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Abstract

We propose a new test for the hypothesis that a bivariate copula is an Archimedean

copula. The test statistic is based on a combination of two measures resulting from the

characterization of Archimedean copulas by the property of associativity and by a strict

upper bound on the diagonal by the Fréchet-upper bound. We prove weak convergence of

this statistic and show that the critical values of the corresponding test can be determined by

the multiplier bootstrap method. The test is shown to be consistent against all departures

from Archimedeanity if the copula satisfies weak smoothness assumptions. A simulation study

is presented which illustrates the finite sample properties of the new test.

Keywords and Phrases: Archimedean Copula, associativity, functional delta method, multiplier

bootstrap

AMS Subject Classification: Primary 62G10 ; secondary 62G20

1 Introduction

Let F be a bivariate continuous distribution function with marginal distribution functions F1 and

F2. By Sklar’s Theroem [see Sklar (1959)] we can decompose F as follows

F (x) = C(F1(x1), F2(x2)), x = (x1, x2) ∈ R2, (1.1)

where C is the unique copula associated to F . By definition, C is a bivariate distribution function

on the unit square [0, 1]2 whose univariate marginals are standard uniform distributions on the

interval [0, 1]. Equation (1.1) is usually interpreted in the way that the copula C completely
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characterizes the information about the stochastic dependence contained in F . For an extensive

exposition on the theory of copulas we refer the reader to the monograph Nelsen (2006).

In the last decades, various parametric models for copulas have been developed, among which

the class of Archimedean copulas forms one the most famous and largest class, see Genest and

MacKay (1986); Nelsen (2006); McNeil and Nešlehová (2009) among many others. Many widely

used copulas, such as Clayton-, Gumbel- and Frank-copulas are in fact Archimedean copulas. The

elements of this class may be characterized by a continuous, strictly decreasing and convex function

Φ : [0, 1]→ [0,∞] satisfying Φ(1) = 0 such that

C(u) = Φ[−1] [Φ(u1) + Φ(u2)] for all u = (u1, u2) ∈ [0, 1]2.

The function Φ is called the generator of C and its pseudo-ineverse Φ[−1](t) is defined as the

usual inverse Φ−1(t) for t ∈ [0,Φ(0)] and is set to 0 for t ≥ Φ(0). The prominence of the class of

Archimedean copulas basically stems from the fact that they are easy to handle and to simulate,

see Genest et al. (2011). While the estimation of Archimedean copulas has been investigated in

Genest and Rivest (1993) and recently more thoroughly in Genest et al. (2011), the issue of testing

for the hypothesis that the copula is an Archimedean one has found much less interest in the

literature. The present paper fills this gap by developing a consistent test for this hypothesis.

Our interest in this problem stems from recent work of Genest and Rivest (1993), Wang and Wells

(2000) and Naifar (2011) who proposed Archimedean copulas for modeling dependencies between

bivariate observations (among many others). We also refer to the work of Rivest and Wells (2001)

who used Archimedean copulas for modeling the dependence in the context of censored data.

To the best of our knowledge, the only available test hitherto has been discussed in Jaworski (2010).

This author proposed a procedure which is based on a characterization of Archimedean copulas

similar to the one stated in Theorem 4.1.6 in Nelsen (2006) [which dates back to Ling (1965)]. To

be precise recall that a bivariate copula C is called associative if and only if the identity

C(x,C(y, z)) = C(C(x, y), z) (1.2)

holds for all (x, y, z) ∈ [0, 1]3. Theorem 4.1.6 in Nelsen (2006) shows that a bivariate copula C is

an Archimedean copula if and only if C is associative and the inequality C(u, u) < u holds for

all u ∈ (0, 1), i.e. on the diagonal C is strictly dominated by the Fréchet-upper bound M(u) =

min(u1, u2). The procedure suggested in Jaworski (2010) is in fact to test for associativity in order

to check the validity of an Archimedean copula model. The corresponding test statistic is defined

as

Tn(x, y) =
√
n(Cn(x,Cn(y, y))− Cn(Cn(x, y), y),

where (x, y) is some fixed point in the open cube (0, 1)2 and Cn denotes the empirical copula, see

Section 2 for details. The main advantage of this approach is its simplicity, in particular the simple

limit distribution of the resulting test statistic, which is in fact normal. On the other hand this

simplicity has its price in terms of consistency. In our opinion, the method proposed by Jaworski

(2010) has at least three mayor drawbacks. First of all, it is clearly not consistent against a large
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class of alternatives since it only tests for equation (1.2) with y = z. Second, Jaworski (2010)

uses a pointwise approach in order to test for a global hypothesis as in (1.2). This means that the

test may not reject the hypothesis because (1.2) is satisfied at the particular point (x, y, y) under

investigation, although there may exist many other points where (1.2) is not satisfied. Third, there

exist copulas which are in fact associative but not Archimedean. These problems also have strong

implications for the practical applicability of the test as demonstrated by results in a simulation

study in Jaworski (2010), where the sample size has to be chosen extremely large in order to get

reasonable rejection probabilities.

