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Martina Erdbrügge, Sonja Kuhnt, Nikolaus Rudak

TU Dortmund University, 44221 Dortmund, Germany

Abstract

Most of the existing methods for the analysis and optimization of multiple

responses require some kind of weighting of these responses, for instance in

terms of cost or desirability. Particularly at the design stage, such informa-

tion is hardly available or will rather be subjective. Kuhnt and Erdbrügge

(2004) present an alternative strategy using loss functions and a penalty

matrix which can be decomposed into a standardizing (data-driven) and a

weight matrix. The effect of different weight matrices is displayed in joint

optimization plots in terms of predicted means and variances of the response

variables. In this article, we propose how to choose weight matrices for two

and more responses. Furthermore we prove the Pareto optimality of every

point that minimizes the conditional mean of the loss function.

1 Introduction

For technical applications, off-line quality control prior to the actual manu-

facturing often implies optimizing the mean as well as minimizing the vari-

ance of multiple responses. As separate analysis of each response can yield

valuable information about the process, but often results in conflicting rec-

ommendations regarding the optimal parameter setting, robust design meth-

ods for multiple responses (Murphy et al. (2005)) are needed. Current ap-

proaches based on response surface methodology (Khuri and Mukhopadhyay

(2010)) are mainly either extensions of the desirability functions approach
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(Wu (2009), He et al. (2010), Derringer and Suich (1980)) or of the squared

error loss approach (Shen et al. (2010)).

Pignatiello (1993) and Vining (1998) are beyond the first to extend the loss

function approach to multiple responses, which involves the use of a pre-

specified cost matrix. Experience, however, shows that this might be a hard

task at the design stage, since the engineer would rather be able to assign a

relative importance to each response than specify actual costs incurred for

specific response values. Then by considering only one cost matrix it can only

be assumed that a reasonable compromise is reached, i. e. design factor levels

are found that achieve relatively good results for all responses. An alterna-

tive is provided by the approach suggested in Kuhnt and Erdbrügge (2004),

where the estimated expected loss is minimized for a sequences of possible

cost matrices. For each matrix, an optimal design factor combination is de-

rived and the results are graphically displayed in so-called joint optimization

plots. By this proceeding, additional insight into the process under study is

gained and, even more important, the subjective part of the analysis, namely

the choice of an appropriate matrix, is postponed to a stage where the conse-

quences are visible in terms of the predicted responses. Whereas the original

paper provides the general strategy behind joint optimization plots, we focus

on the choice of the employed sequence of cost matrices and show that the

optimal factor settings derived are Pareto optimal. The cost matrix itself is

factorized in a standardization and a weight matrix. Different choices of both

kind of matrices are discussed and illustrated with examples from mechanical

engineering applications.

The paper is organized as follows. In Section 2 we give a short introduc-

tion to loss functions for the multi-response case. In Section 3 we show

that every point that minimizes the conditional mean of the loss function, is

Pareto optimal. Data-driven choices of the standardizing matrix component

are proposed in Section 4 that are invariant to scale transformations. For a

joint optimization plot which simultaneously considers a range of cost ma-

trices special sequences of weight matrices are discussed, especially in cases
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of more than two response variables. The use of the resulting strategy is

demonstrated in Section 5 for applications on thermal spraying processes

and springback compensation. We conclude with a discussion in Section 6.

2 Multivariate loss and risk functions

Let us consider a product or production process, which can be characterized

by a vector of quality characteristics Y = (Y1, . . . , Yp)
′. We further presume,

that a vector of finite target values τ = (τ1, . . . , τp)
′ is given. If τr = ∞ for

any response Yr, the respective response will be transformed to Ỹr = 1/Yr

with τ̃r = 0. The random vector Y is assumed to depend functionally on

a vector of design parameters x = (x1, . . . , xk)′ ∈ X . Note, that noise pa-

rameters are omitted here for a clearer presentation, but may well be treated

(see Kuhnt, Erdbrügge (2004)). The conditional distribution of Y given x

will be denoted by Y|x, with expectation E(Y|x) = µ(x) and covariance

matrix Cov(Y|x) = Σ(x) =
[(
σrs(x)

)
r=1,...,p
s=1,...,p

]
. Note that we allow both, the

response mean and covariance matrix to depend on the design parameters.

