

Ringversuche der staatlichen Immissionsmessstellen (STIMES)

Stickoxide und Ozon vom 18. bis 20. September 2018

LANUV-Fachbericht 103

Ringversuche der staatlichen Immissionsmessstellen (STIMES)

Stickoxide und Ozon vom 18. bis 20. September 2018

LANUV-Fachbericht 103

Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen Recklinghausen 2020

IMPRESSUM

Herausgeber Landesamt für Natur, Umwelt und Verbraucherschutz

Nordrhein-Westfalen (LANUV)

Leibnizstraße 10, 45659 Recklinghausen

Telefon 02361 305-0 Telefax 02361 305-3215 E-Mail: poststelle@lanuv.nrw.de

Bearbeitung Thorsten Zang (LANUV)

Bildnachweis LANUV

ISSN 1864-3930 (Print), 2197-7690 (Internet), LANUV-Fachberichte

Informationsdienste Informationen und Daten aus NRW zu Natur, Umwelt und Verbraucherschutz unter

www.lanuv.nrw.de

Aktuelle Luftqualitätswerte zusätzlich im

WDR-Videotext

Bereitschaftsdienst Nachrichtenbereitschaftszentrale des LANUV

(24-Std.-Dienst) Telefon 0201 714488

Nachdruck – auch auszugsweise – ist nur unter Quellenangaben und Überlassung von Belegexemplaren nach vorheriger Zustimmung des Herausgebers gestattet. Die Verwendung für Werbezwecke ist grundsätzlich untersagt.

Inhalt

1	Einleitung	5
1.1	Ziele des Ringversuches	5
1.2	Zeitplan	5
1.3	Teilnehmerliste	7
1.4	Übersicht über die eingesetzten Messverfahren	8
1.5	Erläuterung Bewertungsteil und ergänzende Prüfgasangebote	g
2	Zusammenfassung der Ergebnisse	
2.1	Vergleich der Vorgabewerte mit den Teilnehmermedianen	11
2.1.1	Stickstoffdioxid	
2.1.2	Ozon	13
2.1.3	Stickstoffmonoxid	14
3	Bewertungsteil	15
3.1	Bewertung nach dem z'-score Verfahren	15
3.2	Ermittlung der Vorgabekonzentration (Sollkonzentration) und der Unsicherheit	
	der Eignungsbekanntgabe	15
3.3	Prüfgasangebote	17
3.4	Kenngrößen der Teilnehmermesswerte	17
3.5	z'-score Auswertung Stickstoffdioxid	18
3.6	z'-score Auswertung Ozon	25
3.7	z'-score Auswertung Stickstoffmonoxid	32
4	Ergänzende Prüfgasangebote und Auswertungen	39
4.1	Messunsicherheiten der Teilnehmer – E _n -Zahlen	39
4.1.1	En-Zahlen Stickstoffdioxid	40
4.1.2	En-Zahlen Ozon	42
4.1.3	En-Zahlen Stickstoffmonoxid	44
4.2	Vorgabewerte Ergänzende Prüfgasangebote	46
4.3	Kenngrößen der Teilnehmermesswerte	47
4.4	Robuste Auswertung GPT – PG1 bis PG15	49
4.4.1	Stickstoffdioxid	49
4.4.2	Ozon	52
4.4.3	Stickstoffmonoxid	54
4.5	Störkomponenten für Stickoxide in Anlehnung an DIN EN 14211	58
4.5.1	Wasserdampf	
4.5.2	Gasphasentritration – Querempfindlichkeit gegenüber Wasserdampf	63
4.6	Vergleichsmessungen ORSA-Röhrchen	
4.6.1	Benzol	67
4.6.2	Toluol	72
4.6.3	m-/p-Xylol	76
4.6.4	o-Xylol	80
4.6.5	Ethylbenzol	
5	Anhang: Teilnehmerwerte der Ergänzungsangebote	
5.1	ORSA-Vergleichsmessungen	
5.2	Ergänzende Prüfgasangebote PG1 bis PG15	90

STIMES-Ringversuch Stickoxide und Ozon 2018

5.2.1	Stickstoffmonoxid	90
5.2.2	Stickstoffdioxid	91
5.2.3	Ozon	92

1 Einleitung

In der Zeit vom 18. bis 20. September 2018 fand im LANUV NRW ein Ringversuch der staatlichen Immissionsmessstellen der Bundesländer (STIMES) statt. Der Ringversuch beinhaltete die Messkomponenten Stickstoffmonoxid, Stickstoffdioxid und Ozon. Folgende Messverfahren waren beteiligt:

 Tabelle 1:
 Anzahl der Teilnehmer

 Anzahl der Teilnehmer
 Verfahren
 Anzahl

 Teilnehmer
 Chemilumineszenz (NO und NO2)
 22

 19
 UV-Absorption CAPS (NO2)
 6

 UV-Absorption (Ozon)
 23

Ergänzend zum Ringversuchsangebot wurden beprobte ORSA-Röhrchen für BTEX-Vergleichsmessungen an neun interessierte Teilnehmer verteilt.

