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Comparison of Classical and Sequential Design
of Experiments in Note Onset Detection

Nadja Bauer, Julia Schiffner and Claus Weihs

Abstract Design of experiments is an established approach to parameter optimiza-
tion of industrial processes. In many computer applications however it is usual to
optimize the parameters via genetic algorithms. The main idea of this work is to
apply design of experiment’s techniques to the optimization of computer processes.
The major problem here is finding a compromise between model validity and costs,
which increase with the number of experiments. The second relevant problem is
choosing an appropriate model, which describes the relationship between param-
eters and target values. One of the recent approaches here is model combination,
which can be used in sequential designs in order to improve automatic prediction of
the next trial point.

In this paper a musical note onset detection algorithm will be optimized using
sequential parameter optimization with model combination. It will be shown that
parameter optimization via design of experiments leads to better values of the target
variable than usual parameter optimization via grid search or genetic optimization
algorithms. Furthermore, the results of this application study reveal, whether the
combination of many models brings improvements in finding the optimal parameter
setting.

1 Introduction

Parameter optimization is an important issue in almost every industrial process or
computer application. In general, there are one or more target variables to be opti-
mized, which depend on a parameter vector. The relationship between target vari-
ables and parameters is usually unknown.
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Due to the high costs of most real experiments, they are often replaced by ap-
propriate simulations if possible. There are different strategies for parameter opti-
mization: grid search, algorithms of non-linear parameter optimization (like evolu-
tionary search techniques, simulated annealing etc.) or design of experiments. With
an increasing number of parameters and an increasing function evaluation time it
becomes infeasible to optimize the target variables in an acceptable period of time.
Design of experiments allows to gain as much information as possible with minimal
effort and therefore helps to tackle this problem in the most effective way.

There are two types of experimental designs: classical und sequential. In classi-
cal designs all trial points are fixed in advance. In sequential designs the next trial
point or the decision for stopping the experiment depends on the results of pre-
vious experiments. The main challenge in design of experiments is the choice of
the model, which should describe the relationship between the target variable und
the parameter vector. One promising approach to cope with this problem is model
combination. The aim is to find the combination which is at least as good as the
best single model. In this paper we introduce and test different model combination
strategies and compare them to the single models. Furthermore we will assess the
influence of experimental design types on the evaluation results.

The next section provides a short overview of sequential parameter optimiza-
tion and model combination strategies. Moreover, our experimental design types
and model combination approaches are presented. The application problem, mu-
sical note onset detection, is discussed in section 3 and the simulation results are
presented in section 4. Finally section 5 summarizes our work and provides points
for future research.

2 Background and research proposal

This section provides a survey of sequential parameter optimization and model com-
bination. For each topic we first introduce related work and common approaches and
then describe our proposal.

2.1 Sequential parameter optimization

Related work

We assume that a non-linear, multimodal black-box function f (P) of k numeric or
integer parameters P = (P1,P2, . . . ,Pk) is to optimize. The range of allowed values
for parameter Pi is given by Vi. Let V=V1×V2× . . .×Vk define the parameter space.
A trial point P̃ is indicated by a parameter setting (P̃1, P̃2, . . . , P̃k). An experimental
design is a scheme that prescribes in which order the trial points are to evaluate.
In case of the classical approach this scheme depends on the assumed relationship
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between f (P) and P (i.e. the model type) and a chosen optimization criterion (like
A, D-optimality, [2]) and a-priori specifies all trial points of the whole experiment.
In case of a sequential approach only the initial design, whose dimension is usu-
ally much smaller than the total number of trials, has to be given in advance. The
common procedure of sequential parameter optimization is as follows.

1. Let D denote the initial experimental design with Ninitial trial points and let Y =
f (D) be the set of function values of points in D.

2. Do the following sequential step as long as the termination criterion is not ful-
filled:

2.1 Fit the model M with response Y and design matrix D;
2.2 Find the next trial point dnext to optimize the model prediction;
2.3 Evaluate ynext = f (dnext) and update D←− (D∪dnext), Y ←− (Y ∪ ynext).

3. Return the optimal value of the target variable ybest ∈ Y and the associated pa-
rameter setting dbest ∈ D.

Usually the trial points for the initial design in step 1 are determined via Latin
Hypercube Sampling (LHS, [21]), which covers the interesting parameter space
V uniformly. Note, that M can be a single model but also a model ensemble (see
section 2.2). The major differences between the existing algorithms for sequential
parameter optimization lie in steps 2.1 and 2.2. One popular approach here is a re-
sponse surface methodology proposed by Jones et al. [10]: in step 2.1 a Kriging
model [12] is fitted and the next trial point in step 2.2 is chosen by maximizing the
expected improvement criterion. Expected improvement can be calculated for each
point P̃ ∈ V by consideration of two criteria: the value of model prediction and the
model uncertainty at this point. For more details see [10].