Commonly it is assumed that Y|x, or a suitable transformation thereof, fol-

lows a multivariate normal distribution. The framework of double generalized

linear models (Smyth (1989)) allows for extensions to other continuous dis-

tribution from the exponential family, such as the lognormal or exponential

distribution.

In case of a single response (p = 1), the overall quality of the product is

viewed in terms of loss resulting from the deviation of a quality characteris-

tic Y from its target τ . This loss is measured by the quadratic loss function:

loss(Y ) = c(Y − τ)2, where c is some constant. As a straightforward exten-

sion to multiple quality characteristics, loss(Y) =
(
Y − τ

)′
C
(
Y − τ

)
has

been proposed by Pignatiello (1993). Here C denotes a p × p dimensional

symmetric cost or penalty matrix. For the expected loss, called risk function,
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it holds that

R(x) = E
(
loss(Y|x)

)
= E(Y − τ)′C(Y − τ)

= trace
(
CΣ(x)

)
+
(
µ(x)− τ

)′
C
(
µ(x)− τ

)
. (1)

Hence, minimizing the risk function will, roughly speaking, simultaneously

yield a mean near target and minimal variances. Different strategies have

been proposed (see e. g. Pignatiello (1993)) to find combinations of the design

parameter values which minimize the resulting estimated risk function

R̂(x) = trace
(
CΣ̂(x)

)
+
(
µ̂(x)− τ

)′
C
(
µ̂(x)− τ

)
. (2)

Estimates for µ̂(x) and Σ̂(x) may be achieved by modelling the means,

variances and covariances of the responses. These models may for instance

be fitted according to the methods given by Grize (1995), Engel and Huele

(1996), Chiao and Hamada (2001), McCullagh and Nelder (1989) or Nelder

and Lee (1991, 2003).

Since the number of replicates is rather small in our examples, we fit models

to the mean and variance, separately for each response, that is we assume

independent responses, given the parameter setting. In our examples we fit

double generalized linear models with identity link and normal probability

assumption for the mean model, hence

Ê(Yr|x) = f(x). (3)

The variance model is derived by a gamma GLM with log link resulting in

V̂ ar(Yr|x) = exp {g(x)} . (4)

Here f and g are polynomial functions. In this case of normal response

and identity link for the mean, the variance model is based on the squared

residuals of the mean model as responses. The iterative fitting procedure for

both models (3) and (4) alternates between fitting the mean and variance

model, at each step using the actual estimates.
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Minimizing the resulting estimated risk (2) with respect to x, leads to Pareto

optimal parameter settings in case of a diagonal cost matrix C, as is shown

next.

3 Calculation of Pareto optimal points

The concept of Pareto optimality allows to compare two different points in

Rn and to decide whether or not a point is optimal in a specific sense. It is

based on the following order relation in Rn, see Hillermeier (2001).

Definition 3.1 (Order relation ≤ in Rn) Let ≤ denote an order relation

in Rn, i.e. a special subset of the set Rn×Rn of all ordered points of elements

in Rn. Instead of (y1, y2) ∈≤ one customarily uses the infix notation y1 ≤ y2.

Let the order relation be defined as follows:

y1 ≤ y2 ⇔ y2 − y1 ∈ Rn
+,

where Rn denotes the non-negative orthant of Rn.

This order relation does not allow us to compare all vectors in Rn. Thus it

is only a partial order. Based on the above order relation an efficient and

Pareto optimal point can be defined as follows.

