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Abstract

Correlations between asset returns plays an important role in financial analysis.
More precisely, accurate estimates of the correlation between financial returns are
crucial in portfolio management. In particular, in periods of financial crisis, extreme
movements in asset prices are found to be more highly correlated than small move-
ments. It is precisely under these conditions that investors are extremely concerned
about changes on correlations. We propose a sequential procedure to detect the
number and position of multiple change points in the correlation structure of finan-
cial returns. It is shown analytically that the proposed algorithm asymptotically
gives the correct number of change points and the change points are consistently
estimated. It is also shown by simulation studies and by an empirical application

that the algorithm yields reasonable results.
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1. INTRODUCTION AND SUMMARY

There are many empirical hints that the correlation structure of financial returns of all
sorts cannot be assumed to be constant over time, see e.g. Longin and Solnik (1995)
and Krishan et al. (2009). Especially in times of crisis, correlation often increases, a
phenomenon which is referred to as “Diversification Meltdown” (Campbell et al., 2008).
Recently, Wied, Kramer and Dehling (2011) proposed a CUSUM type procedure adapting
ideas by Ploberger et al. (1989) to formally test if correlations remain constant over time.
Given a bivariate time series of returns, denoted by (X, Y;), the fluctuation test uses the

test statistic

_ 7 AP
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where p; is the empirical correlation up to time j, for j = 2,...,7T and D is a normal-
izing constant which is described in Wied et al. (2011). The null hypothesis of constant
correlation is rejected when the test statistic becomes too large, i.e. when the estimated
correlations fluctuate too much over time. However, with this approach the practitioner
is just able to see if there is a change or not; he cannot determine where a possible change
occurs or how many changes we have.

The present paper fills this gap by proposing an algorithm based on the correlation
constancy test to estimate the number of change points and the time of the changes as
a fraction in the interval [0, 1]. For this purpose, we adapt a method for sequential esti-
mation of multiple breaks which was dealt with or implemented in various problems by
Vostrikova (1981), Inclan and Tiao (1994), Bai (1997), Bai and Perron (1998), Andreou
and Ghysels (2002) and Galeano and Tsay (2010), among others. The segmentation algo-

rithm proceeds as follows: First, we want to find the (what we will later call) dominating



change point and decide if this point is statistically significant. Second, we split the return
series in two parts and look for possible change points again in each part of the series.
The procedure stops if we do not find any new change point any more. In this paper,
we will analytically show that the algorithm asymptotically gives the correct number of
change points and the change points are consistently estimated, assuming that there ex-
ists a finite number of change points. Furthermore, we will show that the algorithm gives
reasonable results in simulations with finite samples and in an empirical application.
The rest of the paper is organized as follows. Section 2 introduces the proposed
procedure. In Section 3, we derive the asymptotic properties of the procedure. In Sections
4 and 5, we present some simulation studies and a real data application, respectively.

Section 6 provides some conclusions. All proofs are presented in the Appendix.

2. ALGORITHM FOR THE DETECTION OF CHANGE POINTS

In this section, we present the algorithm for detection of change points in financial re-
turns. It is made for a bivariate series of random variables and can be applied to general
sequences of random variables with some serial dependency.

To be more precisely, let (X;,Y;),t € Z, be a sequence of bivariate random variables
with finite first four moments and let 1,...,7 be the observation period. The series
(Xy,Y;) are assumed to be near-epoch dependent on a strong mixing or uniform mixing
sequence. Therefore, variations of the variances are also permitted to a certain extent
and for example GARCH-effects are covered by our assumptions. For more details about
technical assumptions see Wied et al. (2011). Denoting the correlation between X; and

Y, with

_ Cov(Xy,Yy)
\/Var(Xt)\/VaT(Y;)’
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the test problem is
Hy:pi=poVte{l,....T}vs. H :3te{l,...., T —1}: py # pi1

for a constant py. In this paper, we basically focus on the test’s behavior under the
alternative.

