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Abstract
We model the log-cumulative baseline hazard for the Cox model via Bayesian, monotonic P-splines. This 
approach permits fast computation, accounting for arbitrary censorship and the inclusion of nonparametric 
effects. We leverage the computational efficiency to simplify effect interpretation for metric and non-metric 
variables by combining the restricted mean survival time approach with partial dependence plots. This 
allows effect interpretation in terms of survival times. Monte Carlo simulations indicate that the proposed 
methods work well. We illustrate our approach using a large data set of real estate data advertisements.
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1 Introduction

In economic, epidemiological and engineering applications, the Cox propor-
tional hazards model is the benchmark for survival analysis. However, non-
parametric modeling strategies for the Cox model do not scale up to large
data sets. This paper aims to alleviate this problem by speeding up com-
putation. The baseline hazard h0(t) is the key concept for the Cox model,
it gives the instantaneous rate of failure at t, conditional on survival until t
and covariate values of zero. We propose to model the log-integrated base-
line hazard via Bayesian, monotonic penalized B-splines. As we can evaluate
the likelihood analytically, and due to the benefits of Bayesian P-splines,
our approach holds five key advantages: (1) Fast, automatic computation.
(2) Exact likelihood calculation. (3) Accounting for arbitrary censoring. (4)
Inclusion of nonparametric components. (5) Easier effect interpretation in
regards to survival times, not hazard rates.

Most Bayesian non- or semiparametric approaches use a flexible model
for some functional of the baseline hazard: Fernandez, Rivera, and Teh
(2016) use a Gaussian process, Hennerfeind, Brezger, and Fahrmeir (2006)
use P-splines for the (log) baseline hazard. Because the likelihood is usually
not analytically available under this strategy, numerical integration is nec-
essary, introducing approximation error and slowing down inference. There
are approaches where this does not apply, as the likelihood is analytically
available: Dykstra and Laud (1981) use the extended gamma process prior,
Nieto-Barajas and Walker (2002) use a Markov increment prior. Gelfand
and Mallick (1995) use a mixture of Beta densities, Kalbfleisch (1978) uses
the gamma process prior, Cai, Lin, and Wang (2011) and Lin et al. (2015)
use monotone regression splines for left- or right censored data. Zhou and
Hanson (2018) use a Bernstein polynomial prior for arbitrary censored data.
In a frequentist context, Zhang, Hua, and Huang (2010) use monotone B-
splines for interval censored data, Royston and Parmar (2002) use natural
cubic splines for left- or right censored data. However, these approaches are
either computationally expensive, not flexible enough or only cover special
cases, which does not apply to the estimation strategy proposed here.

The paper is structured as follows: section 2 gives the modeling approach,
section 3 details inference. Section 4 shows a simulation study, section 5
applies the methods to real estate data. Section 6 concludes.
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2 Hazard regression model

In hazard regression, the modeling of survival times is of interest, for instance
unemployment durations or time until death. A non-negative random vari-
able T with density s(t) and survival function S(t) = P (T > t) represents
survival time. The hazard rate h(·) is the conditional density of T , given
that T > t, so that

h(t) = s(t|T > t) = s(t)/S(t).

It holds that

S(t) = exp(−H(t)), where H(t) :=

∫ t

0

h(u)du

is the cumulative (or integrated) hazard, so that h uniquely determines T .
Under interval censoring, we observe data

D = {(yi,xi), i = 1, . . . , N},

where xi is a covariate vector and yi = [t−i , t
+
i ) denotes the interval containing

the true survival time. Left censoring is a special case with lower bound
t−i = 0, right censoring is a special case with upper bound t+i = ∞. By
convention, we write t−i = t+i = ti, for an uncensored survival time.