Definition 3.2 (Efficient point, Pareto optimal point) Let f : R ⊂
Rn → f(R) ⊂ Rk be a vector-valued function. A point y∗ ∈ f(R) is called

efficient with regard to the order relation ≤ defined in Rn, if and only if

there exists no other y ∈ f(R), y 6= y∗, with y ≤ y∗. A point x∗ ∈ Rn with

y∗ = f(x∗) is called Pareto optimal, if and only if y∗ is efficient.

A point x∗ ∈ Rn with y∗ = f(x∗) ∈ Rk is called Pareto optimal if there

exists no other point x 6= x∗ ∈ Rn with y∗ 6= y = f(x) ∈ Rk such that

y∗i ≤ yi ∀i ∈ {1, . . . , k}.
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Thus if we assume that a point x1 ∈ Rn with y1 = f(x1) ∈ Rk is not Pareto

optimal, then there exists a point x2 ∈ Rn with y2 = f(x2) ∈ Rk such that

y1 6= y2 and y2i ≤ y1i

and at least for one index j0 ∈ {1, . . . , k} it holds that y2j0 < y1j0 .

Let us connect the concept of Pareto optimality with the optimization of the

risk function introduced before. The considered unconstrained optimization

problem writes as follows

min
x∈Rn

R(x)

s.t. x ∈ R
(R)

where R = {x ∈ Rn| x ≤ x ≤ x} is the feasible region with box constraints.

The models for mean and dispersion are commonly estimated on the basis

of a designed experiment. The estimated models are reasonable in the oper-

ation region prescribed by the operation region of the experiment. Thus we

consider a box constrained optimization problem. Furthermore

R(x) = E
(
loss(Y|x)

)
= E(Y − τ)′C(Y − τ)

= trace
(
CΣ(x)

)
+
(
µ(x)− τ

)′
C
(
µ(x)− τ

)
is the risk function with a positive definite diagonal matrix C = diag(c1, . . . , ck) ∈
Rk×k with positive diagonal entries, a target vector τ ∈ Rp stands for the ideal

point to be reached and a diagonal covariance matrix Σ(x) = diag(σ1
2, . . . , σk

2) ∈
Rk×k. Because both C and Σ(x) are diagonal, we can write the risk function

as follows:

R(x) = trace
(
CΣ(x)

)
+
(
µ(x)− τ

)′
C
(
µ(x)− τ

)
=

p∑
i=1

ci(σi
2(x) + (µi(x)− τi

)2
)

:=

p∑
i=1

cifi(x)

The single valued functions fi are positive because both the variances σi
2(x)

and the quadratic differences (µi(x) − τi)
2 are positive for all x ∈ Rn and
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i ∈ {1, . . . , k}. Let F : Rn → Rk with F (x) = (f1(x), . . . , fk(x)) be a vector

valued function. We assume that there exists an optimal point xopt ∈ R ⊂ Rn

of the optimization problem (R) under appropriate regularity conditions.

This is reasonable because if we assume the risk function to be at least conti-

nous then there exists a point in the compact feasible region that minimizes

the risk function. In the next proposition we show that an optimal solution

x∗ of problem (R) is Pareto optimal for

min
x

F (x)

s.t. x ∈ R
(Rmulti)

where we minimize a p-dimensional vector in terms of Definition 3.1. The

solutions of the problem (Rmulti) are Pareto optimal points in terms of Defi-

nition 3.2.

Proposition 3.3 If xopt ∈ R ⊂ Rn is optimal for the problem (R) then it is

Pareto optimal with yopt := F (xopt) ∈ Rk for the problem (Rmulti).

Proof: Let us assume that xopt ∈ R ⊂ Rn with yopt := F (xopt) ∈ Rk is not

Pareto optimal. Then there exists a point x̂ ∈ Rn with ŷ = F (x̂) ∈ Rk such

that

0 ≤ ŷi ≤ yopti ∀ i = 1, . . . , k

and at least for one index j it holds that

0 ≤ ŷi < yopti .