Another approach is given by Bartz-Beielstein et al.[3]: in step 2.1 a user-chosen
model is fitted and the optimization of the model prediction in step 2.2 is done by
means of grid-search, which is realized by an LHS Design D′ with Nstep points. Note
that this optimization is not time-consuming because it requires merely prediction
of the model M in D′ but not evaluation of the function f (D′). Therefore Nstep can
be set to values larger than 100.000. Another way to optimize the model prediction’s
value is to use an appropriate optimization algorithm like a genetic algorithm. How-
ever, for some model types (like a classical linear regression model) the optimal
prediction can be found theoretically. There are several termination criteria to use
in step 2.4: reaching the global optimum of f (if known), limitation of the function
evaluations’ number, time limitation or no improvement.

Proposal

For our research proposal we will use the above introduced procedure. Note that de-
pending on the settings of the sequential parameter optimization algorithm different
kinds of experimental designs can be used. Two of the most important issues here
are the initial design and the number of sequential steps. We will propose and test
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three algorithm settings, where the number of the influence parameters is assumed
to be three.

The first setting is a classical 33 factorial design with an additional inner “star”
([23], p. 250). Table 1 gives the experimental scheme for this initial design, where
the values for the variables X1, X2 and X3 are bounded by -1 and +1 (so called
extreme values). The number of trial points here is 33 and just one further evaluation
will be done according to the best model prediction (verification step). This design
will be called Classic in following. Note that in this case it is not a sequential design
but a commonly used classical approach. The total number of evaluations is 34.
This number should not be exceeded by all further designs in order to facilitate the
comparability between them.

Table 1 33 full factorial design plus inner “star”

X1 X2 X3 X1 X2 X3 X1 X2 X3 X1 X2 X3

-1 -1 -1 -1 -0 -1 -1 -1 -1 -0 -0 -0.85
-0 -1 -1 -0 -0 -1 -0 -1 -1 -0 -0 -0.85
-1 -1 -1 -1 -0 -1 -1 -1 -1 -0 -0.85 -0
-1 -1 -0 -1 -0 -0 -1 -1 -0 -0 -0.85 -0
-1 -1 -1 -1 -0 -1 -1 -1 -1 -0.85 -0 -0
-0 -1 -1 -0 -0 -1 -0 -1 -1 -0.85 -0 -0
-1 -1 -1 -1 -0 -1 -1 -1 -1
-1 -1 -0 -1 -0 -0 -1 -1 -0
-0 -1 -0 -0 -0 -0 -0 -1 -0

The second design (SeqICC) is given by an inscribed central composite initial
design with 15 trial points ([23], p. 151) and 19 sequential steps (see table 2). The
third design (SeqLHS) is an LHS initial design with also 15 trial points and 19
sequential steps. The LHS initial design is commonly used in sequential parameter
optimization of computer applications, while the central composite design is often
applied to optimization of industrial processes. We employ both in order to assess
which leads to better results.

Table 2 Inscribed central composite initial design

X1 X2 X3 X1 X2 X3

-1 -1 -1 -0 -0 -0.85
-1 -1 -1 -0 -0 -0.85
-1 -1 -1 -0 -0.85 -0
-1 -1 -1 -0 -0.85 -0
-1 -1 -1 -0.85 -0 -0
-1 -1 -1 -0.85 -0 -0
-1 -1 -1 -0 -0 -0
-1 -1 -1
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The sequential procedure terminates if the maximum number of function evalua-
tions, here 34, is reached. For steps 2.1 and 2.2 the above presented approach of
Bartz-Beielstein et al. is used with Nstep = 20.000 trial points. Section 4 provides a
short review of these three parameter optimization strategies. Different settings for
step 2.1, the choice of a model M, will be discussed below.

2.2 Model combination

Related work

Many statistical application problems are classification or regression problems.
Here, the aim is to learn the relationship between target variables and influence vari-
ables. In most cases it is not obvious which modelling approach should be used so
that several model types are fitted to find the best one according to a declared accu-
racy criterion. The main idea behind model combination is to construct a combined
model that yields better prediction accuracy than any single model.

Usually one of the following two problems is tackled: building an ensemble of
one particular model type with different hyperparameter settings [20] or building an
ensemble of heterogeneous models with fixed hyperparameter settings [18, 13, 24].
Hyperparameters are parameters of model or learner.