To the best of our knowledge there exists no test for an Archimedean copula, which is consistent

against general alternatives and it is the primary purpose of this paper to develop such a proce-

dure and to investigate its statistical properties. We propose a test statistic which is based on a

combination of two measures resulting from the characterization of Archimedean copulas, namely

the property of associativity as described in (1.2) and the strict upper bound on the diagonal

C(u, u) < u for all u ∈ (0, 1). In Section 2 we define a new process which is based on an estimate

of the difference of the left and right hand side of the defining equation (1.2) for associativity. We

prove weak convergence of this process in the space of all uniformly bounded functions on the cube

[0, 1]3. As a consequence, we also obtain weak convergence of a corresponding Cramér-von-Mises

and a Kolmogorov-Smirnov type statistic. Because the asymptotic distribution depends in a com-

plicated manner on the underlying copula we propose a multiplier bootstrap procedure to obtain

the critical values and show its validity. As a first main result we obtain a test for associativity,

which is consistent against all alternatives satisfying weak smoothness assumptions on C. In Sec-

tion 3 we utilize these findings to develop an asymptotic test for the hypothesis of Archimedeanity.

Finally in Section 4 we investigate the finite sample performance of the new test by means of a

simulation study.

2 Testing Associativity

2.1 The test statistic and its asymptotic behavior

In the following let X1, . . . ,Xn, Xi = (Xi1, Xi2) denote independent identically distributed bivari-

ate random vectors with continuous distribution function F , marginal distribution functions F1

and F2 and copula C = F (F−1 , F
−
2 ). In this paragraph we will introduce a test statistic for the

null hypothesis that the underlying copula is associative, i.e. C satisfies condition (1.2) for all

(x, y, z) ∈ [0, 1]3.

For this purpose we briefly summarize relevant notations and results on the empirical copula, which

is the simplest and most popular nonparametric estimator of the copula. In particular we define

the empirical copula by

Cn(u) = Fn(F−n1(u1), F−n2(u2)),

where Fn(x) = n−1
∑n

i=1 I{Xi ≤ x} and Fnp(xp) = n−1
∑n

i=1 I{Xip ≤ xp}, p = 1, 2 are the joint

and marginal empirical distribution functions of the sample X1, . . . ,Xn, respectively. It is a well
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known result that under the assumptions of continuous partial derivatives of C the corresponding

empirical copula process

Cn =
√
n(Cn − C) (2.1)

converges weakly towards a Gaussian limit field GC in l∞([0, 1]2), see Rüschendorf (1976); Ferma-

nian et al. (2004); Tsukahara (2005) among others. Defining Ċp as the p-th partial derivative of

C (p = 1, 2) the process GC can be expressed as

GC(x) = BC(x)− Ċ1(x)BC(x1, 1)− Ċ2(x)BC(1, x2) (2.2)

with the copula-brownian bridge BC , i.e. BC is a centered Gaussian field with Cov(BC(x),BC(y)) =

C(x∧y)−C(x)C(y), where the minimum of two vectors is defined component-wise. As explained

in Segers (2011) the assumption of continuity of the partial derivatives of C on the whole unit

square does not hold for many (even most) commonly used copula models and as a consequence

Segers provides the result that the following nonrestrictive smoothness condition is sufficient in

order to obtain weak convergence of the empirical copula process defined in (2.1).

Condition 2.1. For p = 1, 2 the first order partial derivative Ċp of the copula C with respect to

xp exists and is continuous on the set Vp = {u ∈ [0, 1]2 : 0 < up < 1}.

Now, in order to test for associativity we consider the process

Hn(x, y, z) =
√
n {Cn(x,Cn(y, z))− Cn(Cn(x, y), z)} ,

where (x, y, z) ∈ [0, 1]3. The asymptotic properties of the process {Hn(x, y, z)}(x,y,z)∈[0,1]3 are sum-

marized in the following Theorem. Throughout this paper l∞(T ) denotes the set of all uniformly

bounded functions on T , and the symbol  denotes uniform convergence in a metric space (which

will be specified in the corresponding statements).

Theorem 2.2. If the copula C is associative and satisfies Condition 2.1, then it holds

Hn  HC in l∞([0, 1]3),

where the limit field HC can be expressed as

HC(x, y, z) = GC(x,C(y, z))−GC(C(x, y), z) + Ċ2(x,C(y, z))GC(y, z)− Ċ1(C(x, y), z)G(x, y).

Proof. If the copula C is associative we can write the process Hn as

Hn =
√
n {Φ(Cn)− Φ(C)} ,

where the functional Φ : DΦ → l∞([0, 1]3) is defined for

α ∈ DΦ = {F : F cdf on [0, 1]2}
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by

Φ(α)(x, y, z) = α(x, α(y, z))− α(α(x, y), z).

We will show later that under Condition 2.1 the mapping Φ is Hadamard-differentiable at C

tangentially to the space

D0 =
{
γ ∈ C[0, 1]2 | γ(u) = 0 for all u ∈ [0, 1]2 s.t. C(u) ∈ {0, 1}

}
,

with derivative given by

Φ′C(α)(x, y, z) = α(x,C(y, z))− α(C(x, y), z) + Ċ2(x,C(y, z))α(y, z)− Ċ1(C(x, y), z)α(x, y).

