominated convergence theorem). For i = 2 we
first introduce

φ(M) := E
∣∣∣Σ−1/2Uε

t φf (‖εt‖Σ)
∣∣∣
2

1
{∣∣∣Σ−1/2Uε

t φf (‖εt‖Σ)
∣∣∣ ≥M

}
(A.5)

and note that φ(M) → 0 as M → ∞ (this essentially is the argument for i = 1). This
yields

1

T

T∑

t=1

E

[∣∣∣U (2)
t

∣∣∣
2

1
{∣∣∣U (2)

t

∣∣∣ > δ
√
T
}∣∣∣∣Ft−1

]
≤ φ

(
δ
√
T

maxt=1,...,T |vt−1|

)
1

T

T∑

t=1

|vt−1|2 = oP (1),

as we already noted T−1
∑T

t=1 vt−1v
′
t−1 = OP (1) and as we have T−1/2maxt=1,...,T |vt−1| =

oP (1) (which follows from a combination of (A.4) with Lemma C.3). This concludes the
proof.

Next we use the Brownian motion W to provide the definition of J . To this end we
first introduce an auxiliary process ∆̃ by

∆̃(u) =




Wφ(u)
W∆X⊗φ(u)

(β′ ⊗ Ip)WY ⊗φ(u)
|CΓ,Πµ|

2
∫ u

0
sd(α′Wφ)(s)∫ u

0
(β′

⊥CΓ,ΠWǫ(s)⊗ Ir) d(α
′Wφ)(s)

|CΓ,Πµ|
2
∫ u

0
sd(α′

⊥Wφ)(s)∫ u

0
(β′

⊥CΓ,ΠWǫ(s)⊗ Ip−r)d(α
′
⊥Wφ)(s)




, u ∈ [0, 1],

3



which is adapted to the natural filtration generated by W . Note that ∆̃(1) = ∆. Now

we define J as

J := [∆̃, ∆̃](1).

Using standard calculus rules for quadratic variations we obtain the following represen-
tation of J :

J =
1

p
Ip(f)



j11 j12 ⊗ Σ−1α j12 ⊗ Σ−1α⊥

j22 ⊗ α′Σ−1α j22 ⊗ α′Σ−1α⊥

j22 ⊗ α′
⊥Σ

−1α⊥


 ,

with

j11 =



Ip 0 0
0 I(k−1)p2 0
0 0 β′ ⊗ Ip


Var




Wφ(1)
W∆X⊗φ(1)
WY ⊗φ(1)






Ip 0 0
0 I(k−1)p2 0
0 0 β′ ⊗ Ip




′

,

j22 =




1
3
|CΓ,Πµ|

4 |CΓ,Πµ|
2
(∫ 1

0
uWǫ(u)du

)′

C′
Γ,Πβ⊥

β′
⊥CΓ,Π

(∫ 1

0
Wǫ(u)W

′
ǫ(u)du

)
C′

Γ,Πβ⊥


 ,

and

j12 =




1
2
|CΓ,Πµ|

2
(∫ 1

0
Wǫ(u)du

)′

C′
Γ,Πβ⊥

1(k−1)×1 ⊗
1
2
|CΓ,Πµ|

2CΓ,Πµ 1(k−1)×1 ⊗ CΓ,Πµ⊗
(∫ 1

0
Wǫ(u)du

)′

C′
Γ,Πβ⊥

1
2
|CΓ,Πµ|

2β′E⋆
ϑ;Σ,fY0 β′E⋆

ϑ;Σ,fY0

(∫ 1

0
W ′

ǫ(u)C
′
Γ,Πβ⊥du

)


 .

Remark A.1. Note that only the blocks involving B or D are random. Also note that all
blocks involving b or d vanish in case |CΓ,Πµ| = 0.

A.2. Proof

To enhance readability, we split the proof into two parts. In Part A we show

(i) (∆
(T )
ϑ , J

(T )
ϑ ) ⇒ (∆, J);

(ii) E exp(h′∆− h′Jh/2) = 1,

and in Part B we show that (2.15) of Proposition 2.1, the quadratic expansion of the log

likelihood ratio, holds.
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Part A(i)

First we introduce auxiliary processes ∆̃(T ), T ∈ N, by11

∆̃(T )(u) =




W
(T )
φ (u)

W
(T )
∆X⊗φ(u)

(β′ ⊗ Ip)W
(T )
Y⊗φ(u)

|CΓ,Πµ|
2
∫ u

0
idT (s−)d(α′W

(T )
φ )(s)∫ u

0
(β′

⊥CΓ,ΠWǫ(s−)⊗ Ir) d(α
′W

(T )
φ )(s)

|CΓ,Πµ|
2
∫ u

0
idT (s−)d(α′

⊥W
(T )
φ )(s)∫ u

0
(β′

⊥CΓ,ΠWǫ(s−)⊗ Ip−r)d(α
′
⊥W

(T )
φ )(s)




, u ∈ [0, 1].

A combination of Lemma A.1 with Theorem 2.1 in Hansen (1992) (the conditions

are trivially met as W(T ) is a martingale with respect to F(T ) and the increments of

W
(T )
φ are i.i.d. with finite second moment) yields ∆̃(T ) ⇒ ∆̃ in DRm⋆ [0, 1], where m⋆

denotes the number of components of ∆̃(T ). Using this weak convergence, the identity

[A,B](u) = A(u)B(u)−A(0)B(0)−
∫ u

0
A(s−)dB(s)−

∫ u

0
B(s−)dA(s) and the continuous

mapping theorem in combination with Theorem 2.1 in Hansen (1992) (the condition

to this theorem is met as ∆̃(T ) is a martingale with respect to F(T ) and as we have
∑T

t=1 E|∆̃(T )(t/T )− ∆̃(T )((t− 1)/T )|2 = O(1)) yields,

(
∆̃(T )(1),

[
∆̃(T ), ∆̃(T )

]
(1)
)
⇒
(
∆̃,
[
∆̃, ∆̃

]
(1)
)
= (∆, J). (A.6)

A combination of (2.10)-(2.14), which represent the central sequence ∆
(T )
ϑ in terms of

(integrals with respect to) W(T ), with (A.6) and the continuous mapping theorem yields

∆
(T )
ϑ = ∆̃(T )(1) + oP (1). (A.7)

Introduce Z̃Tt = (Z̃
(1)′

Tt , Z̃
(2)′

Tt )′ by Z̃(1)
Tt = Z

(1)
Tt and

Z̃
(2)
Tt =

1√
T



 |CΓ,Πµ|2 t−1
T

β′
⊥
CΓ,ΠW

(T )
ǫ

(
t−1
T

)
.





Note that

〈∆̃, ∆̃〉(1) =
Ip(f)

p

T∑

t=1



Z̃

(1)
Tt Z̃

(1)′

Tt (ϑ)⊗Σ−1 Z̃
(1)
Tt Z̃

(2)′

Tt (ϑ)⊗ Σ−1α Z̃
(1)
Tt Z̃

(2)′

Tt (ϑ)⊗Σ−1α⊥

Z̃
(2)
Tt Z̃

(2)′

Tt (ϑ)⊗ α′Σ−1α Z̃
(2)
Tt Z̃

(2)′

Tt (ϑ)⊗ α′Σ−1α⊥

Z̃
(2)
Tt Z̃

(2)′

Tt (ϑ)⊗ α′
⊥Σ

−1α⊥


 .

11Recall that idT denotes the cadlag function idT (u) = [uT ]/T which converges to the identity id(u) =
u on [0, 1].
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In view of (A.6)-(A.7) and (2.8) the proof of Part A(i) is complete if we show

〈∆̃, ∆̃〉(1)−
[
∆̃, ∆̃

]
(1) = oP (1) (A.8)

and
T∑

t=1

Z̃TtZ̃
′
Tt −

T∑

t=1

ZTtZ
′
Tt = oP (1). (A.9)

Indeed (A.9) and (2.8) imply J
(T )
ϑ = 〈∆̃, ∆̃〉(1)+oP (1) and (A.7)-(A.8) yield

(
∆

(T )
ϑ , J

(T )
ϑ

)
=

(
∆̃(T )(1),

[
∆̃, ∆̃

]
(1)
)
+ oP (1).

We first consider (A.8). An application of Theorem 2.23 in Hall and Heyde (1980)

shows that (A.8) holds if, for all δ > 0, i = 1, 2 and compatible matrices M ,

T∑

t=1

E
[
|Z̃(i)

Tt ⊗MΣ−1/2Uε
t φf (‖εt‖Σ)|21{|Z̃(i)

Tt ⊗MΣ−1/2Uε
t φf (‖εt‖Σ)| > δ} | Ft−1

]
= oP (1).

(A.10)

We only show the result for i = 2, because for i = 1 we already obtained the result

for M = Ip in the proof of Lemma A.1 (as Z̃
(1)
Tt = Z

(1)
Tt ). We easily obtain, with φ as

defined in (A.5) and using the Frobenius matrix norm, that the left-hand-side of (A.10)

is bounded by

‖M‖2QTφ

(
δ
√
T

‖M‖√QT

)
,

with QT = |CΓ,Πµ|4 + p‖β′
⊥
CΓ,Π‖2 maxi=1,...,p ‖W (T )

ǫ,i ‖2∞. Since ‖W (T ),i
ǫ ‖∞ ⇒ ‖Wǫ,i‖∞,

by a combination of Lemma A.1 and the continuous mapping theorem, (A.10) follows.

Finally we demonstrate (A.9). Using Z̃
(1)
Tt = Z

(1)
Tt ,

∑T
t=1 Z

(1)
Tt Z

(1)′

Tt = OP (1) (estab-

lished in the proof of Lemma A.1) and the Cauchy-Schwarz inequality, it follows that it

is sufficient to show
T∑

t=1

(
Z̃

(2)
Tt Z̃

(2)′

Tt − Z
(2)
Tt Z

(2)′

Tt

)
= oP (1).