Popular approaches to model combination are Bagging and Boosting, which are
based on re-sampling techniques: several training data sets are obtained from the
given training data in order to fit models with different hyperparameter settings.
These different models are then combined by using weighted voting for getting a
classifier decision. Advantage of these ensemble-methods is that they provide better
classification results then the single classifiers, but it is difficult to interpret these
models [24].

A more challenging problem is developing an approach which handles different
model types and optimizes their hyperparameter settings automatically. Such algo-
rithms are proposed for example by [8] and [9]. [9] uses a so called island-model.
The main idea of this algorithm is as follows: in the first step each island is inhabited
just by a species of one particular model type with different hyperparameter settings.
In the next steps the population in each island develops according to an evolutionary
algorithm and migration between the islands is allowed so that it comes to model
ensembles by crossing the species of different model types.

An important issue for this work is the combination of different model types. A
good overview about some related approaches is given by [19]. One of the most
popular model combination methods is linear combination: a joint prediction for
a particular trial point is obtained as simple or weighted average of the individual
predictions. Model outputs could be weighted for example according to an accuracy
criterion like the goodness of fit or prediction accuracy. Other approaches are the
Dempster-Shafer belief-based method, supra Bayesian, stacked generalization etc.
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[9] use merely the simple average approach for their algorithm in order to keep its
complexity low.

Proposal

The aim of this work is not only to compare different designs for sequential pa-
rameter optimization but also to test different model combination possibilities. Let
us assume that m models (learners) M1,M2, . . . ,Mm are given with Y as a response
and a design matrix D, which includes the settings of the influential parameters.
Let us further assume that we have a minimization problem: the minimum of Y
is sought. For each model compute first a model prediction accuracy criterion
Macc

1 ,Macc
2 , . . . ,Macc

m . We will use here the leave-one-out mean squared error esti-
mator. Then calculate model predictions for each point d j, j = 1, . . . ,Nstep, of the
sequential design D′ and receive for each model a prediction vector of length Nstep:
Mpred

1 ,Mpred
2 , . . . ,Mpred

m . We will assume that the smaller model prediction accuracy
criterion is the better is the associated model. As first model combination method
we use the weighted average approach. In order to calculate the weights the model
prediction accuracies are linearly rescaled into the interval from 1 to 2 where 1 cor-
responds to the worst model and 2 corresponds to the best model. In this way we get
a vector: scaled(Macc

1 ),scaled(Macc
2 ), . . . ,scaled(Macc

m ).
The weighted average (WeightAver) then is defined as follows:

WeightedAverage(d j) =
m

∑
i=1

Mpred
i (d j)

scaled(Macc
i )

, j = 1, . . . ,Nstep.

In each sequential step the next evaluation is done in that point d j, which minimizes
the WeightedAverage function.

For the second combination approach (BestModel) we will just choose the best
model according to the model prediction accuracy criterion. Then the function f is
evaluated in that point d j with the minimal model prediction value.

The third combination method (Best2Models) is similar to the second method
but in each step we evaluate two points according to the predictions of the two best
models. That does not mean however that we will do more function evaluations than
allowed (see the termination criterion in section 2.1).

The last model combination approach is based on the ten best prediction points
of each model (Best10). In the following this approach will be called best ten points
approach. First, for each model Mi the best ten predicted values best10(Mi) are
collected into a vector

Best = (best10(M1),best10(M2), . . . ,best10(Mm))

of dimension 10 ·m. The vector ScaledBest is obtained by rescaling Best into the
interval from 1 to 2 (2 corresponds to the biggest value of Best and 1 to the smallest).
The vector ModelWeight is defined as



Comparison of Classical and Sequential Design of Experiments 7

ModelWeight = (scaled(Macc
1 )︸ ︷︷ ︸

×10

,scaled(Macc
2 )︸ ︷︷ ︸

×10

, . . . ,scaled(Macc
m )︸ ︷︷ ︸

×10

).

For each entry in Best its relative frequency in this vector is assessed and collected
into the vector FrequencyWeight. This is done because it could happen that many
trial points belong to the best ten predictions of several model types and this makes
them more influential. The final score for the best 10 ·m points is given by

Scorel =
ScaledBestl

ModelWeightl
−FrequencyWeightl , l = 1,2, . . . ,10 ·m.

The next trial point for the function evaluation is that with the minimal score.