The benchmark model for survival times is the semiparametric Cox model
(Cox, 1972) with conditional survival function

S(ti|zi,α) = exp(− exp
(

log(H0(ti)) + z>i α
)
),

where H0(ti) is the unspecified cumulative baseline hazard

H0(ti) =

∫ ti

0

h0(u)du,

with baseline hazard h0. In a nonparametric setting, the model includes
nonlinear effects. We partition each xi into vectors zi (linear effects) and vi
(nonlinear effects). Define the linear predictor

ξi = ξ(xi, ti) := f0(t) + f1(vi1) + · · ·+ fR(viR) + z>i α,

where α is a vector of regression coefficients, f0(ti) := logH0(ti) is the log-
cumulative hazard and f1, . . . , fR are functions. Let fr = (fr(v1r), . . . , fr(vN,r))

>

denote the vector of function evaluations for fr and ξ = (ξ1, . . . , ξN)> denote
the linear predictor vector, than we can write

ξ = Zα+
R∑
r=0

fr,
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where Z is a design matrix. We can write the survival function as

S(ti|ξi) = exp(− exp(ξi)).

We model the log-cumulative baseline hazard f0 via monotonic, penalized B-
splines (P-splines). As Hennerfeind, Brezger, and Fahrmeir (2006), we model
f1, . . . , fR via P-splines. The basic idea of P-splines is to model a function
fr by a weighted sum of B-spline basis functions Br1, . . . , Br,J , augmenting
the loss function with a penalty controlling the smoothness of the estimated
function. Hence,

fr(v) =
J∑
j=1

βrjBrj(v) for r = 0, . . . , R,

where βr1, . . . , βr,J are regression coefficients associated with the function fr,
see figure 1. Given a knot vector kr ∈ Rm, a B-spline Brj(v) = Bl

rJ(v) of
order l = 1 is the function

B1
rj(v) := I[v ∈ [kr,j−1, kr,j)],

where I[condition] equals one if the condition is met and zero otherwise. See
De Boor et al. (1978) for a rigorous introduction to B-splines. We assume
that kr is equally spaced from the minimum to the maximum of a covariate
vr. Then B-splines of order l > 1 are defined recursively1 as

Bl
rj(v) = wlrjB

l−1
rj (v) + (1− wlr,j+1)B

l−1
r,j+1(v), for j = 1, . . . , J,

with J = m+ l − 2 and

wlrj :=
x− krj
(l − 1)h

,

where h is the spacing between the knots. We assume that J and l are equal
for f0, . . . , fR. One usually sets l to the smallest value where the smoothness
of the estimated function is satisfactory, a good default is l = 4. Define the
design matrix Br ∈ RN×J with i, jth element Brj(vir). Then we can write
each vector of function evaluation as fr = Brβr and represent the linear
predictor vector ξ compactly as

ξ = Zα+
R∑
r=0

Brβr.

Because B-splines vanish outside a domain spanned by l − 1 + 2 knots (see
figure 1), the matrices B0, . . . ,BR are sparse. Hence the computation of the
linear predictor vector ξ is fast.

1Due to this recursive definition, for l > 1, the knot vector needs to be extended with
additional outer knots defined analogous to kr.
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Figure 1: A: B-splines for varying order. Dotted, vertical lines mark the
knots. B: Function obtained by weighted sum of B-splines. The red line is
the estimated function, given by the sum of the scaled basis functions below,
here giving a monotone estimate.

2.1 Priors

The flexibility of the B-splines basis increases with m, the number of knots,
which determines J , the number of basis functions. For a large number of
knots, the B-spline fit approaches a rough interpolation of the data which is
usually undesired behaviour. Varying m on the fly changes the number of pa-
rameters, complicating inference. Using penalization, one can use fixed, large
m, say m = 30 (so that we obtain a flexible fit) and control the smoothness
of the estimated function by a single parameter penalizing unsmooth func-
tion estimates. See figure 2 for a demonstration. In a Bayesian context,
this is handled by the prior distribution of β0, . . . ,βR and the associated
penalty parameters. As a result, we can directly obtain precision measures
for function estimates from the posterior distribution. Furthermore, inference
is automatic, in the sense that no post-processing such as cross validation is
necessary. Let ∆d be the difference operator of order d, defined recursively
by

∆1βrg := βrg − βr,g−1,
∆d := ∆1∆d−1 for d > 1.
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Figure 2: Influence of order l, difference order d and penalty parameter on
function estimates. Data is simulated via yi ∼ N(sin(zi) log(zi + 0.5), 0.152).
Rows are varying values of d, columns are varying values of l. Lines are
the estimated function under varying penalty parameter. Without a penalty,
the estimated function is very unsmooth, for a large penalty the function
estimate approaches a polynomial of degree d− 1.