This easily follows by invoking the decomposition, implied by the Granger-Johansen

representation (1.4),

Z
(2)
Tt =



(CΓ,Πµ)
′
(

t−1
T 3/2CΓ,Πµ+ 1

T CΓ,ΠW
(T )
ǫ

(
t−1
T

)
+ 1

T 3/2 (Yt−1 + aµ,Γ,Π)
)

β′
⊥

(
1√
T
CΓ,ΠW

(T )
ǫ

(
t−1
T

)
+ 1

T (Yt−1 + aµ,Γ,Π)
)



 ,

in combination with the stability of the process {Yt}, Lemma A.1 and the continuous

mapping theorem. This completes the proof of Part A(i).
6



Remark A.2. In Part B of the proof we will exploit

T∑

t=1

|ZTt|2 = OP (1), and (A.11)

max
t=1,...,T

|ZTt| = oP (1), (A.12)

which are implied by a combination of (A.8)-(A.9) with (A.6) and a combination of
(A.9)-(A.10) with Lemma C.3 respectively. ✷

Part A(ii)

All components of the limiting central sequence ∆ can be seen as stochastic integrals

with respect to linear combinations of W , i.e. ∆i =
∫ 1

0
ξi(u)dW̃i (where W̃i = a′iW).

These integrands ξi satisfy

max
i

‖ξi‖∞ ≤ C(1 + max
i

‖Wi‖∞),

for a constant C (depending on ϑ). An application of Corollary 3.5.16 in Karatzas and

Shreve (1991) yields E exp(h′∆− h′Jh/2) = 1.

Part B

We use Proposition C.4 to prove the expansion (2.15). To this end we set P̃T = P
(T )

ϑ(T );Σ,f
,

PT = P
(T )
ϑ;Σ,f , and FTt = Ft.

For notational convenience we introduce STt = STt, for T ∈ N and t = 1, . . . , T , by

STt =




Z
(1)
Tt ⊗ Σ−1/2Uε

t φf (‖εt‖Σ)
Z

(2)
Tt ⊗ α′Σ−1/2Uε

t φf (‖εt‖Σ)
Z

(2)
Tt ⊗ α′

⊥
Σ−1/2Uε

t φf (‖εt‖Σ)


 .

Notice that ∆
(T )
ϑ =

∑T
t=1 STt and J

(T )
ϑ =

∑T
t=1 E [STtS

′
Tt|Ft−1].

In the notation of Proposition C.4 we have,

LRTt =
f(‖εt − wTt‖Σ)

f(‖εt‖Σ)
, (A.13)

with

wTt = T−1/2mT + T−1/2
k−1∑

j=1

GT,j∆Xt−j + T−1/2ATβ
′Xt−1 + T−3/2αbT (CΓ,Πµ)

′Xt−1

+ T−1αBTβ
′
⊥
Xt−1 + T−3/2α⊥dT (CΓ,Πµ)

′Xt−1 + T−1α⊥DTβ
′
⊥
Xt−1
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+ T−2AT bT (CΓ,Πµ)
′Xt−1 + T−3/2ATBTβ

′
⊥
Xt−1.

Exploiting the orthogonality restrictions β⊥B
′
T ⊥ (CΓ,Πµ) and β⊥D

′
T ⊥ (CΓ,Πµ) we can

rewrite the fifth, seventh, and last term of wTt as:

T−1αBTβ
′
⊥
Xt−1 = T−1αBTβ

′
⊥
(Xt−1 − (t− 1)CΓ,Πµ),

T−1α⊥DTβ
′
⊥
Xt−1 = T−1α⊥DTβ

′
⊥
(Xt−1 − (t− 1)CΓ,Πµ), and

T−3/2ATBTβ
′
⊥
Xt−1 = T−3/2ATBTβ

′
⊥
(Xt−1 − (t− 1)CΓ,Πµ).

Assumption 2 implies, see Hallin and Paindaveine (2002a, Section 1), that the map-

ping e 7→ f1/2(|e|) is differentiable in quadratic mean:

√
f(‖e− w‖Σ)√
f(‖e‖Σ)

= 1 +
1

2

[
φf (‖e‖Σ)w′Σ

−1e

‖e‖Σ
+ r(e, w)

]
,

where

ψ(δ) = sup
w: |w|≤δ

1

|w|2Er
2(ε1, w) → 0 as δ → 0. (A.14)

Using the identity vec(AXB) = (B′ ⊗A) vec(X) we obtain

√
LRTt = 1 +

1

2
(h′TSTt +RTt) , (A.15)

with

RTt = r(εt, wTt) +
(
T−2AT bT (CΓ,Πµ)

′Xt−1

)′
φf (‖εt‖Σ)Σ−1/2Ut

+
(
T−3/2ATBTβ

′
⊥
(Xt−1 − (t− 1)CΓ,Πµ)

)′
φf (‖εt‖Σ)Σ−1/2Ut. (A.16)

So we can conclude that expansion (2.15) holds once we verify the conditions to Propo-

sition C.4.

Condition (a) is immediate as hT converges by assumption. Condition (b). Square-

integrability follows from our assumption f ∈ F2. Display (C.2) follows immediately

from the independence of Ut and φf (‖εt‖Σ) and Eφf (‖εt‖Σ) = 0 (which follows from

Assumption 2 and standard arguments (see, e.g., Lemma 7.6 in Van der Vaart (2000)).

Next we verify the conditional Lindeberg condition (C.3). We have, for δ > 0 and with

φ as defined in (A.5),

T∑

t=1

E
[
(h′TSTt)

21{|h′
TSTt|>δ}|Ft−1

]
≤ C|hT |2φ

(
δ

|hT |∞Cmaxt=1,...,T |ZTt|

) T∑

t=1

|ZTt|2,
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with C = 1 + ‖α‖ + ‖α⊥‖. Invoking (A.11) and (A.12) yields (C.3). Display (C.4) is

immediate as JT = J
(T )
ϑ ⇒ J by Part A(i). Condition (c). We first consider condition

(C.5). From (A.11) we obtain

T∑

t=1

E

[((
T−2AT bT (CΓ,Πµ)

′Xt−1

)′
φf (‖εt‖Σ)Σ−1/2Ut

)2
|Ft−1

]
= oP (1)

and

T∑

t=1

E

[(
T−3/2ATBTβ

′
⊥
(Xt−1 − (t− 1)CΓ,Πµ)

′φf (‖εt‖Σ)Σ−1/2Ut

)2
|Ft−1

]
= oP (1).

A combination with (A.16) yields

T∑

t=1

E
[
R2

Tt|Ft−1

]
≤ 4

T∑

t=1

E
[
r2(εt, wTt)|Ft−1

]
+ 4oP (1)

≤ 4ψ

(
max

t=1,...,T
|wTt|

) T∑

t=1

|wTt|2 + 4oP (1).

Note that we can write wTt as a linear transformation of ZTt with bounded coefficients,

i.e. wTt = A(T )ZTt with supT∈N ‖A(T )‖ <∞. Hence (A.11) and (A.12) imply

T∑

t=1

|wTt|2 = OP (1) and max
t=1,...,T

|wTt| = oP (1),

and we thus have
T∑

t=1

E
[
R2

Tt|Ft−1

]
= oP (1),

which shows that (C.5) holds. As we assumed that the radial density f is strictly positive

Display (C.6) is immediate. Finally, Condition (d) is immediate as the initial values are

deterministic.

B. Proof of Proposition 3.1

B.1. Proof of Part (i).

Part (i) of the proposition follows as a particular case of the nonserial asymptotic

representation result in Proposition 2.1(i) of Hallin and Paindaveine (2006a), with the

vector-valued weights Σ−1/2x′t−iK replaced with the scalar ones
( t

T + 1
− 1

2

)
.
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B.2. Proof of Part (ii).

Part (ii) is a direct consequence of the central limit theorem for weighted sums of

independent summands with finite variance and weights satisfying the traditional Noether

condition, which directly applies to S(T )
g (ϑ; Σ) defined in (3.5) (see Hájek and Sidák

(1967), p.153).

B.3. Proof of Part (iii).

The asymptotic normality of S
˜
(T )
g (ϑ; Σ̂(T )) in Part (iii) results from a classical ap-

plication of Le Cam’s third Lemma (see, for instance, p.90 of Van der Vaart (2000)).

Due to contiguity, the asymptotic representation (3.5) also holds under P
(T )

ϑ(T );Σ,f
. Hence,

the asymptotic mean of S
˜
(T )
g (ϑ; Σ̂(T )), under local alternatives of the form P

(T )

ϑ(T );Σ,f
, is

the vector of asymptotic covariances, under P
(T )
ϑ;Σ,f , of the asymptotically joint normal

distribution of S(T )
g (ϑ; Σ) in (3.5) and the log-likelihood (2.15). Clearly, those covari-

ances involve sums of expectations of products of quantities of the type Uε
t U

ε′
t′ and the

corresponding summands in the linear part h′∆(T )
ϑ of the approximation of local log-

likelihoods; they break into k + 3 parts, associated with the corresponding subvectors

of ∆
(T )
ϑ , which we successively examine.

(a) For the ∆
(T )
µ part of ∆(T ), the covariance is

T−1
T∑

t=1

( t

T + 1
− 1

2

)
E
[
φg
(
G̃−1

p

(
F̃p (‖εt‖Σ)

))
φf
(
‖εt‖Σ

)
Uε
t U

ε′
t

]
m

= T−1
T∑

t=1

( t

T + 1
− 1

2

)I(f, g)
p

m = 0.

