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Abstract

This paper presents a Hayashi-Yoshida type estimator éocdlrariation matrix of continuous 1td semimartingales
observed with noise. The coordinates of the multivariateess are assumed to be observed at highly frequent non-
synchronous points. The estimator of the covariation ma&riesigned via a certain combination of the local averages
and the Hayashi-Yoshida estimator. Our method does notreegay synchronization of the observation scheme (as
e.g. previous tick method or refreshing time method) arslibbust to some dependence structure of the noise process.
We show the associated central limit theorem for the praghesémator and provide a feasible asymptotic result. Our
proofs are based on a blocking technique and a stable caneggheorem for semimartingales. Finally, we show

simulation results for the proposed estimator to illustitd finite sample properties.

Keywords central limit theorem, Hayashi-Yoshida estimator, higbgliency observations, 1td semimartingale,

pre-averaging, stable convergence.

AMS 2000 subiject classificatiorRrimary 62M09, 60F05, 62H12; secondary 62G20, 60G44.

1 Introduction

In the past years there has been a considerable developimemtistical methods for stochastic processes observed a

high frequency. This was mainly motivated by financial aggtions, where the data, such as stock prices or currencies

“CREATES, University of Aarhus, Building 1326, 8000 AarhDgnmark, Email: kchristensen@creates.au.dk.
TDepartment of Mathematics, Heidelberg University, INF 288120 Heidelberg, Germany, Email: m.podolskij@uni-k#iérg.de.
fRuhr-Universitat Bochum, Fakultat fur Mathematik, 887Bochum, Germany, Email: mathias.vetter@rub.de. Hiskvi®rsupported by

Sonderforschungsbereich “Statistical modelling of nuoedir dynamic processes” (SFB 823) of the Deutsche Forssganteinschaft.



On covatriation estimation for multivariate continuous $Emimartingales with noise 2

are observed very frequently. It is well known that under nioearbitrage assumption price processes must follow a
semimartingale (see e.g. [9]). However, at ultra high feegpies the financial data is contaminatedniigrostructure
noisesuch as rounding errors, bid-ask bounds and misprints. fabigrevents us from using classical power variation

based methods (see e.g. [2] or [14] among many others) tothdecharacteristics of a semimartingale.

A standard model for a continuous Itd semimartingale oleskwith errors is given by
}/t = Xt + €t t 2 07 (11)
where(X;):>0 is ad-dimensional processr@e price of the form
t t
X = Xy —l—/ asds —l—/ osdWs, t>0, (1.2)
0 0

with (a,),>0 being anR%-valued caglad procesés,),>o being anR¥*? -valued caglad volatility andli” representing a

d’-dimensional Brownian motion, and tidedimensional error process(microstructure noisgis iid with
Ele] =0, Eleser] = ¥ € R,

independent ofX. Throughout this work an asterisk denotes the transposenaitax.

The aim of this paper is to estimate the covariation matriXafver some interval, sag, 1], i.e.
1
[X] = / Ysds € RdXda Ys = 0503,
0
based on non-synchronous noisy observatians=((Y!,...,Y?))
Yt’; k=1,....d, i=0,...,n5

where(0 = ¢f < --- < tF = 1 are partitions of the intervgD, 1] with max;<;<p, [tF — ¥ ;| — 0 asnj, — oo for

all 1 < k < d. The univariate counterpart of this problem has been ddudiensively in the literature. Let us mention
thetwo-scale approaclof [24] (see [23] for its more efficient multi-scale versipterealised kernel methoproposed

in [3] and thepre-averaging conceporiginally introduced in [21] (and further studied in [19]16], [20] in various
settings) among others. These methods can be extendedrtwitiéariate case in a rather straightforward manner if the

observations are synchronous.

When the underlying data is non-synchronous, things asedbsious, as we are faced with two challenges at the
same time: We have to de-noise the data as before, but weedsdmapply a certain synchronization technique to create

a new set of observations from which appropriate estiméworsY | can be computed. For the multivariate realised kernel
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method, [4] proposed to cope with non-synchronous data plyimg therefreshing time methdaiirst, which synchronizes
the observations via a previous tick method. In a second atapise robust estimator is constructed from this new data
set. Similar in spirit is the extension of the multi-scaléreator due to [6], where synchronous observations areroda
using thepseudo-aggregation algorithrof [19] first. The resulting covariance estimator then beesra multi-scale
version of the Hayashi-Yoshida estimator from [12], whiclgimally has been introduced to deal with non-synchrdwici

in semimartingale models without noise.

Both approaches have their drawbacks, however: (a) Usangrvious tick approach (which generates pseudo date
points) may lead to inconsistent estimators for certairenlaion schemes; this phenomenon has been noticed in [12
in the setting of a pure diffusion; (b) After any of the symmhization techniques there remain at mosty <<q(n)
data points, which amounts in throwing away a lot of data.hino-noise case, this is usually no problem, as for the
Hayashi-Yoshida estimator exactly those observationsli@mgped that bear no additional information on the covagan

but for noisy data they still can be used to wipe out the noise.

To avoid these afore-mentioned drawbacks, we propose ttioena synchronization technique and a concept for
de-noising as well, but in reverse order: We apply the peraing approach, which is designed to locally diminish the
influence of the noise, first, and use the Hayashi-Yoshiddodeafterwards. Our estimator, denoted BY ", has the

following important properties:
(i) In general, we use all observatiois ;
(i) The estimator has the optimal convergence raté/4;

(iii) The estimation method is robust to certain dependestcactures of the noise process. This property is impor-

tant for practical applications as the economic theorydaihy does not provide any insight on modeling the noise.

The main idea of the construction éfY™ comes from [7], where we indicated its consistency, but dit provide
the complete asymptotic theory. In this paper we prove destzdmtral limit theorem foir/ Y™ — [X] under very mild
assumptions on the observation scheﬁ)eFurthermore, we explain how to estimate the (random) asytiapcovariance
matrix that appears in the central limit theorem to obtaieasibleresult (which may be used in practice to construct
confidence regions). We would like to emphasize again tletdmstruction of our estimator is not completely obvious

(as there are several ways of combining the Hayashi-Yoshiethod and the pre-averaging approach, which may result
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in different properties) and that the proof of the main resuhich is based on a certain blocking technique, martmgal

inequalities and a stable central limit theorem for semiimgales, is more advanced than in the univariate setting.

This paper is organized as follows: in Section 2 we introdieeset up and explain the construction/6¥". The
main results of the paper including the consistency/df" and the associated stable central limit theorems are pgezbsen
in Section 3. Section 4 deals with estimation techniquegHerconditional variance, while in Section 5 we show some
numerical results to illustrate the finite sample propert our estimator. Section 6 is devoted to proofs, and some

tedious parts are relegated to an Appendix in Section 7.

2 Thesetup

We start by introducing an appropriate filtered probabgipace on which our noisy processis defined. Let

QO FO) ( t(O))tE[O,l] ,P(0)) be an arbitrary space on which the true price progééises, such that all involved process
a, o and W are adapted. Now we consider a second filtered probabiliges"), F(1), (]—'fl))te[o,l],P(l)), where
QM is the set of functions fron, 1] to R? and F() is the Borelo-field on Q(Y). We define on it the noise process
€ = (et)iefo,1) as follows: letQ be a probability law oR? (the marginal law of) and setP() asP(!) = Refo,1
with P, = Q for all ¢ € [0,1]. Now, (z;),¢10.1 is defined as the canonical process(@ft), 71, (FV),(.11, PD) with
(J-'t(l))te[oﬂ being the canonical filtration. The processin (1.1) lives on the product spa¢, 7, (F)ic(o,1]; ) given
by:

Q=00x00  F=FOxr0O 5 =759 FY P=POgp,

We remark that the probability space on which the proeds®s is rather minimal; this is required for the stable camv
gence results. The procegsis defined in continuous time just for convenience, althotighmappingw, t) — Y;(w) is

not F @ B([0, 1])-measurable.
Now we introduce the assumptions on the sampling scheme.

Assumption (T)The observation timez%“, 1=0,...,n,, k=1,...,d satisfy the following conditions:

(T1) (Time transformationt*'s are transformations of an equidistant grid, i.e. theiistestrictly monotonic (determin-

istic) functionsfy, : [0,1] — [0, 1] in C([0, 1]) with non-zero right and left derivative in 0 and 1, respeivand
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with fx(0) = 0, fx(1) = 1 such that

(T2) (Boundedness of;) There exists a natural numbgf > 0 such that

M~ < sup |fi(z)| <M, k=1,....d
z€[0,1]

(T3) (Comparable number of observatigrisetn = Zizl ng. It holds that

%%mke(o,u, k=1,....d (2.2)

(T4) (Joint grid point3 The grids(F), (¢}) (1 < k,I < d) haven;,; common points which are denoted B')1<p<y,,-
They have the representatiﬁji = fk_ll(p/nkl) andny;/n — my; € [0, 1], where the functiongy,; satisfy the same

assumptions ag; in (T1) and (T2).

Let us shortly comment the above assumptions. Conditioh ifiekes the explicit computation of the asymptotic covari-
ance matrix in the forthcoming central limit theorem poksiiCondition (T3) implies that the observation numbers
have the same order. Condition (T2) means that the pointsedth grid do not lie dense between any two successive
points of thekth grid, i.e. the number of pointg that lie in the intervalt; ,,¢;] is uniformly bounded by a constant
forall 1 < k,I < d (cf. Lemma 6.1 for a closely related result). When thesetlastconditions (similar number of
observations and uniform boundedness of the number ofsptéimhat belong to[tf_l,tf]) are fulfilled we say that the
sampling schemes ammparable Finally, condition (T4) means that the number of commomtsocan be negligible

compared tm (if my; = 0) or it can be of order. (if my; > 0).

We want to emphasize that the full force of Assumption (T)n$/aequired for the proof of the central limit theo-
rem! For the consistency result and the rate of convergarmaffices to assume that the grid§), k=1,...,d, are

comparable. In particular, the representation (2.1) aadttimdition (T4) are not required.