It follows that

R(xopt) =

p∑
i=1

cifi(x
opt) =

p∑
i=1
i 6=j

cifi(x
opt) + cjfj(x

opt)

=

p∑
i=1
i 6=j

ciy
opt
i + cjy

opt
j ≥

p∑
i=1
i 6=j

ciŷi + cjy
opt
j
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>

p∑
i=1
i 6=j

ciŷi + cj ŷj =

p∑
i=1
i6=j

cifi(x
opt) + cjfj(x

opt)

=

p∑
i=1

cifi(x̂) = R(x̂) ≥ 0

We get that R(xopt) > R(x̂) which contradicts the optimality of xopt. Thus

xopt is Pareto optimal.

2

Proposition 3.3 guarantees that every optimal point of the optimization prob-

lem (R) is a Pareto optimal point xopt ∈ R ⊂ Rn with yopt := F (xopt) ∈ Rk.

Thus if we minimize the risk function then the optimal point xopt reduces the

variances σi
2(x) and gets the mean µi(x) on target τi for all i ∈ {1, . . . , n}

simultaneuosly. The risk function is a weighted sum of the functions fi

with strictly positive weights, hence it is a kind of weighting method as in

Hillermeier (2001) and Ehrgott (2000). If the image F (R) is nonconvex

then there are Pareto optimal points that can not be calcaluted by mini-

mizing the weighted single valued function, compare Hillermeier (2001) and

Ehrgott (2000). But the weighting method has the advantage to calculate

some Pareto optimal points by means of minimizing a single valued function

which can be done by a numerical solver.

4 Joint optimization plots

As in Kuhnt and Erdbrügge (2004) we consider sequences of cost matrices

to gain insight into a range of possible optimal parameter settings. For each

element of the sequence the estimated risk (2) is minimized with respect

to x and the result in terms of estimated mean responses and variances is

displayed in a graph called joint optimisation plot (JOP).
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First of all, we define this sequence according to Ct = AWtA, where A is a

diagonal standardization matrix and Wt is a sequence of weight matrices.

For the choice of the standardization matrix, we propose two alternatives

A1 = diag

[ 1

m

m∑
i=1

V̂ ar(Yr|xi)

]−1/2
r=1,...,p


and A2 = diag

[ 1

m

m∑
i=1

Ê(Yr|xi)

]−1
r=1,...,p

 ,

where m is the number of different design points xi = (xi1, . . . x
i
k)′, i =

1, . . . ,m with ni observations of response vectors of length p and n =
∑m

i=1 ni

the total number of observations.

These matrices both ensure that the optimal design parameter values do not

depend on the measurement scales used for the quality characteristics. The

choice of A1 in addition ensures translation invariance of the estimated risk

and may therefore be preferred. However, A2 may be useful in particular if

most of the target values are zero and we would like to weight the responses

according to their ability to “reach” their target values.

We will focus on assigning sequences of diagonal weight matrices Wt, as this

is usually sufficient and assures Pareto optimality. However, if non-diagonal

weight matrices are wanted, we suggest that off-diagonal elements of Wt are

derived from the diagonal entries by a relation wrs = w̃rs
√
wrrwss, for some

desired “scaled” setting of off-diagonal elements w̃rs ∈ (−1, 1). We denote

the diagonal of Wt by wt = (w11, . . . , wpp)
′ and define relative sizes of weights

by

log wt = d log at (5)

with a “slope” vector d ∈ Rp and {log at}Ns
t=1 ∈ R an increasing equidistant

sequence within the interval [log alow, log ahigh = − log alow]. In d, weight

relations of interest can be specified (i.e., proportionality sizes and directions)

to ensure that the weight matrices are linear independent. For the special

case of two response values, a sequence that low- or high-weights one of the
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responses, for instance the sequence of weight matrix diagonals from w1 =

(10, 1)′ to wT = (.1, 1)′ results from d = (1, 0)′ and alow = 1/10, ahigh = 10.