We assume that there is a finite number of change points. However, as usual in
practice, the number, location and size of the change points are unknown. The formal

assumption is:

Assumption 1. Under the alternative, expectations and variances are constant and equal
t0 fig, fy, 02 and 05, the second cross moment changes from E(X,Y;) = my, to E(X;Y;) =
May + 9 (%). The function g(z),z € [0,1] is a step function with a finite number of steps

b, i.e. there is a partition 0 = so < 51 < ... < 8 < Spr1 = 1 such that

b
g(z) = Z @il {zels;si0)}
i=0

and g(1) = ay.

The function ¢ is the function that gives information about the time and height of the
correlation jumps. Using this expression, which is similar to the expression in the local
power analysis of Wied et al. (2011), we can describe the jumps in an elegant way. For ease

of exposition, we assume mg, to be 0. Then, for instance, assuming that m, = m, = 0

2:

, = 1, if; say, the correlation is equal to 0.5 in the first half of the sample,

and 0% = o
jumps to 0.7 in the middle of the sample and falls down to 0.6 after the third quarter of

the sample, the function g would be

9(2) = 0.5 1i.c005)) + 0.7 Licps0.7s)) + 0.6 - Lzcpo.ms1y- (1)

The condition on the finiteness of the steps of g ensures that there is a finite number

of change points b under the alternative. Our goal is to estimate b, the values sq,..., s
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and the values aq, . .., a,. For that, we propose a binary segmentation type algorithm for
estimating the number, location and size of multiple correlation changes. Thereby, we
concentrate on the “change point fractions” in the interval [0, 1]. If e.g. a break occurs
in the middle of the sample, the value of interest would be 0.5 and not 7'/2.

The main idea behind the procedure is to isolate each change point in different time
intervals by splitting the two series into two parts once a change point is found. Then,
the search of a new change point is initialized in both pieces. The proposed procedure for
detecting correlation changes essentially bases on the intuitive estimator of the change

point fraction. To obtain it, note that we can write,

~—

A ~

Qr(X,¥) = sup D12

z
Pr(z) — PT
z€[0,1] \/T =)
with 7(2) = [2 4+ 2(T — 2)]. Then the estimator is the value of z which maximizes the
function,
~7(2) . )
Br(z) =D Pr(z) — PT| -

T
The algorithm proceeds as follows:

Change detection procedure

1. Let X, and Y; be the observed series. Obtain the test statistic Qr(X,Y’). There

are two possibilities:

(a) If the test statistic is statistically significant, i.e., if Qr(X,Y) > ¢ro, where
cro is the asymptotic critical value for a given upper tail probability, then a
correlation change is detected. Let z; be the point at which the function By (z)

attains its maximum value and go to step 2.

(b) Otherwise, there are no correlation changes and the procedure ends.

2. Let z1,..., 2z be the ¢ change points already detected in previous iterations sorted



in increasing order. Repeat this step until,
k _
ml?x{QT(X, Y), k=1,...,0+ 1} < Cra,

where QX (XY is the value of the statistic Q7(X,Y) obtained for values of 7(z)
with z in the interval z;_; + 1/T < 2z < z, for k =1,..., 0+ 1, taking zo = 0 and

241 = L.

3. Let (21,...,2¢) be the vector of detected change points sorted in increasing order.
If ¢ > 1, refine the estimate of the location of the change points by calculating the
statistic Qr(X,Y") for values of 7(z) with z in the subintervals z_1 + 1/T < z <
Zga1, for k=1,... ¢, where zg = 0 and z,,; = 1. If any of the change points is not

statistically significant, delete it from the list, and repeat this step.

4. Finally, the correlation between X, and Y, is estimated in the intervals between

change points.