Now we explain the construction of our estimatédl ™. First, we choose a window sizg as
ky = 0y/n + o(n'/*) (2.3)

for some constar > 0. In the next step we choose a positive weight funcgon|0, 1] — R with ¢g(0) = g(1) = 0,
which is piecewiseC'! with piecewise Lipschitz derivative’ and fol g*(z)dx > 0. For anyd-dimensional stochastic

process/ = (V1,..., V%) we define the quantity

kn—1 .
—k Z J k k_ vk k
Vik = — g(E)Atfﬂ‘v ’ Atfﬂ‘v N Vt?ﬂ' B ‘/tf?«kjfl’ (2.4)
]:
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which we callpre-averaging in tick timeThe name refers to the fact that we use the same amount ofcdetenstruct
Vf;_c forall 1 < k < d; alternatively one could perform thme-averaging in calendar timiey using the same time interval
for all coordinates/*, but with different number of observations in each time vaind The latter approach would result

in different properties of the estimator.

As discussed in [15], [16] or [21] the local averages techaigerformed in (2.4) diminishes the influence of the noise
process to some extent (but not completely) and helps us to get irdition abou®:. In the last step, as proposed in [7],
we define a Hayashi-Yoshida type estimator based on pragegrobservations by

1 ng—kn+1ln;—kp+1 . ;
L e
HYi= s 2 2 VaValed,, ndd,, 1=
=0 j=0

with ¢ = fol g(x)dzx, and setHY™ = (HY}]))i<ki<d4- In [7] we have already indicated the consistencyf . The
aim of this paper is to provide the complete asymptotic thémbe able to construct confidence regions for the quadratic

covariation[ X ].

3 The asymptotic theory
We start with the consistency of the estimaiby™ which has been shown in [7].

Theorem 3.1 Assume that Assumption (T) holds and that the marginaldaef ¢ has finite fourth moments. Then we

have

1
Hy" - [x] :/ yds.
0

As we remarked above the full force of Assumption (T) is najuieed for the proof of Theorem 3.1; it is just the

comparability of sampling times which matters (see [7] farendetails). Two remarks are in order.

Remark 3.2 (Univariate caseEven though no synchronization is necessary in the onerdiimeal case, our estimator
HY"is ford = d’ = 1 not identical to the univariate pre-averaged estimatopg@sed in [15]! Recall that the latter is

defined as

1 n—kn+1

n __ Avd P ! — ! /
= Y WP B[ Fen o [ (g .

nooi=1



On covatriation estimation for multivariate continuous $Emimartingales with noise 7

where we set; = ¢}. This should be compared to the univariate versio#/of”, which is

1 n—2kn+1 kn—1
Y = e > V(X Yu)
n) =k, j=—knt1

plus some border terms of small order. We see immediatetythiesfirst estimatolC™ is biased (even after rescaling),
where the bias is coming front = E[¢2], while our estimatof{ Y™ is unbiased. The reason for this is the additional
averaging performed b¥/ Y™ (which is taken care by the second sum in the above formutaedd, the factor in front

of &2 for k2 < <1 ' isequal to

2
kn—1

> o(5) ~o(i) | =t - =0

=0

which explains whyl does not appear in the limit dfY". The unbiasedness éfY™" is an important feature as the
estimation of the covariance matnk of the noise can be problematic in practice, because wegdyraealy on the iid
assumption on the noise process to successfully perforestireation ofl’. Let us remark that pre-averaging in calendar

time would also lead to a bias.

Remark 3.3 (m-dependent noisd)et us study the case of an-dependent noise process. More precisely, we considel
the multivariate discrete modbl’,_j = Xﬁs +5§s’ k=1,...,d,i=0,...,n,, where all previous assumptions are satisfied
except the noise process is nawdependent in tick timevhich means that fot}” < ¢/ the random variables}, ande!,

i J

are independent, ift; — t%|| > m with
[tF — téH = min(j — max{z| L <} min{z| % > té} —1),

and similarly fortg- < tF. These types of models are important from the practical tpafirview. Our previous iid

assumption on the noise process implies tlj@andsftl are possibly correlated wheﬁ = tg; on the other hand they are
i J

independent even when the grid poiméfsandté- lie arbitrarily close, say less than a second apart. Suctssumaption

might be not very plausible from the finance point of view.

In the case ofn-dependent noise the estimatdy™ still remains consistent, i.d/Y ™ is robust tom-dependence in
tick time. As in the previous remark only the produefgs!, with ||t — t’|| < m play a role when computing the bias.
v g
But these terms have asymptotically the same weight as :ﬁmrine(sfk)% which is0 (see Remark 3.2). Thu&g/ Y™ is

unbiased.

In order to describe the weak limit associated with™™ — [X] we need to introduce various notations.
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Notation. Let us first extend the weight functionto the whole real line by setting(z) = 0 for =z ¢ [0,1]. We set

for x € [0,1] /
hii () = %,

wheref; resp.my, are given in (2.1) resp. (2.2). Now we define two sets of fumstj namely

)= Jy JESEY g(w)g(v)dudu,

1<k 1<d, (3.1)

= Jo S U5 g(u)g' (v)dvdu, (3.2)

1+z(s+u)
)= Jo Sl i o' (wyg (v)dvdu,

and
Vet (u) = W fi?ﬁ'}lg:zu)) ¥ (s, bt (w)) U (huri () s, hi (u))ds,

— mygr fr 0 (W) h —
Vi g (w) = % flzrlf;i,k(u )¢(5 et (w)) o (huri (w) s, by () )ds, (3.3)

~ myr f1,, (Wmy f, (u ~
'ykl’k/p(u) = b (W Iy )flirlfizlk(u )¢ § hk:l( ))¢(hl’l(u)57hk’l’(u))dsa

mlf] u)

fors e R, 1 < k,k',[,I" < dandu € [0,1]. Notice that when for example the number of joint points eetw the

kth andk’th grid is negligible compared ta (which can only hold fork # k') thenmy,, = 0. In this case we have

Virgr = Ve = 0.

Before we present the stable central limit theorem let ualrélse notion of stable convergence. A sequence of ran-
dom variablesZ™ on (€2, F,P) converges stably in law towards, written Z,, Lot Z, with Z being defined on an
extension(QY’, ', ') of the original probability spac&?, 7, P), iff for any bounded, continuous real-valued functign
and any boundedr-measurable random variabléit holds thatE[¢(Z,,)V] — E'[¢(Z)V] asn — oo. We refer to [1],
[22] or [17] for more details on stable convergence. The tlegbrem is the main result of our paper, and its proof is

postponed to Section 6.

Theorem 3.4 Assume that Assumption (T) holds and that the marginal @awf « has finite eighth moments. Then
the sequencd” = n'/*(HY™ — [X]) converges stably in law towards a random varialiledefined on an extension
(€, F', ) of the original probability spac€?, 7, P), and L has a centered mixed normal distribution, i.e. conditibyal

onF, L = (Ly)1<k,i<q has a centered normal distribution with

E'[Liy L | F| = Vi g, 1<k K11 <d,
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where the random variabl&j, . is defined via
1t k' sall’ Kl Ik
Vi = %/ {9<'Ykl,k’l/(u)2u Yo ke (w)Xy B )
0
+~! (‘P” Vlk,z'k'(u)zﬁk + ol Vlk,k/z'(u)zﬁl + ot Vkl,z'k'(u)zik o sz,k/l/(u)zﬁ )
073 (W Sy o () + OO T () el (3.4)

and the functionsysy x1, Y k1> Y1,k @re given by (3.3) and is defined in (2.3). We also write ~ MN(0,V) to
denote the centered mixed normal distribution with randérmeasurable covariance matriX = (Vi w1r) 1<k i’ 11r<d

above.

The rate of convergence /% is known to be optimal for the parametric analogue of oumestion problem (i.e.
when the procesy is constant); see e.g. [6] or [11]. We remark that the comasamatrix¥ of the noise process

always appears in the representatioVoéis¥y, 1. (), Yk ke (u) > 0forall 1 < k < d.

Remark 3.5 (Univariate case)n the one-dimensional casé £ d' = 1) we deduce that
! d
nl/t (HY” —/ agds) e MIN(0, V),
0

where the expression faf simplifies to

V= % <9,€/01 fi’(i) du + 291\1%/01 o2du + 9%%’) (3.5)
with
K= /2 W2(s,1)ds, = /2 Vs, 1)ds, = /2 $2(s, 1)ds. (3.6)
-2 -2 -2

Note that we haveg; = f1 =: f, h11 = 1 andmy; = mq = 1, as well asfo1 f'(u)du = 1. If we further deal with

equidistant data it follows that(u) = u.

To measure the quality df Y™ compared to alternative estimators in the one-dimensisetiing, it is common to
computeV in the parametric model of zero drift and a constant votgtii. In case of equidistant observations we know
from [11] that the lower bound for the variance is then givgrib®+/¥. If we choose the (probably) simplest weight

function given byg(xz) = min(x, 1 — x), some lengthy calculations give

T8 151 1 1
" 11612160 T 20160
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and the optimal choice af corresponds t6* ~ 2.381v/¥/o. Overall we obtain a minimal variance o2.76503+/.
This is quite close to the efficiency bound and also to the mméivariance of (the bias corrected version 6f), the
original pre-averaged statistic for equidistant data ff@5], which is abous.54503+/®. This mild loss in efficiency is

the price we have to pay for the additional robustness ptppiéscussed in Remark 3.3.

4 Estimation of variance

To transform the probabilistic result of Theorem 3.4 inteadible statistical one, we need to find a consistent estimat
of the conditional covariance matrix defined by (3.4). We will introduce three different appraegio solve this task —

a general one, which works in arbitrary dimensions and doesequire information of the time transforming functions;
a second estimator, which uses local estimates of the kylail; a third one tuned for the one-dimensional case, where

the variance becomes particularly simple as seen in Remarl&B proofs are given in Section 6.