Observing that BC ∈ D0 a.s., the functional delta method, see Theorem 3.9.4 in Van der Vaart

and Wellner (1996), yields the assertion.

We now briefly sketch how to see the Hadamard-differentiability of the mapping Φ: let tn → 0 and

αn ∈ l∞([0, 1]2) with αn → α ∈ D0 such that C + tnαn ∈ DΦ. Then

t−1
n {Φ(C + tnαn)− Φ(C)} = Ln1 + Ln2 − Ln3

where

Ln1(x, y, z) = αn(x, (C + tnαn)(y, z))− αn((C + tnαn)(x, y), z)

Ln2(x, y, z) = t−1
n {C(x, (C + tnαn)(y, z))− C(x,C(y, z))}

Ln3(x, y, z) = t−1
n {C((C + tnαn)(x, y), z)− C(C(x, y), z)}.

Exploiting the fact that αn converges uniformly to a bounded function and that α is uniformly

continuous one can conclude that Ln1(x, y, z) = α(x,C(y, z)) − α(C(x, y), z) + o(1) uniformly in

(x, y, z) ∈ [0, 1]3. Regarding the summand Ln2 we have to split the investigation in two cases.

First, we consider all those (x, y, z) ∈ [0, 1]3 for which C(y, z) ∈ (0, 1). A Taylor expansion of

C(x, ·) at C(y, z) yields

Ln2(x, y, z) = Ċ2(x,C(y, z))αn(y, z) + rn(x, y, z),

where the error term can be written as

rn(x, y, z) =
(
Ċ2(x, un)− Ċ2(x,C(y, z))

)
αn(y, z)

with some intermediate point un between C(y, z) and (C + tnαn)(y, z). The main term uniformly

converges to Ċ2(x,C(y, z))α(y, z) [note that partial derivatives of copulas are uniformly bounded

by 1] and it remains to show that rn(x, y, z) = o(1) uniformly in (x, y, z) with C(y, z) ∈ (0, 1).

To see this, we will show at the end of this proof that for any ε > 0 there exists a δ > 0, such that

lim sup
n→∞

sup
v∈Aδ
|αn(v)| ≤ ε. (2.3)
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where v = (y, z), Aδ = {v ∈ [0, 1]2| C(v) ∈ [0, δ) ∪ (1 − δ, 1]}. Then, since partial derivatives of

copulas are bounded by 1, we can conclude that

lim sup
n→∞

sup
x∈[0,1],(y,z)∈Aδ

|rn(x, y, z)| ≤ ε.

Due to Condition 2.1 the partial derivative Ċ2 is uniformly continuous on the quadrangle [0, 1]×
[δ, 1− δ]. Thus, since α is uniformly bounded and since un → C(y, z), we obtain uniform conver-

gence of rn(x, y, z) to 0 for all (y, z) s.t. C(y, z) ∈ [δ, 1− δ], i.e. for (y, z) ∈ [0, 1]2 \Aδ. Combining

the two facts derived above, it follows that

lim sup
n→∞

sup
x∈[0,1],C(y,z)∈(0,1)

|rn(x, y, z)| ≤ ε.

Since ε > 0 was arbitrary, this lim sup must be zero. Summarizing, the case (x, y, z) ∈ [0, 1]3 such

that C(y, z) ∈ (0, 1) is finished.

In the remaining case C(y, z) ∈ {0, 1}, i.e. (y, z) ∈ A0, Lipschitz-continuity of C entails that

|Ln2(x, y, z)| = t−1
n |C(x,C(y, z) + tnαn(y, z))− C(x,C(y, z))| ≤ αn(y, z) = α(y, z) + o(1) = o(1)

uniformly in (x, y, z) since in this case α(y, z) = 0. Finally, the summand Ln3 may be treated

analogously.

To complete the proof it remains to show (2.3). Exploiting uniform convergence of αn, uniform

continuity of α and the fact that α(v) = 0 for all v ∈ A0 = {v |C(v) ∈ {0, 1}}, we can conclude

that there exists a κ > 0 such that |αn(v)| ≤ ε for all v ∈ Aκ0 = {v | ∃u ∈ A0 s.t. ‖u − v‖ ≤ κ}
and sufficiently large n. For v1 ∈ [κ, 1] let δ(v1) = sup{C(v1, z) | (v1, z) ∈ Aκ0} [which equals

C(v1, z(v1)) for some z(v1) such that (v1, z(v1)) ∈ ∂Aκ0 ∩ (0, 1)2 since for fixed any v1 the function

u 7→ C(v1, u) i increasing] and set δ = infv1∈[κ,1] δ(v1), which is strictly positive due to compactness

of ∂Aκ0 ∩ (0, 1)2 and continuity of C. We will now show that this choice of δ yields (2.3). Now, if

C(v) ≤ δ, we have either v1 < κ [then v ∈ Aκ0 since C(0, v2) = 0] or v1 ≥ κ. In the latter case,

C(v) ≤ δ(v1) and monotonicity of C imply v ∈ Aκ0 . This proves (2.3) and completes the proof of

Theorem 2.2.