Some comments on the proposed procedure are in order. First, the key point of the
proposed procedure is that it detects a single change point in each iteration, which may
not be the most efficient way to detect correlation changes when multiple changes exist.
However, our theoretical results show that the procedure consistently detects the true
change points. Moreover, the proposed procedure works well in small samples in terms
of detection of the true number of changes as shown in the Monte Carlo experiments of
Section 4. Second, step 3 is included to refine the estimation of the change points. Note
that in this step, the procedure computes the value of the Qr(X,Y") statistics in intervals
that are only affected by the presence of one change point, something not achieved in
step 2. Third, the main objective of the proposed procedure is to identify points at
which further attention is needed. Thus, if the number of change points detected is
large compared with the sample size, then a piecewise constant correlation may not be

a good way to describe the correlation between the two series. Fourth, although our



theoretical results are shown assuming that the critical value used in the procedure tends
to infinity with the sample size, in practice, we use different critical values in each step of
the procedure. Using the same critical level in steps 2 and 3 may lead to over-estimation
of the number of change points, because more tests are performed in each iteration as
the number of detected change points increases and the type-I errors accumulate. Then,
to avoid this multiple-test problem we assume that the type-I errors used depend on the
number of change points already detected by the algorithm. In particular, in step 1 we
use an initial type-I error such as oy = 0.05.! Then, after detecting the (¢ — 1)-th change
point, we use the critical value cr,,, where oy is given by 1 — ag = (1 — a,)*™'. This
choice of ay is taken to maintain the same significance level for all tests. Finally, we use
the quantiles of the distribution of the supremum of the absolute value of a Brownian
Bridge in order to apply the procedure in practice, see Wied et al. (2011). The explicit

form of this distribution function can be found in Billingsley (1968).

3. ASYMPTOTIC RESULTS

In this section, we show that the algorithm proposed in Section 2 works. To this end, we
maintain another assumption which guarantees that we do not have two or more change
points with “equal form”, i.e. we assume that there are always change points which

dominate others.

Assumption 2. Let 0 <1y < ly <1 be arbitrary. The function g from Assumption 1 is

such that the function

A*(Z) = , 2 & [ll,lg],

/;g(wdt _ z/llbg(t)dt

18 either constant or has a unique mazrimum.

A dominating change point is then defined as the argmax of A*(z) in a given interval

[l1,15]. We illustrate Assumption 2 in the case of example (1). On the interval [0, 1] for

ISee also the discussion on the error levels before Theorem 2.



example, the function A*(z) then looks like

(

0.075 - 2z when z < 0.5,

A'(2) =¢01-0.125- 2 when 0.5 < z < 0.75,

0.025—-0.025-2z when 0.75 < 2z <1
\

and has a unique maximum at z = 0.5, i.e. the point with the “strongest” correlation

change, see also Figure 1.
Figure 1 around here

In general, the height and the position of the change point decides if it is dominant or
not. Assumption 2 is violated if the correlation jumps at equal sizes at symmetric time

points, e.g. in the case

9(2) = 0.5 1cp0.25)) + 0.7 Lizeio.25075) + 0.5 Lacprs.]), (2)

because here,
(

0.1-2 when 2z < 0.25,
0.05—0.1-2z when 0.25 < z < 0.5,

0.1-2—0.05 when 0.5 <2z <0.75,

01—-0.1-2 when 0.75 < z <1

has two non-unique maxima in z = 0.25 and z = 0.75, see also Figure 2.
Figure 2 around here

Finally, we need a rather technical assumption regarding the normalizing constant D.

Assumption 3. Under the alternative, D converges to a real number Dy € (0,00).

8



The first theorem shows that the change point estimator is consistent if it is known a

priori that there is a change point in a given interval.

Theorem 1. Let Assumptions 1, 2 and 3 be true and let there be one or several break
points in a given interval [ly,ls] C [0, 1] with Iy < ly. Then the change point estimator is

consistent for the dominating change point.

While also of interest in its own, the preceding theorem is mainly needed for the next
theorem yielding the convergence of the algorithm. We require one additional assumption
on the critical value cr,. While we argued in the preceding section that we have to adjust
the value for finite 7" due to multiple testing problems, we need another kind of assumption

for the asymptotics as T' — oo.

Assumption 4. The critical value cr, used in the algorithm fulfills the condition

limy 0 €10 = 00 and cpo = o(ﬁ).