The curve fitting literature uses the squared dth derivative of the estimated
function as smoothness penalty. Eilers and Marx (1996) show that

λr

J∑
j=d

(∆dβrj)
2, (1)

approximates this smoothness penalty. As such, λr controls the smooth-
ness of the estimated function f̂r. For limλr→∞ λr the estimated function
approaches a polynomial of degree d − 1. Increasing d results in smoother
estimates. A value of d > 3 is rarely used. We use d = 3 as default option
and assume that d is the same for β0, . . . ,βR. We use the prior distribution
from Lang and Brezger (2004), who base their prior on (1). Here

∆dβrj ∼ N(0, τ 2r ) for j > d,
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so that for instance

βrj = βr,j−1 + erj, for a difference of order d = 1,

βrj = 2βr,j−1 − βr,j−2 + erj for a difference of order d = 2,

βrj = 3βr,j−1 − 3βr,j−2 + βr,j−3 + erj for a difference of order d = 3.

with erj ∼ N(0, τ 2). A high τr, indicating an unsmooth function, is associ-
ated with a low λr. Parameters β01, . . . , β0d, β11, . . . , β1d . . . βR,d are assigned
a flat prior p(·) ∝ 1. Let Dd ∈ R(J−d)×J denote a matrix representation of
∆d, so that element j of Ddβr is ∆dβrj and β>r Kdβr =

∑J
j=d(∆

dβrj)
2, where

Kd = D>dDd is the penalty matrix. For instance, for d = 2, we have

D2 =


1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1

 .
and

K2 =



1 −2 1
−2 5 −4 1

1 −4 6 −4 1
. . . . . . . . . . . . . . .

1 −4 6 −4 1
1 −4 5 −2

1 −2 1


.

We can write the prior for β as

p(βr|τr) ∝ exp(− 1

2τ 2r
β>r Kdβr). (2)

Because Kd is a sparse band matrix with range d+ 1, we can exploit sparse
matrix operations to compute the quadratic form β>r Kdβr in (2).

Some adjustments are necessary for modeling the log-cumulative baseline
hazard f0 via P-splines. Because the cumulative baseline hazard is defined on
[0, ti], the knot vector is a sequence from 0 to the largest t+i <∞. To achieve
a monotonic function estimate for the log-cumulative baseline hazard2, we
restrict the prior (2) to non-decreasing vectors, resultant in a monotonic
function estimate as Brezger and Steiner (2008) show:

p0(β0|τ0) := p(β0|τ0)I[β0,1 ≤ β0,2 ≤ · · · ≤ β0,J ]. (3)

2One might also model the cumulative baseline hazard, this involves an additional
positivity restriction on β0. We tried this but the HMC sampler converged slowly.
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We can extend this to further nonlinear effects if a monotonic function esti-
mate for f1, . . . , fR is desired. We assign a flat prior to regression coefficients
α associated with linear effects. For positive scale parameters such as τr,
a popular3 choice is an inverted gamma prior, see for instance Hennerfeind,
Brezger, and Fahrmeir (2006) or Kneib and Fahrmeir (2007). We follow
Gelman (2006), who recommends a half Cauchy prior instead:

p(τr|φr) ∝ I[τr > 0](1 + (τr/φr)
2)−1 for r = 0, . . . , R,

with low scale parameter φr = 1 as default option. This puts most prior
mass on smooth functions, i.e. those with low τr. Due to the heavy tails of
the Cauchy distribution, τr may be large, resultant in less smooth function
estimates if the data demands it. We estimate τr from the data, so that the
parameter adjusts to the number of B-splines.

2.2 Likelihood construction

We use P-splines to model the log-cumulative baseline hazard, so that

logH0(t) = f0(t) =
J∑
j=1

β0jB0j(t) and

h0(t) =
dH0(t)

dt
= exp

(
f0(t)

)
df0(t)/dt.