As a consequence of Theorem 2.2 and the continuous mapping Theorem [see e.g. Theorem 1.3.6 in

Van der Vaart and Wellner (1996)], we obtain the weak convergence of a corresponding Cramér-

von-Mises and Kolmogorov-Smirnov type test statistic, i.e.

Tn,L2 =

∫
[0,1]3
{Hn(x, y, z)}2 d(x, y, z)  TC,L2 =

∫
[0,1]3
{HC(x, y, z)}2 d(x, y, z), (2.4)

Tn,KS = sup
[0,1]3
|Hn(x, y, z)|  TC,KS = sup

[0,1]3
|HC(x, y, z)| , (2.5)

which can be used to construct an asymptotic test for the hypothesis of associativity. Since

Tn,M
P→ ∞ [M ∈ {L2,KS}] if the copula is not associative the null hypothesis should be rejected

for unlikely large values of Tn,M. This gives rise to the demand for critical values of TC,M which

can be obtained by multiplier bootstrap methods as described in the subsequent paragraph.
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2.2 A multiplier bootstrap approximation

It is the purpose of this Section to provide a bootstrap approximation for the distribution of the

limiting variables TC,M whose variances depend on the unknown copula in a complicated manner.

We begin with an approximation of the distribution of the limiting process HC . For this purpose

we rewrite the decomposition of the process GC defined in (2.2) as

HC(x, y, z) = BC(x,C(y, z))− Ċ1(x,C(y, z))BC(x, 1)− Ċ2(x,C(y, z))BC(1, C(y, z))

−
{
BC(C(x, y), z)− Ċ1(C(x, y), z)BC(C(x, y), 1)− Ċ2(C(x, y), z)BC(1, z)

}
+ Ċ2(x,C(y, z))

{
BC(y, z)− Ċ1(y, z)BC(y, 1)− Ċ2(y, z)BC(1, z)

}
+ Ċ1(C(x, y), z)

{
BC(x, y)− Ċ1(x, y)BC(x, 1)− Ċ2(x, y)BC(1, y)

}
. (2.6)

In the following discussion the symbol

Gn
P
 
ξ
G (2.7)

denotes weak convergence in some metric space D conditionally on the data in probability [see

Kosorok (2008)]. More precisely, (2.7) holds for random variables Gn = Gn(X1, . . . ,Xn, ξ1, . . . ξn),

G ∈ D if and only if

sup
h∈BL1(D)

|Eξh(Gn)− Eh(G)| P→ 0 (2.8)

and

Eξh(Gn)∗ − Eξh(Gn)∗
P→ 0 for every h ∈ BL1(D), (2.9)

where

BL1(D) = {f : D→ R | ||f ||∞ ≤ 1, |f(β)− f(γ)| ≤ d(β, γ) ∀ γ, β ∈ D}

denotes the set of all Lipschitz-continuous functions bounded by 1. The subscript ξ in the ex-

pectations in (2.8) and (2.9) indicates the conditional expectation with respect to the weights

ξ = (ξ1, . . . , ξn) given the data and h(Gn)∗ and h(Gn)∗ denote measurable majorants and mi-

norants with respect to the joint data, including the weights ξ. Note also that condition (2.8)

is motivated by the metrization of weak convergence by the bounded Lipschitz-metric, see e.g.

Theorem 1.12.4 in Van der Vaart and Wellner (1996).

The process BC can be approximated by multiplier bootstrap methods, see Bücher (2011); Bücher

and Dette (2010); Rémillard and Scaillet (2009); Segers (2011). More precisely, let ξ1, . . . ξn denote

independent identically distributed random variables with mean 0 and variance 1 such that

||ξi||2,1 =

∫ ∞
0

√
P(|ξi| > x) dx <∞, (2.10)

and consider the process

αξn =
√
n(Cξ

n − Cn), (2.11)
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where

Cξ
n(x) = n−1

n∑
i=1

ξi
ξ̄n
I{Xi1 ≤ F−n1(x1), Xi2 ≤ F−n2(x2)}

denotes a multiplier bootstrap version of the estimator. It was shown in Bücher and Dette (2010)

and in more detail in Bücher (2011) that

αξn
P
 
ξ

BC

i.e. the process αξn defined in (2.11) converges weakly to BC in l∞([0, 1]2) conditionally on the data

in probability in the sense of Kosorok (2008).

For the approximation of the partial derivatives in (2.6) let ̂̇Cp be some estimator of Ċp; for instance

an estimator based on the differential quotient as in Rémillard and Scaillet (2009) defined by

̂̇C1(u) :=


Cn(u1+h,u2)−Cn(u1−h,u2)

2h
if u1 ∈ [h, 1− h]

Cn(2h,u2)
2h

if u1 ∈ [0, h)
u2−Cn(1−2h,u2)

2h
if u1 ∈ (1− h, 1]

(2.12)

̂̇C2(u) :=


Cn(u1,u2+h)−Cn(u1,u2−h)

2h
if u2 ∈ [h, 1− h]

Cn(u1,2h)
2h

if u2 ∈ [0, h)
u1−Cn(u1,1−2h)

2h
if u2 ∈ (1− h, 1]

(2.13)

where h = hn → 0 such that infn hn
√
n > 0 [for a smooth version of these estimators see Scaillet

(2005)].