For higher-dimensional response, the choice of the slope vector d is not as

straightforward and may for instance be based on correlations of predicted

response means for grouping responses that are not contradictory.

After specifying the sequence {Wt}Tt=1 of weight matrices, the estimated risk

is minimized for each of the T weight matrices Wt. The resulting optimal

factor settings and associated predicted means and variances of the responses

are related to {log at}Tt=1. The computed results are visualized by separately

plotting the optimal factor settings and associated predicted response means

(± one standard deviation). This combination of graphs is called “joint op-

timization plot” (JOP). The weight matrix from {Wt}Tt=1 corresponding to

the “best compromise” regarding process requirements is read off the predic-

tions of the JOP and then transmitted to the corresponding optimal factor

settings. Hereby, the joint optimization is not influenced by any kind of

subjectivity (i. e. in choosing a cost matrix) prior to the statistical analysis.

We now possess the means to handle compromise optimization in cases where

the joint optimization should noticeably depend on all responses as well as

cases where single responses or groups of responses are more important. The

plots are done by the R-package JOP, version 2.0.0.

5 Examples

We first consider an example from sheet metal forming with two responses.

Here the focus lies on the general idea of joint optimization plots and the

Pareto optimality. The second example treats a thermal spraying process

with three responses, where the impact of different choices of the slope vector

becomes apparent.
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5.1 Example: Springback Compensation

In the following a sheet metal forming process is considered. A drawback in

forming sheet metals with high strength is the springback after the manu-

facturing process. Thus the sheet metal forming process requires strategies

for springback compensation. The experimental set up is displayed in Figure

1. The aim is to minimize the springback on the basis of a replicated 32

design with a total run size of 42 simulations. The responses Y1 in mm, the

side wall curvature, and Y2 in degrees, the flange angle, describe the spring-

back behaviour as displayed in Figure 1. The controllable parameters are

the blank holder force NH in kN and the punch stroke ZT in mm. Table 1

summarizes the coded parameters.

Figure 1: Experimental set up of sheet metal forming

Level

Factor -1 0 1

Blank holder force (NH) 300 600 900

Punch Stroke (ZT) 40 50 60

Table 1: Coded Parameters

We assume normality for both Y1 and Y2. Based on a backward selection
procedure starting from a model with all interactions and quadratic effects

11



we derive the double generalized linear models:

Ê(Y1) = 46.4390− 3.2677 ·NH+ 10.9302 · ZT + 1.4479 ·NH2 − 9.8195 · ZT2

log(V̂ar(Y1)) = 1.6170− 0.9598 ·NH2 − 0.7659 · ZT2 − 0.4590 ·NH · ZT

Ê(Y2) = 62.8939 + 3.2706 ·NH+ 0.5493 · ZT + 0.8775 · ZT2

log(V̂ar(Y2)) = 0.3269

The aim is to calculate parameters that reduce the springback after forming

the sheet metal and thus result in small flange angle Y1 and small sidewall

curvature Y2. In order to achieve this, we set the target values as follows:

τ =

(
τ1

τ2

)
=

(
0

0

)

We choose only one slope vector

d = (0, 1)T

because reverse weighting (i.e. d = (1, 0)) just results in opposite behaviour of

the responses and parameters. We first use a stretch vector a = (−20, . . . , 20)

with 40 equidistant values between -20 and 20. We use the t-th weight matrix

Wt as described in the previous chapter. Now we can calculate optimal

parameters with corresponding optimal responses by means of minimizing

the risk function for every weight matrix Wt. Figure 2 contains the joint

optimization plot.