3 Application to a musical note onset detection algorithm

We will use sequential parameter optimization to find the optimal parameter set
for an onset-detection algorithm. A tone onset is the time point of the beginning
of a musical note or another sound. Onset detection is an important step for music
transcription and other applications like timbre or meter analysis. A tutorial on onset
detection is given by [5]. Here, we do not want to propose a very good approach for
onset detection but to optimize effectively their algorithm parameters.

The suggested method is based on the assumption that the tone onset is marked
by an amplitude increase. This assumption is fulfilled especially well for stringed
instruments like piano.

The signal is analyzed merely on a low level: only the amplitude variations of the
audio signal will be considered. Figure 1 shows an example of a music audio signal
(the onsets are marked as vertical lines). The ongoing audio signal will be split
up into windows of length L samples with overlap U samples. For each window
the maximum of the absolute amplitude is calculated. An onset is detected in each
window where the absolute amplitude maximum of this respective window is at
least S times as large as the maximum of the previous window (see [4]). Formally
this model can be written down as follows:

OT (L,U) =

ÔT (L,U,S)︷ ︸︸ ︷
z
(

max(| xt |)
∣∣T ·L−(T−1)·U
t=(T−1)·(L−U)+1−S ·max(| xt |)

∣∣(T−1)·L−(T−2)·U
t=(T−2)·(L−U)+1

)
+eT (L,U,S),with

• N - sample length of the ongoing signal,
• t = 1, . . . ,N - sample index,
• xt - amplitude of the ongoing signal in the tth sample,
• T = 1, . . . ,b N

L−Uc - window index,
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• OT (L,U) - vector of true onsets: +1, if onset in T th window, 0, else,
• ÔT (L,U,S) - vector of estimated onsets: +1, if onset in T th window, 0, else,
• O1(L,U) = 0 (assumption),
• z(x): +1, if x > 0, 0, else,
• eT (L,U,S) - model error,
• parameters to optimize:

- L - window length (in samples),
- U - overlap (in samples),
- S - threshold.

0 50000 100000 150000 200000

samples

am
pl

itu
de

−
50

00
0

50
00

Fig. 1 Example of an audio signal. Vertical lines are the tone onsets

To illustrate this model we provide an example: Let us assume N = 1000, L =
200 and U = 50 (this means overlap is 25%). The ongoing signal is split up into 6
windows: window 1: t ∈ [1,200], window 2: t ∈ [151,350], window 3: t ∈ [301,500],
window 4: t ∈ [451,650], window 5: t ∈ [601,800] and window 6: t ∈ [751,950].

Let us assume that the true onset occurs at t = 480 samples. In this case we can
write the vector of true onsets as OT (200,50) = (0,0,1,1,0,0)′. Due to the overlap
the onset occurs in the third as well as in the fourth window. In such cases an onset
is said to be detected if it is found in at least one of the two windows. OT is regarded
as a function of parameters L and U in order to clarify that its length and assignment
varies with different settings of this parameter.

One of the most popular quality criteria in onset detection is the so called F-value

F =
2c

2c+ f++ f−
,
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where c is the number of correctly detected onsets, f+ is the number of false detec-
tions and f− represents the number of undetected onsets. Note that the F-value lies
always between 0 and 1 [7]. The optimal F-value is 1.

To complete our example, let us assume that the onset vector estimated by the
proposed algorithm with parameter setting L = 200, U = 50 and S = 2 would be
given as Ô(200,50,2) = (1,0,1,0,0,0)′. Then we had c = 1, f+ = 1, f− = 0 and
accordingly F = 2

3 = 0.67.
Note that the optimal parameter setting could vary depending on e.g. music

tempo, number of instruments or sound volume of an audio signal. Another impor-
tant factor is whether there is a synthesized audio signal or a real piano recording. To
take into account some of these points we decided to differentiate between six mu-
sical epochs where each epoch is represented by two famous European composers
with one music piece respectively. The epochs and composers with the correspond-
ing abbreviations are given below:

• Medieval (Perotin1: PER, Adam de la Halle2: HAL),
• Renaissance (Orlando di Lasso3: DIL, Hans Leo Hassler4: HAS),
• Baroque (Claudio Monteverdi5: MON, Heinrich Schuetz6: STZ),
• Classic (Wolfgang A. Mozart7: MOZ , Franz J. Haydn8: HAY),
• Romance (Frédéric Chopin9: CHO, Robert Schumann10: SMN),
• New music (Arnold Schoenberg11: SBG, Igor Strawinski12: STR).

