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Abstract

We extend the well established link between structural change and

estimated persistence from GARCH to stochastic volatility (SV)

models. Whenever structural changes in some model parameters

increase the empirical autocorrelations of the squares of the

underlying time series, the persistence in volatility implied by

the estimated model parameters follows suit. This explains why

stochastic volatility often appears to be more persistent when

estimated from a larger sample as then the likelihood increases

that there might have been some structural change in between.
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1 Introduction

In the context of the GARCH-family of discrete time series models, it is a

well established empirical fact that the persistence of the volatility tends to

increase with the length of the sample – in calender time – that is used for the

estimation of the model parameters (Lamoureux and Lastrapes (1990), Krämer

and Tameze (2007)). According to Diebold (1986), this upward tendency is

often due to a switch in regimes somewhere in the sample, and the probability

of a switch increases with increasing calender time. Krämer and Tameze (2007),

Mikosch and Starica (2005), Hillebrand (2005), Krämer (2008) and Krämer et

al. (2011) explore the mechanics of the relationship for various stochastic and

nonstochastic types of structural change.

The present paper considers the following simple stochastic volatility (SV)

model and shows that similar mechanisms are at work here as well:

yt =
√
htξt + µ, (t = 1, . . . , T ) (1.1)

log ht = φ+ δ loght−1 + σεt, (1.2)

where µ = E(yt), |δ| < 1 and ξt and εt are iid N(0, I2). This model is also

known as the ARSV(1)-model. Our results extend in a straightforward manner

to more complicated SV models. In the context of the simple model above, it

can be shown (see e.g. Carnero et al. (2004)) that the rate of decay of the

autocorrelations of (yt − µ)2 tends to δ as time lags are increasing, so this

parameter is a measure of the persistence of shocks to volatility in the model

described by (1.1) - (1.2).

Similar to the GARCH class of models, the estimated persistence tends to

increase with the length of the sample in calender time also among SV-models:

When fitted to empirical data, the estimator δ̂ of the persistence parameter
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δ is close to, but less than 1 and increases with increasing sample size.

The two most common applications are exchange rates and stock returns.

Carnero et al. (2004) obtain persistence parameters of 0.8499 (T=1,262) to

0.9781 (T=2,888), Taylor (1994) estimates a persistence of 0.9719 (T=3,283).

Andersson (2001) obtains value ranging from 0.9577 (T=2,134) to 0.9870

(T=2,173), while Shepard’s (1996) estimates range from 0.936 (T=2,113) to

0.967 (T=2,160)(see Figure 1).
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Figure 1: Estimated persistence and sample size in the ARSV(1)-model

Psaradakis and Tzavalis (1999) already observed that such increases in esti-

mated persistence might be caused by structural changes in the model param-
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eters, no matter which estimator for δ is used. Below we consider the following

closed-form estimator for δ:

δ̂T = ρ̂2,T

ρ̂1,T

, (1.3)

where ρ̂1,T and ρ̂2,T are estimators for the first and second order autocorrela-

tions of zt := log(y2
t ) from a sample of size T. It can be shown (see for instance

Hafner and Preminger (2010), Theorem 1) that δ̂T is consistent and asymp-

totically normal when the data generating process is as described in (1.1) and

(1.2).

Here we are interested in the behavior of δ̂T when there is a change in the

values of φ, δ, µ or σ somewhere in the sample. Extending Psaradakis and

Tzavalis (1999), we show that δ̂T can be made arbitrarily close to 1 if either the

sample or the structural change is large enough. As δ̂T is basically the ratio

of the second to the first order empirical autocorrelation coefficient of the

logs of the squared observations, any change that will make these empirical

autocorrelations equal to each other will induce an increase in the estimated

persistence, as then δ̂T
p→ 1. Section 2 points to various ways in which this can

happen, section 3 illustrates the magnitude of such effects via some selected

Monte Carlo experiments and section 4 considers some extensions.