1.1 Ziele des Ringversuches

- Vergleich der Messergebnisse für verschiedene Prüfgaskonzentrationen im Bereich der Grenzwerte und typischer Außenluftbedingungen
- Vorgabe von Referenzwerten mit definierter Unsicherheit
- Feuchtigkeitseinfluss bei Stickstoffdioxid-Konzentrationen im Bereich der Grenzwerte und typischer Außenluftbedingungen
- Vergleich der Messunsicherheiten der Teilnehmer
- Überprüfung der Querempfindlichkeiten gegenüber Wasserdampf für Stickoxide in Anlehnung an DIN EN 14211

1.2 Zeitplan

Dienstag, den 18.09.2018

Uhrzeit				
Von	Bis	Was?	Wo?	Prüfgas
08:00		Anreise und Aufbau der Geräte im Technikum	Technikum	
		Kontrollkalibrierung Teilnehmer		
14:00	16:00	Nullgas		
15:45	16:30	Begrüßung und Eingangsbesprechung	Saal A 24	
		Nachtangebot N1 GPT	Technikum	
16:30	17:15	Nullgas		PG 1
17:30	18:15	500 ppb NO		PG 2
18:30	19:15	GPT 300 ppb NO / 200 ppb NO ₂		PG 3
19:30	20:15	200 ppb Ozon		PG 4
20:30	21:15	200 ppb NO		PG 5
21:30	22:15	GPT 100 ppb NO / 100 ppb NO ₂		PG 6
22:30	23:15	100 ppb Ozon		PG 7
23:30	00:15	GPT 140 ppb NO / 60 ppb NO₂		PG 8
00:30	01:15	60 ppb Ozon		PG 9
01:30	02:15	GPT 175 ppb NO / 25 ppb NO ₂		PG 10
02:30	03:15	25 ppb Ozon		PG 11

Uhrzeit				
Von	Bis	Was?	Wo?	Prüfgas
03:30	04:15	50 ppb NO		PG 12
04:30	05:15	GPT 36 ppb NO / 14 ppb NO ₂		PG 13
05:30	06:15	14 ppb Ozon		PG 14
06:30	07:15	Nullgas		PG 15

Mittwoch, den 19.09.2018

Uhrzeit				
Von	Bis	Was?	Wo?	Prüfgas
08:00	08:45	Kalibrierzeit, Nullgas auf der Leitung		
		Bewertungsangebote für die z'score Auswertung PG16 bis PG28		
09:00	09:45	500 ppb NO		PG 16
10:00	10:45	GPT 300 ppb NO / 200 ppb NO ₂		PG 17
11:00	11:45	200 ppb Ozon		PG 18
12:00	12:45	200 ppb NO		PG 19
13:00	13:45	GPT 100 ppb NO / 100 ppb NO ₂		PG 20
14:00	14:15	Zwischenergebnis / Besprechung	Technikum/ Saal A 24	
14:00	14:45	100 ppb Ozon		PG 21
15:00	15:45	GPT 140 ppb NO / 60 ppb NO ₂		PG 22
16:00	16:45	60 ppb Ozon		PG 23
17:00	17:45	GPT 175 ppb NO / 25 ppb NO ₂		PG 24
18:00	18:45	25 ppb Ozon		PG 25
19:00	19:45	50 ppb NO		PG 26
20:00	20:45	GPT 36 ppb NO / 14 ppb NO ₂		PG 27
21:00	21:45	14 ppb Ozon		PG 28
22:00	22:45	Nullgas		PG 29
		Nachtangebot N2 - Querempfindlichkeit		
23:00	23:45	500 ppb NO		PG 30
00:00	00:45	Nullgas + 10 rel. Feuchte		PG 31
01:00	01:45	<u> </u>		PG 32
02:00	02:45	500 ppb NO + 10 % Feuchte		PG 33
03:00	03:45	500 ppb NO + 25 % Feuchte		PG 34
04:00	04:45	Nullgas		PG 35