Because the derivative of a weighted sum of B-splines is

d
∑J

j=1 β0jB
l
0j(t)

dt
= h−1

J∑
j=2

Bl−1
0j (t)∆1β0j, (4)

3The popularity of the inverted gamma prior is probably due to its convenience under
a Gaussian model, so that it has become somewhat of a default.
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the baseline hazard is analytically available, resulting in a tractable likeli-
hood. Because the computation of (4) involves lower order B-splines, the
computational advantages of B-splines carry over to the computation of the
baseline hazard. The likelihood is L(θ|D) =

∏N
i=1 Li, with likelihood contri-

butions L1, . . . , LN accounting for censoring. Each likelihood contribution is
the probability P (ti ∈ yi|ξi), except for uncensored survival times. Here the
likelihood contribution is the density h(ti|ξi)S(ti|ξi), so that:

Li =


S(t−i |ξi)− S(t+i |ξi) if ti is interval censored,

1− S(t+i |ξi) if ti is left censored,

S(t−i |ξi) if ti is right censored,

h(ti|ξi)S(ti|ξi) if ti is uncensored.

We need to compute the log-likelihood L for model evaluation and to
sample from the posterior distribution via Hamiltonian Monte Carlo. There
are some convenient shortcuts for the computation of L. Let S denote the set
of all uncensored observations. Define the vectors of totals zS :=

∑
i∈S zi and

bSj :=
∑

i∈S br(vir), which we have to compute only once. Then we can write
the log-likelihood for the uncensored observations as the sum ξS +

∑
i∈S ηi,

where

ξS := α>zS +
R∑
r=0

β>r b
S
r (5)

is the sum of the linear predictor vector and ηi is defined as

ηi := log

(
df0(ti)

dti

)
− exp(ξi).

The computational cost of ξS does not grow with the cardinality of S.
However, this does not hold for the computation of

∑
ηi, but computa-

tion of ξi is fast due to the sparsity of the involved vectors. This applies
to the contributions of censored observations as well: Here, the likelihood
contributions depend on the value of the linear predictor, with aforemen-
tioned computational advantages. For instance, the likelihood contribution
is log

(
S(t−i |ξi)

)
= − exp(ξi) for a right censored survival time.

3 Inference

We use the probabilistic programming language Stan (Carpenter et al., 2017)
to sample from the posterior distribution

p(θ|D) = L(θ|D)p0(β0|τ0)
R∏
r=1

p(βr|τr)p(τr|φr). (6)
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For point estimation we use the posterior mean, for interval estimation we
use the 0.025 and 0.975 quantile. A nice feature of simulation based Bayesian
inference is the option to obtain uncertainty measures directly for functions
of parameters from the samples of the parameters, e.g. for exp(f0) = H0.

Stan implements the No-U-Turn sampler for Hamiltonian Monte Carlo
(Hoffman and Gelman, 2014). This sampler converges quickly for high di-
mensional posterior distribution of correlated parameters as for the problem
at hand. It is fully automatic and allows easy use of non-conjugate prior
distributions such as the Cauchy prior for τr, unlike a Gibbs sampler. Fur-
thermore, Stan supports sparse matrix operations4.

For models with nonparametric components the means of the function
f0, . . . , fr are not identified. For instance

ξi = f0(ti) + f1(v1i)

is equivalent to
ξ?i = f ?0 (ti) + f ?1 (v1i)

with f ?0 (ti) = f0(ti) + c and f ?1 (v1i) = f1(v1i)− c, so that the mean of f0 and
f1 is not identifiable. As such, we need to impose constraints or the sampler
would not converge. We use the decomposition from Kneib and Fahrmeir
(2007) for P-spline regression coefficients:

βr = Xunpenalized
r βunpenalizedr +Xpenalized

r βpenalizedr , for r = 1 . . . , R,

with priors p(βunpenalizedr ) ∝ 1 and βpenalizedr ∼ N(0, τ 2r ). As figure 2 shows,
the vector βunpenalizedr captures the unpenalized polynomial of degree d −
1 in fr. The first column of Xunpenalized

r is a vector of ones, so that the
parameter βunpenalizedr,1 represents the mean of fr. Deleting each vector of
ones is comparable to imposing a zero mean constraint. The log-cumulative
baseline hazard f0 sets the global mean, so that we can sample β0 without
further restrictions. The vector βpenalizedr is equivalent to a vector of random
effects, allowing the use of specialized Stan routines such as the non-centered
parameterization.