Let us begin with the first estimator, for which we benefit froatated work in [18], where an estimator for the
variance of the usual Hayashi-Yoshida estimator in the sisencase was constructed. We introduce a second auxiliary
sequences, = wn" + o(n"), w > 0,n € (0,1), and compute for each € {0, ... [n/B,] — 1} the statistic

n;— kn+1

HYkl( k Z Z Ythtl 1{ tf7ti€+k ]ﬂ( L j+k ]¢®}, (41)
(¢ ) theBn(a) J=0 ! !

which is essentially the same quantity 377, but we only sum over time point§ from the smaller intervaB,, (o) =
Bn  (a+1)Bn
[, =) We set

[ﬂn

This estimator is based on a local estimation of the covee@f//Y;; andHY}),,. In order to obtain reasonable estimates
for this covariance on the intervél, («), we useH Y;;(o) HY, () to mimic the covariance of interest plus the product
of the expectations of both factors. The latter bias is cbectby quantities liké? Y] («) HY,], (o — 1), where we use the

usual “conditional independence” of incrementg’obver disjoint intervalsvk’;:,i,l, is now constructed as a symmetrized

version of these local estimates, and we sum up over aflerwards to obtain a global one.

A drawback of this construction is that we need an additiammaidition on the process. In order for HY]j(«)
and HYj(ae — 1) to estimate the same quantity up to an error small enoughusually postulates that is an Ito

semimartingale itself. Under a furher assumptiomame have the following theorem.
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Theorem 4.1 Assume that Assumption (T) holds and that the marginat)asi= has finite eighth moments. Furthermore,
suppose that is ad x d’-semimartingale of the form (1.2) as well and 162 < 7 < 2/3. Then we havé’r’,.,, SN

Vit k-

As mentioned above, the second estimator uses local esirathe volatility> and the covariance matrik of the
noise, and we assume knowledge of the time-transformingtifums 3, and f.;, which in practice have to be approximated

via the observed time points.

We start with the construction of the estimatozaf We defined Y™ ([0,t]) = (HY};([0,t]))1<k,<q for t € [0,1] by

HYkT;([()’ t]) Z Z Ytk Ytl 1{ tf 7ti€+kn]m( 37 J+kn]7£®}

k
th_k <t]t <t

wk )?

J+kn
which is consistent for the integrated covariation matrxto time¢. As the volatility procesg¥;)cjo,1] is left-

continuous, it is a natural idea to estimatgvia

s HY™([0,s]) — HY™([0,s — 1))
s,n — ln
for some sequenck, with I, — 0, v/nl,, — oo ands € [l,,,1] (for s € [0,1,] we setX;,, = %, ,). The condition
Vnl, — oo is required to guarantee a sufficient amount of asymptdtieaicorrelated summands in the definition of

Ysn-

The estimation of the covariance matixis somewhat easier. Recall th@f'),<,<,,, denotes the set of common
points of thekth and thd'th grid, and definé(p, k, 1) = i with t¥ = " for arbitraryk,l = 1,.. ., d. The estimator of*’
is now given as

Nkl

phl = — Z Ap  YEA, vl (4.3)

kL £ ot bip.k) 41
The intuition behind this estimator is rather S|mple. Fafkall, since the increments of at highest frequency converge
to 0 almost surely, the procesds can be replaced by without any changes in the limit. For this reason the estimat
Uk converges tol'*! almost surely by the strong law of large numbers (appliedhédiitl process) if ny; — co. When
the sequencey,; does not diverge too then the convergence does not hold, but we haygn — my; = 0. Thus the

corresponding functiong and~ vanish as well, and this will be sufficient for the estimatairi/.

After all we obtain the following result.
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Theorem 4.2 Assume that Assumption (T) holds and that the marginal(aof = has finite eighth moments. Then we

have

I _—
2 kK 0 kl" sk
Vlg,k/l/ T w4 /0 {9 (f}/klvk'l/( )Eu nEu n + ’qu/k/( )Eu nEu n)

1l I — Kl w
+67! (‘I’n Vg ke (U WS 4 ol w(u DA e v (u SR+ TR v (u )Zu,n>
N / . p
+0 (‘I’kk O o (w) + RO R (u )) }du — Vg

Let us finally focus on the one-dimensional case and recalldymptotic variance in (3.5). As noted before, we
do not have to care about any of this from (3.6), as they can directly be computed from our ch@€g. Using the
univariate version of the estimator {4.3) for ¥ (which is consistent now) and the Hayashi-Yoshida typeredtr HY™"
for fo o2du, all we need to find is a feasible estimator for the rescalezfjnated quartlcr[yf0 oy du Among several
possibilities (including yet another Hayashi-Yoshidaetygne) we have decided to go with a pre-averaged version of

realized quatrticity. Thus we set

1 1
b= / Pw)du, Fi= / (¢ (w)du, (4.2)

and define

n3 2 mnk"+1—42 n(— K 1 o/~ KU
vrt= g 36,2 Z Vi l' + 5 U HY (m—7)+@\lfn(n——2) : (4.5)

The result precisely reads as follows.

Theorem 4.3 Letd = 1 and assume that Assumption (T) holds and that the marginalQJaof « has finite eighth

moments. Then we hav&"3 - V.

In order to present a feasible central limit theorem assediaith Theorem 3.4 we vectorize the quantitié¥™ and
[X], i.e.

—n

HY" =veq HY™),  [X] =veq[X)),

where vec is the vectorization operator that stacks colushasmnatrix below one another, and set

‘7k:l = kad[(kf1)/d],[(kf1)/d]+1,17d[(171)/d],[(l71)/d]+1a
f}n,b o Vn,b
kl - k—d[(k—1)/d],[(k—1)/d]+1,l—d[(I-1)/d],[(I-1)/d]+1

with 1 < k,1 < d? andb = 1,2, 3. Now, the properties of stable convergence imply the falh@aresult, which can be

directly applied for the construction of confidence regions
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Corollary 4.4 Under the assumptions of Theorem 3.4 we obtain the stabieecgence

—n e dst

nYYHY" — [X]) &5 MN(0,V).

Also, for anyb = 1,2,3 and as long as the conditions for the corresponding theorbove are satisfied, we have the
standard central limit theorem

n AT 2 (Y~ [X]) -5 Np(0, 1p), (4.6)

where N2 (0, I2) denotes thel?-dimensional normal distribution with covariance matrigual to identity, and/ =

= = Snb
(Vi) i<k i<az, V™ = (Vi ) 1<ki<az-

Remark 4.5 (m-dependent noisé)/e have indicated in Remark 3.3 that the consistency resuthe Hayashi-Yoshida
type estimator/ Y™ from Theorem 3.1 remains valid, if the assumption of indelee noise variables is weakened to
m-~dependence. This does obviously not hold for the centmat kheorem, as the particular form of the noise part of
the asymptotic variance relies heavily on the independessamption. Nevertheless, even in this framework a central
limit theorem can be shown, but for the sake of brevity we elige with the specification of its precise form. It is worth
noticing, however, thav,gj,i,l, by construction remains a consistent estimator for the psytic variance in this rather
general setting, as it is designed to mimic the covariancef ¢fY;; and Y}, without using any prior knowledge on

¢ apart from dependence on only a finite number of neighbounsrefore Theorem 4.1 and thus in turn (4.6) oe 1

hold true form-dependent noise as well.

5 Numerical study

Here, we supplement the above asymptotic results based-ernc with a finite sample analysis by using Monte Carlo
experiments. We simulate a bivariate stochastic vohatitiodel with noise, as was also conducted in previous work of
[4] and [7].

More specifically, to simulate efficient log-prices we calesi

dx® = a@dt + pDoPdB? + /1 — [p0]26!" dW, (5.1)
whereB®) 1L . Throughout, we work with = 1, 2. Note thato®o\”dB{" represents an idiosyncratic shock, while
1— [p@]26\"dW, is a common factor.

The model for the diffusive volatility is specified asti) = exp( (()i) + BY) gf)), where each of th@ti) processes

conform with Ornstein-Uhlenbeck dynamicsg,ﬁa = a(i)gf)dt + dBf). This assumption means that the innovations
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Figure 1: lllustration of sampling schemes.

T S S

2)

3) et — ! it

Note The figure illustrates how we design asynchronicity in timeutation study. A vertical dash (") represents an observation of the

noisy procesd ("), while a cross (") is Y? . A star (") defines a common sampling point.

of poVdB" and (" are perfectly correlated, while the covariation betweaff ' and &b\” is equal top@ o' dt,
Finally, note that the model allows the two underlying pm’mecesseé(t(l) andXt(z) to be correlated in the magnitude of
V1= [pWRY1 - [p@]2,

We carry out our numerical experiments by using the follgyrarametrization, assumed to be identical across the

two volatility factors: (a(®), 7, 8\ o) p(0)) = (0.03,—5/16,1/8, —1/40,—0.3), so that3| = [3{"]2/[2a(D]. This

choice of parameters implies that integrated volatilitg baen normalized, in the sense tliétfo1 [a§i>]2ds) =1.

We simulate 10,000 paths of this model over the intefval], which we partition intaV = 23,400 subintervals of
equal lengthl /N. In constructing noisy price® (), we first generate a complete high-frequency recor¥ @quidistant
observations of the efficient prick (") using a standard Euler schet&he initial values for thep,(f) processes at each

simulation run are drawn randomly from their stationarytribsition, which ingi) ~ N(0,[-2a®]~1).

Next, we add simulated microstructure nol$e) = X + £ py taking

N
€O o, X} W N0 with =7 [ =Sl (52)
j=1

where~ is the so-called noise ratio parameter. This choice meaugtta variance of the noise process increases with the

level of volatility of X, as documented by [5} takes the value 0.50, which is a typical level of noise (48j),

!Note that the Ornstein-Uhlenbeck process permits an exsatetization (see, e.g., [10]). We use that fact here tadasommitting errors in

working out the discrete time distribution 0p@ over time steps of sizé/N.
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Finally, in order to extract non-synchronous data from thplete synchronous high-frequency record, we proceed
as follows (for reference, please see Figure 1). We conglidee settings. In scenario 1), the sampling time¥ 6f form
a subset of the observation grid bf"), butY (") is observed more frequently. Here, we uge= 3,900 andny = 390.
In scenario 2), we take; = ns = 3,900, but shift the observation times &f2) to lie midway between those af(}).
Finally, in scenario 3), we generate random observatiopginsing two independent Poisson processes with inteksity
and)\,. Here)\; denotes the average waiting time for new data from prot@8s so that a typical simulation will have
N/)\; observations ot (), = 1,2. We set\; = 6 and\, = 60, which implies that the first asset is trading ten times
faster than the second. Note that because we are simulatiigdrete time, it is possible to see common points in the las

setting, as depicted in the chart.