(b) For the ∆
(T )
Γi

, i = 1, . . . , k − 1 subvectors, we obtain the covariance

T−1
T∑

t=1

( t

T + 1
−1

2

)
E
[
φg
(
G̃−1

p

(
F̃p (‖εt‖Σ)

))
φf
(
‖εt‖Σ

)
Uε
t U

ε′
t Σ−1/2

(
∆X ′

t−i⊗Ip
)]
vec(Gi)

where ∆Xt−i = CΠ,Γµ+ CΠ,Γεt−i +∆Yt−i is independent of εt and U
ε
t , yielding

T−1
T∑

t=1

( t

T + 1
− 1

2

)I(f, g)
p

Σ−1/2
((
CΠ,Γµ+ E[∆Yt−i]

)
⊗ Ip

)
vec(Gi) = o(1)

since

T∑

t=1

( t

T + 1
− 1

2

)
= 0 and E[∆Yt−i] = o(1) in view of the asymptotic stationarity

of {Yt}.
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(c) Turning to ∆α, the covariance term is

T−1
T∑

t=1

( t

T + 1
−1

2

)
E
[
φg
(
G̃−1

p

(
F̃p (‖εt‖Σ)

))
φf
(
‖εt‖Σ

)
Uε
t U

ε′
t Σ−1/2

(
(X ′

t−1β)⊗Ip
)]
vec(A),

which, due to the fact that X ′
t−1β = Y ′

t−1β, where Yt−1 is independent of εt, takes the

form

T−1
T∑

t=1

( t

T + 1
− 1

2

)I(f, g)
p

Σ−1/2
((
CΠ,Γµ+ E[Y ′

t−1β]
)
⊗ Ip

)
vec(A) = o(1)

since, again,

T∑

t=1

( t

T + 1
− 1

2

)
= 0 and {Yt} is asymptotically stationary.

(d) The perturbation of β′ has two parts, one with rate T−3/2, the other one with

rate T−1. The first one yields a covariance term

T−2
T∑

t=1

( t

T + 1
−1

2

)
E
[
φg
(
G̃−1

p

(
F̃p (‖εt‖Σ)

))
φf
(
‖εt‖Σ

)
Uε
t U

ε′
t Σ−1/2

(
X ′

t−1⊗α
)]
vec(b(CΠΓµ)

′)

which, taking into account the Granger representation (1.4) ofXt−1 and the independence

between Xt−1 and εt (hence also Uε
t ), reduces to

T−2
T∑

t=1

( t

T + 1
− 1

2

)I(f, g)
p

Σ−1/2
((

((t−1)CΠ,Γµ)
′+E[Y ′

t−1]+a
′
Π,Γ,µ

)
⊗α
)
vec(b(CΠΓµ)

′)

= A1 +A2 +A3, say.

Now, recalling that (C′ ⊗A)vec(B) = vec(ABC),

A1 = T−2
T∑

t=1

( t

T + 1
− 1

2

)
(t− 1)

I(f, g)
p

Σ−1/2
(
(CΠ,Γµ)

′ ⊗ α
)
vec(b(CΠΓµ)

′)

=
I(f, g)
12p

Σ−1/2vec
(
αb(CΠ,Γµ)

′(CΠ,Γµ)
)
=

I(f, g)
12p

‖CΓ,Πµ‖2Σ−1/2αb, (B.1)

while, in view of {Yt}’s asymptotic stationarity,

A2 = T−2
T∑

t=1

( t

T + 1
− 1

2

)I(f, g)
p

Σ−1/2
(
E[Y ′

t−1]
)
⊗ α

)
vec(b(CΠΓµ)

′) = o(1)

as T → ∞ and, since

T∑

t=1

( t

T + 1
− 1

2

)
= 0,

A3 = T−2
T∑

t=1

( t

T + 1
− 1

2

)I(f, g)
p

Σ−1/2
(
a′Π,Γ,µ ⊗ α

)
vec(b(CΠΓµ)

′) = 0.
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The T−1-perturbation of β′ is of the form T−1Bβ′
⊥
, where Bβ′

⊥
CΠ,Γµ = 0. Its contribu-

tion to the covariance decomposes, as the previous one, into a sum of three terms, A′
1, A

′
2

and A′
3, say, with, for the same reasons as above, A′

2 = o(1) and A′
3 = 0. As for A′

1,

A′
1 = T−3/2

T∑

t=1

( t

T + 1
− 1

2

)
(t− 1)

I(f, g)
p

Σ−1/2
(
(CΠ,Γµ)

′ ⊗ α
)
vec(Bβ′

⊥
)

= T−3/2
T∑

t=1

( t

T + 1
− 1

2

)
(t− 1)

I(f, g)
p

Σ−1/2vec
(
αBβ′

⊥
CΠ,Γµ

)

where T−3/2
T∑

t=1

( t

T + 1
− 1

2

)
(t− 1) does not converge anymore; the orthogonality con-

dition Bβ′
⊥
CΠ,Γµ = 0, however, implies that A′

1 = 0.

(e) The reasoning for the β⊥-part ∆
(T )
β′
⊥

of the central sequence is entirely similar, and

yields a contribution
I(f, g)
12p

‖CΓ,Πµ‖2Σ−1/2α⊥db; (B.2)

details are left to the reader.

The desired result follows from adding the contributions (B.1) and (B.2).

B.4. Proof of Part (iv).

The proof of the asymptotic linearity part (iv) of Proposition 3.1 relies on Proposi-

tion C.5, which uses the same quadratic mean differentiability techniques we also use

in Proposition C.4, which deals with quadratic approximations of log-likelihood ratios.

Those two propositions therefore are regrouped in Appendix C.

In view of the asymptotic equivalence (3.5) and contiguity it is sufficient, in order to

establish (3.8), to show that, under P
(T )
ϑ;Σ,f ,

S(T )
g (ϑ(T ); Σ)− S(T )

g (ϑ; Σ) = −1

p
Ip(f, g)

1√
T

T∑

t=1

(
t

T + 1
− 1

2

)
vTt + oP (1). (B.3)

Moreover, in view of Assumption 5, it is sufficient to prove (B.3) for monotone increas-

ing φg.
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Introduce, for m ∈ N, the truncated versions Jm of φg ◦ G̃−1
p

Jm(u) :=






0 if 0 ≤ u ≤ 1
m ;

φg ◦ G̃−1
p

(
2
m

)
m
(
u− 1

m

)
if 1

m < u ≤ 2
m ;

φg ◦ G̃−1
p (u) if 2

m < u ≤ 1− 2
m ;

φg ◦ G̃−1
p

(
1− 2

m

)
m
(
1− 1

m − u
)

if 1− 2
m < u ≤ 1− 1

m ;

0 if 1− 1
m ≤ u ≤ 1.

Note that Jm : [0, 1] → R is uniformly continuous and thus bounded. Moreover, we have

∫ 1

0

(φg ◦ G̃−1
p (u))2du <∞, lim

m→∞
Jm(u) = φg ◦ G̃−1

p (u), u ∈ (0, 1), (B.4)

and, using the fact that φg ◦ G̃−1
p is non-decreasing and continuous, for some m0 ∈ N,

|Jm(u)| ≤
∣∣∣φg ◦ G̃−1

p (u)
∣∣∣ , u ∈ (0, 1), m ≥ m0. (B.5)

Next, consider, for θ ∈ Θ, the truncated-score statistics

S(T )
g;m(θ; Σ) :=

1√
T

T∑

t=1

(
t+ 1

T
− 1

2

)
Ut(θ,Σ)Jm(F̃p(‖ǫt(θ)‖Σ)).

The following lemma relates these truncated-score statistics to their non-truncated coun-

terparts.

Lemma B.1. For all ǫ > 0, lim
m→∞

sup
T∈N

sup
ϑ∈Θ

Pϑ;Σ,f

(∣∣∣S(T )
g (ϑ; Σ)− S(T )

g;m(ϑ; Σ)
∣∣∣ > ǫ

)
= 0.

The proof of this lemma in turn involves another lemma.

Lemma B.2. We have, under Pϑ;Σ,f ,

max
1≤t≤T

| ‖ǫt(ϑ(T ))‖Σ − ‖ǫt(ϑ)‖Σ| = oP (1), (B.6)

and, for all η > 0,

max
1≤t≤T

|Ut(ϑ
(T ),Σ)− Ut(ϑ,Σ)|1{‖εt‖Σ > η} = oP (1). (B.7)

Proof. Under Pϑ;Σ,f , we have (see the proof of Lemma 4.1 in Hallin and Paindaveine
(2006a, pp.29-30) for details),

|‖ǫt(ϑ(T ))‖Σ − ‖ǫt(ϑ)‖Σ| ≤ ‖Σ−1/2‖|ǫt(ϑ) − ǫt(ϑ
(T ))|

and

|Ut(ϑ
(T ),Σ)− Ut(ϑ,Σ)|1{‖εt‖Σ > η} ≤ 2

η
‖Σ−1/2‖|ǫt(ϑ)− ǫt(ϑ

(T ))|.
13



Hence, (B.6) and (B.7) follow if we show that

max
t=1,...,T

|ǫt(ϑ)− ǫt(ϑ
(T ))| = oP (1). (B.8)

We have

ǫt(ϑ
(T ))− εt = −T−1/2mT − 1√

T

k−1∑

j=1

G
(T )
j ∆Xt−j −

1√
T
ATβ

′Yt−1

− T−3/2(t− 1)|CΓ,Πµ|2α(T )bT − T−1α(T )bT (CΓ,Πµ)
′CΓ,ΠW

(T )
ε

(
t− 1

T

)

− T−3/2α(T )bT (CΓ,Πµ)
′(Yt−1 + aµ,Γ,Π)− T−1α(T )BTβ

′
⊥
CΓ,ΠW

(T )
ε

(
t− 1

T

)

− T−1α(T )BTβ
′
⊥
(Yt−1 + aµ,Γ,Π).

As the process {Vt} from the Granger-Johansen representation (1.4) is, under Pϑ;Σ,f ,
stable with finite second moments we have, for all δ > 0,

lim
T→∞

1

T

T∑

t=1

Eϑ;Σ,f |Vt|21{|Vt| > δ
√
T} = 0,

which implies, by an application of Lemma C.3, that T−1/2maxt=1,...,T |Vt| = oP (1). We
thus have that T−1/2maxt=1,...,T |∆Xt−j | (j = 1, . . . , k − 1) and T−1/2maxt=1,...,T |Yt|
are oP (1). Now, an application of Lemma A.1 and the continuous mapping theorem yield

maxi=1,...,p ‖W (T )
ǫ,i ‖∞ = OP (1). This establishes (B.8) and hence concludes the proof of

Lemma B.2.