Donnerstag, den 20.09.2018

Uhrzeit				
Von	Bis	Was?	Wo?	Prüfgas
05:00	05:45	GPT 36 ppb NO / 14 ppb NO2		PG 36
06:00	06:45	GPT 36 ppb NO / 14 ppb NO2 +10 % rel. Feuchte		PG 37
07:00	07:45	GPT 36 ppb NO / 14 ppb NO2 +25 % rel. Feuchte		PG 38
08:00	08:45	GPT 36 ppb NO / 14 ppb NO2		PG 39
09:00	17:00	Kalibrierzeit, Nullgas auf der Leitung		
09:30	10:30	Abschlussbesprechung	Saal A 24	
17:00		Ende der Arbeiten im Technikum		

1.3 Teilnehmerliste

Tabelle 2: Teilnehmerliste

labelle 2: Teilnenmerliste			
Messstelle	Straße und Hausnr.	Postleit- zahl	Stadt
LANUV FB 43	Wallneyer Straße 6	45133	Essen
LANUV FB 42	Wallneyer Straße 6	45133	Essen
Landesamt für Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein	Oelixdorfer Str. 2	25524	Itzehoe
Landesamt für Umwelt- und Arbeitsschutz	Don-Bosco-Str. 1	66119	Saarbrücken
Umweltwirtschaft, Klima- und Ressourcenschutz / Senat für Umwelt, Bau und Verkehr Bre- men	Contrescarpe 72	28195	Bremen
Landeslabor Berlin-Branden- burg	Müllroser Chaussee 50	15236	Frankfurt Oder
Umweltbundesamt Außenstelle Langen	Paul-Ehrlich-Straße 29	63225	Langen
RIVM, Niederlande	Postbus 1	NL-3720	Bilthoven
Landesamt für Umwelt, Natur- schutz und Geologie Mecklenburg-Vorpommern	Goldberger Straße 12	18273	Güstrow
Thüringer Landesanstalt für Umwelt und Geologie	Göschwitzer Straße 41	07745	Jena
Landesamt für Umweltschutz Sachsen-Anhalt Außenstelle Magdeburg	Wallonerberg 6-7	39104	Magdeburg
Hessisches Landesamt für Naturschutz, Umwelt und Geologie (HLNUG)	Rheingaustr. 186	65203	Wiesbaden
Staatliches Umweltamt Luxem- burg (ADENV)	1, Avenue Rock´n´Roll	L-4361	Esch-Sur-Al- zette
Landesamt für Umwelt, Rhein- land-Pfalz	Rheinallee 97-101	55118	Mainz
Staatliche Betriebsgesellschaft für Umwelt und Landwirtschaft	Altwahnsdorf 12	01445	Radebeul
Institut für Hygiene und Umwelt	Marckmannstraße 129a	20539	Hamburg
Staatliches Gewerbeaufsichts- amt Hildesheim	Goslarsche Straße 3	31134	Hildesheim
Senatsverwaltung für Umwelt, Verkehr und Klimaschutz	Brückenstraße 6	10179	Berlin
Landesamt für Umwelt Branden- burg	Seeburger Chaussee 2	14476	Potsdam
Landesanstalt für Umwelt Ba- den-Württemberg	Großoberfeld 3	76135	Karlsruhe
Bayerisches Landesamt für Umwelt	Bürgermeister-Ulrich-Straße 160	86179	Augsburg

1.4 Übersicht über die eingesetzten Messverfahren

Tabelle 3: Eingesetzte Messverfahren

TN-Num-	ngesetzte Mes Ringl. Nr.	Analysator NOx	Analysator O₃
mer		7 mary cutor 110 x	7 manyodio. Os
TN12	15	Horiba APNA 370	Horiba APOA 370
TN29	14	Horiba APNA 370	Horiba APOA 370
TN23	18	Horiba APNA 370, Thermo TE 42i	Thermo TE 49i
TN07	3	Horiba APNA 370	Thermo TE 49i
TN14	23	Horiba APNA 370	Horiba APOA 370
TN34	10	Horiba APNA 370	Horiba APOA 370
TN02	16	Horiba APNA 370	Horiba APOA 370
TN19	12	Horiba APNA 370	Horiba APOA 370
TN06	24	Horiba APNA 370	Thermo TE 49i
TN26	25	Horiba APNA 370	Environnement O3 42 M
TN04	1	Horiba APNA 370	Horiba APOA 370
TN08	8		Thermo TE 49i
TN27	6	Thermo TE 42i	Environnement O3 41 M, Environnement O3 42 M
TN22	21	Horiba APNA 370	Horiba APOA 370
TN37	17	Thermo TE 42i	Thermo TE 49i
TN03	20	Thermo TE 42i	Teledyne T400
TN20	4	Horiba APNA 370	Horiba APOA 370
TN18	11	Horiba APNA 370	Horiba APOA 370
TN17	7	Horiba APNA 370	Thermo TE 49i
TN11	15	Horiba APNA 370	Horiba APOA 370
TN13	1	Environnement AC 32 M	
TN24	17	Horiba APNA 370	Horiba APOA 370
TN35	20		Thermo TE 49i
TN21	15	Teledyne T500U CAPS	
TN38	16	Teledyne T500U CAPS	
TN32	1	Environnement AS 32 M	
TN16	6	Environnement AS 32 M	
TN09	11	Environnement AS 32 M	
TN15	7	Teledyne T500U CAPS	
TN31	ORSA		
TN28	ORSA		
TN30	ORSA		
TN36	ORSA		
TN01	ORSA		
TN33	ORSA		
TN05	ORSA		
TN10	ORSA		
TN25	ORSA		