The choice of the remaining tuning parameters are the follgwWe used = 0.15 and set:,, = [0/n], where|z|
is the ceil function. Moreover, to estimate the varianceeaping in the CLT of/ Y]}, we usevﬁ’,il defined in (4.2) with

w=2andn="T7/12.

Our initial numerical experimentations show that the ratingstor from Eq. (2.5) is slightly downward biased in
finite samples. This is familiar from related estimators;tsas [7], where an additional factor is applied to correct fo
the loss of summands induced by pre-averaging. Here, thegmnas slightly more delicate, but nonetheless a relativel
simple device can be used to adjust the estimator. In phatjowe generate a bivariate Brownian motigh(!), B(2))
with a known correlatiorp (throughout, we use = 1), where the coordinates of these two processes are idetdica
(Y y@). We then estimat&y, = E[HY;?] across 10,000 repetitions using the data frBfY and B2 and divide
the original statistid7Y}; (based on data fror (") andY(?)) by RY,/p. A similar procedure can be used to bias correct

the estimator of variance.

5.1 Simulation results

In Table 1, we present the relative bias and root mean squiredof our pre-averaged Hayashi-Yoshida estimator. As
a comparison, we also computed the modulated realisedianear(MRC) of [7] based on refresh time sampling. As
the table reveals, both estimators are unbiased (aftecbrasction) in all three scenarioslYs; does retain a slight bias

in those scenarios, where is very small, but the bias is less than a percent. The rmgé}ot is larger than what we
observe for the MRC, when the estimation target is a variaoogponent; this observation is in line with the theoretical
comparison of Remark 3.5. This is particularly true for tlmstrading asset” (?) in scenarios one and three. However,
the rmse off/ Y7 is smaller than the rmse of the modulated realised covagiamall scenarios. As expected the estimator

HY7} performs much better than MRC when the observation numbeasidn, have a different order of magnitude (i.e.
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in scenarios one and three). It is explained by the fact #fa¢sh time sampling essentially uses the slowest frequenc

This highlights the advantages of our new estima{or™.

Table 1: Relative bias and root mean squared error.

HY™ MRC
Target X1 212 P X1 Y12 Yo
Scenario 1 1.00 1.00 0.99 1.00 1.00 1.00
0.19) (0.04) (0.27) (0.16) (0.06)  (0.14)
Scenario 2 1.00 1.00 1.00 1.00 1.00 1.00
(0.14)  (0.03)  (0.13) (0.07)  (0.04)  (0.08)
Scenario 3 1.00 1.00 0.99 1.00 1.00 1.00
0.21)  (0.04) (0.31) 0.17)  (0.07) (0.15)

Note We report the relative bias and rmse of the estimators declun the simulation study. The bias measure is equal to arfor

unbiased estimator. The number reported in parenthesBoz 4 rmse.

Next, we turn to the accuracy of the asymptotic approxinmatichere we focus on estimation of integrated covariance,
Y12. In Figure 2, we plot the simulated finite sample distribatas the standardized Y7 for the three setups considered
here, where the variance of the estimator is accessdq@ﬁbé as described above. Although the approximation is not
perfect, the goodness of the fit is surprisingly good takirgyrelatively small sample into account. Also, the ordeitng
as expected with the second scenario offering the best @ppaiion to the standard normal (whetge = ns = 3,900).
Moreover, while the average number of observations is idalit scenario one and three, the randomness of the sgacing

in the latter setting slightly deteriorates the trackinghaf standard normal.

6 Proofs

Let C' > 0 denote a generic constant which may change from line to Vieealso writeC),, > 0 if a constant depends
on an external parameter For the sake of simplicity we will sometimes keep the depeid of some quantities on
certain parameters unreflected if things are clear fromdnéext. Also some notations might have a different meamning i
different subsections, e.g. the quantiy,(p) stands for a generic asymptotically negligible randomalae in Sections

6.1.5-6.1.7.
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Figure 2: Accuracy of asymptotic approximation, estimaid >1,.
0.45-

= = =1) n = 3,900,
‘‘‘‘‘ 2) ny = 3,900, ny = 3,900
04 3) a1 = 3,900, g = 390

; N(0,1)

nz = 390

0.35

0.3

0.25

0.2

0.15
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We remark that all our theoretical results (Theorems 34, 8.1, 4.2, 4.3) aratable under localizatigni.e. if they
are valid for bounded coefficients then they remain validdoally bounded coefficients. This means, since the presess

a ando are caglad, thus locally bounded, we can assume withestdbgenerality:
e The processes ando are bounded iffw, t).

See e.g. Section 3 in [2] for more details.

The second important step in all proofs is the approximation

Vi~ (W) +25, 1<k<d, (6.1)

3
t

which means that we may pretend that= 0 identically and that the volatilityr is constant over the small intervals

[tr, tf+kn]. Indeed, we will show that such an approximation does netcatiny of our theoretical results.

Before we start proving our main results let us state somplsitammas which concern the observation tirtfeand

the pre-averaging quantitié_éfk. In what follows we use the decomposition

t t
Xt == XO + Dt + Nt, Dt == / ast, Nt == / O'des. (62)
0 0
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We also decompose the statistic™ as

with
ng—kn+ln;—kn+1
HYgX] = Z Z XX L a0 0, 10
ng—kn+ln;—kn+1
HY]:lL[X, 5] = Z Z (thEtl + Ethtl> {(tf7tf+kn}m(té téJrk }75(2)}7

N — kn+1nl —kn+1
HYle] = Z Z E0E L 8, (L 120}

Lemma 6.1 Under the Assumptions (T1)—(T3) we have foranya < b < 1

#{i| th € [a, 0]} <C(b—an+1  V1I<k<d.

Proof: To compute the cardinality of the above set we need to ca&uld f.(b) — frx(a)), which is an upper bound for

the number of points falling int@, b], up to adding one. The mean value theorem and conditions (T2) imply that

n(fe(b) — frla)) = n(fi) (€)(b — a) < Cn(b— a),

where¢ is some point betweed andb. O

The above lemma basically states that the amount of timetptfincontained in[a, b] is of the same order as in the

equidistant case for all.
Lemma 6.2 Under the Assumptions (T) andHfs®] < oo we obtain forg = 2,4, 8
[Vl < Cn9/t,  E[Dpl<COn™9?,  VI<k<d1<i<n.

Proof: These estimates are shown separately_\flf);, ﬁf@ andgfk. They are a simple consequence of the boundedness o
the processesando, the Burkholder inequality and Lemma 6.1. See e.g. Sectibfrdm [15] for a detailed computation

in the equidistant case. O
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6.1 Proof of Theorem 3.4

Because the summands in the definition of the estimidtBr* are highly correlated, the main idea of the proof is to apply
a similar method as for the proof of the central limit theorflemm-dependent data. Roughly speaking, we will collect
all summands off Y™ in big and small blocks. The function of the small blocks igtsure the (conditional) asymptotic

independence of the big blocks, and their contribution béltome negligible in the limit.

Let us start with the formal definition of big and small block®r somep > 0, we set

z(p+b)ky, z(p+ b)ky, + pky, .
B.(p) = [ (p n L )n P ) (big blocks)
2(p +0)kn + pky (2 + 1) (p +b)ky
S.m) = | , ) (small blocks) (6.4)
n n
whereb is larger thanV/ max;<x<q(m; ') andz = 0,..., [m] — 1. The constant is chosen in this way to ensure

that the quantitie¥"3x, Yy with t4 € B.(p), t} € B./(p) andz # 2’ do not use the same data, at leastfdarge enough

% J
(see the proof of Lemma 6.1). This fact leads to the asyngtatinditional independence of the big blocks. The notion
of big blocks comes from the fact that the lengthR®f(p) is alwayspk, /n, where we later lep — oo, which is large

compared to the length¥,, /n of small blocksS. (p).

We will perform the proof in several steps. In a certain semsevill prove the statement in a reverse order. The road

map of the proof is as follows:

() In Section 6.1.1 we will show a stable central limit thewr for the approximative quantities of the type (6.1), which

are collected in big block®,(p). The corresponding stable limit isdefined in Theorem 3.4.

(i) In Section 6.1.2 we will prove the asymptotic neglidityi of the approximative quantities of the type (6.1) which

are collected in small blockS, (p).

(i) Sections 6.1.3-6.1.7 are devoted to the justificatidthe approximation in (6.1): Sections 6.1.3-6.1.5 dedhwhe
diffusion part (the most involved part), Section 6.1.6 tsghe mixed part and Section 6.1.7 is devoted to the noise

part.

(iv) Section 6.1.4 provides a useful decomposition for tifieision part, which shows that our statistitY ™ is asymp-

totically unbiased.
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6.1.1 The central limit theorem for the big blocks

Whenevett} € A.(p), 1} € A./(p) for A= Bor A =S (see (6.4)), we set

1 S -
kl k =k l =l
Qi (p) = (wk )2 |:(O-rninAz(p)VV)ti_C + Etf] [(UminAz/(p)W)té + Eté] 1{(7&?,thrkn}ﬂ(té.,té.Jrkn};é@} (65)

Here we follow the same approximation as in (6.1), excepttiatility process is now frozen in the beginning of the

block A, (p) resp.A.:(p). We defineM (p) = >~ ¢¥ (p) with

Boy =t Y (abm) - Bl 0) Fain ]

trtheB:(p)

As M*(p) is a quadratic form oF = X + ¢, we have a straightforward decomposition
My (p) = My! (X, p) + My' (X, ,p) + My (e, p), (6.6)

whereM* (X, p) denotes the diffusion part aff*' (p), M*! (s, p) stands for the noise part o€ (p) andM* (X, ¢, p) is
the mixed part of\Z*(p), which will be used in the following sections. In these welsilow that the quantities,, (p)
andL" = n'/*(HY™ — [X]) are asymptotically equivalent, i.e.

lim limsup P(|M,(p) — L"| >0) =0 (6.7)

P—0 paoo

forall & > 0. Thus, it is sufficient to prove the following result whichnapletes this section.
Theorem 6.3 Assume that the conditions of Theorem 3.4 hold. Then werothtai
M, (p) 25 M(p) = MN(0,V,)  asn— oo
for a certain conditional covariance matrix,. Furthermore, whep — oo we deduce that), =5V, thus
M(p) = L= MN(0,V),

where the random variabldg and L are defined in Theorem 3.4.