Music pieces were downloaded as MIDI-data from different internet archives
given in the footnotes. MIDI-data contains all information about the recording and
particularly the note onset times. As we have noticed above the proposed onset
algorithm suits just for stringed instruments. For this reason the instruments of all
music tracks were set to piano using the software Anvil-Studio13. After that the

1 http://www.hypermusic.ca/comp/leonin.html, date: 01.07.2011.
2 Or est Bayard en la pature, Hure!, http://www.midiworld.com/earlymus.html, date: 01.07.2011.
3 Sibylla Persica, http://www.kunstderfuge.com/lasso.htm, date: 01.07.2011.
4 Ach Weh des Leiden, http://www.kunstderfuge.com/hassler.htm, date: 01.07.2011.
5 Crudel! perché mi fuggi?, http://www.kunstderfuge.com/monteverdi.htm, date: 01.07.2011.
6 Eile mich, Gott, zu erretten, http://www.kunstderfuge.com/schutz.htm, date: 01.07.2011.
7 Sonata No. 1 in C major, KV 279 [E 189d] (1774), http://www.kunstderfuge.com/mozart.htm,
date: 01.07.2011.
8 Sonata No. 1 in C major, KV 279 [E 189d] (1774), http://www.kunstderfuge.com/haydn.htm,
date: 01.07.2011.
9 Sonata No. 2 in b flat minor, Op. 35, http://www.kunstderfuge.com/chopin.htm, date: 01.07.2011.
10 Sonata for violin and piano in a minor, Op. 105 (1851), http://www.kunstderfuge.com/schu-
mann.htm, date: 01.07.2011.
11 Sechs kleine Klavierstuecke, Op. 19, 3, http://www.kunstderfuge.com/schonberg.htm, date:
01.07.2011.
12 Symphony of Psalms First movement: Prelude, http://www.cco.caltech.edu/ tan/Stravinsky/download.html,
date: 01.07.2011.
13 http://www.anvilstudio.com (Version 2009.06.06), date: 01.07.2011.
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true onset times were extracted using the Matlab MIDI-Toolbox14, and then the
MIDI-files were converted to WAV-files using the freely available software MIDI to
WAVE Converter 6.115. We converted (and then used) just the first 60 seconds of
each music piece. Unfortunately in some cases either the onset times were extracted
not correctly or the converter software has failed so that the onset times and the
recording did not match (e.g. this was the case for several L. v. Beethoven pieces:
for that reason L. v. Beethoveen was replaced by F. J. Haydn). Therefore we had to
control each piece using plots like figure 1.

In design of experiments it is essential to define the region of interest for each
parameter, i.e. its lower and upper boundaries. For the parameter L we will allow
just the following powers of two: 256, 512, 1024, 2048, 4096 and 8192. The region
of interest for U is given by an interval between 0% (no overlap) and 50%. Note that
just 1% steps are allowed. The lowest possible value for S is 1.1 and the largerst 5.1
with step size 0.01.

In following we will model the relationship between the onset detection algo-
rithm parameters (L, U and S) and the target variable (F-value). We actually have a
maximization problem here, the sign of F will be reversed hence to get a minimiza-
tion problem.

4 Results

To compare different options for the sequential parameter optimization algorithm
(see section 2.1) we generate an experimental scheme with three metaparameters:
model type, model combination type and design. The word metaparameter is used
in order to differentiate between the onset algorithm parameters which have to be
optimized and the parameters of the sequential parameter optimization algorithm.
The metaparameter model type determines the model which describes the relation-
ship between the onset detection algorithm parameters and the target variable (see
section 3). We test 6 model types: a full second order model, Kriging, random forest,
support vector machines, neural network and the combination of these five model
types. In this work we do not aim to find the optimal hyperparameter settings for
the models, so we just use the default hyperparameter setting of the corresponding
R functions (the calculation was done using the R package mlr [6]). The second
metaparameter – model combination type – is just meaningful for the sixth model
type and has four options: weighted average, best model, best two models and best
ten points. All these approaches are described in section 2.2. The last parameter -
design - is related to the experimental design with three possibilities: classical de-
sign, sequential design with inscribed central composite initial design and sequential
design with LHS initial design (see section 2.1). The nomenclature for the metapa-
rameters is given below:

14 https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/miditoolbox/, 01.07.2011.
15 http://www.heise.de/software/download/midi to wav converter/53703, date: 01.07.2011.
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• model type:

– FSOM: Full Second Order Model (R-package rsm [14]),
– KM: Kriging (R-package DiceKriging [16]),
– RF: Random Forest (R-package randomForest [15]),
– SVM: Support Vector Machines (R-package ksvm [11]),
– NN: Neural Network (R-package nnet [17]),
– COMB: Combination of the upper five models,

• model combination type:

– WeightAver: weighted average approach,
– BestModel: best model approach,
– Best2Models: best two models approach,
– Best10: best ten points approach,

platzhalter
• design:

– Classic: 33 factorial design plus inner “star” as initial design and one verifi-
cation trial,

– SeqICC: inscribed central composite initial design and 19 sequential steps,
– SeqLHS: LHS initial design and 19 sequential steps.