Proof of Lemma B.1. Let

C
(T )
t;m := Uε

t

(
φg◦G̃−1

p ◦F̃p(‖εt‖Σ)− Jm(F̃p(‖εt‖Σ))
)
.

Then, we have

Varϑ;Σ,f

(
S(T )
g (ϑ; Σ)− S(T )

g;m(ϑ; Σ)
)
=

1

T

T∑

t=1

( t

T + 1
− 1

2

)2
Eϑ;Σ,f [C

(T )
t;mC

(T )′
t;m ]

=
1

p
IpE

(
φg◦G̃−1

p (V )− Jm(V )
)2 1
T

T∑

t=1

( t

T + 1
− 1

2

)2
,

where V is uniform over [0, 1]. Dominated convergence and (B.4)-(B.5) yield that

E[
(
φg◦G̃−1

p (V ) − Jm(V )
)2
], which does not depend on T and ϑ, converges to zero

as m → ∞. Since S(T )
g (ϑ; Σ) and S(T )

g;m(ϑ; Σ) are both centered under P
(T )
ϑ;Σ,f , an ap-

plication of the Markov inequality completes the proof of of Lemma B.1. �

14



We now turn back to the proof of part (iv) of Proposition 3.1. Defining

Ip,m(f, g) :=

∫ 1

0

φf (F̃
−1
p (u))Jm(u)du,

note that dominated convergence, (B.4) and (B.5) entail

lim
m→∞

Ip,m(f, g) = Ip(f, g). (B.9)

As T−1/2
∑T

t=1(t/(T + 1) − 1/2)vTt = OP (1) Lemma B.1, contiguity, and (B.9) imply

that a sufficient condition for (B.3) to hold is that, for all m ∈ N,

S(T )
g;m(ϑ(T ); Σ)− S(T )

g;m(ϑ; Σ) = −1

p
Ip;m(f, g)

1√
T

T∑

t=1

(
t

T + 1
− 1

2

)
vTt + oP (1). (B.10)

Let us show that (B.10) holds componentwise as a consequence of Lemma C.5, with

Z̃Tt = T−1/2

(
t+ 1

T
− 1

2

)
Ut,j(ϑ

(T ),Σ)Jm(F̃p(‖ǫt(ϑ(T ))‖Σ)),

ZTt = T−1/2

(
t+ 1

T
− 1

2

)
Ut,j(ϑ,Σ)Jm(F̃p(‖εt‖Σ)),

P̃T = P
(T )

ϑ(T);Σ,f
, PT = P

(T )
ϑ;Σ,f , and LRTt as in (A.13).

Note that Conditions (a)-(e) of Proposition C.4, which are required also in Propo-

sition C.5, are satisfied (see Proposition 2.1 and its proof in Appendix A). As Jm is

bounded and |Ut(θ,Σ)| ≤ 1 for all θ ∈ Θ, Condition (g) of Proposition C.5 clearly holds;

Condition (h) follows straightforwardly.

In order to conclude, thus, we only have to establish that Condition (f) holds true.

We have

T∑

t=1

Eϑ;Σ,f

[(
Z̃Tt(LRTt)

1/2 − ZTt

)2
| FT,t−1

]
≤ 2

T∑

t=1

Eϑ;Σ,f

[(
Z̃Tt − ZTt

)2
| FT,t−1

]

+ 2 max
t=1,...,T

(
(LRTt)

1/2 − 1
)2 T∑

t=1

Eϑ;Σ,f

[
Z̃2
Tt | FT,t−1

]
.

It follows from (C.12) that maxt=1,...,T |(LRTt)
1/2 − 1| = oP (1), and we already noted

that
∑T

t=1 Eϑ;Σ,f

[
Z̃2
Tt | FT,t−1

]
= OP (1). Hence Condition (f) holds if we show that

lim
T→∞

1

T

T∑

t=1

Eϑ;Σ,f

(
D

(T )
t;m

)2
= 0 (B.11)

15



with (writing ǫt for ǫt(ϑ
(T )) and U ǫ

t for Ut(ϑ
(T ); Σ))

D
(T )
t;m := Uε

t,jJm(F̃p(‖εt‖Σ))− U ǫ
t,jJm(F̃p(‖ǫt‖Σ)).

Let η > 0 such that F̃p(η) < m−1 and note that Jm(F̃p(‖εt‖Σ))1{‖εt‖Σ ≤ η} = 0. This

yields, for |D(T )
t;m|, the bound

|D(T )
t;m| ≤

∣∣∣Jm(F̃p(‖εt‖Σ))− Jm(F̃p(‖ǫt‖Σ))
∣∣∣ +
∣∣∣Jm(F̃p(‖εt‖Σ))

∣∣∣
∣∣Uε

t,j − U ǫ
t,j

∣∣ 1{‖εt‖Σ > η}.

Uniform continuity of Jm ◦ F̃p and (B.6) imply

lim
T→∞

1

T

T∑

t=1

Eϑ;Σ,f

(
Jm(F̃p(‖εt‖Σ))− Jm(F̃p(‖ǫt‖Σ))

)2
= 0.

Similarly, (B.7) and bounded convergence yield

1

T

T∑

t=1

Eϑ;Σ,f

∣∣Uε
t,j − U ǫ

t,j

∣∣2 1{‖εt‖Σ > η} ≤ Eϑ;Σ,f max
t=1,...,T

∣∣Uε
t,j − U ǫ

t,j

∣∣2 1{‖εt‖Σ > η} = o(1).

Display (B.11) follows, hence also Condition (f). Lemma C.5 thus applies, which estab-

lishes (B.10). Noting that

Eϑ;Σ,f [ZTt(h
′
T∆ϑ;Σ,f ) | Ft−1] =

1

p
Ip,m(f, g)

(
t

T + 1
− 1

2

)
vTt,j

completes the proof of Part (iv) of Proposition 3.1. �

B.5. Proof of Part (v).

The proof of Part (v) is classical, though the various rates of convergence involved

make it more complicated than usual. For given M > 0, let Θ(T )(M) denote the set of

possible values of ϑ(T ), as described in the last part of Assumption 6. Observe that the

set of sequence t(1), t(1), . . . such that t(T ) ∈ Θ(T )(M) for all T ∈ N is a countable set,

and that each of those sequences constitutes a sequence of perturbations in the sense of

(3.4). The proof of Lemma 4.4 in Kreiss (1987) then applies without changes. The result

follows.

C. Quadratic expansions of log-likelihood ratios and a general asymptotic

linearity result

Irrespective of the statistical model under study, the derivation of limits of sequences

of local experiments often follows along very similar lines, essentially involving differ-

entiability in quadratic mean of (conditional) densities. This appendix establishes two
16



abstract and very general results providing sufficient and nearly necessary conditions

for (i) the existence of a quadratic expansion, and (ii) the asymptotic linearity of local

log-likelihood ratios12; see Sections C.2 and C.3, respectively. Such results have been

proved, for models involving independent and identically distributed observations, by,

e.g., Bickel, Klaassen, Ritov, and Wellner (1993), Van der Vaart (1988) and Van der

Vaart (2000). Here, we extend them to time series models. Unlike their i.i.d. counter-

parts, our results moreover are not restricted to locally asymptotically normal (LAN)

experiments, so that non-stationary time series, for instance, also can be handled.

The results in this appendix thus are of general interest, and are not specific to the

cointegration model we are focusing on in the main text. As a result, we do not rely on

assumptions or notation introduced elsewhere, and this appendix is self-contained.

C.1. Main notation and some preliminary results.

We first describe the abstract setup and introduce the main notation. For each T ∈ N,

let (ΩT ,FT ) be a measurable space on which two probability measures, P̃T and PT ,

are defined. Let FT0 ⊂ · · · ⊂ FTT ⊂ FT be a sequence of increasing σ-fields. Still

for T ∈ N, define the restrictions P̃T := P̃T |FTT and PT := PT|FTT of P̃T and PT ,

respectively, to FTT . Using obvious notation, similarly define, for t = 0, . . . , T , the

restrictions P̃Tt := P̃T |FTt and PTt := PT|FTt . The Lebesgue decomposition of P̃Tt on

PTt (with respect to FTt) takes the form

P̃Tt(A) =

∫

A

LTtdPTt + P̃Tt(A ∩ NTt) A ∈ FTt,

where NTt ∈ FTt is such that PTt(NTt) = 0 and LTt is the Radon-Nikodym derivative

of that part of P̃Tt which is absolutely continuous with respect to PTt.

The likelihood ratio statistic LRT for P̃T with respect to PT is, by definition, LTT .

Put LRT0 := LT0, and define the conditional likelihood ratio contribution of observation

t as

LRTt := LTt/LT,t−1, t = 1, . . . , T,

with the convention 0/0 = 1. Then, the likelihood ratio statistic LRT factorizes into

LRT =

T∏

t=0

LRTt, PT-a.s.

12Asymptotic linearity will be needed whenever unspecified model parameters are to be replaced, in
some statistic of interest, with some preliminary estimator.
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This factorization follows from the fact that, under PT, {LTt : 0 ≤ t ≤ T } is a super-

martingale with respect to the filtration {FTt : 0 ≤ t ≤ T } (which is easy to check) by re-

peated application of the following Lemma with X = LTt, Y = LT,t−1, and F = FT,t−1,

and t = 1, . . . , T .

Lemma C.1. Let X be a nonnegative, integrable random variable and Y a F-measurable
random variable satisfying Y ≥ E [X |F ]. Then, X1{Y=0} = 0 a.s.

Proof. This readily follows from the fact that

0 ≤ EX1{Y=0} = EE [X |F ] 1{Y=0} ≤ EY 1{Y=0} = 0.

We end this section with two lemmas that are needed in the sequel. The first one is

a consequence of Theorem 2.23 and Corollary 3.1 in Hall and Heyde (1980). We refer to

Lemma 2.2 in Drost, Klaassen, and Werker (1997) for additional details.