3.1 Model choice

Model choice in a Bayesian framework is an ongoing research area with sev-
eral competing approaches. We use expected log predictive density criterion

4Stan also includes optimizing routines based on the automatic differentiation, so that
the posterior mode (equivalent to penalized maximum likelihood) is also an option for
point estimation, for example for frequentist inference.
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(henceforth elpd), because it is a measure for the generalizability of a model
to unknown data, which is usually the pertinent task. Vehtari and Ojanen
(2012) derive the criterion in a Bayesian decision theoretic approach: Here
we choose some model M which maximizes an utility function of our choice.
Using the log score results in the elpd :

elpdM :=

∫
π(ẏ) log pM(ẏ|ẋ,D) dẏ,

where

pM(ẏ|ẋ,D) :=

∫
pM(ẏ|ẋ,θ)pM(θ|D)dθ

is the posterior predictive distribution for a new observation ẏ with covariates
ẋ, under model M and π is the distribution associated with the unknown
data generating process. Using leave-one-out cross-validation, an estimator
for the elpd is given by:

êlpdM = N−1
N∑
i=1

log pM(yi|xi,D−i), (7)

where D−i is the data without observation i. Vehtari, Gelman, and Gabry
(2017) show how to compute (7) efficiently via Pareto smoothed importance
sampling. Their method bypasses the need to compute N models, instead
using log-likelihood evaluations from a single MCMC run. Magnusson et al.
(2019) present a method to further speed up computation for large data sets
based on subsampling.

3.2 Covariate effects

Let σ denote the follow up time and µ = µ(ξ) denote the conditional expecta-
tion E[T |ξ]. If σ and the sample size are large enough so that we can precisely
estimate the survival time where the baseline survivor function tends to zero,
we can estimate µ via the identity

µ =

∫ ∞
0

S(u|ξ)du. (8)

In practice, this is rarely the case so that estimating the integral in equation
(8) necessitates extrapolation. The restricted mean survival time (rmst),
defined as

µσ := E[min(T, σ)|ξ] =

∫ σ

0

S(u|ξ)du

10



is an alternative which avoids extrapolation beyond the follow up time and
bypasses the need to interpret effects in terms of the hazard rate (Stensrud
et al., 2018). Because researchers can interpret the restricted mean survival
time as the average survival time until σ, the rmst has attracted much at-
tention as a measure for covariate effects, see for instance Chen and Tsiatis
(2001), Royston and Parmar (2011) and Zhao et al. (2012). We use numeri-
cal integration with the trapezoid rule to estimate the integral in (8), where
we split up the integral at min(t−1 , . . . , t

−
N), to avoid extrapolation5:

µ̂σ(ξ) =
t?1
2

(1 + S(t1|ξ) +
h

2
(S(t1|ξ) + S(σ|ξ)) + h

K−1∑
k=2

(
S(t?k|ξ) + S(t?k+1|ξ)

)
,

with spacing h = σ/(K−1) and K control points t?k = min(t−1 , . . . , t
−
N)+(k−

1)h. We can estimate the restricted mean survival time of one observation
via

µ̂σ(ξi) = Q−1
Q∑
q=1

µ̂σ(ξqi ),

where the superscript q = 1 . . . Q denotes the qth draw from the posterior
distribution.

The most important application of the restricted survival time is the
estimation of a binary treatment effect, the comparison between outcomes
µσ1 (treatment) and µσ0 (control). Most commonly this the simple difference
µσ1 −µσ0 . However, inference for other forms such as ratios can easily be done
in a Bayesian framework (Imbens and Rubin, 2015). A unit level treatment
effect Wi is the comparison of µσ1 and µσ0 for unit i. We estimate Wi via

Ŵi = Q−1
∑Q

q=1W
q
i . An easy-to-interpret scalar measure is the average

treatment effect (ATE), which we estimate via

ÂTE = N−1
N∑
i=1

Ŵi.

We propose to combine partial dependence plots (Friedman, 2001) with
the restricted mean survival to simplify effect interpretation for metric co-
variates: Say we are interested in the effect of the metric covariate vk. The
basic idea of partial dependence plots is to compute the restricted mean sur-
vival time, marginalizing over all parameters and covariates except vk. Let

5This might be problematic if the observed minimum is large. In this case extrapolating
H0 or logH0 might be preferable.