Proof: By Theorem 1X.7.28 from [17] it is sufficient to show that€ &, 1, k', 1’ < d)

i 171 P 1
() S, ECE (0)CEY (0)| Fnin o)) — Vo'
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.. ’ ’ P
(i) Zz E[Cffz(p)(wrl;axjgz(p) - er;insz(p))‘fmin Bz(p)] — 0,

(i) 3. E[cEmI'] =0,

(V) 3, EICE () (Nomax 5. () — Ninin B. ()| Fonin 5. ()] — 0 for all bounded martingaled’ with (N, W) = 0,

to conclude the stable convergentg, (p) LLN M (p) asn — oo. The statement (i) is proved in the Appendix. To show
(i) we remark that the increments &F involved in ¢ are independent OF min B. (p)- ON the other hand, the quantity
ffl(p)(WI’fl;Lsz(p) — erfllmBz(p)) is an odd function of¥ and (W,s) < (—W,¢) sinceW, e are independent, which

implies that

/

E[CE (0) (W 5. 2) = Wikin 5. )| Fnin B. ()] = O-

Next, to show (iii) we observe that for fixgdthe number of summands involved in the definitiorcf(p) is O(k2). Due

to Lemma 6.2 and since= 0, . .., [7355;] — 1 we immediately deduce that
SOE[C @) < Cp—enk (k) S0 < 2 0,
. zZn — p(p-l—b)kn n ~ kjn

Part (iv) is shown in [15] for an analogous situation (see herb.7 therein). This completes the proof of the first

statement of Theorem 6.3. The second statement is agaiagnothe Appendix. O
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6.1.2 Negligibility of the small blocks

In this section we still consider the approximative quziaeﬂiufj(p) from (6.5) and show that the terﬂjjl(p) =
S, B (p) with ¢ (p) = S22, ¢FL(i, p) given as

trthes.(p)

Eep = Y (abp) - Bl o) Fun )

theB._1(p),tt €S (p)

&ep) = oY (ale) — Bl 0) Fuins. )

theB.11(p),th€S:(p)

) = Y (o)~ Bl () Fains. 0]

theB._1(p),tFeS:(p)
Mep) = ot Y (0 (p) — Ela) (0)] Foin 5. )
theB.11(p) tF €S (p)

is negligible in the sense of (6.7). This representationd$&drp > b (see (6.4) for the definition of the constaiptwhich

we assume without loss of generality. As in (6.6), we havedgeomposition
My (p) = MY (X, p) + My (X, e.p) + My (e, p), (6.8)

into the X -part, the mixed part and thepart, which will be used in the following sections. Let usswmler the term
>, Ef,ll(l,p). First of all, we remark that the summanfg(l,p) are uncorrelated (asruns) and the number of sum-
mands is of orden/(pk,). Furthermore, there ai@(k2) summands in the definition @’ (1, p). Thus, we conclude

from Lemma 6.2 that
(\Zc,’;élp() > B0 s% (6.9)

Hence, we obtain

lim limsup P(‘ZC ‘ ) 0

P—0 np—soo

for all § > 0. The same assertion holds foF*!(p), as counting the number of non-zexfy (p) for t; andt’; from disjoint

blocks shows that the upper bound in (6.9) is validgfﬁlr(q,p) aswell,g=2,...,5. O
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6.1.3 The approximation of the diffusion part |

We start with the decomposition of the diffusion part of tiséireator HY™". SetHY};[X] = HY;}[D] + HY}j[D, N] +
HY}[N] with

ng—kn+1ln;—knp+1
HY]Q[D] = Z Z Dtthl 1{ tf 7ti€+kn]m(tl tl+k ]74)},

ng—kn+1ln;—knp+1

HYy[D,N] = (k )2 Z Z (Dt’“Ntl +Nt’“Dtl> (e ek, NG 2L, 170}
n =0 7=0

ng—kn+1ln;—knp+1
HYJIN] = Z Z Ntthll{tf,tﬁknlrw(tg,t;%n#@}’

where the processds and NV are given in (6.2). In this section we will show that drift par of X does not influence the
central limit theorem, i.e.

HY[[D] = op(n™"*),  HY}{[D,N] = op(n~"/*).

We start with the terni/ Y} D]. Note thatHY}}[D] containsO(nk,) non-zero summands (due to Lemma 6.1). Lemma
6.2 and the Cauchy-Schwarz inequality imply that each swmimatisfieﬁ«:[]ﬁffﬁig ] < Cn~t. ThusE[|HY[D]|] <
Cn~1/2 which impliesHY}}[D] = op(n~'/%).

The treatment of{Y;[D, N is a bit more delicate. We set
fZ = Efkﬁil + kaﬁil (6.10)
k3 ] k3 J
and define

-n —k ==l ——k 5l
§ij = Qukpgl (Idt(cNtL + Ntkldtl), (6.11)

i i J % J
where id denotes the identity function &n The latter approximateg} by freezing the processin a small time interval.

Let us set
ng—kn+1n;—kn+1

HY y[D,N] = —— Z 5”1“57%” A AL, 10} (6.12)
1=0

We first show thaﬁfle[D,N] = oP(n*1/4). Observe that
ng—kn+ln;—kn+1

Z > EGE e, g IV 10,0tk 2% I0(E, L 120}
1,0/ = 7,3'=0

E[|HY (D, N]|’]

Due to Lemma 6.1 the above sum contain& k) non-zero summands, because f@és are martingale differences.

Moreover, we haveéZ[|¢|*] < Cn~%/ due to Lemma 6.2. Thus, we concluigl /Y (D, N]|*] < Cn~", which
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implies thatHY (D, N] = op(n~/4). In a second step we show thaty);[D, N| — HY 1,[D, N] = op(n=/4). For
this purpose, for any caglad bounded multivariate progesve denote by\fg(t) the number of jumps of bigger than

6 > 0 before timet. Furthermore, we define

mys(f) = sup{||fs — fill : t <s < (t+n) AL, Ni(s)— N{(t) =0}

Roughly speakingm,, 5(f) is @ modulus of continuity of on intervals of at most lengt, which do not contain jumps

bigger thany. For f as above, we obviously havien; . lim sup, _,q m,,s(f) = 0,P — a.s. Observe that

ng— kn+1’nl kn+1

Z Z fzg fzg 1{ G al( t’+k 10}

=0

HY}[D,N] — HY yy[D,N] =

As we mentioned the above sum contain@k,,) summands. We have

h t§+h
o) [, e =gl
i+h—1

The right-hand side of the above inequality is bounded sihegrocess is bounded byCn /2. Consequently, distin-

—k —k
Dy —a idx| <
th RN T | =

guishing between the two situations, wherbas or does not have jumps bigger ttdain the interval[t” h— 1,tf+h] we

obtain the inequality

h t§+h _ a
a(+)| / las = @y llds < Cn2 (mcg ma(a) + (NG (tEy,) = NEWEAEI}AT)).
i+h—1

Using Lemma 6.2 and Cauchy-Schwarz inequality we dedude tha

o N1 271/2
W B[ YD, N] ~ HY (D, N[ < CE[m2 o 5@+ (50 1)

Due to the dominated convergence theorem we conclude that
N§(1)
lim i E[ ( 1) ] .
iy Hm sup E [ mey, msl@) + =5 A 0
Thus HY2[D, N] — HY ,[D, N] = op(n~'/4). Summarizing all results of this section we get

n'/ Y (HY[X] — HY[{[N]) = op(1)

meaning that the martingale pavtis the dominating term in the decompositionfét’;;[ X]. O
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6.1.4 A decomposition for the martingale part

Having proved in the previous section thHél"[ X | can be replaced b¥ Y[ N] without affecting the limit, we proceed
with a further decomposition dfY"[N]. In this section we will show tha Y"[N] is essentially an unbiased estimator

of [l ds. Recall that

1 ’nkfkn%’lnlfkn%’l . .
T e
HYji[N] = e ZO ]ZO NN at, 0 2, 120}

By definition we have
kn—1 p

—k I h
NENL = (—) (—)A N*A Nl(1 w1 )
N thzlg )9 ) B N8 N (L + 1 e

with
hh' k k ! !
B =t tin] N a1, tipn] # 0}
Now, we will write the above quantity as a sum of martingal#fedénces plus bias. For this purpose we need some

additional notations. We decompoBg/ = Ut_, EM (r) with

B = {69, (b 1) oot > thn 1, w2 a0 Bl
B2 = {60, (W) oy 2t thow < thnd N EYY
Elhjh/(3) = {(,7), (h, ") t§»+h,_1 < ti?Jrhil’ té‘-ﬁ-h/ < tﬁrh} A El-hjh/
BN (4) = {Gg), () oy < thy, thw 2t} NELY

On E! (1) we deduce by Ito formula:

A NFA, NU=(NF* — Nk A, N'4+ (NE Nk NL o — N
Hen G ( Bpns -1 tf+h—1) Ay + tin TNVERE tf—&-h)
tr, th
+ / (NF—NE  )aNl+ / (NL= Nl )dNE + / M ds
t J+h' =1 th J+h/ =1 th
j+h/—1 j+h/—1 j+h/—1
5
=> (@), (6.13)
r=1

5
r

and similar decompositions are obtainedﬁd?]’f“(q), q = 2,3,4, and we denote them by’>_, u?jh'(q, r). Notice that all

termsM?j"'(q, r) are martingale differences far< ¢, < 4, while u?jh/(q, 5) gives the bias for all < ¢ < 4. We define

k /
pij(gr) = g(%)sz(:—n)u?ﬁ/(q, ") g ) (6.14)
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for1 < ¢ <4,1 <r <5. Now, a simple reordering shows that

:/ SHds + op(n=1/4),
0

where the error in the first identity is due to border effeaty] the second identity usg¢s= fol g(x)dx.