The assumption rules e.g. out a choice of initial type-I error such as cg = 0.05 because
the initial type-1 error must converge to 0. However, it is legitimate using a fixed type-I

error in finite samples if we consider an upper bound for 7.

Theorem 2. Under Assumptions 1, 2, 3 and 4, the change point algorithm asymptoti-
cally gives the correct number of change points b and the change points are consistently

estimated.

4. MONTE CARLO EXPERIMENTS

In this section, we carry out several Monte Carlo experiments to gain insight into the
finite sample performance of the proposed procedure. In particular, we study several
aspects, including the size (type-I error) of the procedure, the power of the procedure in
correct detection of the changes and the ability of the procedure to accurately identify

the location of the change points.



First, we check the size (type-I error) of the procedure. For that, we consider a vector

autoregressive of order 1 given by:

Xt Qb 0 thl 6%
Y, 0 ¢ Vi €

where (e}, €?)" are iid bivariate t5 distributed with correlation p. The Student-t distribu-

tion is considered to make our data better resemble financial time series. Three values
of the correlation parameter p are considered, p = —.5, 0 and .5. Two values of the
parameter ¢ are considered, ¢ = 0, that represent the case in which X; and Y; are iid
observations, and ¢ = .5, which represents the case of temporal dependency. The sample
sizes considered in the experiments are 7" = 200, 500, 1000, 2000 and 3000, that are usual
in financial returns. Table 1 gives the results based on 1000 replications and an initial
nominal significant level of oy = 0.05. From this table, it seems that the type-I error of
the proposed procedure is very close to the initial nominal level even with the smallest
sample size. Therefore, overdetection does not appear to be an issue for the proposed

procedure if there are no changes in the correlation.

Table 1 around here

Next, we analyze the power of the proposed detection procedure when there is a
single change point in the series. The Monte Carlo setup is similar to the one described
previously, but the series are generated with a single change point in the correlation.
Three locations of the change point are considered, z; = 0.25, 0.50 and 0.75. Thus, for
each sample size T', the time points of the change are ¢; = [0.2577, [0.507], and [0.75T],
respectively. The change is such that the correlation of the series before the change point
is po = .5 and then changes to p; = 0, .25 or .75. The value of p; = 0 represents a big
change in correlation while the values p; = .25 and .75 represent moderate changes. The

results are shown in Table 2. Some comments on the table apply. First, the procedure
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performs quite well in detecting a single change point, with many cases over 90% correct
detection. Second, as the sample size increases and the size of the change gets larger, the
procedure works better. However, the magnitudes of the exception are small in general.
Third, when the sample size of the change is small, the probability of under-detection
may be large. Fourth, the power of the procedure is larger if the correlation coefficient
increases than if the correlation coefficient decreases, see the second and third part of
the table for the cases p; = .25 or .75. This is particularly so when the sample size
is small. Fifth, the location of the change point does not strongly affect the detection
frequency of the procedure when the sample size is large. However, if the sample size
is small then the procedure detects more frequently the change point at the middle of
the series. Finally, in most cases, the percentage of false detection is smaller than the
nominal 5%. In particular, the frequency of over-detection is small for all cases. On the
other hand, Table 3 shows the median and mean absolute deviation of the change point
estimators in each case. The median of the estimates are quite close to the true change
point locations. Note that the larger is the size of the change, the better is estimated its

location.

Table 2 around here

Table 3 around here

Next, we conduct another Monte Carlo experiment to study the power of the proposed
procedure for detecting two change points. In this case, the location of the change
points considered are z; = 0.33 and zy = 0.66. Thus, the time point of the changes are
t1 = [0.337] and t; = [0.667], respectively, for each sample size T'. Three situations are
considered. First, the changes are such that the correlation of the series before the first
change point is py = .5, then changes to p; = 0 at the second change point, and, finally,
changes to py = .25. Second, the correlation of the series before the first change point