Moreover three conventional parameter optimization approaches in the field of
signal analysis are conducted: grid search and two genetic algorithms. By the grid
search an LHS design with 34 points is used and the two genetic algorithms are Dif-
ferential Evolution Optimization (DEO) from R-package DEoptim [1]16 and Co-
variance Matrix Adapting Evolutionary Strategy (CMAES) from R-package cmaes
[22]17. For both evolutionary algorithms 35 function evaluations are allowed. Note
that for each of the 30 proposed optimization strategies and for each music piece the
evaluation is carried out ten times. This is done in order to average out the influence
of chance on the outcome. The mean of the corresponding optimal values is reported
in tables 3 and 4.

Table 3 presents the results for Medieval, Renaissance and Baroque and table 4
shows the results for Classic, Romance and New Music. In each column the three
best values are given in bold. The counts in brackets under the composers’ abbre-
viations provide the number of unequal onsets in a corresponding music piece (the
length of all audio signals is 60 sec.). First it is to note that depending on the tempo
of a music piece the F-value of the proposed onset algorithm varies considerably.
Good onset detection rates are reached for Perotin (PER) and Monteverdi (MON)
and worst rates for Mozart (MOZ), Chopin (CHO) and Strawinski (STR). The corre-
lation coefficient between the number of onsets and the best reached F-value for the
given 12 signals is -0.89. This illustrates that the used onset algorithm (see section
3) is suited just for rather slow pieces.

16 Control parameters: NP = 5, itermax = 6
17 Control parameters: sigma=0.25, maxit=5
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Table 3 Simulation results for Medieval, Renaissance and Baroque

ID model
type

model combi-
nation type

design PER
(130)

HAL
(233)

HAS
(106)

DIL
(120)

MON
(82)

STZ
(154)

1 FSOM - Classic 0.8533 0.6688 0.8161 0.7773 0.9427 0.7833
2 KM - Classic 0.8533 0.6564 0.8161 0.7732 0.9427 0.7809
3 RF - Classic 0.8533 0.6556 0.8161 0.7716 0.9427 0.7809
4 SVM - Classic 0.8968 0.6569 0.8161 0.7716 0.9427 0.8339
5 NN - Classic 0.8579 0.6614 0.8161 0.7805 0.9427 0.7834
6 FSOM - SeqICC 0.8597 0.6790 0.8189 0.8179 0.9382 0.7986
7 KM - SeqICC 0.9042 0.6891 0.8227 0.8187 0.9388 0.8571
8 RF - SeqICC 0.8533 0.6741 0.8097 0.7717 0.9317 0.7809
9 SVM - SeqICC 0.8934 0.6817 0.8222 0.8235 0.9342 0.8323
10 NN - SeqICC 0.9199 0.6811 0.8162 0.8148 0.9405 0.8673
11 FSOM - seqLHS 0.9165 0.6745 0.8102 0.8136 0.9300 0.8646
12 KM - seqLHS 0.8694 0.6893 0.8186 0.8060 0.9170 0.8495
13 RF - seqLHS 0.8078 0.6678 0.8076 0.7721 0.8718 0.7103
14 SVM - seqLHS 0.8918 0.6728 0.8066 0.8060 0.8935 0.8349
15 NN - seqLHS 0.9165 0.6798 0.8176 0.8044 0.9391 0.8535
16 COMB WeightAver Classic 0.8533 0.6593 0.8161 0.7783 0.9427 0.7842
17 COMB BestModel Classic 0.8593 0.6556 0.8161 0.7806 0.9427 0.7809
18 COMB Best2Models Classic 0.8533 0.6564 0.8161 0.7716 0.9427 0.7809
19 COMB Best10 Classic 0.8533 0.6564 0.8161 0.7829 0.9427 0.7809
20 COMB WeightAver SeqICC 0.8892 0.6808 0.8208 0.8219 0.9334 0.8031
21 COMB BestModel SeqICC 0.9168 0.6874 0.8180 0.8113 0.9380 0.8663
22 COMB Best2Models SeqICC 0.9180 0.6829 0.8201 0.8190 0.9389 0.8665
23 COMB Best10 SeqICC 0.9196 0.6840 0.8217 0.8223 0.9353 0.8661
24 COMB WeightAver seqLHS 0.9016 0.6773 0.8189 0.8104 0.9211 0.8597
25 COMB BestModel seqLHS 0.8879 0.6792 0.8053 0.8041 0.9054 0.8352
26 COMB Best2Models seqLHS 0.9111 0.6766 0.8177 0.8140 0.9319 0.8582
27 COMB Best10 seqLHS 0.9177 0.6830 0.8198 0.8129 0.9375 0.8636
28 LHS 0.8183 0.6542 0.8005 0.7808 0.8827 0.7669
29 DEO 0.7909 0.6072 0.8051 0.7722 0.8596 0.7802
30 CMAES 0.6815 0.5581 0.7069 0.6693 0.7734 0.5553