Thus, we conclude that

i/t (HY,;; [N] — / 1 E’;lds)

1/4 ng—kn+1n;—kn+1
0 TURE & 2 M, T o)

where
ny =T+ Y wiler)
q,r=1

e AN
= 3 k I
e h g<E)g<E)At1€+i»N Até'wﬂN Ly

)

We remark again all term#“jl are now sums of martingale differences.

6.1.5 The approximation of the diffusion part Il
In this section we will justify the approximation

W () [ Sas) = M)+ VD) + REG)
whereM,, (X, p) andM,, (X, p) are defined by (6.6) and (6.8) respectively, for saRf&p) with

lim lim sup P(|Rkl( )| > 5) =0

PO poo

§kn=1
§ E 2hp= 19( ( ) Kl 1
)2 ij (2,5 tfvtf+kn]ﬂ(g t e 20} W) /0 X5 ds +op(n” /%)
i\

26

(6.15)

(6.16)

(6.17)

(6.18)

for all § > 0. This means that the diffusion part/* (HY,;}[N] — fol E’;lds> of our statistic is asymptotically equivalent

to the sum of the diffusion parts of big and small blocks. Rewathe estimate (6.15) from the previous section, it isyea

to show

1 —
R (p) = o' (N - [ Shlas) = M)~ B K. )

= ) Z My = W)L s, it 07+ 0p (D),
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where7;! is defined in the same way af (see (6.16)) except the proces¥ (resp. N') is replaced byo,i, 4. () W)"
(resp.(omin A, (n)W) Hywhent! € A, (p) for somez (resp.tf € A,/(p) forsomez’) andA = B or A = S. Note that the

only difference compared to proving (6.15) lies in the faatt\/' (X, p) + Mﬁl(X, p) is unbiased by construction.

Recall that the quantlty; (resp. 77 ') consists of 17 summands. Hence, we have the decompogifitip) =

ZTZI RF(p,r). As an example we will only consider the treatment of the fissbsand, i.e.

1
kl
R (p, ) (wk‘ )2 Z Hz] :U'z] ]-{(tk ZJrkn]ﬁ(t’ tl+k 1#0}>

wherer; ; is defined by (6.17). We conclude that
E[Iﬁij —ﬁijIQ] = E{ Z 9(%)9(%)9(%)9(%)A% (N - UminAz(p)W)k
hh q,q' " " " "

XAZ (N - O-minAZ/(p)W)lAtk (N - JminAz(p)W)k

]+h itq

xAy (N — JminAzl(p)W)ll(Efjh’)Cl(Eg-q')C]’

i+q

wherel < h,}/,q,q <k, and eitheth = ¢, ' = ¢’ or

k k ! ! k k l l
(tin—1stign] N Gg—1: Lyl # 0, (tisg—1: tivgl N (w1 L] # 0,

as otherwise the expectation vanishes. We remark that thesatum contain®(k2) terms. Now we follow the same

strategy as in Section 6.1.3. First, we note that

kl 2 =~
HR (p7 ) 4 :U’z] IU”L] Hz/j’ - Hi’j/)l{(tk th (et kn 120, (5 ¢%, }ﬂ(t;/, ke 1#0}>

i i4kn 3775+ ik
kn) INKINE

where the number of non-zero summand®igk; ). Using the Cauchy-Schwarz inequality and the same appedions

as at the end of Section 6.1.3, we deduce that

(IR (5, 1)) < CB[m2 1a00) + (T 11)°)

n
for anyd > 0. Thus, for any fixegh, we have (by choosing large and thed small)lim,, ., E[|R¥(p,1)|?] = 0. Hence,

(6.18) for anys > 0, and we are done. O

6.1.6 The approximation of the mixed part

In this section we will prove that

nAHYRIX €] = MF (X, e,p) + MFU(X, e, p) + RE(p),
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where M, (X, e, p) and Mn(X,E,p) are defined by (6.6) and (6.8) respectivelyY,;[ X, ¢] is given by (6.3) and some
RF(p) with (6.18) for all§ > 0. This proof is easier than the proofs in previous sectioasabse the processsande
are independent. We first show that

14 mh—hkat1n—kn+1

—k _j _k =l )
Wka)® = jzo (Dliels + 25D ) Lyttt 10

nYAHYRID, e =

is a negligible sequence. Using Lemma 6.2 and proceeding thg itreatment of the ter[ﬁ?Zl [D, N] from (6.12) we
deduce thaE[|HY}}[D,€]|?] < Cn~'. Hencen'/*HY} (D, €] %5 0. Next, we obtain that

RE(p) = n A HY[IN, €] — M (X, ,p) — M (X, 2,p) + 0p(1)

7
14

nl/A kL
= k) ; ((N - O-minAZ(p)W)ti_cet; + (N — O-minAz/(p)W),%) Liar b, @, 1200 T op(1)

i i+kn

Using again Lemma 6.2, the independence betweamd the components of, and similar methods as f@t*(p, 1) in
the previous section, we conclude that

E[|RE ()] < CE[m2, /(o) + (M 4 1)2]

n

for anys > 0. Thus, for any fixegh, we havelim,, ., E[|RF (p, 1)[2] = 0, and hence (6.18) for any > 0, and we are

done. O

6.1.7 The noise part and the final identity

Finally, we will show that
' HY el = My (e,p) + MY (=,p) + RY (),

whereM, (e, p) andMn(e,p) are defined by (6.6) and (6.8) respectively, for saif&(p) with (6.18) for all > 0. This
is a relatively easy exercise, because by definition we jestirio prove that!/*E[H Y)ile]] = o(1). By reordering the
statistic /Y, we obtain that

nl/4

n1/4E[HYﬁ[5H—WE[ Z af}(ﬂ)é%éig}

1,9 tf:té.

for some constant@f}(n) with |a§j(n)| < C. A simple calculation shows that

S| j 2
afl(n) = (Z g( Z )g<kn)) = (9(1) —g(0))* =0

Jj=0
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except for those? andt} that are among the first and la8{n'/?) summands. Hence,'*E[HY}[]] =
deduce that
lim limsup P(|n1/4HY,;; 6] — M¥(e,p) — MM (e, p)| > 5) —0

P—=X p—oo

forall & > 0.

Finally, let us put things together. In Sections 6.1.3-6vie have proved the identity

L™ = n /Y HY™ = [X]) = My(p) + My (p) + Rn(p)
for someR,,(p) and we have shown (see Section 6.1.2) that

lim lim sup 1@(|J\7n(p)| +|Ra(p)] > 5) —0

P—=X p—oco

for all § > 0. On the other hand, we have proved in Section 6.1.1 that

dst

My (p) = M (p) = MN(0,V,) asn — oo

and, forp — oo:
V, 5V,  M(p) > L=MN(0,V).

This completes the proof of Theorem 3.4.

6.2 Consistency of the variance estimators
6.2.1 Proof of Theorem 4.1

It is obviously enough to prove the result for the unsymraettiestimator

[5-]-1
Vigk/z'—f Z (HYk:l VHY oy (o) — HYk?(Oé)HYﬁl/(a—lo

only, and we introduce two approximating versionsb¥}; («) first, namely

n;— kn+1

HY 1 ’
kl( wk ) tkEBZn(Ot) JZO LA g, N1, 170}

—~

n;— kn+1

Y. D Zla-1iZ(a- D)1t L5 8 G 1 140

Hykl(
Q’Z) ") theBn(a) J=0

29

o(1) and we
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where we have set
k d k
Z(a) =5+ o™ W
( )z‘,q{C th Zl % th
-

as in (6.1), and théV” denote the independent components of dheimensional Brownian motiofl. Sinceo is

R . . . I —k .
assumed to be an Itd semimartingale itself, the error dmepﬂacngfk by Z (), is small: Lettk € B,,(a). Then

kn—1

BV - Z@h = E|Y ali/k) (g D' +Z[ﬂl (o — okt yaw? )
j=1
kn—1 e 1/2
< ( (Zg (3/kn) E‘/i+j_l(ffs”—0aﬁn)dW” ) )
v=1 Tn

kn 1 B kenBn
< _n <Xy
- C( n (k n ) ) ¢ n
Lemma 6.1 and Lemma 6.2 givB|HY}}(c)| < CB,/n, thus it is simple to deduc&|HY;?(a) — HY ()| <
C(B,/n)*/2, and analogously foTY (), so using; < 2/3 we obtainV;rL,, — Vi wy = op(1) with

(5]
J— 71 _ —_——nNn
VZl,k/l’ = Z (HYkl HY]C’I/( ) HYZZ(Q)HYk/l/(Oé — 1)) .

The remainder of the proof is simple now. Without loss of gelily let 5, > 4bk, hold, so onlyHY ., () and

HY .y (a + 1) might share increments af. Then we obtain

(551 3/2
v ZE(W&(@WZW@ — E[AY jy(0)HY (@) Fianan ])| < O

[Bn] L . 3/2
va > E(AY () HY (e — 1) — E[AY (@) HY (o = 1) Fions ] )| < €

by conditional independence, and we are left with

]
—n,1 . —n
Vi g = \/_Z E[HY 1 (a)HY () — HY (@) HY (0 — 1) F a1, | + 0p(1).