Theorem 2.3. Assume that there exists a constant K such that ‖̂̇Cp‖∞ ≤ K for all n ∈ N, p = 1, 2

and that

sup
u∈[0,1]2:up∈[δ,1−δ]

∣∣∣̂̇Cp(u)− Ċp(u)
∣∣∣ P→ 0

for all δ ∈ (0, 1/2). If moreover the copula C satisfies Condition 2.1 and if the multipliers ξi satisfy

(2.10), then the multiplier process Hξ
n defined as

Hξ
n(x, y, z) = αξn(x,Cn(y, z))− ̂̇C1(x,Cn(y, z))αξn(x1, 1)− ̂̇C2(x,Cn(y, z))αξn(1, Cn(y, z))

−
{
αξn(Cn(x, y), z)− ̂̇C1(Cn(x, y), z)αξn(Cn(x, y), 1)− ̂̇C2(Cn(x, y), z)αξn(1, z)

}
+ ̂̇C2(x,Cn(y, z))

{
αξn(y, z)− ̂̇C1(y, z)αξn(y, 1)− ̂̇C2(y, z)αξn(1, z)

}
+ ̂̇C1(Cn(x, y), z)

{
αξn(x, y)− ̂̇C1(x, y)αξn(x, 1)− ̂̇C2(x, y)αξn(1, y)

}
converges weakly to the process HC conditional on the data in probability, i.e. Hξ

n
P
 
ξ

HC.
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Proof. Define the process H̃ξ
n by substituting the estimators ̂̇C1,

̂̇C2 and Cn in the definition of

Hξ
n by the true but unknown objects Ċ1, Ċ2 and C. By Lemma A.1 in Bücher (2011) it suffices to

show that

‖Hξ
n − H̃ξ

n‖∞ = sup
(x,y,z)∈[0,1]3

|Hξ
n(x, y, z)− H̃ξ

n(x, y, z)| P→ 0.

Using the triangle inequality we have to estimate the following 12 summands

‖Hξ
n − H̃ξ

n‖∞ ≤ ‖αξn(x,Cn(y, z))− αξn(x,C(y, z))‖∞

+ ‖̂̇C1(x,Cn(y, z))αξn(x, 1)− Ċ1(x,C(y, z))αξn(x, 1)‖∞

+ ‖̂̇C2(x,Cn(y, z))αξn(1, Cn(y, z))− Ċ2(x,C(y, z))αξn(1, C(y, z))‖∞
+ ‖αξn(Cn(x, y), z)− αξn(C(x, y), z)‖∞

+ ‖̂̇C1(Cn(x, y), z)αξn(Cn(x, y), 1)− Ċ1(C(x, y), z)αξn(C(x, y), 1)‖∞

+ ‖̂̇C2(Cn(x, y), z)αξn(1, z)− Ċ2(C(x, y), z)αξn(1, z)‖∞

+ ‖̂̇C2(x,Cn(y, z))αξn(y, z)− Ċ2(x,C(y, z))αξn(y, z)‖∞

+ ‖̂̇C2(x,Cn(y, z))̂̇C1(y, z)αξn(y, 1)− Ċ2(x,C(y, z))Ċ1(y, z)αξn(y, 1)‖∞

+ ‖̂̇C2(x,Cn(y, z))̂̇C2(y, z)αξn(1, z)− Ċ2(x,C(y, z))Ċ2(y, z)αξn(1, z)‖∞

+ ‖̂̇C1(Cn(x, y), z)αξn(x, y)− Ċ1(C(x, y), z)αξn(x, y)‖∞

+ ‖̂̇C1(Cn(x, y), z)̂̇C1(x, y)αξn(x, 1)− Ċ1(C(x, y), z)Ċ1(x, y)αξn(x, 1)‖∞

+ ‖̂̇C1(Cn(x, y), z)̂̇C2(x, y)αξn(1, y)− Ċ1(C(x, y), z)Ċ2(x, y)αξn(1, y)‖∞,

of which one of the hardest cases will be considered exemplarily in the following, namely the third

summand

sup
(x,y,z)∈[0,1]3

∣∣∣̂̇C2(x,Cn(y, z))αξn(1, Cn(y, z))− Ċ2(x,C(y, z))αξn(1, C(y, z))
∣∣∣ .

The treatment of the other summands is similar and is omitted for the sake of brevity. We estimate∣∣∣̂̇C2(x,Cn(y, z))αξn(1, Cn(y, z))− Ċ2(x,C(y, z))αξn(1, C(y, z))
∣∣∣

≤
∣∣∣̂̇C2(x,Cn(y, z))− Ċ2(x,Cn(y, z))

∣∣∣× ∣∣αξn(1, Cn(y, z))
∣∣

+
∣∣∣Ċ2(x,Cn(y, z))− Ċ2(x,C(y, z))

∣∣∣× ∣∣αξn(1, Cn(y, z))
∣∣

+
∣∣∣Ċ2(x,C(y, z))