The three conventional parameter optimization approaches (ID’s 28, 29 and 30)
provide obviously worse results than the proposed sequential parameter optimiza-
tion strategies (especially according to table 4). This is probably due to the fact that
evolutionary algorithms require many more function evaluations to perform prop-
erly than only the allowed 34 .

A further interesting fact is that for the audio signal MON the best F-value is
reached in a trial point from the classical design scheme (X1 = −1, X2 = 0 and
X3 = 1). For this reason the best value 0.9427 is attained by 9 optimization methods
with classical design.

For better interpretation of the study results table 5 shows a summary of tables
3 and 4: for each optimization method the amount of the best, the second best and
the third best placements over all music pieces is given. As can be seen, the classi-
cal parameter optimization approach with 33 fixed trial points and one verification
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Table 4 Simulation results for Classic, Romance and New Music

ID model
type

model combi-
nation type

design MOZ
(638)

HAY
(435)

CHO
(483)

SMN
(475)

STR
(479)

SBG
(159)

1 FSOM - Classic 0.3366 0.5298 0.4007 0.4574 0.3525 0.5637
2 KM - Classic 0.3364 0.6627 0.4000 0.6005 0.3648 0.5521
3 RF - Classic 0.3366 0.5214 0.4000 0.5429 0.3481 0.5455
4 SVM - Classic 0.3656 0.6144 0.4169 0.5202 0.4140 0.6347
5 NN - Classic 0.3364 0.6286 0.4000 0.6111 0.3505 0.5580
6 FSOM - SeqICC 0.3471 0.6586 0.4040 0.6142 0.3674 0.6633
7 KM - SeqICC 0.4161 0.6658 0.4368 0.5759 0.4588 0.6621
8 RF - SeqICC 0.3541 0.5086 0.4000 0.3804 0.3624 0.5642
9 SVM - SeqICC 0.3383 0.6231 0.4000 0.5378 0.3769 0.6572
10 NN - SeqICC 0.3384 0.7070 0.4069 0.6385 0.4480 0.6641
11 FSOM - seqLHS 0.3282 0.6735 0.4099 0.5692 0.4171 0.6359
12 KM - seqLHS 0.3541 0.6613 0.3785 0.6140 0.4190 0.6350
13 RF - seqLHS 0.2539 0.5397 0.3644 0.4641 0.3274 0.5984
14 SVM - seqLHS 0.2757 0.6000 0.4266 0.5592 0.3990 0.6332
15 NN - seqLHS 0.3661 0.6661 0.4120 0.5957 0.4256 0.6540
16 COMB WeightAver Classic 0.3364 0.6629 0.4021 0.5978 0.3492 0.5574
17 COMB BestModel Classic 0.3368 0.6663 0.4007 0.6132 0.3587 0.5495
18 COMB Best2Models Classic 0.3364 0.6739 0.4018 0.6221 0.3540 0.5481
19 COMB Best10 Classic 0.3368 0.6720 0.4000 0.6214 0.3498 0.5697
20 COMB WeightAver SeqICC 0.3430 0.5811 0.4063 0.4809 0.3805 0.6641
21 COMB BestModel SeqICC 0.3564 0.6770 0.4053 0.5886 0.3846 0.6635
22 COMB Best2Models SeqICC 0.4017 0.6557 0.4076 0.6158 0.4058 0.6612
23 COMB Best10 SeqICC 0.3588 0.6421 0.4288 0.6285 0.4498 0.6604
24 COMB WeightAver seqLHS 0.3669 0.6636 0.4214 0.5743 0.4322 0.6527
25 COMB BestModel seqLHS 0.3930 0.6536 0.4311 0.5718 0.4134 0.6358
26 COMB Best2Models seqLHS 0.3931 0.6709 0.4348 0.5808 0.4430 0.6461
27 COMB Best10 seqLHS 0.4098 0.7008 0.4328 0.5924 0.4508 0.6590
28 LHS 0.2264 0.5239 0.2749 0.4268 0.3090 0.5986
29 DEO 0.2009 0.5056 0.2593 0.4434 0.3011 0.5913
30 CMAES 0.0842 0.2645 0.0989 0.2311 0.1716 0.4514

trial does not lead to appreciable results (with exception of the Monteverdi piece
referred to above). The same is true for the sequential optimization via LHS ini-
tial design by using just single models. By using the model combination approach
Best10 nevertheless this metaparameter setting seems to provide some meaningful
results. However those can be found just in table 4 which contains music pieces with
rather worse onset error rates.