For each weight matrices (displayed by numbers on the x-axis), the estimated

risk function is minimized and the resulting optimal parameter settings are

displayed on the y-axis of the plot on the left hand side of Figure 2 and 3. The

plot on the right hand side shows the corresponding predictions of the mean

model together with a belt with the width of twice the estimated standard

deviation from the variance model of the response. Note that the belt width

for Y2 of course is constant due the constant variance model resulting from the

model building procedure. The predicted variance for response Y2 should be

as small as possible as a result of minimizing the risk function. This seems to

have been achieved to roughly the same extent over the different weightings.
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We therefore next concentrate on reaching the target for the mean, hence in

case of both Y1 and Y2 minimal values. On the right hand side of the plot

horizontal lines near the bottom indicate the used target values of zero for

both responses. It is quite obvious from the plot that both responses can

not be minimized at the same time. The response Y2 takes minimal values

on the left hand side for corresponding low settings of ZT and high values of

NH, whereas moderate ZT and low NH values lead to minimal values for Y1

on the right hand side.

From the plot in Figure 3 it becomes obvious that results stay constant at

the lower and upper end of the weight matrices. We therefore reduce the

range of the stretch vector to values within -5 and 7. At the same time we

increase the precision to 1000 weight matrices.

Weigth Matrices

Parameter Setting

W1 W5 W9 W14 W19 W24 W29 W34 W39

−1

0

1
NH
ZT

Weight Matrices

Predicted Response

W1 W5 W9 W14 W19 W24 W29 W34 W39

12

30

48

17

42

66

0
0

Y1; target=0
Y2; target=0

Figure 2: joint optimization plot with 40 weight matrices, d = (0, 1)

On the basis of the resulting joint optimization plot the user can now choose

a ”good” compromise from the right hand plot in Figure 3. This choice

requires knowledge of the underlying process. In our example reaching the

target for the second response is more important. Thus we choose a point

on the right hand side where we get a relatively small flange angle Y1 and

a small side wall curvature Y2. The corresponding parameters are received

from the left hand plot. A possible choice is demonstrated in Figure 3.
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Weigth Matrices

Parameter Setting

W1 W127 W278 W429 W580 W731 W882

−1

0

1
NH
ZT

Weight Matrices

Predicted Response

W1 W127 W278 W429 W580 W731 W882

12

30

48

17

42

66

0
0

Y1; target=0
Y2; target=0

Figure 3: joint optimization plot with 1000 weight matrices, d = (0, 1)

Weigth Matrices

Parameter Setting

W1 W127 W278 W429 W580 W731 W882

−1

0

1
NH
ZT

Weight Matrices

Predicted Response

W1 W127 W278 W429 W580 W731 W882

12

30

48

17

42

66

0
0

Y1; target=0
Y2; target=0

Weigth Matrices

Parameter Setting

W1 W127 W278 W429 W580 W731 W882

−1

0

1

●

●

NH
ZT

Weight Matrices

Predicted Response

W1 W127 W278 W429 W580 W731 W882

12

30

48

17

42

66

0
0

●
●

Y1; target=0
Y2; target=0

Figure 4: ”good” compromise
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In Table 2 the chosen ”good” compromise is displayed.

Parameters Responses

NH ZT

−1.00 −0.43

Y1 Y2

46.31 59.55

Table 2: ”good” compromise

Denote by Xspring the set of all feasible points, Xspring = {(NH,ZT ) ∈ R2 | −
1 ≤ NH,ZT ≤ 1}. Let

Fspring(x) =

(
f1(x)

f2(x)

)

be the functions considered in Section 3, where

f1(x) = V̂ar(Y1|x) + (Ê(Y1|x)− τ1)2

f2(x) = V̂ar(Y2|x) + (Ê(Y2|x)− τ2)2.

Figure 5 displays the image of Xspring under the function FXspring
. The Pareto

optimal points for the problem

min FXspring
(x)

s.t x ∈ Xspring

are of interest. Adding the image of x-values from the joint optimization

plot in Figure 3 to Figure 5 shows that they cover the complete set of Pareto

optimal points.