Lemma C.2. If the square-integrable process {XTt : 1 ≤ t ≤ T } is adapted to the filtra-

tion (FTt)0≤t≤T and satisfies
∑T

t=1 E
[
X2

Tt | FT,t−1

]
= oP (1), then,

T∑

t=1

X2
Tt = oP (1) and

T∑

t=1

(XTt − E [XTt | FT,t−1]) = oP (1).

The second lemma follows by an application of a result due to Dvoretzky (see the

proof of Theorem 2.23 in Hall and Heyde (1980)).

Lemma C.3. If the process {XTt : 1 ≤ t ≤ T } is adapted to the filtration (FTt)0≤t≤T

and satisfies, for all δ > 0,

T∑

t=1

E
[
X2

Tt1{|XTt|>δ} | FT,t−1

]
= oP (1),

then we have maxt=1,...,T |XTt| = oP (1).

C.2. Quadratic expansions of log likelihood ratios

The following proposition provides a very general sufficient condition for the existence of

a quadratic expansion of local log likelihood ratios.

Proposition C.4. Suppose that, for some k ∈ N, there exist, for each T ∈ N, FTt-
measurable mappings STt : ΩT → Rk and RTt : ΩT → R, t = 1, . . . , T , such that the
conditional likelihood ratio contribution LRTt can be written as

LRTt =

(
1 +

1

2
(h′TSTt +RTt)

)2

, (C.1)

where
18



(a) hT is a bounded (deterministic) sequence in Rk;

(b) for each T ∈ N, {STt : 1 ≤ t ≤ T } is a PT-square integrable martingale difference
array with respect to the filtration {FTt : 0 ≤ t ≤ T }, satisfying the conditional Lin-
deberg condition and with tight squared conditional moments, i.e., such that, un-
der PT,

EPT [STt | FT,t−1] = 0, t = 1, . . . , T, (C.2)

T∑

t=1

EPT

[
(h′TSTt)

2
1{|h′

TSTt|>δ} | FT,t−1

]
= oP (1) ∀δ > 0, (C.3)

JT =

T∑

t=1

EPT [STtS
′
Tt | FT,t−1] = OP (1); (C.4)

(c) the remainder terms RTt and the null-sets NTt from the Lebesgue decomposition of
P̃T on PT are sufficiently small, i.e., under PT,

T∑

t=1

EPT

[
R2

Tt | FT,t−1

]
= oP (1) (C.5)

and
T∑

t=1

(1− EPT [LRTt | FT,t−1]) = oP (1); (C.6)

(d) under PT, logLRT0 = oP (1).

Then, under PT, the log likelihood ratio admits the quadratic expansion

logLRT = h′T

T∑

t=1

STt −
1

2
h′TJThT + oP (1). (C.7)

Proof. Let r : 2x 7→ r (2x) := 2
(
log(1 + x)− x+ x2/2

)
, and rewrite the log likelihood

ratio statistic as

logLRT =

T∑

t=0

logLRTt = oP (1) +

T∑

t=1

h′TSTt −
1

2
h′TJThT

+
1

4

(
h′TJThT −

T∑

t=1

(h′TSTt)
2

)
+

T∑

t=1

(RTt − EPT [RTt | FT,t−1])

− 1

4

T∑

t=1

R2
Tt −

1

2

T∑

t=1

h′TSTtRTt +

(
T∑

t=1

EPT [RTt | FT,t−1] +
1

4
h′TJThT

)

+

T∑

t=1

r (h′TSTt +RTt) , (C.8)

where we used Condition (d) to neglect the first term logLRT0. To establish (C.7), we
show that the six remainder terms on the right-hand side of (C.8) all converge to zero in
probability under PT.
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By Theorem 2.23 in Hall and Heyde (1980), Condition (a) and (C.2)-(C.4) we have

T∑

t=1

(h′TSTt)
2 − h′TJThT = oP (1), (C.9)

which shows that the first remainder term is indeed oP (1).
Since (LTt)0≤t≤T is a PT-supermartingale, we have EPTLRTt ≤ 1. Since STt is

also PT-square integrable, it follows from (C.1), that RTt is PT-square integrable. From
Lemma C.2 and (C.5), we now immediately obtain

T∑

t=1

(RTt − EPT [RTt | FT,t−1]) = oP (1) and
T∑

t=1

R2
Tt = oP (1), (C.10)

i.e. the second and third remainder term also are negligible.
Next we show that the remainder term (1/2)

∑n
t=1 h

′
TSTtRTt vanishes asymptoti-

cally. First note that Condition (a) and (C.4) and (C.9) imply
∑T

t=1(h
′
TSTt)

2 = OP (1).
Combined with (C.10), an application of the Cauchy-Schwarz inequality thus yields the
convergence of the fourth remainder term.

To prove the negligibility of the fifth remainder term in (C.8), observe that (C.1),
(C.2), (C.4), (C.5), and the Cauchy-Schwarz inequality again, entail

T∑

t=1

(EPT [LRTt | FT,t−1]− 1) =

T∑

t=1

EPT [h′TSTt | FT,t−1] +

T∑

t=1

EPT [RTt | FT,t−1]

+
1

4

T∑

t=1

EPT

[
(h′TSTt)

2 | FT,t−1

]
+

1

4

T∑

t=1

EPT

[
R2

Tt | FT,t−1

]

+
1

2

T∑

t=1

EPT [(h′TSTt)RTt | FT,t−1]

=

T∑

t=1

EPT [RTt | FT,t−1] +
1

4
h′T JThT + oP (1).

Now, the second part of (C.5) implies

T∑

t=1

EPT [RTt | FT,t−1] +
1

4
h′TJThT = oP (1). (C.11)

Thus, the fifth remainder term in (C.8) also is negligible.
Turning to the sixth and last remainder term, let us first show that

max
t=1,...,T

|h′TSTt +RTt| = oP (1) and
T∑

t=1

|h′TSTt +RTt|3 = oP (1). (C.12)

As (C.3) and (C.5) yield, for δ > 0,

T∑

t=1

EPT

[
(h′TSTt +RTt)

21{|h′
TSTt+RTt|>δ} | FT,t−1

]
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≤ 4

T∑

t=1

EPT

[
(h′TSTt)

21{|h′
TSTt|>δ/2} | FT,t−1

]
+ 4

T∑

t=1

EPT

[
R2

Tt | FT,t−1

]
= oP (1),

the first part of (C.12) follows as an application of Lemma C.3. The second part is
obtained from the latter by taking out the maximum (which tends to zero) and by
observing that the remaining quadratic term is bounded in probability. In view of the
first part of (C.12), indeed, it is sufficient to study the behavior of the final remainder
term on the event {|h′TSTt +RTt| ≤ 1}. On this set, this remainder term is bounded:
using

∣∣log (1 + x)− x+ 1
2x

2
∣∣ ≤ 2

3x
3 for |x| ≤ 1

2 , indeed, we obtain

∣∣∣∣∣

T∑

t=1

r (h′TSTt +RTt)

∣∣∣∣∣ ≤
4

3

T∑

t=1

(h′TSTt +RTt)
3
.

Convergence to zero is now obtained from the second part of (C.12). This completes the
proof of the proposition.

C.3. Asymptotic linearity: general result

This appendix provides a sufficient condition for asymptotic linearity which generalizes

Proposition A.10 in Van der Vaart (1988) to the case of serially dependent observations

and non-LAN limit experiments.

Proposition C.5. Let, for each T ∈ N, {Z̃Tt : 1 ≤ t ≤ T } and {ZTt : 1 ≤ t ≤ T } be
a P̃T -square integrable martingale difference array, and a PT-square integrable martingale
difference array, respectively. Suppose that the Conditions (a)-(d) of Proposition C.4
hold, as well as the following Conditions (e)-(h):

(e) (
∑T

t=1 STt, JT ) converges in distribution, under PT, to a limit (∆, J) that satisfies,

for all a ∈ Rk, E exp
(
a′∆− 1

2a
′Ja
)
= 1;

(f)
T∑

t=1

EPT

[(
Z̃Tt

√
LRTt − ZTt

)2
| FT,t−1

]
= oP (1) under PT;

(g)

T∑

t=1

EP̃T

[
Z̃2
Tt | FT,t−1

]
= OP (1) under P̃T , and

T∑

t=1

EPT

[
Z2
Tt | FT,t−1

]
= OP (1)

under PT;

(h) the conditional Lindeberg condition holds for {Z̃Tt : 1 ≤ t ≤ T } under P̃T , i.e., for

all δ > 0,
T∑

t=1

EP̃T

[
Z̃2
Tt1{|Z̃Tt|>δ} | FT,t−1

]
= oP (1) under P̃T .

Then, letting ĨT :=

T∑

t=1

ι̃Tt :=

T∑

t=1

EPT [(h′TSTt)ZTt | FT,t−1], we have, under PT,

T∑

t=1

Z̃Tt =

T∑

t=1

ZTt − ĨT + oP (1). (C.13)
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Proof. The proof decomposes into four parts. In Part 1 we show that (C.13) holds if,
under PT,

T∑

t=1

Z̃Tt

(
1−

√
LRTt

)
+

1

2
ĨT = oP (1). (C.14)

In Part 2 we show that (C.14) holds in case, under PT,

T∑

t=1

Z̃Tt(h
′
TSTt)− ĨT = oP (1). (C.15)

In Part 3 we introduce a new sequence of probability measures (P ′
T ) and show that it is

contiguous to (PT). Part 4 shows that (C.15) holds under the new sequence (P ′
T ), hence

also under (PT), which concludes the proof.
Note that Lemma C.4, Condition (e), and Le Cam’s first lemma imply that (P̃T )

and (PT) are contiguous. It follows that oP ’s and OP ’s under (P̃T ) and (PT) coincide;
therefore, in the sequel, we safely can write oP and OP without specifying whether (P̃T )
or (PT) is the underlying sequence of probability measures.