∣∣∣× ∣∣αξn(1, Cn(y, z))− αξn(1, C(y, z))
∣∣

=:A1(x, y, z) + A2(x, y, z) + A3(x, y, z)
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and consider each term separately. For arbitrary ε > 0 and δ ∈ (0, 1/2) we estimate

P (supA1(x, y, z) > ε) ≤ P

(
sup

Cn(y,z)∈[δ,1−δ]
A1(x, y, z) > ε

)
+ P

(
sup

Cn(y,z)/∈[δ,1−δ]
A1(x, y, z) > ε

)

where we suppressed the index (x, y, z) ∈ [0, 1]3 at the suprema. The first probability can be

made arbitrary small by the assumptions on ̂̇C2 and by the asymptotic tightness of the process αξn,

see Theorem 2.3 in Bücher (2011). For the second summand use uniform boundedness of ̂̇C2 and

the fact that the (unconditional) limit process BC(1, ·) of αξn(1, ·) is a standard Brownian bridge

having continuous trajectories which vanish at 0 and 1. By decreasing δ the probability can be

made arbitrary small, see Segers (2011) for an rigorous treatment of this argument.

Since Ċ2 is uniformly continuous if the second coordinate is bounded away from zero and one the

second summand A2(x, y, z) can be treated similarly. Regarding A3(x, y, z) note that αξn is asymp-

totically uniformly equicontinuous [Theorem 2.3 in Bücher (2011)] and that sup(y,z)∈[0,1]2 |Cn(y, z)−
C(y, z)| P→ 0 which yields

sup
(y,z)∈[0,1]2

∣∣αξn(1, Cn(y, z))− αξn(1, C(y, z))
∣∣ P→ 0.

By boundedness of Ċ2 this yields the assertion sup(x,y,z)∈[0,1]3 A3(x, y, z)
P→ 0.

Remark 2.4.

(a) Note that the assumptions on the estimator ̂̇Cp for the partial derivatives Ċp are e.g. satisfied

for the estimators defined in (2.12) and (2.13), see Lemma 4.1 in Segers (2010).

(b) Note that Theorem 2.3 holds independently of the hypothesis of associativity. As a consequence

of the continuous mapping theorem for the bootstrap, see Proposition 10.7 in Kosorok (2008), we

can conclude that

Tξn,L2
=

∫
[0,1]3

{
Hξ
n(x, y, z)

}2
d(x, y, z)

P
 
ξ

TC,L2 , Tξn,KS = sup
[0,1]3

∣∣Hξ
n(x, y, z)

∣∣ P
 
ξ

TC,KS (2.14)

and the latter convergence suggests to use the following approach in order to obtain an asymptotic

level-α test for the hypothesis of associativity.

1. Compute the statistic Tn,M [M ∈ {L2,KS}].

2. Choose the number of bootstrap replications B ∈ N. For b = 1, . . . , B simulate independent

replications of the random variables ξ1, . . . , ξn and denote the result form the b-th iteration

by ξ1,b, . . . , ξn,b.

3. For b = 1, . . . , B compute the statistics T(ξ,b)
n,M defined in (2.14) from the data X1, . . . ,Xn

and the multipliers ξ1,b, . . . , ξn,b and determine the (1− α)-quantile qξ1−α,M of the empirical

distribution of the sample {T(ξ,b)
n,M }b=1,...,B.
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4. Reject the null hypothesis of associativity whenever Tn,M > qξ1−α,M

Since Tn,M
P→ ∞ and Tξn,M

P
 
ξ

TC,M if the copula is not associative the test is consistent against

all alternatives satisfying the conditions of Theorem 2.3.

3 Testing Archimedeanity

As stated in the Introduction a bivariate copula C is Archimedean if and only if C is an associative

copula satisfying C(u, u) < u for all u ∈ (0, 1). Associativity has been dealt with in the preceding

paragraph and it remains to handle non-Archimedean copulas which my be associative but satisfy

C(q, q) = q for some q ∈ (0, 1). Due to Theorem 1 in Jaworski (2010) or by the results in Section

2.4 of Alsina et al. (2006) all those copulas may be expressed as an ordinal sum of Archimedean

copulas. An ordinal sum copula is defined as following [cf. Section 3.2.2 in Nelsen (2006)]: let

{Ji}i∈I be a countable partition of non-overlapping closed intervals Ji = [ai, bi] whose union is

[0, 1]. If moreover {Ci}i∈I is a collection of copulas, then the ordinal sum of {Ci}i∈I with respect

to {Ji}i∈I is the copula C defined by

C(u) =

ai + (bi − ai)Ci
(
u1−ai
bi−ai ,

u2−ai
bi−ai

)
if u ∈ Ji × Ji

min{u1, u2} otherwise.

Note that C(bi, bi) = bi for all bi and that ordinal sum copulas put no mass on [0, 1]2 \
⋃
i∈I Ji×Ji.

In Figure 1 we illustrate the ordinal sum of a Gumbel copula C1 with parameter θ1 = 1.5 and a

Clayton Copula C2 with parameter θ2 = 1, where J1 = [0, 1/2], J2 = [1/2, 1]. Note that Kendall’s

τ of C is equal to 2/3, while it equals 1/3 for both C1 and C2.