is pp = .5, then changes to p; = .25 at the second change point, and, finally, changes
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to po = .75. Third, the correlation of the series before the first change point is py = .5,
then changes to p; = .75 at the second change point, and, finally, changes to p, = .25.
The results are shown in Table 4. As in the case of a single change point, the proposed
procedure works reasonably well, especially when the sample size is large or the size of the
correlation change is large. In addition, the procedure does not overdetect the number
of change points. It may underestimate the number of change points, however. The
underestimation can be serious when the sample size is small, say 7' = 200. Finally, the
percentage of false change points detected in both cases, one and two change points, is
smaller than the nominal 5% in almost all the cases. On the other hand, Table 5 shows
the median and mean absolute deviation of the estimates of the change point locations.
Note that the medians of the estimates are quite close to the true ones. Also, it appears

that the larger is the size of the change, the better is estimated its location.

Table 4 around here

Table 5 around here

5. APPLICATION

In this section, we look for changes in the correlation structure of the log-return series
of two U.S. asset indexes: the Standard & Poors 500 Index and the IBM stock Index
from January 2, 1997 to December 31, 2010 consisting of T = 3524 data points. Both
log-returns series are plotted in Figure 3, which shows different volatility periods. The
empirical correlation of both log-returns is given by 0.6225. The autocorrelation functions
of the log-returns show some minor serial dependence, while the autocorrelation functions

of the squared log-returns shows serial dependency, as usual in stock market returns.
Figure 3 around here

Next, we apply the proposed segmentation procedure of Section 2 to detect correlation

changes for the log-returns of the S&P 500 and IBM stock indexes. Table 6 and Figures 4,
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5, 6 and 7 show the iterations taken by the procedure. Similar to the simulation
experiments of Section 4, we start with the asymptotic critical value at the 5% significance
level. In the first iteration, the procedure detects a change in the correlation at time point
t = 988 (November 29, 2000). Indeed, as shown in Figure 4 there are two local modes of
the CUSUM statistic. The value of the test statistic (1) is 1.5699, which is significant at
the 5% level. Following the proposed procedure, we split the series into two subperiods
and look for changes in the subintervals [1,988] and [989,3524], respectively. In the
first subinterval (see Figure 5), the procedure detects a change at time point ¢ = 664
(August 19, 1999). The value of the test statistic (1) is 2.1009. Then, we split the
subinterval [1,988] into two subintervals and look for changes in the subintervals [1,664],
(665, 988] and [989,3524] (see Figure 6). No more changes were found in these three
subintervals. Then, we pass to step 3 and refine the search. For that we estimate the
location of the change points in the intervals [1,988] and [665, 3524], respectively. In the
first subinterval (see Figure 7), as in the previous step, the procedure detects a change
at time point ¢ = 664 (August 19, 1999) and the value of the test statistic (1) is 2.1009.
On the other hand, in the second subinterval (see Figure 7), as in the previous step, the
procedure detects a change at time point ¢ = 2734 (November 12, 2007) and the value of

the test statistic (1) is 1.6193. These are the finally estimated change points.

Table 6 around here
Figure 4 around here
Figure 5 around here
Figure 6 around here

Figure 7 around here

The empirical correlation coefficients in the three subintervals are 0.6284, 0.5785 and
0.7823, respectively, indicating that the correlation shifted to a smaller value after the

first change point and to a higher value after the second change point. Figure 8 shows the
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scatterplots of the two log-returns indexes at three different subperiods. It is interesting
to see that the dates of the detected change points fare well with well known financial
facts. The period starting at 1994 till the end of 1999 is a period of economic growth
in the U.S. economy in which the inflation was under control and the unemployment
rate dropped to below 5%. This is a period with high increases in the stock markets.
However, the collapse of the dot-com bubble started at the end of the 1990s and the
beginning of the 2000s, and the market gave back around the 75% of the growth obtained
in the 1990s. However, note that, contrarily to the diversification meltdown theory, the
correlation did not increase during the dot-com bubble crisis. The third estimated change
point roughly corresponds to the beginning of the Global Financial Crisis around the end
of 2007, which is considered by many economists the worst financial crisis since the Great
Depression of the 1930s. The reduction of interest rates leads to several consequent
issues starting with the easiness of obtaining credit, leading to sub-prime lending, so that
a increased debt burden, and finally a liquidity shortfall in the banking system. This
resulted in the collapse of well known financial institutions such as Lehman Brothers,
Merrill Lynch, Washington Mutual, Wachovia, and AIG, amon others, the bailout of
banks by national governments such as Bear Stearns, Citigroup, Bank of America and
Northern Rock, among others, and great loses in stock markets around the world. In this
case, the Global Financial Crisis produced an increase in the correlation between both
log-returns. Of course, it is important to note that these economic interpretations are
mere speculations. These comments only point out that, for this particular example, the
proposed detection procedure in Section 2 identifies changes in the correlation structure