Part 1. Recalling that ĨT :=
∑T

t=1 ι̃Tt :=
∑T

t=1 EPT [(h′TSTt)ZTt | FT,t−1], we have

T∑

t=1

{
Z̃Tt − ZTt + ι̃Tt

}
=

T∑

t=1

Z̃Tt

(
1−

√
LRTt

)
+

1

2
ĨT

+
T∑

t=1

{
Z̃Tt

√
LRTt − ZTt − EPT

[
Z̃Tt

√
LRTt | FT,t−1

]}

+

T∑

t=1

{
EPT

[
Z̃Tt

√
LRTt | FT,t−1

]
+

1

2
ι̃Tt

}
;

hence, (C.14) implies (C.13) in case

T∑

t=1

{
Z̃Tt

√
LRTt − ZTt − EPT

[
Z̃Tt

√
LRTt | FT,t−1

]}
= oP (1) (C.16)

and

T∑

t=1

{
EPT

[
Z̃Tt

√
LRTt | FT,t−1

]
+

1

2
ι̃Tt

}
= oP (1). (C.17)

As (C.16) is implied by Condition (f) and Lemma C.2 (recall that EPT [ZTt | FT,t−1] = 0),
we only need to show that (C.17) holds in order to complete Part 1. We have

T∑

t=1

EPT

[
Z̃Tt

√
LRTt | FT,t−1

]
=

T∑

t=1

EPT

[
ZTt(1−

√
LRTt) | FT,t−1

]
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+

T∑

t=1

EPT

[
(Z̃Tt

√
LRTt − ZTt)(1−

√
LRTt) | FT,t−1

]

+

T∑

t=1

EPT

[
Z̃TtLRTt | FT,t−1

]

= −1

2
ĨT − 1

2
r
(1)
T + r

(2)
T + r

(3)
T ,

with

r
(1)
T =

T∑

t=1

EPT [ZTtRTt | FT,t−1] ,

r
(2)
T =

T∑

t=1

EPT

[
(Z̃Tt

√
LRTt − ZTt)(1−

√
LRTt) | FT,t−1

]
, and

r
(3)
T =

T∑

t=1

EPT

[
Z̃TtLRTt | FT,t−1

]
.

Starting with r
(1)
T ,

|r(1)T |2 ≤
(

T∑

t=1

√
EPT [Z2

Tt | FT,t−1]
√
EPT [R2

Tt | FT,t−1]

)2

≤
T∑

t=1

EPT

[
Z2
Tt | FT,t−1

] T∑

t=1

EPT

[
R2

Tt | FT,t−1

]
,

so that (C.5) and Condition (g) imply r
(1)
T = oP (1). In the same way (C.4), (C.5) and

Condition (f) yield r
(2)
T = oP (1). As for r

(3)
T , since EP̃T

[
Z̃Tt|FT,t−1

]
= 0 we obtain,

using (C.5) and Condition (g) again,

|r(3)T |2 =

∣∣∣∣∣

T∑

t=1

EP̃T

[
Z̃Tt1NTt |FT,t−1

]∣∣∣∣∣

2

≤
T∑

t=1

EP̃T

[
Z̃2
Tt|FT,t−1

] T∑

t=1

(1− EPT [LRTt | FT,t−1]) = oP (1).

Part 2. We have

∣∣∣∣∣

T∑

t=1

Z̃Tt(1−
√
LRTt) +

1

2

T∑

t=1

Z̃Tt(h
′
TSTt)

∣∣∣∣∣ =
1

2

∣∣∣∣∣

T∑

t=1

Z̃TtRTt

∣∣∣∣∣ ≤
1

2

√√√√
T∑

t=1

Z̃2
Tt

√√√√
T∑

t=1

R2
Tt.

Now, by (C.10),
∑T

t=1R
2
Tt = oP (1) and, by Conditions (g) and (h) and an application

of Hall and Heyde (1980, Theorem 2.23),
∑T

t=1 Z̃
2
Tt = OP (1). Hence, (C.14) follows

from (C.15).
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Part 3. For all T ∈ N, define a new sequence of probability measures (P′
Tt)

T
t=1 on FTt,

absolutely continuous with respect to PTt, with density

dP′
Tt

dPTt
:=

t∏

s=1

√
LRTs cTs

with, for s = 1, . . . , T , c−1
Ts := EPT

[√
LRTs | FT,s−1

]
. Note that the probability that

all c−1
Ts are strictly positive tends to one, since (C.5) implies

lim
T→∞

PT

(
∃s ∈ {1, . . . ,T} : c−1

Ts = 0
)
≤ lim

T→∞
PT

(
T∑

t=1

(1− EPT [LRTt|FT,t−1]) ≥ 1

)
= 0.

In the sequel, we thus safely can ignore the event {∃s ∈ {1, . . . , T } : c−1
Ts = 0}. Define

P′
T := P′

TT and note that P′
Tt is the restriction of P′

T to FT,t. Because of (C.2), we
have c−1

Ts = 1+ 1
2EPT [RTt | FT,t−1] . This yields, using an expansion of log(1+ x), (C.5),

and (C.11),

T∑

t=1

log c−1
Tt = −1

8
h′TJThT + oP (1).

Moreover, an application of Lemma C.3 and (C.5) yields maxt=1,...,T |c−1
Tt − 1| = oP (1),

and thus also
max

t=1,...,T
|cTt − 1| = oP (1). (C.18)

Inserting (C.7) and recalling that logLRT0 = oP (1), we obtain, under PT,

log
dP′

T

dPT
=

1

2

T∑

t=1

logLRTt −
T∑

t=1

log c−1
Tt + oP (1) =

1

2

T∑

t=1

h′TSTt −
1

8
h′T ĨThT + oP (1).

Condition (e) and Le Cam’s first lemma entail that (P′
T) and (PT) are mutually contigu-

ous. This completes Part 3 of the proof.

Part 4. Let us show that, under the measures (P′
T),

T∑

t=1

EP′
T

[
Z̃Tt(h

′
TSTt) | FT,t−1

]
= ĨT + oP (1) (C.19)

and

T∑

t=1

Z̃Tt(h
′
TSTt) =

T∑

t=1

EP′
T

[
Z̃Tt(h

′
TSTt) | FT,t−1

]
+ oP (1). (C.20)

Since oP (1)’s under (P′
T) are oP (1)’s under the contiguous (PT) too, a combination of

these two results yields (C.15) and concludes the proof.
Starting with (C.19), we have

T∑

t=1

EP′
T

[
Z̃Tt(h

′
TSTt) | FT,t−1

]
=

T∑

t=1

cTtEPT

[
Z̃Tt

√
LRTt(h

′
TSTt) | FT,t−1

]

24



= ĨT +

T∑

t=1

(cTt − 1)EPT [ZTt(h
′
TSTt) | FT,t−1]

+

T∑

t=1

cTtEPT

[
(Z̃Tt

√
LRTt − ZTt)(h

′
TSTt) | FT,t−1

]
.

Condition (f) and (C.18) imply (C.19) since
∑T

t=1 EPT

[
(h′TSTt)

2 | FT,t−1

]
= OP (1)

(see (C.4)) and
∑T

t=1 EPT

[
Z2
Tt | FT,t−1

]
= OP (1) (see Condition (g)).

Turning to (C.20), first note that
∑T

t=1(h
′
TSTt)

2 = OP (1) and
∑T

t=1 Z̃
2
Tt = OP (1)

by an application of Hall and Heyde (1980, Theorem 2.23) and (C.3), (C.4), Con-

dition (g) and Condition (h), respectively. Hence
∑T

t=1 |Z̃Tt||h′TSTt| = OP (1) and∑T
t=1 EP′

T
[|Z̃Tt||h′TSTt| | FT,t−1] = OP (1). Let ǫ, δ > 0. In view of the previous re-

marks, we can find B and T1 such that, for T ≥ T1, P
′
T(A

(T)
δ ) ≤ δ/6 for

A(T )
δ :=

{
T∑

t=1

∣∣∣(h′TSTt)Z̃Tt − EP′
T

[
(h′TSTt)Z̃Tt | FT,t−1

]∣∣∣ > B

}
.

Set η = min{1,
√
δǫ(108(B + 2))−1/2} and introduce the event

Aη,T t :=
{
|ZTt| ≤ η

}⋂{
|h′TSTt| ≤ η

}
.

Decompose

T∑

t=1

Z̃Tt(h
′
TSTt)−

T∑

t=1

EP′
T

[
Z̃Tt(h

′
TSTt) | FT,t−1

]
= p

(1)
T − p

(2)
T + p

(3)
T ,

with

p
(1)
T :=

T∑

t=1

Z̃Tt(h
′
TSTt)1Ac

η,Tt
,

p
(2)
T :=

T∑

t=1

EP′
T

[
Z̃Tt(h

′
TSTt)1Ac

η,T t
| FT,t−1

]
, and

p
(3)
T :=

T∑

t=1

Z̃Tt(h
′
TSTt)1Aη,Tt −

T∑

t=1

EP′
T

[
Z̃Tt(h

′
TSTt)1Aη,T t | FT,t−1

]
.

Let us show that there exists T ⋆ such that, for all T ≥ T ⋆, P ′
T

(
|p(i)T | > ǫ/3

)
≤ δ/3,

which, as ǫ > 0 and δ > 0 can be taken arbitrarily small, yields (C.20). Applying Hall
and Heyde (1980, Theorem 2.23) and (C.4), (C.3), Condition (g) and Condition (h), we
obtain

T∑

t=1

Z̃2
Tt1{|Z̃Tt| > η}+

T∑

t=1

(h′TSTt)
21{|h′TSTt| > η} = oP (1).
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This yields, using (C.4) and Condition (g) again,

|p(1)T | ≤

√√√√
T∑

t=1

(h′TSTt)21{|h′TSTt| > η}

√√√√
T∑

t=1

Z̃2
Tt +

√√√√
T∑

t=1

(h′TSTt)2

√√√√
T∑

t=1

Z̃2
Tt1{|Z̃Tt| > η}

= oP (1).

From (C.3), (C.4), Condition (g) and Condition (h), we also obtain

|p(2)T | ≤

√√√√
T∑

t=1

c2TtEP̃T

[
Z̃2
Tt1{|Z̃Tt| > η} | FT,t−1

]
√√√√

T∑

t=1

EPT [(h′TSTt)2 | FT,t−1]

+

√√√√
T∑

t=1

c2TtEP̃T

[
Z̃2
Tt | FT,t−1

]
√√√√

T∑

t=1

EPT [(h′TSTt)21{|h′TSTt| > η} | FT,t−1] = oP (1).