In order to check for C(q, q) = q for some q ∈ (0, 1) we propose the following modification of the

statistic Tn,M

Sn,M = Tn,M + knφ(An(Cn)),

where Tn,M is defined in (2.4) and (2.5), kn ∼ nα, α ∈ (0, 1/2) is some constant chosen by the

statistician, φ is some increasing function with φ(0) = 0 and

An(Cn) = max

{
i

n

(
1− i

n

)
: Cn

(
i

n
,
i

n

)
=
i

n

}
.

Intuitively, An(Cn) should be “large” for copulas which satisfy C(q, q) = q for some q ∈ (0, 1). For

a decent choice of kn and φ we refer the reader to Section 4.

In Figure 2 we illustrate the points i/n at which Cn(i/n, i/n) = i/n for two specific examples,

the Clayton copula with θ = 1 and the ordinal sum copula depicted in Figure 1. The solid and

dashed lines correspond to the true copula and the empirical copula calculated for a set of n = 100

observations, respectively. For the ordinal sum copula there always exist some points i/n in a

neighbourhood of 1/2 such that Cn(i/n, i/n) = i/n, see the proof of the following Proposition,

which is sufficient for the derivation of the asymptotic properties of the statistic Sn,M.
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Figure 1: Left picture: Ordinal sum copula. Right picture: 500 corresponding simulated observa-

tions.

Proposition 3.1.

a) Suppose C is an Archimedean copula satisfying Condition 2.1 and that the coefficients of tail

dependence

λL = lim
u→0

C(u, u)

u
and λU = lim

u→1

1− 2u+ C(u, u)

1− u

exist and are smaller than 1. Then it holds

An(Cn) = oP(n−α)

for any α < 1/2.

b) If there exists a q ∈ (0, 1) such that C(q, q) = q then it holds

An(Cn) ≥ q(1− q) + oP(1).

Proof. We start with the proof of a). First choose δ > 0 and λ < 1 such that

C(u, u)

u
∨ 1− 2u+ C(u, u)

1− u
≤ λ

for all u ∈ [0, δ] ∪ [1− δ, 1] and use the decomposition

An(Cn) = An(Cn, [0, δ)) + An(Cn, [δ, 1− δ]) + An(Cn, (1− δ, 1]), (3.1)
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Figure 2: The solid lines show the diagonal section of a Clayton copula (left) and an ordinal sum

copula (right), while the dashed line show one realization of the corresponding empirical copula.

The circled points mark the locations where Cn(i/n, i/n) = i/n.

where

An(Cn, B) = max {i/n (1− i/n) : Cn (i/n, i/n) = i/n and i/n ∈ B}

for some set B ⊂ [0, 1] (with the convention that max ∅ = 0). Consider each term separately and

define Mn = supu∈[0,1] |Cn(u, u)− C(u, u)| , which is of order OP(n−1/2) under Condition 2.1. Now

let i/n ∈ (0, δ) be such that Cn(i/n, i/n) = i/n. Due to the estimate

i/n(1− λ) ≤ i/n

(
1− C(i/n, i/n)

i/n

)
= i/n− C(i/n, i/n) = Cn(i/n, i/n)− C(i/n, i/n) ≤Mn

we have i/n(1− i/n) ≤ i/n ≤Mn/(1− λ) and we can conclude that

An(Cn, [0, δ)) ≤
Mn

1− λ
= OP(n−1/2). (3.2)

A similar calculation shows that for i/n ∈ (1− δ, 1] with Cn(i/n, i/n) = i/n we have (1− i/n)(1−
λ) ≤Mn which in turn implies

An(Cn, (1− δ, 1]) ≤ Mn

1− λ
= OP(n−1/2). (3.3)

It remains to estimate the second summand An(Cn, [δ, 1 − δ]) of the decomposition (3.1). For

continuity reasons we can choose a κ > 0 such that u− C(u, u) ≥ κ for all u ∈ [δ, 1− δ]. If there
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was a q ∈ [δ, 1 − δ] such that Cn(q, q) = q, it would follow that Mn ≥ Cn(q, q) − C(q, q) ≥ κ and

therefore we have for any ε > 0

P (nαAn(Cn, [δ, 1− δ]) > ε) ≤ P(∃ q ∈ [δ, 1− δ] : Cn(q, q) = q) ≤ P(Mn ≥ κ)
P→ 0.

A combination of (3.2) and (3.3) with this result proves part a) of the proposition.

For the proof of part b) let n1 = #{1 ≤ i ≤ n : (F1(Xi1), F2(Xi2)) ∈ [0, q]2}. Since C(q, q) = q

implies that the mass of C is concentrated on (0, q)2 ∪ (q, 1)2 we have (F1(Xi1), F2(Xi2)) ∈ [0, q]2

if and only if Xi1 ≤ Xn1:n,1 and Xi2 ≤ Xn1:n,2, where Xj:n,p = F−np(j/n) denotes the j-th order

statistic of X1p, . . . , Xnp (for p = 1, 2). This yields Cn(n1/n, n1/n) = n1/n, which entails the

assertion by

An(Cn) ≥ n1

n

(
1− n1

n

)
P→ q(1− q) > 0.