that fare well with well known events affecting the U.S. financial market.

Figure 8 goes around here
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6. CONCLUSIONS

In this paper, we have proposed a sequential detection procedure for change points in the
correlation structure of financial returns. As far as we know, this is the first procedure
for solving such a problem. The procedure is based on a CUSUM test statistic proposed
by Wied et al. (2011). The asymptotic distribution of the test coincides with the one of
the supremum of the absolute value of a Brownian Bridge in the interval [0, 1]. We have
shown that the proposed procedure is consistent to detect the true number of location of
the change points. Also, the finite sample properties of the procedure have been analyzed
by the analysis of several simulation studies and the application of the procedure to a real
data example. The empirical findings in the real data example suggest that the procedure
detects changes in situations in which the relationship between financial returns may

change due to financial crisis.
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7. APPENDIX SECTION

Proof of Theorem 1
Obtaining the maximum of Br(z) is equivalent to obtaining the maximum of |Ar(2)|
with,

-

AT(Z) = D(TZ) (ﬁT(z) - IaT) .

We first show that Ar(z) converges in distribution to,

A(z) = O (/l g(t)dt — z/; g(t)dt)
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uniformly in z € [l1, ls] with a constant C'4. For this purpose, write,

Ar(2) = D7 (5.0 = po) = DT (or — p0)

with py = Z2=F28 and consider first the case I; > 0. We thus have,
OOy

XYor(e) = Xo)Vre) My — Halty
T \/ [VarX] ) [VarY] =%

ﬁT(Z) WT — YTYT _ Mgy — Mg fly
T \/ [VarX],[VarY], Ty

Straightforward calculations using the strong law of large numbers, Slutzky’s theorem,

the fact that,

- /Zg(t)dt —0

l1

7(2) 7(2)
1 ? 1 t
sup f § (XtY;t - mxy) _/l g<t)dt = sup T E g (T)
t=1 1 t=1

26[11712} ZG[ll,lz}

and the fact that sup,c, ,,) 7(2) — oo yield,
Ar(2) —as A(2)

and,

|Ar(2)| —as. [A(2)]

uniformly on [ly, ls].

Consider now the case [y = 0. By the preceding calculations, we immediately get,

Ar(z) —as A(2)

17



uniformly on [e, ly] for a fixed € > 0 with € < l5. Consider now the following functions:

Ar(z), z>e€
A7(2) = :

0 z<e€

A(z), z>¢€
A(z) =

0 z<e€

The previous results then imply that,

AT() =a A°()

for T'— oo on e, l5] and also

A() =a A()

for rational € — 0. The convergence of Az(-) on [0,[5] then follows from Theorem 4.2 in

Billingsley (1968) if we can show that

limlimsup P( sup |A%(z) — Ar(2)| > n) = limlimsupP( sup |Ar(z)| >n) =0

=0 7o 2€[0,12] =0 700 2€[0,¢]

for all n > 0. Note that the separability condition of this theorem is not necessary in our
case, because for each interval I C [0,1], sup,.; |A(z)| is always a random variable when
A(-) is a right-continuous random function.