Hence, there exists T2 such that, for all T ≥ T2, P
′
T

(
|p(j)T | > ǫ/3

)
≤ δ/3 for j = 1, 2.

Next, define the martingales

{
ATt :=

t∑

s=1

{
Z̃Tt(h

′
TSTt)1Aη,Tt − EP′

T
[Z̃Tt(h

′
TSTt)1Aη,Tt | FT,s−1]

}
: 1 ≤ t ≤ T

}
,

the stopping times S(T ) := inf
{
t ∈ N|∑t

s=1 |∆ATs| > B
}
, and the processes

{
MTt := AT,t∧S(T ) : 1 ≤ t ≤ T

}
,

namely, the stopped versions of the martingales {ATt : 1 ≤ t ≤ T }—which thus also are
martingales. Note that |∆ATt| ≤ 2η2. We obtain

EP′
T
M2

TT =

T∑

t=1

EP′
T
(MTt −MT,t−1)

2 ≤ EP′
T

[ S(T )∑

t=1

(∆ATt)
2
]

≤ 2η2EP′
T

[ S(T )∑

t=1

|∆ATt|
]
≤ 2η2(B + 2η2).

So, for T ≥ T1, we have

P′
T

(
|p(3)T | > ǫ/3

)
= P′

T (|ATT| > ǫ/3) ≤ P′
T (MTT 6= ATT) + P′

T (|MTT| > ǫ/3)

≤ P′
T(S(T) ≤ T) + P′

T (|MTT| > ǫ/3)

≤ P′
T(A(T)

δ ) + P′
T (|MTT| > ǫ/3) ≤ δ

6
+

18η2(B + 2)

ǫ2
≤ δ

3
.

Letting T ⋆ := max{T1, T2} completes the proof.
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D. Additional Monte Carlo results

Table 2: Simulated sizes (25,000 replications) of the maxeig test, trace test, pseudo-Gaussian test,
and the rank-tests (4.3), g ∈ {φ, t3, t10}, under (5.1) for p = 2, r0 ∈ {0, 1}, φ = −0.3, f ∈
{N (0,Σ2), t3(Σ2), t10(Σ2)}, Σ2 ∈ {I2,Σ2,c}.

Sample size and innovation distribution

T = 100 T = 250 T = 500
Test N (0, I2) t3(I2) t10(I2) N (0, I2) t3(I2) t10(I2) N (0, I2) t3(I2) t10(I2)
r0 = 0
maxeig 0.053 0.055 0.052 0.051 0.052 0.048 0.051 0.052 0.049
trace 0.055 0.057 0.054 0.053 0.056 0.049 0.052 0.052 0.050

Q
(T )
†

0.047 0.044 0.044 0.051 0.047 0.048 0.049 0.048 0.048

Q
˜

(T )
φ 0.045 0.045 0.043 0.051 0.047 0.046 0.048 0.049 0.048

Q
˜

(T )
t3

0.050 0.048 0.048 0.051 0.048 0.047 0.048 0.048 0.047

Q
˜

(T )
t10

0.049 0.048 0.046 0.052 0.048 0.047 0.048 0.050 0.049

r0 = 1
maxeig 0.050 0.057 0.051 0.051 0.054 0.049 0.051 0.052 0.049
trace 0.050 0.057 0.051 0.051 0.054 0.049 0.051 0.052 0.049

Q
(T )
†

0.041 0.037 0.039 0.047 0.048 0.046 0.048 0.049 0.048

Q
˜

(T )
φ 0.039 0.038 0.036 0.047 0.047 0.045 0.047 0.048 0.047

Q
˜

(T )
t3

0.042 0.045 0.043 0.048 0.048 0.045 0.049 0.050 0.047

Q
˜

(T )
t10

0.041 0.042 0.040 0.047 0.048 0.044 0.049 0.050 0.048

T = 100 T = 250 T = 500
Test N (0,Σ2,c) t3(Σ2,c) t10(Σ2,c) N (0,Σ2,c) t3(Σ2,c) t10(Σ2,c) N (0,Σ2,c) t3(Σ2,c) t10(Σ2,c)
r0 = 0
maxeig 0.052 0.055 0.052 0.050 0.051 0.049 0.050 0.053 0.050
trace 0.055 0.056 0.055 0.052 0.052 0.049 0.051 0.053 0.049

Q
(T )
†

0.047 0.040 0.044 0.051 0.047 0.048 0.049 0.048 0.048

Q
˜

(T )
φ 0.045 0.045 0.043 0.051 0.047 0.046 0.048 0.049 0.048

Q
˜

(T )
t3

0.050 0.048 0.048 0.051 0.048 0.047 0.048 0.048 0.047

Q
˜

(T )
t10

0.049 0.048 0.046 0.052 0.048 0.047 0.048 0.050 0.049

r0 = 1
maxeig 0.069 0.076 0.067 0.061 0.060 0.059 0.054 0.055 0.051
trace 0.069 0.076 0.067 0.061 0.060 0.059 0.054 0.055 0.051

Q
(T )
†

0.047 0.044 0.044 0.052 0.048 0.050 0.048 0.048 0.048

Q
˜

(T )
φ 0.042 0.045 0.041 0.050 0.049 0.048 0.048 0.048 0.047

Q
˜

(T )
t3

0.048 0.053 0.048 0.049 0.052 0.048 0.049 0.051 0.050

Q
˜

(T )
t10

0.047 0.049 0.045 0.051 0.052 0.048 0.049 0.049 0.048
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Table 3: Simulated sizes (25,000 replications) of the maxeig test, trace test, pseudo-Gaussian test,
and the rank-tests (4.3), g ∈ {φ, t3, t10}, under (5.1) for p = 3, r0 ∈ {0, 1, 2}, φ = −0.3, f ∈
{N (0,Σ3), t3(Σ3), t10(Σ3)}, Σ ∈ {I3,Σ3,c}.

Sample size and innovation distribution

T = 100 T = 250 T = 500
Test N (0, I3) t3(I3) t10(I3) N (0, I3) t3(I3) t10(I3) N (0, I3) t3(I3) t10(I3)
r0 = 0
maxeig 0.054 0.064 0.056 0.054 0.056 0.053 0.050 0.055 0.052
trace 0.057 0.064 0.058 0.054 0.056 0.053 0.050 0.054 0.051

Q
(T )
†

0.046 0.041 0.044 0.048 0.043 0.051 0.048 0.048 0.050

Q
˜

(T )
φ 0.044 0.042 0.043 0.048 0.045 0.050 0.047 0.048 0.050

Q
˜

(T )
t3

0.047 0.045 0.046 0.049 0.046 0.051 0.050 0.047 0.050

Q
˜

(T )
t10

0.047 0.045 0.045 0.049 0.046 0.052 0.048 0.048 0.050

r0 = 1
maxeig 0.042 0.042 0.039 0.052 0.050 0.052 0.052 0.050 0.051
trace 0.042 0.045 0.041 0.051 0.052 0.051 0.050 0.052 0.052

Q
(T )
†

0.034 0.030 0.034 0.045 0.041 0.047 0.048 0.046 0.048

Q
˜

(T )
φ 0.032 0.033 0.032 0.044 0.042 0.047 0.047 0.046 0.047

Q
˜

(T )
t3

0.036 0.041 0.040 0.047 0.046 0.048 0.048 0.050 0.048

Q
˜

(T )
t10

0.034 0.037 0.036 0.046 0.045 0.048 0.048 0.047 0.049

r0 = 2
maxeig 0.045 0.050 0.047 0.049 0.048 0.049 0.049 0.050 0.049
trace 0.045 0.050 0.047 0.049 0.048 0.049 0.049 0.050 0.049

Q
(T )
†

0.034 0.031 0.035 0.045 0.043 0.045 0.047 0.048 0.048

Q
˜

(T )
φ

0.031 0.032 0.033 0.044 0.044 0.043 0.046 0.049 0.046

Q
˜

(T )
t3

0.037 0.040 0.040 0.046 0.046 0.045 0.049 0.051 0.047

Q
˜

(T )
t10

0.033 0.036 0.035 0.045 0.046 0.044 0.047 0.050 0.047

T = 100 T = 250 T = 500
Test N (0,Σ3,c) t3(Σ3,c) t10(Σ3,c) N (0,Σ3,c) t3(Σ3,c) t10(Σ3,c) N (0,Σ3,c) t3(Σ3,c) t10(Σ3,c)
r0 = 0
maxeig 0.054 0.065 0.056 0.055 0.056 0.053 0.050 0.056 0.052
trace 0.056 0.065 0.058 0.053 0.057 0.052 0.051 0.054 0.050

Q
(T )
†

0.046 0.041 0.044 0.048 0.043 0.051 0.048 0.048 0.050

Q
˜

(T )
φ 0.044 0.042 0.043 0.048 0.045 0.050 0.047 0.048 0.050

Q
˜

(T )
t3

0.047 0.045 0.046 0.049 0.046 0.051 0.050 0.047 0.050

Q
˜

(T )
t10

0.047 0.045 0.045 0.049 0.046 0.052 0.048 0.048 0.050

r0 = 1
maxeig 0.066 0.067 0.067 0.058 0.057 0.058 0.054 0.052 0.054
trace 0.073 0.072 0.073 0.061 0.060 0.062 0.055 0.055 0.054

Q
(T )
†

0.040 0.038 0.038 0.047 0.041 0.046 0.048 0.046 0.047

Q
˜

(T )
φ

0.039 0.044 0.037 0.045 0.044 0.045 0.047 0.047 0.047

Q
˜

(T )
t3

0.045 0.050 0.045 0.048 0.048 0.048 0.048 0.048 0.049

Q
˜

(T )
t10

0.042 0.048 0.041 0.047 0.047 0.047 0.048 0.049 0.049

r0 = 2
maxeig 0.069 0.073 0.069 0.057 0.058 0.058 0.054 0.056 0.053
trace 0.069 0.073 0.069 0.057 0.058 0.058 0.054 0.056 0.053

Q
(T )
†

0.040 0.039 0.039 0.047 0.047 0.048 0.050 0.049 0.048

Q
˜

(T )
φ 0.037 0.042 0.037 0.046 0.047 0.047 0.048 0.050 0.047

Q
˜

(T )
t3

0.044 0.052 0.045 0.048 0.052 0.049 0.050 0.052 0.050

Q
˜

(T )
t10

0.041 0.047 0.040 0.047 0.050 0.049 0.049 0.052 0.049
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Table 4: Simulated sizes (25,000 replications) of the maxeig test, trace test, pseudo-Gaussian test,
and the rank-tests (4.3), g ∈ {φ, t3, t10}, under (5.1) for p = 5, r0 ∈ {0, . . . , 4}, φ = −0.3, and f ∈
{N (0, I5), t3(I5), t10(I5)}.