5.2 Example: thermal spraying process

In this example we want to optimize a thermal spraying process on the basis of

a dataset that can be found in Tillmann et al.(2010). Tillmann et al. (2010)

conduct a central composite design with three parameters and three responses

with a total run size of 18 experiments. The controllable parameters are
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Figure 5: Image FXspring
and Pareto optimal points

kerosene level (KL) in L/h, stand off distance (SOD) in mm and oxygen

level (OL) in L/min. The responses represent coating properties, namely

microhardness (MH), deposition efficiency (DE) and roughness in µm (RRa).

Figure 6 displays the experimental set up of a thermal spraying process.

Table 3 summarizes the coded parameter levels.

Figure 6: Experimental set up
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Level

Factor -2 -1 0 1 2

Kerosene level (KL) 8 9 10 11 12

Oxygen level (OL) 750 800 850 900 950

Stand-off distance (SOD) 100 115 130 145 160

Table 3: Parameter values

We use the linear models as fitted in Tillmann et. al. (2010):

Ê(MH) = 784.57 + 66.77 ·KL + 30.90 ·OL2 − 60.51 ·OL + 48.07 · SOD2 − 46.86 · SOD

V̂ar(MH) = 95.732

Ê(DE) = 55.01− 4.11 ·KL2 + 5.54 ·KL− 7.58 ·OL− 4.85 · SOD− 2.99 ·OL ·KL

V̂ar(DE) = 6.642

Ê(RRa) = 2.06 + 0.95 · SOD2 − 1.06 · SOD

V̂ar(RRa) = 1.42

Note that in this case the variance is constant.

The aim is to find parameters that produce a coating with high microhard-

ness, high roughness and low porosity. In order to achieve this, we set the

target values as follows:

τ =

τ1τ2
τ3

 =

1500

100

0


With three response variables we may consider the following weighting sit-

uations. One variable may get opposite weight to the other two variables,

which are treated on an equal footing, i.e. by choosing slope vectors such

as (1, 0, 0), (0, 1, 0) or (0, 0, 1). Or two variables are weighted contrary to

each other with the third variable beeing inbetween, i.e. slope vectors such

as (1, 2, 3), (1, 3, 2), (3, 1, 2) or (1, 2, 4), . . ., and so on.
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We choose the following slope vectors

d1 = (1, 0, 0)T

d2 = (0, 1, 0)T

d3 = (0, 0, 1)T

in order to compare the effect of different weighting of the responses. We

choose a stretch vector a = (−10, . . . , 10) with 100 equidistant values be-

tween -10 and 10 for each slope vector for d2 and d3. Furthermore we choose

a stretch vector a = (−4, . . . , 3) with 100 equidistant values between -4 and

3 for the slope vector for d1, because greater weights lead to unreasonable

results due to numerical problems. The resulting joint optimization plots

are displayed in Figures 7, 8 and 9 together with a vertical line for a cho-

sen optimal result. The slope vector d1 defines weight of 1 for the coating

property MH and weight 0 for DE and RRa. The resulting joint optimiza-

tion plot leads especially to an improvement of MH compared to RRa on

the right hand side of the plot, with the reverse effect on the left hand side,

whereas the predicted mean response for DE does not change much with the

different weightings. Similar behaviour can be observed for the slope vectors

d2 where hich or low importance is put on DE, resulting in contradictory

behaviour with respect to RRa, while MH does not vary much. In Figure 9

RRa is weighted against the other two variables resulting in very low pre-

dicted mean values for RRa on the right hand side of the plot. If the engineer

has in mind to focus for example on the responses MH regardless the values

of DE and RRa, then the slope vector d1 is a possible choice and a point

on the right hand plot is chosen that maximizes MH. The same is true for

DE by choosing d2 and RRa by choosing d3. In addition the chosen optimal

parameters together with optimal responses are summarized in Table 4.