Since

limsup P( sup |Ar(2)] > n) <limsupP( sup |D2——=|>n) =P(sup Ds2¢e > n)
T—00 z€[0,€] T—o0 z€[0,¢] z€[0,€]
we get

Ar(2) —as A(2)
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and

|A7(2)] —as. |A(2)]

uniformly on [0, ly].

With Assumptions 2 and 3, |A(z)| has a unique maximum m in the change point
fraction. Let F' the maximum of |Az(2)| for z € [0,1]. Since |Ap(F)| > |Ar(m)| we get
stochastic convergence of Ftom (compare the argument in Bai and Perron, 1998, p.77).

Proof of Theorem 2
With Theorem 1, we get
Ar(2) =as A(2)

under the alternative. Since

Qr(X,Y) = VT sup |Az(z)],

z€[0,1]

we have

L 0n(X,Y) =, 00 (3)
ar

for ar = o (\/T ) under the alternative. With this argument (which is partially similar to
Corollary 2 in Andrews, 1993), one can adapt the proof of Proposition 11 of Bai (1997).

Consider the event {b < b}. If the estimated number of change points b is smaller
than b, there is at least one segment (3, §;] with §, —, s, and §, —, s; such that there
is another change point s, € [sk, s;]. Since P(Qr(X,Y) > ar) — 1 as T — oo with (3),
we have P(b < b) — 0 as T — oo. Consider the event {b > b}. For this event to be true,
there must be a false rejection of the null hypothesis at a certain stage in the sequential

estimation. If (s;,7 = 0,...,b) are the true change points and (8;,7 = 0,...,b) are the

19



corresponding consistent estimates, it holds

P(b > b) : the test based on data for 7(z) with z € [§;, §;11] rejects)

< P(Fi
b
< Z P( the test based on data for 7(z) with z € [3;, §;11] rejects).
i=0

Since under the null hypothesis P(Q7(X,Y) > ar) — 0, it holds with the test statistic

computed for 7(z) with z € [§;, §;11], @%(X,Y),

~

P(b>b) < (b+1) max P(Q4(X,Y) > ar) — 0.

Consequently, P(b => b) — 1 for T — .
Combining the argumentation for the event {b < b} with Theorem 1 yields the pro-

posed consistency results and the proof is completed. |
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Figure 1: Function A*(z) in example (1) for z € [0, 1]
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Table 1: Results for type I errors.
¢=0 =05
po=—.5 po =0 po =5 po=—>5 po =0 po =5
Rel. freq. Rel. freq. Rel. freq. Rel. freq. Rel. freq.  Rel. freq.
T 0 >1 0 >1 0 >1 0 >1 0 >1 0 >1
200 .961 .039 .966 .034 .946 .054 .934 .066 .930 .070 .928 .072
500 .961 .039 .968 .032 968 .032 .936 .064 .952 .048 .930 .070
1000 .960 .040 .970 .030 .957 .043 .942 .058 .942 .058 .947 .053
2000 .961 .039 964 .036 .963 .037 .947 .053 .960 .040 .951 .049
3000 .961 .039 .965 .035 .968 .032 .943 .057 .952 .048 .949 .051
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Figure 2: Function A*(z) in example (2) for z € [0, 1]
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Figure 4: First step of the procedure
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Figure 5: Second step of the procedure (first iteration)
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Figure 6: Second step of the procedure (second iteration)
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Figure 8: Scatterplots of the two indexes at three different subperiods
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Table 3: Estimation of the change point.

=0 =05
21:1/4 21:1/2 21:3/4 2’1:1/4 2’1:1/2 2’1:3/4

Po  P1 T 2 2 2 2 2y 2
200 .355 .520 730 405 525 735

.080 .030 .035 .090 .035 .035
500 .300 .08 742 312 .510 .740

.046 .018 .022 .052 018 .028
S 0 1000 272 .04 746 279 .506 744
.022 .009 .010 .028 .012 .014
2000 .263 .501 147 .268 .503 147