11



ξ̇i denote the linear predictor for unit i where we set the value of vik to v̇k.
Then we create a partial dependence plot for the covariate vk by computing

(NQ)−1
N∑
i=1

Q∑
q=1

µ̂σ(ξ̇qi )

over a grid of control points v̇k,1, . . . , v̇k,C , plotting the result with the asso-
ciated posterior interval. We can do this for variables which we model by a
linear or a nonlinear component. Partial dependence plots may also be used
for non-metric variables.

A related concept is the marginal survival function. Often one is inter-
ested in a global average of the survival function. For the Cox model, a
simple solution is the baseline survival function, which is the survival func-
tion conditional on all covariates taking the value zero. However, this might
be nonsensical or require an unwanted transformation of the covariates to
achieve interpretability. The marginal survival function allows marginaliza-
tion over the covariates and parameters, we compute it via

Ŝmarginal(t) = (NQ)−1
N∑
i=1

Q∑
q=1

S(t|ξqi ).

We can furthermore condition on specific covariates values, for instance a
subgroup indicator for group differences.

To speed up computations one may use thinning, i.e. the use of every
nth sample from the posterior distribution.

4 Simulation study

We investigate the performance of the presented methods under varying cen-
soring mechanisms and sample sizes. For each censoring mechanism, we
simulate 50 data sets each with sample size N = 100, 200, 500, 1000, 2000.
Survival times are additive Weibull distributed with hazard where

h(ti|xi,α) = h0(ti) exp(z>i α+ f1(v1i) + f2(v2i)),

h0(ti) = t5i + 2
√
ti,

f1(vi1) = sin(4vi1) and f2(vi2) = 0.5[cos(5vi2)− 1.5vi2].

Figure 4 shows the baseline hazard and involved functions. The baseline
hazard is bathtub shaped, exemplifying a shape that is hard to capture by
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Figure 5: Representative examples by sample size (columns), variable (rows).
The color of the lines is mapped to the combination of the type of censoring
with the fraction of censored survival times. For instance, right low means
20% of the survival times are right censored. The x-axis is scaled to the
interval [0, 1] for visualization purposes. Each example is chosen to be closest
to the overall mean squared error over all iterations.
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Figure 6: Boxplots showing log mean squared error by sample size (columns),
variable (rows). The horizontal axis within each box corresponds to the com-
bination of the type of censoring with the fraction of censored survival times,
for instance right low means 20% of the survival times are right censored,
which is furthermore mapped to the color of each boxplot.

common parametric methods yet highly relevant in practice. An example for
such a mechanism is human mortality: here the hazard rate is high immedi-
ately after birth, followed by a period with low hazard, while rising in later
years. Regression coefficients α are equally spaced between −0.3 and 0.3,
covariates z1, . . . , z5 are standard normal, v1 and v2 are standard uniform.
There are four variants regarding the fraction of censored observations: no
censoring, low (20%) and high (40%) percent censored observations for all
three censoring types, and 100% for interval censored. For all censoring types,
we draw a simple random sample of the failure times and censor afterwards.

To evaluate estimates, we compute the mse of f0, f1 and f2 on a grid of
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C control points er,1, . . . , er,C as

mse(f̂r) = C−1
C∑
c=1

(
f̂r(er,c)− fr(er,c)

)2
and the mse for α as

mse(α̂) = 5−1(α̂−α)>(α̂−α).

Figure 5 shows representative examples of estimates, figure 6 shows the re-
sults for the log mean squared error, henceforth log-mse. As might be ex-
pected for a complex model, estimates for f0, f1 and f2 are quite imprecise for
small sample sizes (N ≤ 200). The log-mse decreases with increasing sample
size. For the estimation of α, f0 and f1 the censoring mechanism does not
seem to cause large differences. However, the log-mse is usually highest under
a high fraction of right censored observations and lowest under no censoring
and interval censoring. For estimation of the log-cumulative baseline hazard,
there is a clear negative effect associated with the information loss from cen-
soring. This holds strongest for right censoring. Under interval censoring,
the log-mse for estimates of f0 is lowest for small sample sizes, however it
does not improve much for N > 500. Overall, the estimation strategy works
as desired, given a large enough sample size. However, large fractions of right
censored observations may be problematic.