2 Structural change and empiricial autocorre-

lation of the logs

From formula (1.3) above, it is evident that the estimated persistence, at least

for the estimator we consider here, is a function of the empirical autocorre-

lations of zt = logs of the squares of the underlying time series yt. Now it is

well known (see e.g. Hassler (1997)) that the empirical autocorrelations of zt
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tend to one in probability whenever zt exhibits nonstationary long memory. To

the extent therefore that (seemingly) nonstationary long memory in log(y2
t ) is

induced by structural changes, the estimator δ̂T from (1.3) will likewise tend

to one. Krämer et al. (2011) discuss various ways in which such (seeming)

nonstationary long memory can be produced.

For any given sample size T, Krämer and Tameze (2007) show that empirical

autocorrelations of y2
t will also tend to one in probability when µ → µ + ∆

at some fraction of the sample as ∆ increases and it is easily seen that the

same applies to zt := log(y2
t ). However, structural changes of that magnitude

appear unlikely in practice. More generally, consider the sample autocorrelation

function in a situation where r− 1 structural breaks in any of the parameters

φ, δ, σ or µ occur at [Tq1], [Tq2], ..., [Tqr−1], q0 := 0 < q1 < q2 < ... < qr−1 <

1 =: qr. The only condition is that this change must affect E(zt). There are

then r regimes, of duration Tpj each, where pj = qj − qj−1 (j = 1, ..., r). Let

E(j) be the expectation of zt and γ
(j)
k be the k-th order autocovariance of zt

in regime j (assuming that second moments of zt exist in each regime). From

Mikosch and Starica (2004, formulae 5), it is obvious that then

δ̂T
p→

r∑
j=1

pjγ
(j)
2 + ∑

1≤i<j≤r
pipj(E(j) − E(i))2

r∑
j=1

pjγ
(j)
1 + ∑

1≤i<j≤r
pipj(E(j) − E(i))2

(2.4)

as T → ∞. However, both the numerator and the denominator of this ratio

are dominated by the respective second term when structural changes become

large, so the ratio must then tend to 1.

3 Some Monte Carlo Simulations

Next we check the finite sample relevance of the above result by some Monte

Carlo experiments. Table 1 reports the expected value of δ̂T (from (1.3)) as
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Table 1: Impact of a structural break in µ on estimated persistence (T = 5000)

∆µ

q 0 0.5 1 2 5 10

0.25 0.667 0.829 0.898 0.960 0.990 0.994

0.5 0.667 0.712 0.835 0.934 0.986 0.992

0.75 0.667 0.716 0.785 0.892 0.973 0.985

Table 2: Impact of a structural break in φ on estimated persistence (T = 5000)

∆φ

q 0 1 2 3 4 5

0.25 0.667 0.933 0.980 0.990 0.994 0.996

0.5 0.667 0.951 0.986 0.993 0.996 0.997

0.75 0.667 0.932 0.979 0.990 0.994 0.996

obtained from 1000 Monte Carlo runs, for φ = 0.3, δ = 0.6, σ = 0.5, µ = 0 and

a single structural break in µ at t = 1250, t = 2500 and t = 3750 respectively.

It is seen that δ is estimated almost unbiasedly when there is no structural

change, but that the estimator tends to 1 as the structural change increases,

no matter where the change occurs.

Table 2 gives the analogous results for a structural change in φ. Results

are even more pronounced here, as a change in φ translates exponentially

into a change in E(zt), so a remarkable upward bias is obvious here as well.

Similar results (available upon request), were also obtained for other parameter

combinations and other sample sizes T.
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4 Discussion

Our theoretical argument relies crucially on the particular form (1.3) of the

estimator of the persistence parameter δ. There are various competitors where

the mechanics which drive a potential upward bias are not as clear. We did

some Monte Carlo experiments for these estimators as well and found that

they are likewise tending to one in the context of the structural changes we

consider here.
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