1.5 Erläuterung Bewertungsteil und ergänzende Prüfgasangebote

Der vorliegende Bericht dient zur Dokumentation der Ergebnisse eines STIMES-Ringversuches. Der Bericht ist in zwei Teile unterteilt.

- 1) Einen Bewertungsteil (Kapitel 3)
- 2) Ergänzende Angebote und Auswertungen (Kapitel 4)

Die Angebote des Bewertungsteiles dienen der Feststellung der Eignung eines Teilnehmerverfahrens zur Quantifizierung der interessierenden Komponenten. In Anlehnung an die Anforderungen der 39. BlmSchV erfolgt die Beurteilung der Eignung anhand der Teilnehmermesswerte durch eine z'-score Auswertung. Über die erfolgreiche Teilnahme an einem Ringversuch wird zusätzlich zu diesem Bericht ein Teilnahmezertifikat ausgestellt.

Neben der reinen Eignungsbekanntgabe finden im Rahmen des STIMES-Arbeitskreises umfangreiche weitere Untersuchungen statt. Dazu gehört z. B. die Bestimmung des Einflusses von Störkomponenten (Querempfindlichkeiten). Die Festlegung der zusätzlich dosierten Angebote erfolgt in Abstimmung mit den Teilnehmern aus dem STIMES-Arbeitskreis. Die Ergebnisse aus diesem Zusatzangebot sind nicht Bestandteil der generellen Eignungsbeurteilung. Sie können den Teilnehmern aber wichtige Zusatzinformationen liefern.

2 Zusammenfassung der Ergebnisse

Zur Überprüfung der Plausibilität wurden in Abschnitt 2.1 die Vorgabewerte komponentenweise mit den Teilnehmermedianen verglichen. Es konnten keine signifikanten Unterschiede zwischen den Vorgabewerten und den jeweiligen Teilnehmermedianen festgestellt werden (siehe Tabelle 4 bis Tabelle 7). Die Standardabweichung der Teilnehmermesswerte für die Bewertungsangebote ist für die Komponenten Stickstoffmonoxid und Ozon konstant unter 2 %. Für die Komponente Stickstoffdioxid, mit Ausnahme eines Angebotes mit 4,2 %, unter 3 %. Dies zeigt die hervorragende Präzision der Teilnehmerverfahren.

Bis auf einen Teilnehmer bei der Komponente Stickstoffdioxid erfüllen alle Teilnehmer die Anforderungen der z'-score Bewertung, wie in Abschnitt 3.1 beschrieben. Die Abschnitte 3.5 bis 3.7 zeigen die Ergebnisse der Teilnehmer mit den z'-score Auswertungen. Die z'-scores liegen, mit wenigen Ausnahmen bei der Komponente Stickstoffdioxid, für alle Angebote und Teilnehmer unterhalb 2. Dies unterstreicht die hohe Ergebnisqualität der Teilnehmer. Alle Teilnehmer haben die Anforderungen des Bewertungsteils erfüllt und somit den Ringversuch bestanden.

Als ergänzende Auswertung wurde für alle Prüfgasangebote aus dem Bewertungsteil mittels der von den Teilnehmern angegebenen Unsicherheiten die En-Zahlen nach DIN ISO 13528 berechnet (siehe Kapitel 4.1). Die überwiegende Anzahl der Teilnehmer konnte Angaben zur Messunsicherheit machen. Bis auf wenige Ausnahmen überschreitet keine der berechneten En-Zahlen einen Betrag von 1.