.013 .004 .005 017 .006 .008
3000 257 .501 748 .259 .502 748

.007 .003 .003 .009 .004 .005
200 485 .540 707 .520 .540 .670

.085 .060 .062 115 .085 115
500 .388 .b14 719 406 .520 720

.094 .034 .047 .093 .040 .048
.5 .25 1000 .322 .506 728 .342 .507 721
.066 .023 .035 .080 .027 .042
2000 283 .502 137 295 .503 733

.033 .014 .023 .044 017 .026
3000 271 .502 739 278 .503 739

.022 .010 .016 .028 .013 .018
200 .290 485 .605 .300 A57 .535

.075 .060 125 .090 .080 .085
500 276 498 .690 287 498 .652

.040 .030 .062 .057 .042 .096
.5 .75 1000 267 .500 718 273 498 .697
.027 .021 .034 .035 .026 .054
2000 .262 499 736 .262 499 726

.015 011 .016 .019 .014 .026
3000 .258 499 742 .259 499 738

.012 .007 .010 .015 .009 .014
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Po

P1

P2

Table 4: Results for two change points.

T

¢

=0

6 =05

(z1,29) = (1/3,2/3)

(z1,29) = (1/3,2/3)

Rel

. freq.

Rel. freq.

0

1

2

>3

0

1

2

>3

25

200
500
1000
2000
3000

.852
458
130
.018
.003

134
422
525
271
133

014
17
339
702
844

.000
.003
.006
.009
.020

843
529
169
017
007

131
.399
507
337
205

025
107
.306
627
761

.001
.005
018
.019
027

.25

75

200
500
1000
2000
3000

.622
.240
.042
.006
.004

352
.54
456
159
.062

.026
199
490
.802
891

.000
.007
012
.033
.043

.660
314
074
012
.002

.286
523
500
217
.091

052
147
404
134
.850

.002
.016
.022
037
057

75

25

200
500
1000
2000
3000

.699
253
.061
.010
.001

223
313
170
.036
012

078
424
753
932
956

.000
.010
.016
.022
.031

711
345
.089
007
005

204
328
210
.047
011

.080
318
670
903
940

.005
.009
.031
.043
.044
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Table 5: Estimation of two change points.

4=0 $=05
(21,22) = (1/3,2/3) (21, 22) = (1/3,2/3)
Po  P1 P2 T (21722 (21722)
200 (355 .652) (337 635)
037 260 035 075
500 (340 .670) (342 672)
018 076 022 088
5 0 .25 1000 (339 .666) (339 668)
008 052 009 064
2000 (335 .666) <336 667)
004 039 006 043
3000 (334 .666) (335 668)
003 022 004 040
200 ( 362, .662) ( 365, )
.032 050 .035 070
500 (350 .666) <356 664)
028 028 030 040
5 25 .75 1000 (340 .666) (344 667)
020 016 023 020
2000 (336 .666) (337 666)
013 009 018 013
3000 (335 .667) <336 667)
009 006 013 007
200 ( 307, ) ( 320, 685)
.057 030 .045 040
500 <326 672) <326 676)
032 016 039 020
5 75 25 1000 (332 670) (331 672)
019 010 025 014
2000 (332 668) (332 669)
011 005 013 007
3000 (333 668) (332 668)
007 003 009 004
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Table 6: Iterations taken by the procedure in the real data example, (*) means significant

change point.

Step 1
Interval  Qr(X,Y) Change point Time point Date
[1,3524]  1.5699 (%) 083 0.2803  November 29, 2000
Step 2
Interval Q7 (X,Y) Change point Time point Date
[1,988]  2.1000 () 664 0.18%34  August 19, 1099
[989, 3524] 1.4744 2966 0.8416 October 14, 2008
[1,664] 1.0482 157 0.0445 August 14, 1997
(665, 988] 1.3470 825 0.2341 April 7, 2000
(989, 3524] 1.4744 2966 0.8416 October 14, 2008
Step 3
Interval ~ Q7(X,Y) Change point Time point Date
[1,988]  2.1000 (%) 664 0.18%4  August 19, 1099
[665,3524] 1.6193 (*) 2734 0.7758  November 12, 2007
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