5 Application: Real estate data

The data set in this application consists of survival times of real estate adver-
tisements for flat rents. The advertisements were published on the website
ImmobilienScout24 in the year 2017. For a description of the data set and
data access see Boelmann and Schaffner (2018). The survival time is the
number of days an advertisement is online. While there are several reasons
why an advertisement may be taken offline, we assume that in the majority
of cases someone rented the flat. To demonstrate inference for a treatment
effect, we estimate a hazard model for the city states Bremen and Hamburg,
where we create a balanced data set using coarsened exact matching (Iacus,
King, and Porro, 2012). There are 16480 observations in Hamburg, of which
953 are right uncensored. In Bremen, the are 7356 observations, of which
466 are right censored. We include several covariates in the model, see table
1 for descriptive statistics: (1) The residual from a hedonic regression of rent
price per square metre on a set of control variables such as age of the house.
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Table 1: Descriptive statistics

Mean Std. deviation

Variable Bremen Hamburg Bremen Hamburg

days online (uncens.) 21.239 16.189 36.595 26.778
days online (cens.) 42.790 23.939 89.599 45.876
censored 0.063 0.058 0.244 0.233
commission 0.018 0.023 0.132 0.151
missing entries 5.232 4.130 2.432 2.098
rent residual -0.480 1.443 1.942 2.494
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Figure 7: Standardized survival curves for Hamburg and Bremen with 0.025
and 0.975 posterior quantile.

A positive residual indicates an overpriced flat. We use a similar set of vari-
ables as Eilers (2017), extended by a spatial effect, so that the residual gives
the relative price for a flat conditional covariates and the location. (2) The
number of missing fields in the advertisement. (3) Binary indicators for flats
requiring a broker commission and a binary indicator for Hamburg, repre-
senting a treatment effect in our analysis. We define the individual treatment
Wi effect as difference between restricted mean survival times with follow up
time σ = 100 days.

Figure 7 shows the marginal survival function for Hamburg and Bremen,
indicating that flats in Hamburg are rented out quicker than in Bremen. Fig-
ure 8 shows the partial dependence plots. An overtly high price is associated
with an increase in the restricted mean survival time. This effect is approxi-
mately linear. An increase in the number of missing entries is associated with
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Figure 8: Partial dependence plots for restricted mean survival time, for σ =
100 days, with 0.025 and 0.975 posterior quantiles. A: Partial dependence
plots for binary covariates. B: Metric covariates.
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Figure 9: Estimated elpd for the chosen models. From left to right, the x-
axis gives the element which is added to the model, starting with a model
without covariates, so that the second model for the cumulative baseline haz-
ard is H0(t) exp(β1commission), the third model H0(t) exp(β1commission +
β2Hamburg) and so forth.

a decrease in restricted mean survival time. This might due to advertisement
for unattractive flats, where the supplier hopes to increase attractiveness by
providing more information.

For Hamburg, the estimated average treatment effect ÂTE is−8.62, prob-
ably due to higher demand. The associated posterior interval is [−8.21,−7.77],
so that the effect is precisely estimated. Requiring a broker commission is
associated with an increase in restricted mean survival time by 2.45 days.
Because the share of advertisements requiring a broker commission in the
data set is low (2.1 %), the associated posterior interval [1.03, 4.19] is much
wider.

Figure 9 shows the estimated expected log predictive density values, work-
ing up from a model containing no covariates. The effect of the covariates on
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the elpd varies strongly between the variables. However, the order of the co-
variates influences this effect. For instance, including the broker commission
hardly reduces the elpd compared to the inclusion of the number of missing
entries.

6 Conclusion

This paper presents an approach for fast Bayesian hazard regression using
monotonic P-splines. Because involved quantities are analytically available
and we can exploit sparsity for the involved computations, this estimation
strategy is computationally more efficient than existing approaches. We
leverage this efficiency to simplify effect interpretation by combining par-
tial dependence plots with the restricted mean survival time approach. We
tested the proposed strategy with numerical examples: Simulations show
that the approach works well, an application shows that the approach gives
useful results for a large data set.

There are several extensions of this work. It might be fruitful to relax the
proportional hazards assumption. This may be done by allowing interactions
with survival or by allowing the baseline hazard to vary by subgroup. While
using P-splines for f1, . . . , fR is one (very good) choice among many, we argue
that monotonic P-splines are useful for logH0. For instance, one might use
a Gaussian process instead, which would be feasible in our framework.
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