Additionally we consider the slope vector

d = (0.45, 0.35, 0.25)T

that corresponds to the weights used for a desirability function approach in
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Figure 7: joint optimization plot for d1 with 100 weight matrices
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Figure 8: joint optimization plot d2 with 100 weight matrices
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Figure 9: joint optimization plot d3 with 100 weight matrices

Tillmann et al. (2010). They selected these weights in order to ensure an

optimum with particularly good MH, which is the most important charac-

teristic for typical applications.

First we choose a stretch vector a = (−50, . . . , 20) with 20 equidistant val-

ues between -50 and 20 in order to identify regions where the responses stay

constant or are not reasonable. The resulting joint optimization plots are

displayed in Figure 10. We reduce the range of the stretch vector within

-25 and 20. At the same time we increase the precision 100 weight matri-

ces. Notice that due constance of the variance functions we only display the

responses without standard deviation on the right hand plot. The resulting

joint optimization plot is displayed in Figure 11.

We restricted the optimization region by box constraints. In order to compare

our results with the optimal parameter setting derived by Tillmann et al.

(2010) we allow the feasible parameter values to range within -2 and 2. The

resulting optimal parameter settings are summarized in Table 4. Notice

that the optimal parameter vector () is not in the design region anymore.

However, by means of the joint optimization plot we derived a possible further

improvement compared to the optimal parameter setting given in Tillmann
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Figure 10: joint optimization plot d with 20 weight matrices
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Figure 11: joint optimization plot d with 100 weight matrices
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et al. (2010).

Parameters Responses

slope vector KL OL SOD

d1 = (1, 0, 0) 2.00 -2.00 -1.00

d2 = (0, 1, 0) 1.42 -2.00 -1.00

d3 = (0, 0, 1) 1.94 -2.00 0.55

d = (0.45, 0.35, 0.25) 1.53 -2.20 0.43

Tillmann et al. (2010) 1.42 -2.2 0.56

MH DE RRa

1257.66 81.62 4.07

1219.03 83.09 4.07

1147.45 74.37 1.76

1158.31 78.52 1.78

1150.90 77.89 1.76

Table 4: ”good” compromise

6 Conclusion

In this article we show that the method for multicriterial optimization in-

troduced by Kuhnt and Erdbrügge (2004) gives Pareto optimal points with

respect to the considered risk function. We further propose choices of se-

quences of weight matrices in cases of more than two responses variables.

Joint optimization plots display the effect of the resulting optimal parameter

setting in terms of the estimated expected response means and variances.

We demonstrate the use of joint optimization plots based on two examples.

The choice of a ”good compromise” with respect to reaching the wanted tar-

get values of the responses at small variances then depends on the practical

problem.
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7 Appendix

The following table contains the data set from example 5.1.

NH ZT Y1 Y2

−1 −1 39.165 58.48

−1 −1 40.085 60.38

−1 −1 38.975 59.855

−1 −1 39.945 59.16

−1 0 48.805 60.235

−1 0 52.135 61.24

−1 0 51.97 59.95

−1 0 50.905 60.145

−1 0 49.835 59.285

−1 1 59.355 59.91

−1 1 61.305 60.065

−1 1 59.925 62.08

−1 1 62.485 59.23

−1 1 60.97 60.49

−1 1 62.335 59.96

−1 1 62.53 62.095

0 −1 32.36 64.41

0 −1 33.265 62.57

0 −1 35.535 64.345

0 −1 35.9 63.67

0 0 49.01 62.06

0 0 48.165 63.77

0 0 48.455 62.185

0 0 49 62.185

0 1 55.92 63.995

0 1 54.32 64.46

0 1 56.505 64.195

0 1 54.49 66.935
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0 1 56.75 66.95

0 1 57.175 63.69

0 1 58.26 64.715

1 −1 33.355 65.695

1 −1 34.16 66.01

1 −1 31.475 65.5

1 −1 32.1 68.59

1 0 43.295 64.935

1 0 43.405 66.86

1 0 44.305 64.065

1 0 46.19 67.435

1 1 53.755 68.04

1 1 55.295 67.485

1 1 55.71 66.075
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