An important issue is that neither of the model combination approaches is better
than the best single model. To investigate this fact we analyzed the metaparameter
setting 21 of pieces HAL and CHO in detail. The model combination approach used
here is BestModel i.e. in each step the next trial point is chosen according to the
model with the best prediction accuracy (see section 2.2). To remember, the predic-
tion accuracy criterion is the leave-one-out mean squared error estimator. Figure 2
presents the averaged error estimations for the five models in each of 19 sequen-
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tial steps (the mean was calculated over the ten replications for each ID). Although
for both signals the best single model is Kriging, the best prediction accuracy for
CHO is reached in each step by the neural network model. For this reason the entry
for CHO (see table 3) in ID 21 (0.4053) is similar to the entry for CHO in ID 10
(0.4069). For HAL the entry in ID 21 is similar to the entries in ID’s 7 and 12 be-
cause Kriging as the best model achieves till sequential step 15 the best prediction
accuracy. This leads to the need of further investigation regarding to appropriate
accuracy criteria for model combination.

Regarding the model type the best results are achieved either with Kriging or
neural network single models. Figure 2 reveals the observed characteristic of neu-
ral networks: either they perform very well or badly. The most appropriate design
setting according to the simulation results is the sequential parameter optimization
with classical initial design (SeqICC). Concerning the model combination methods
the best two models and best 10 trial points approaches seem to provide acceptable
results.

Table 5 Result’s aggregation

ID model type model combination type design place 1 place 2 place 3

1 FSOM - Classic 1 0 0
2 KM - Classic 1 0 0
3 RF - Classic 1 0 0
4 SVM - Classic 1 0 0
5 NN - Classic 1 0 0
6 FSOM - SeqICC 0 0 1
7 KM - SeqICC 4 2 0
8 RF - SeqICC 0 0 0
9 SVM - SeqICC 1 1 0
10 NN - SeqICC 5 0 0
11 FSOM - seqLHS 0 0 0
12 KM - seqLHS 0 0 0
13 RF - seqLHS 0 0 0
14 SVM - seqLHS 0 0 0
15 NN - seqLHS 0 0 0
16 COMB WeightAver Classic 1 0 0
17 COMB BestModel Classic 1 0 0
18 COMB Best2Models Classic 1 0 0
19 COMB Best10 Classic 1 0 0
20 COMB WeightAver SeqICC 0 0 1
21 COMB BestModel SeqICC 0 0 1
22 COMB Best2Models SeqICC 0 1 3
23 COMB Best10 SeqICC 0 2 2
24 COMB WeightAver seqLHS 0 0 0
25 COMB BestModel seqLHS 0 0 0
26 COMB Best2Models seqLHS 0 1 0
27 COMB Best10 seqLHS 0 3 1
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Fig. 2 Prediction accuracies for pieces HAL (table 3) and CHO (table 4) in ID 21

5 Conclusions

In this work many optimization strategies for a music signal analysis application
problem – note onset detection – were introduced and compared. The usual opti-
mization approaches in this research field are genetic algorithms. The main issue
of this paper is to combine the classical design of experiments methods with ideas
of sequential parameter optimization and model combination. Three different set-
tings for sequential parameter optimization algorithm and four model combination
approaches were proposed. The most important result is that the parameter opti-
mization via design of experiments leads mostly to better results than conventional
genetic algorithms. This can be stated at least for the considered low number of
allowed function evaluations (34 iterations and 3 parameters). This shows the effi-
ciency of design of experiments.

Due to the fact that none of the model combination methods is better than the
best single model and that this obviously is caused by the used prediction accuracy
criterion, there is a need for investigation of the influence of such criteria on the
model combination outcome.

Two of the recommendable optimization strategies according to the conducted
study are sequential parameter optimization approach with inscribed central com-
posite initial design and the model combination approaches with respect to the pre-
dictions of the two best models and best ten predicted trial points. As a future re-
search a parameter optimization of a more complex music signal analysis algorithm
like an algorithm for music transcription is planned.
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