Write Vi iy = fol rydu, Where the processis given by the right hand side of (3.4). From the same argisnas in
Lemma 7.3 and Lemma 7.5 in the Appendix plus usjng 1/2 we obtain

(a+1)Bn

VRE[EY oA o (0) - AV jy@)HY (= DlF ] = [ 7 rlu)du-+ o

aPbn

Bn)

n

uniformly in «, and the proof is complete. O
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6.2.2 Proof of Theorem 4.2
From the proof of Theorem 3.1 we have

HY"™([0,s]) — HY™([0,s — ,]) — /: Yudu = op(ly),
uniformly in s. Therefore the discussion @i’ shows that we are left to prove

/l: (f‘:_l"linzuczu - Zs)ds = op(1),

which by left-continuity is obvious as well. O

6.2.3 Proof of Theorem 4.3

All we need to prove is
n—kn+1

K 2K
— Vit 5 ko “du + ——U o2 du —\112
e 2 o | Fato e [ ot g

Sinceo is caglad, we know from the proof of Theorem 1 in [20] that may replacgY, |* by |oy, W;, + &, |* without
affecting the limit. We have

n—kn+1 n—kn+1 n—kn+1
2K

2k k2 1
30,2 > LE[W|* =52 Z o +op(1 ) = 260 Z o + op(1),
=1

and similar identities hold fo8| W, |%|z;,|> and|z;,|* as well. The result follows easily now from a Riemann apprei

tion. O

7 Appendix

In this final paragraph we discuss the computation of the psytie (conditional) variancé), from Theorem 6.3, which
amounts to showing step (i) of its proof, and to prove cormeeg ofl/, to the final variancé” afterwards. We start with

a decomposition of . (p) into a pure diffusion part, two mixed parts and a noise oneveaarrite

ZCzn S p frlz(s p) 1/4 Z ( fjl(s p) E[ ZZ(S p)’]:minBz(p)]>v

t¥ the B (p)
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with
a%(lvp) = @(UminBz(p)W)Zf (O—minBz(P)W)iz,1{(tf,tf+kn]ﬂ(té thy g, 170}
afh(2,p) = w;np (@i 5. (o) W)+ Ei Ormin 5. (o) W ittt 08t 1201
alj(3,p) = Wi 2 B0 L, N L 140)
By independence dfi” ande it suffices to discuss
VIR (s ZE K (5, 0) 5 (50| Fnin B. ()

with s = 1,2, 3 only, and the final variancg;"*!" is the sum of the three limits in probability. Throughout leat the

next subsections we also write

BEEY (5,p) = (0 (5,p) — Elak} (5, )| P 5. ] ) (0l (5,0) = Elady! (5,0) i 5. 9)])

and we introduce the auxiliary interval

2(p+b)kn + 20k, 2(p+ 0)kn, + (p — 2b)kn>
n ’ n ’

B.(p) = [

which is slightly smaller thatB,(p), but their sizes become closejagrows eventually. Without loss of generality }et

be large enough foB, (p) to be non-empty.

7.1 The contribution of the diffusion to the variance

We begin with the pure diffusion part of the variance. By dé&bn, we have

dl
1
kl _ kv 15%
al](17p) - (Q,Z)kn)Q Z lo—mi;Bz(p)o-m?nBz(p)W 1tkW 2tl 1{(tf,tf+kn}ﬂ(té té+kn}7é@} (71)
vy,v9=

In the following we will simply writes instead obr,,;,, . (,,), Whenever the particular time is obvious. Recall (2.4)tiSgt
Fop(k, ) = {(i,5) : Ju,v € {1,... . ky} with t}_, € B.(p),t}_, € B.(p)},
F. (k1) = {(i,§) € F.p(k,1) : tF € B.(p)},

we write

Z WyltkW Qtl 1{(tk tk }ﬂ(t] ]+kn}¢®} = Z C;’Lj(k‘, Z)Atf Wyl Até WV2 (72)

i i4kn
t?,t;EBz( ) (ivj)eFZ-,T—’(kvl)
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for certain numbers:%(k,l) depending on the function. These constants count how often and with which weight a

particular producth,, W** A, W2 appears imfj(l, p). Let us start with a simple lemma.
i J

Lemma 7.1 We have

g4 n1/2 n n
E[ fib(lvp) ,fnl (lvp)’]:minBz(p)] - (Wﬂ )4 Z Z Cij(k',l)cqr(k‘,,l/)
" ()€ Fzp(k) (@) EF: p(K V)
d
Z (Ukvl glv2 gk'v1 U”WE[A?}C wo AZM Wvl]E[A;”WUQ A:}z' Wv2] (7.3)
v1,v2=1

_|_Ulw1 0_lU2 sz’vg U”“E[A?k W A:}z' Wvl]E[A}” Wv2 Agk’ Wv2]>'

Proof: We have to compute

n1/2 Z Z E[ﬁfﬁrl (Lp)‘fminBz(p)]a
thtbeB. (p) th' 1 € B. (p)
and we begin with the conditional expectation @f/(1,p)af"(1,p). Using the representations in (7.1) and (7.2)
plus measurability otr all we have to compute B[A W A, WA WA, W], Apply the well-known prop-
7 J q r

erty E[N1NoN3sN4| = E[N;N2|E[N3Ny| + E[N1N3]E[NaNy| + E[N1N4E[NoN3) for a (centred) normal variable
(N1, Na, N5, Ny). As W and W2 are independent far, # v,, the conditional expectation aff!(1, p)ak! (1,p)
becomes the right hand side of (7.3) plus a third term, whamsily identified as the productEfafj(l,p)\fmin B.(p)]
andE[af" (1, p)| Fuin B.()]- This gives the result. O

Using the previous lemma, the main part of the remainderistsng; a computation of the constant$(k,!). Let us

keepi with tf € B.(p) fixed for the moment and define various auxiliary quantitiesnely

j=mAil ) § =A@, 5= Al

These quantities obviously depend ©andn, even though it does not appear in the notation, and theirsuserelate
observation times in thih grid to those in théth one. For exampley is the largest index such that§ is left of tf, and

7 andj play similar roles. There are two observations to be madst, fin order forc%(k, [) to be non-zero, the condition
J=kn+1<j<j+kn—1 (7.4)

has to hold. This is an easy consequence of the factfhat < /., , andf,, | >, need to be satisfied in

order for the product of the corresponding incrementy bfand Y to appear inHY ™. Second, it is not obvious that
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j — kn + 1 andj + k, — 1 correspond to time points @, (p) as well. However, by definition dfwe know that they do

if t¥ belongs taB. (p), as for example!_, lies within [t — 2= ¢k) and thus! | €[t - 2kn k). Let us focus on

kn— n

this case for a moment, as these terms are responsible foretimecontribution td/,.

Lemma 7.2 Assume that we ha\té € Bz(p) and recall the definition of the functiorg; and+ in (3.1) and (3.2). Then

we have, uniformly for al(z, j) that satisfy (7.4),

k\ _ s
cij (ks 1) = ki@b(% hia(th)) + o(k2). (7.5)

Proof: One singles out four cases fpand computes}; = ¢}’ (k, ) for each of these separately. For example,

=k +1<j<j gives = > > 911 /kn)g(l2/kn),
=1 lgzmax(i-l—l—[nkfk(té+kn711 )],1)

all identities up to a possible error of (uniform) ordegy. This can be seen as follows: First, the choicé; a$ limited, as

g(l1/ky) comes fromW,  which invoIvesAZ_lW as its/;th summand. 1f; is small, then at least some pre-averaged

j—l J

statistics in thekth grid starting left oftfnk o ) intersect withiV/ l and incIudeA?k’“W, and those ones are
TR\ ke —1 77 i

responsible foly(l2/k,). On the other hand, if, is j — (j — k,) or larger, then the corresponding ,: l has only
J—4

empty intersections with any pre-averaged statistic inkthegrid involving A"*1¥. Similar arguments hold in the other

situations, as

kn kn
j<i<j gves of=>" > gl /kn)g(la/kn),

l1=1 lo=max(i+1—[ng fx (tgjrknil1 )],1)

kn min(kn+i—1—[ng fi (tg'—ll )oken)

j<ji<j gves cf=>" > 911 /kn)g(l2/kn),
l1=1 la=1
Ky min(knti—l—lngfe(th )] kn)
J<j<j+k,—1 gves = > > 9(l1 /kn)g(l2 /).
hi=j—j+1 l2=1

One can forget about minimum and maximum in the second sueesulsg; vanishes outside df), 1] anyway. Have a

look at the first expression now. Far> j — (j — k,,) we obtain by monotonicity

i+ 1= [ feCn, )] 2 i+ L= fu( )] = 0+ 1= [ fu(th)]

> i+ 1—(i—ky) =k + 1.
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By assumption ory again we see that the sum overin the first expression for; may thus be allowed to run ta, as
well, and a similar argument for the fourth term yields:

kn kn
joknt+1<j<j gves ¢y=>)" > gl /kn)g(l2/kn),

=1 12:i+17[nkfk(t§.+kn_ll )]
kn knJFi*l*[nkfk(té’_zl)}

J<i<i+thk.—1 gives =) > gl /kn)g(la/ k).

l1=1 la=1

Also,
j—k —|—1<]<] = ky —i—’L—l—[nkfk(] ll)]an+i_1_[nkfk(t§‘/_1)]ana

and with the same reasoning for the second case we obtaitotbe fprmula

e S S IS AN

= > 9(11/kn)g(l2/ k).

=1 ly=i+1—[ny fi (t§'+kn711 )l

In order to simplify this expression further, we use the omif approximation

nkfk(t§'+kn—l1) = nk:fk:(tl'/) + nkfl::(tl'/)(té‘—f—kn—ll - té’/) + o(kn)
= g fie(t) + LD G+ e — ) /) — £71G /) + oK)
= i+ h(tG + ey — 1 — 7)) + o(kn). (7.6)

From Lemma 6.1} + &, — {1 — j'| < Ck,, holds, thus continuity of}, and its first derivative justifies each approximation.

In the same wayy, fi.(t} ;) =i + b (1) (5 — b — j') + o(k»), and we get

kn  kntho ()G —j+10) 1+hp (t +u)

=Y > gl /kn)g(la/kn) + o(k2) = K2 / /h g(w)g(v)dvdu + o(k?).

k -1
W=1ly=hy (") (' —j—kn+l1) ki (] )( +u)

The claim can now be concluded easily. O

With the aid of the preceding lemma it is easy to compute thim part of the variance due to Brownian motion. Recall
(3.3) and the definition of", ,(k,1). Set also

%)] +1, /;(Z,p) = [nkfk(z(p + bk, : (p — 2b)kn

)]

k(z,p) = [r fx(

for any k, sot’C (or t~ ) is usually the smallest (or the largest) point in #ik grid which lies withinB. (p). Then

we obtain the foIIowmg result.
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Lemma 7.3 For any fixedp we have

> o (k, e (K E[AT* W AgH W E[AT W2 ALY W2
(1) €F2 (1), (0,7)EF2 p (K1)
Fn
= (- 4b)ﬁ7k‘,l,k’,l,(ti(z,p)) +o(ky), (7.7)

uniformly inz.