Remark 3.2.

a) The conditions on the coefficients of tail dependence in part a) of Proposition 3.1 can be

equivalently expressed by conditions on the regular variation of the Archimedean generator of

C. For a thorough discussion of these issues the reader is referred to the work of Charpentier

and Segers (2009).

b) Exploiting Theorem G.1 in Genest and Segers (2009) and Proposition 4.2 in Segers (2011)

one can improve the rate of convergence in part a) of Proposition 3.1 to any α < 3/4. It is

our conjecture that the term is in fact of order OP(1/n), but we were not able to derive the

asymptotic distribution of nAn(Cn). Since we do not need a refined rate for our purposes here

we omit a deeper discussion and defer these issues to future research.

From now on, suppose that the conditions of Theorem 2.3 and Proposition 3.1 hold. We can

conclude that Sn,M weakly converges to TC,M if the copula C is Archimedean, while Sn,M converges

to +∞ in probability if C is non-Archimedean, i.e. if it is either non-associative (by the results of

Section 2) or if there exists a q ∈ (0, 1) such that C(q, q) = q (by Proposition 3.1). The quantiles

of TC,M can be approximated by the multiplier method described in Section 2.2. Analogously

to the discussion at the end of the Section 2.2 we can use the multiplier bootstrap to obtain

an asymptotic level-α test for the hypothesis of Archimedeanity, which is consistent against all

alternatives satisfying the Condition 2.1. Its finite sample properties will be investigated in the

following section.

4 Finite sample properties

We conclude this paper with a simulation study regarding the finite sample performance of the

proposed tests for Archimedeanity and Associativity. We consider the following six copula models:
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• The Gumbel copula, which is Archimedean.

• The Clayton copula, which is Archimedean.

• The t-copula with fixed degree of freedom df = 1, which is non-associative.

• The asymmetric negative logistic model [see Joe (1990)] with fixed parameters ψ1 = 2/3, ψ2 =

1, which is non-associative.

• An ordinal sum model based on the partition J1 = [0, 1/2], J2 = [1/2, 1] and the Gumbel

(C1) and Clayton (C2) copula, denoted by OrdinalA. The model is associative.

• An ordinal sum model based on the partition J1 = [0, 1/2], J2 = [1/2, 1] and the two Clayton

(C1 = C2) copulas, denoted by OrdinalB. The model is associative.

The parameters of the models are chosen in such a way that the coefficient of upper tail dependence

λU is either 1/4 or 1/2 [for the asymmetric negative logistic model] or that Kendall’s-τ is either

1/3 or 2/3 [for the remaining five models]. For τOrdinalA = 1/3 (or 2/3, resp.) we chose τGumbel = 0

(1/3) and τClayton = −2/3 (1/3), while τClayton = −1/3 (1/3) for τOrdinalB = 1/3 (2/3).

We generated 1000 random samples of sample sizes n = 200 and n = 500 and calculated the

empirical probability of rejecting the null hypotheses of Archimedeanity or Associativity for M ∈
{L2,KS}. For each sample of size n = 200, 500 we carried out B = 200 Bootstrap replications

based on the multiplier method, where we chose a U({0, 2})-distribution for the multipliers [i.e.

P(ξ = 0) = P(ξ = 2) = 1/2, s.t. µ = τ = 1] and used h = n−1/4 to estimate the partial

derivatives. The critical values of the tests are determined by the method described in Section

2. The penalty term Sn,M − Tn,M = knφ(An(Cn)) is chosen in the following data-adaptive way:

first of all, we set φ(x) = (4x)2 in order to give more emphasis to values around the maximal

value of An(Cn) [which equals 1/4]. The constant kn is chosen according to the distribution of the

bootstrap approximation: if qξ0.05,M denotes the 0.05-quantile of the sample {Tξ,bn,M}b=1,...,B we set

kn = qξ0.05,Mn
1/4. The latter choice guarantees that under H0 the error term is small compared to

the distribution of TC,M.

The results are stated in Table 1. The entries of the table represent the empirical probabilities

of rejecting the null hypothesis of Archimedeanity and of Associativity [in brackets] for both the

L2-test [first two columns] and the KS-test [last two columns]. We observe that the nominal level of

the four tests are accurately approximated for the four Archimedean copulas under investigation.

The L2-test tends to be more conservative than the KS-test. Also note that the values for Sn,M
and Tn,M differ only by a very small amount meaning that the penalty term knφ(An(Cn)) is of

negligible magnitude under the null hypothesis.

The t-copula and the asymmetric negative logistic models are non-associative and the results in

Table 1 reveal that these deviations are detected by both tests for Associativity, with better results

for the t-copula and for stronger dependence [measured by either τ or λU ]. The power properties

of the L2-test outclass the properties of the KS-test for all four non-associative models under

investigation, such that the former test seems to be generally preferable.
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Regarding the (associative) ordinal sum models both tests for associativity are very conservative.

Note that the asymptotic theory developed in Section 2 does not apply for these models since the

partial derivatives of the corresponding copulas are not continuous on {1/2} × [0, 1] and [0, 1] ×
{1/2}. Regarding the power properties the KS-test for Archimedeanity performs slightly better

for the ordinal sum alternatives.
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