Sample size and innovation distribution
Test T = 100 T = 250 T = 500

N (0, I5) t3(I5) t10(I5) N (0, I5) t3(I5) t10(I5) N (0, I5) t3(I5) t10(I5)

r0 = 0
maxeig 0.063 0.083 0.065 0.053 0.065 0.055 0.049 0.061 0.054
trace 0.070 0.082 0.072 0.058 0.063 0.058 0.054 0.059 0.055

Q
(T )
†

0.044 0.038 0.043 0.047 0.047 0.047 0.048 0.047 0.048

Q
˜

(T )
φ 0.044 0.043 0.043 0.047 0.049 0.046 0.047 0.048 0.048

Q
˜

(T )
t3

0.045 0.042 0.046 0.050 0.047 0.047 0.048 0.048 0.049

Q
˜

(T )
t10

0.047 0.045 0.045 0.049 0.048 0.047 0.047 0.047 0.049

r0 = 1
maxeig 0.017 0.029 0.016 0.048 0.058 0.049 0.052 0.058 0.052
trace 0.029 0.037 0.029 0.050 0.057 0.051 0.050 0.057 0.054

Q
(T )
†

0.025 0.023 0.023 0.043 0.042 0.041 0.046 0.045 0.047

Q
˜

(T )
φ 0.024 0.029 0.022 0.042 0.044 0.042 0.045 0.047 0.046

Q
˜

(T )
t3

0.030 0.037 0.030 0.043 0.047 0.044 0.047 0.048 0.047

Q
˜

(T )
t10

0.026 0.033 0.025 0.043 0.045 0.044 0.046 0.048 0.047

r0 = 2
maxeig 0.010 0.017 0.011 0.047 0.054 0.046 0.050 0.056 0.051
trace 0.017 0.026 0.019 0.049 0.055 0.048 0.051 0.055 0.051

Q
(T )
†

0.018 0.018 0.017 0.039 0.039 0.040 0.043 0.043 0.046

Q
˜

(T )
φ 0.016 0.021 0.018 0.039 0.042 0.040 0.043 0.048 0.045

Q
˜
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Figure 8: Simulated (2,500 replications) finite-sample powers of the maxeig test, the trace

test, the pseudo-Gaussian test and the rank-based tests (4.3), g ∈ {φ, t3, t10}, for testing
H : r = 0 versus H′ : r = 1 under (5.2), for h ∈ {0, 2.5, 5, . . . , 50}, p = 2, T ∈ {100, 250, 500}, and
f ∈ {N (0, I2), t3(I2), t10(I2)} .
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Figure 9: Simulated (2,500 replications) finite-sample powers of the maxeig test, the trace

test, the pseudo-Gaussian test and the rank-based tests (4.3), g ∈ {φ, t3, t10}, for testing
H : r = 1 versus H′ : r = 2 under (5.2), for h ∈ {0, 2.5, 5, . . . , 50}, p = 2, T ∈ {100, 250, 500}, and
f ∈ {N (0, I2), t3(I2), t10(I2)} .
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Figure 10: Simulated (2,500 replications) finite-sample powers of the maxeig test, the trace

test, the pseudo-Gaussian test and the rank-based tests (4.3), g ∈ {φ, t3, t10}, for testing
H : r = 0 versus H′ : r = 1 under (5.2), for h ∈ {0, 2.5, 5, . . . , 50}, p = 2, T ∈ {100, 250, 500}, and
f ∈ {N (0,Σ2,c), t3(Σ2,c), t10(Σ2,c)} .
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Figure 11: Simulated (2,500 replications) finite-sample powers of the maxeig test, the trace

test, the pseudo-Gaussian test and the rank-based tests (4.3), g ∈ {φ, t3, t10}, for testing
H : r = 1 versus H′ : r = 2 under (5.2), for h ∈ {0, 2.5, 5, . . . , 50}, p = 2, T ∈ {100, 250, 500}, and
f ∈ {N (0,Σ2,c), t3(Σ2,c), t10(Σ2,c)} .
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Figure 12: Simulated (2,500 replications) finite-sample powers of the maxeig test, the trace

test, the pseudo-Gaussian test and the rank-based tests (4.3), g ∈ {φ, t3, t10}, for testing
H : r = 0 versus H′ : r = 1 under (5.2), for h ∈ {0, 2.5, 5, . . . , 50}, p = 3, T ∈ {100, 250, 500}, and
f ∈ {N (0, I3), t3(I3), t10(I3)} .
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Figure 13: Simulated (2,500 replications) finite-sample powers of the maxeig test, the trace

test, the pseudo-Gaussian test and the rank-based tests (4.3), g ∈ {φ, t3, t10}, for testing
H : r = 1 versus H′ : r = 2 under (5.2), for h ∈ {0, 2.5, 5, . . . , 50}, p = 3, T ∈ {100, 250, 500}, and
f ∈ {N (0, I3), t3(I3), t10(I3)} .
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Figure 14: Simulated (2,500 replications) finite-sample powers of the maxeig test, the trace

test, the pseudo-Gaussian test and the rank-based tests (4.3), g ∈ {φ, t3, t10}, for testing
H : r = 2 versus H′ : r = 3 under (5.2), for h ∈ {0, 2.5, 5, . . . , 50}, p = 3, T ∈ {100, 250, 500}, and
f ∈ {N (0, I3), t3(I3), t10(I3)} .
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Figure 15: Simulated (2,500 replications) finite-sample powers of the maxeig test, the trace

test, the pseudo-Gaussian test and the rank-based tests (4.3), g ∈ {φ, t3, t10}, for testing
H : r = 0 versus H′ : r = 1 under (5.2), for h ∈ {0, 2.5, 5, . . . , 50}, p = 3, T ∈ {100, 250, 500}, and
f ∈ {N (0,Σ3,c), t3(Σ3,c), t10(Σ3,c)} .
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Figure 16: Simulated (2,500 replications) finite-sample powers of the maxeig test, the trace

test, the pseudo-Gaussian test and the rank-based tests (4.3), g ∈ {φ, t3, t10}, for testing
H : r = 1 versus H′ : r = 2 under (5.2), for h ∈ {0, 2.5, 5, . . . , 50}, p = 3, T ∈ {100, 250, 500}, and
f ∈ {N (0,Σ3,c), t3(Σ3,c), t10(Σ3,c)} .
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Figure 17: Simulated (2,500 replications) finite-sample powers of the maxeig test, the trace

test, the pseudo-Gaussian test and the rank-based tests (4.3), g ∈ {φ, t3, t10}, for testing
H : r = 2 versus H′ : r = 3 under (5.2), for h ∈ {0, 2.5, 5, . . . , 50}, p = 3, T ∈ {100, 250, 500}, and
f ∈ {N (0,Σ3,c), t3(Σ3,c), t10(Σ3,c)} .
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Figure 18: Simulated (2,500 replications) finite-sample powers of the maxeig test, the trace

test, the pseudo-Gaussian test and the rank-based tests (4.3), g ∈ {φ, t3, t10}, for testing
H : r = 0 versus H′ : r = 1 under (5.2), for h ∈ {0, 2.5, 5, . . . , 50}, p = 5, T ∈ {100, 250, 500}, and
f ∈ {N (0, I5), t3(I5), t10(I5)} .
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Figure 19: Simulated (2,500 replications) finite-sample powers of the maxeig test, the trace

test, the pseudo-Gaussian test and the rank-based tests (4.3), g ∈ {φ, t3, t10}, for testing
H : r = 1 versus H′ : r = 2 under (5.2), for h ∈ {0, 2.5, 5, . . . , 50}, p = 5, T ∈ {100, 250, 500}, and
f ∈ {N (0, I5), t3(I5), t10(I5)} .
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Figure 20: Simulated (2,500 replications) finite-sample powers of the maxeig test, the trace

test, the pseudo-Gaussian test and the rank-based tests (4.3), g ∈ {φ, t3, t10}, for testing
H : r = 2 versus H′ : r = 3 under (5.2), for h ∈ {0, 2.5, 5, . . . , 50}, p = 5, T ∈ {100, 250, 500}, and
f ∈ {N (0, I5), t3(I5), t10(I5)} .
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Figure 21: Simulated (2,500 replications) finite-sample powers of the maxeig test, the trace

test, the pseudo-Gaussian test and the rank-based tests (4.3), g ∈ {φ, t3, t10}, for testing
H : r = 3 versus H′ : r = 4 under (5.2), for h ∈ {0, 2.5, 5, . . . , 50}, p = 5, T ∈ {100, 250, 500}, and
f ∈ {N (0, I5), t3(I5), t10(I5)} .
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Figure 22: Simulated (2,500 replications) finite-sample powers of the maxeig test, the trace

test, the pseudo-Gaussian test and the rank-based tests (4.3), g ∈ {φ, t3, t10}, for testing
H : r = 4 versus H′ : r = 5 under (5.2), for h ∈ {0, 2.5, 5, . . . , 50}, p = 5, T ∈ {100, 250, 500}, and
f ∈ {N (0, I5), t3(I5), t10(I5)} .
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