Proof. The reason for restricting, j) to the setﬁz,p(k, [) is that it allows us to use Lemma 7.2 to obtain approximate rep
resentations for at; (k, 1) andcy, (k',1") that correspond to non-zero terms in the left hand side oftitement. In fact,
sincet! is within B. (p), we know from Lemma 6.1 that (essentially) atjywith a non-vanishingg[A7* W Ag W1 |

lies within B, (p) as well, and thus the conditions for an application of LemnzagTe satisfied. We obtain

> o (k, D (K U E[AT* W AN W E[AT W2 ALY W2
(1.)EF p(k.1),(qr)EF:,p (K1)
E(z,p) [nlfl(ti-c_;,_kn )+kn—1 [ for (5] 1
= > kD) S A v
i=l€(27p) j:[nlfl (tf—kn )]—k?n-i-l q:[nk/fk, (tfﬁl)]_kl

[y fir (8)]+1
Z CZT(k/7 l/)(té A tf“/ - té'fl v tf"lfl) + O(kr%)v
T=[nl/fl/(t§71)]+l

since both expectations vanish for other choiceg afidr. Using (7.5) plus continuity of andnl/fl,(tg) = nl/fl/(tf) +

P (tF) (5 — nufi(t5)) + o(k»), which can be shown in the same way as (7.6), we get

n n nlfl ti'ﬁ —J
K1) = o oo sy K1) 002 = K (e )%’ v (1)) + (k7).

Using this approximation, we lose dependencepfk’, ) on ¢ andr. We conclude

> oy (k, D)y (K U E[AT W AGY WO R[ATTV 2 ALY W2
(.5)€Fz p (k) (@) EFz p (k' 1)
E(z,p) [”lfl(tﬁrkn)}‘i‘kn_l
=Y iy (t 1)
i=k(z,p) J=[mfi(tF_y, ) —kn+1
nfi(th) —j nfi(th) — j
(MU T 089 () PPV T 1)) + k).
kn, kn,
Again a Taylor expansion gives
1
t =ty 1= +o(n™) (7.8)
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and similarly fort¥ —¢¥ |, and using (7.6) once more we obtairy; (5., ) = n fi(tF) + hy (t¥) kn + o(ky,) plus a similar

result fort¥_, . Thus a Riemann approximation and continuity of all funesianvolved give

> o (k, Deps (K U R[AT W AGH WO B[AM V2 AN W2
(m)~(MHwEEAMH
s K3 k(2.p) — k(z.p)

k5
= — ————— e () + o(k2) = 2 Vet (i) + o(k2).
n2 Z kfk tk) n2 mkfk(tk (= p)) k(z,p)

The claim follows now from yet another Taylor expansion. O

Lemma 7.3 only gives information about the variance partiognfrom thosetf which belong toBZ(p). For a fixed
p the other terms are not negligible, and in order to prove Téradb.3 it is necessary to show convergence of their con-

tribution toE[ﬁZ’glgrl/(l P)|Fumin 5. ()] @s well. This is why we need two additional results on theyngstotic behavior,

which of course are similar in spirit to the preceding onest. S

z(p +b)ky, 2(p + b)kn + pky,

n

k(z,p) = [ngfu( N+1, k(zp) = [nefi(

)]

and IetF§7p(k, 1) be the complement df. ,(k,1) in F, ,(k,1). As an analogue of the functiahwe define

y2 prmin{l+z(s+u),ya}
79(57%?/17?/2793;94) — / / g(u)g(v)dvdu
Y1 max{(u—1+s)z,y3}

also.

Lemma 7.4 Assum€i, j) € F;yp(k:,l) Then for any non-zerd]; (k, [) we have the uniform approximation

" o mfi(thy =g w3 —1(zp) §—1(z,p) i—k(z,p) i-
Cij(kvl)_knﬁ<7kn hig (), Ry T :

x|

(Z’p)) + o(k2). (7.9)

n

Lemma 7.4 can obviously be proven in the same way as Lemmdt 2vith some more cases to distinguish between),
and the only differences between both representationdarextra conditions on the bounds of the integrals, whickeari

naturally since-j’;(k, 1) is computed at the boundary 6 (p).

Finally, we need some additional notation. We set

.2 = b [ 00,0, by 5,0.2)
Pl Lk 1 \W, T) = S, (w), Y, g (w)xr — s,U, &
nufi(W) J-shw)
hk/l/(w)
ﬂ(hl/l(w)(s, T () .0, hyg (w) s,O,w))dS
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and
kg (W, ) = —— S, hi(w), by (w)z — s, 1,2, 1
nlfl,(w) hig(w)z—1
I (hy(w) (s Py (w) hig(w)z —s,1,x 1>)d5.
b hl/l(w) b b M M
Lemma 7.5 We have
> ci (k, D) (K U)E[ATF W AGY W R[AT V2 AL 2]
(1.0)EFE (k1) (qr)EFs p (k' 1)
k‘g 1 2bmkf’;(tlfz(z,p)) k
= m(Wt]]z(zp))/o pk7l7k/71/(tl—€(27p),$)d$ (710)
L / 1 Mg o (£ )d )+ (k2) (7.11)
— kLR ARy T)AT O\Fn ) :
mkf];(tl;(z7p)) _2bmkfllc(t£(z’p)) k(zp)

uniformly inz.

Proof. Without loss of generality we prove the result faz, p) < i < k(z,p) only. Note by assumption dnandg that

(7.9) reduces to

oy -2 (M) =5 ko J = 1zp) i k(zp) 2
ey (k. 1) = K20 o hia(16), 0, 7= 0, T ) +olk2)

in this case. Mimicking the proof of Lemma 7.3 the variance gae to these terms becomes

k(z,p) [nlfl(ti'€+kn )+kn—1
L k k l l n n
Uzvp - Z (ti - ti—l) Z (tj B tj_l)cij(k’ Z)C[le/fk/(tf)][nl/fl/(tz')](k,’ l/)a
i=k(z,p) §=I(z,p)

up to an error of ordes(k2). A similar Taylor expansion as (7.6) gives

n ! g/
S T AR
t5) —j hwr(t) j—1(zp) . i—k(zDp)
= R0ty (L i : : K2).
0 (e) (FEEREE, S 0 A 2 0, R ) o)
Using (7.8) and a Riemann sum argument we obtain
k(z,p) 1 nzfz(ti)—f(z,p)
D N cal
v i%p) ' nlfl/(tf) —(1+hu(t5))
o o ity —l(zp) i k(zp)
ﬁ(s,hkl(ti),o, o 5.0, =2 )
hv (8) i fu(tF) = 1(z,p) i —k(z,p) 2
I(hy (t9) ( s, i, i 5,0, ———222))ds + o(k2).
(honlef) (53 © .0, 3 7 s + o(k?)
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The final step differs from the previous proof, as the depeoel®ni is more involved now. We use continuity to obtain

n t’]f —l_z,p nlfl(tf)_nlfl(tg z, ) Z—]% Z,p
lfl( )kn ( ) _ kn (2:p) +0(1) _ hlk(t%(z,p)) ki )

+o(1),

and applying (7.8) orit? — t¥ ) plus replacing eactf by tg(z due to continuity again, we derive

\p)

k(z,p)—k(z,p)

' kS 1 n
Uk,l,k L / Pkik! l/(tl—€ ,.I)d.I + O(k2).
o 2 g [t ) Jo e !

The claim can now be obtained easily. O

It is obviously possible to replade(z, p) andk(z, p) in (7.10) and (7.11) by:(z, p) without affecting the approxima-

tion error. We set

) = o e+ — [ )
Criprp,w) = (p—40) vk e (w) + / Pk g (W, x)dx
my fr.(w) Jo
1 1
+7/ Ak (W, z)d,
mkf]/g(w) —2bmy, f, (w)

and it is simple now to derive the following theorem which cloiles this section.

Theorem 7.6 We have

VIR (1) = 3 TEICE(L p)CEY (1, 0) Fruin 5. 0)

0 1 / / ! !/
= o0t / (Wk,z,k/,z'(l% w) S S+ o e (p,w) SE BRI )dw + op(1).
0
For p — oo, we conclude

0
o
which equals the pure diffusion part of (3.4).

1
17/ P / / / /
VIEL(1) — /0 (’Yk,l,k’,l’(w)zkwk S+ g g (0) SRS )dﬂ%

7.2 The contribution of the remaining parts to the variance

In this final subsection we give some ideas on how to obtaimdias forV;""*"' (2) andV;*“¥"'(3), from which Theorem

6.3 (and thus in turn Theorem 3.1) can be concluded.

The main intuition in both cases it that one obtains repiasiens foraf}(zp) and afj(?),p) which are closely

related to (7.2) in the sense that those constghts, /) andcy;(k, 1), say, can be treated in the same way as in Lemma
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7.2 and Lemma 7.4. In fact, the only difference is #df /k,,) sometimes has to be replaced(byl /%, )g’ (11 /kx), since

(9(l1/kn) —g((l1 + 1)/kn))5il‘ plays the role ob(ll/kn)A;‘lW now, and so the approximating functions in a version of
J ~

Lemma 7.2 naturally become and from (3.2).

Also, Lemma 7.3 and Lemma 7.5 have expressions in this cpritakthe first difference is that one does not sum

over all (4, j) and (p, ¢) now, but only over those for whict} and!’, say, coincide, as otherwiﬂeiési;,] # 0 is not

satisfied. Second,

1
nlfl/(tf)

is not included in the sum anymore, as this term came from@einent of Brownian motion. This explains the need for

th—th | = +o(n™1)

J

the additional termsy; f/,, in 7 and?, as the Riemann approximation otherwise does not hold.
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