Darüber hinaus enthält dieser Bericht in Abschnitt 4.4 als weitere ergänzende Auswertung die robuste Auswertung der Angebote PG 1 bis PG 15. Die robuste Auswertung soll wertvolle Hinweise auf statistische Auffälligkeiten in Bezug auf die Messwerte der anderen Teilnehmerverfahren geben. Sie dient nicht zur Leistungsbewertung der Teilnehmer. Die Gasphasentitrationen der Angebote PG 1 bis PG 15 wurden hierzu mittels des robusten Mittelwertes (siehe Tabelle 17) und der robusten Standardabweichung (siehe Tabelle 18) ausgewertet. Hierbei ergeben sich Toleranzbereiche, die um den Faktor 2 bis 3 kleiner sind als bei den z'-score-Auswertungen im Bewertungsteil. Zudem enthalten die Auswertungen auch die Ergebnisse an oder unterhalb der Bestimmungsgrenze (Nullgase und Restwerte). Trotz dieser deutlich kleineren Toleranzbereiche werden die Anforderungen, von einzelnen Ausnahmen abgesehen, an das Teilnehmerverfahren erfüllt. Es zeigt sich auch hier die hohe Qualität der Teilnehmermesswerte.

Als ergänzende Prüfgasangebote wurden bei diesem Ringversuch die Angebote PG 30 bis PG 39 zur Ermittlung der Querempfindlichkeiten von Stickoxidmessgeräten dosiert. Die Konzentrationen der Störkomponenten wurden dabei nicht nach den Vorgaben der DIN EN 14625 gewählt, sondern an realere Situationen angepasst. Hierzu wurde statt der 19 mmol/mol feuchtes Prüfgas mit 10 % bzw. 25 % rel. Feuchte angeboten. Zunächst bei Nullgas, dann bei der Prüfkonzentration der DIN EN 14211 von 500 ppb NO und abschließend bei einem Gemisch von NO und NO2 im Bereich typischer Außenluftkonzentrationen (siehe Abschnitt 1.2).

Bei Nullgas zeigt keines der Messgeräte eine nennenswerte Querempfindlichkeit (siehe Tabelle 19 und Tabelle 20). Anders sieht die Situation bei einer NO-Konzentration von ca. 500 ppb aus. Bis auf einen einzelnen Teilnehmer übersteigen die Querempfindlichkeiten bereits bei 10 % rel. Feuchte den zulässigen Wert von 5 ppb (siehe Abbildung 53 und Abbildung 54). Bei den Angeboten PG 37 und PG 38 mit realen Außenluftkonzentrationen zeigen sich hingegen nur moderate (< 2 ppb) Querempfindlichkeiten für NO (Abbildung 55 und Abbildung 57) und fast keine Querempfindlichkeiten für Stickstoffdioxid (Abbildung 56 und Abbildung 58). Dies lässt sich durch das Messprinzip (Differenz NOx - NO = NO2) und den vermuteten Mechanismus der Querempfindlichkeit (bimolekulare Reaktion von NO* mit Wasserdampf) erklären.

In Abschnitt 4.6 befindet sich eine Übersicht über die Ergebnisse der BTEX-Vergleichsmessungen der ORSA-Röhrchen. Die Röhrchen wurden zur Vergleichsmessung für BTEX an interessierte Teilnehmer des Ringversuches verteilt. Die Analyse erfolgt dann in den Laboratorien der Teilnehmer bzw. wurde von den Teilnehmern an externe Auftragnehmer vergeben.

2.1 Vergleich der Vorgabewerte mit den Teilnehmermedianen

Zum Vergleich der Vorgabewerte (Sollwerte) mit den Medianen der Teilnehmer werden für Bewertungsangebote die Mediane gegen die Vorgabewerte aufgetragen und der funktionale Zusammenhang mit Hilfe der linearen Regression ermittelt. Steigung und Achsenabschnitt wurden auf, im statistischen Sinne, signifikante Unterschiede von 1 bzw. 0 hin durch Berechnung der folgenden Prüfgrößen untersucht.

Für die Steigung

$$PG_S = \frac{m-1}{S_m}$$

m = Steigung der Kalibriergeraden

 s_m = Standardfehler der Steigung

und für den Achsenabschnitt

$$PG_b = \frac{b - 0}{s_b}$$

b = Achsenabschnitt

sb = Standardfehler des Achsenabschnittes

Diese Prüfgrößen wurden mit dem Tabellenwert der t-Verteilung für eine Wahrscheinlichkeit von 95 % verglichen (t_{0,95}). Auf diese Weise lassen sich systematische (Achsenabschnitt) oder relative Unterschiede zwischen Sollwert und Median einfach feststellen. Zusammengefasst ergibt sich:

Tabelle 4: Vergleich mit dem Median

Komponente	m	b	Sm	Sb	PGs	PG₀	t _{0,95}
Ozon	1,003	-0,1	0,0007	0,07	4,57	2,00	2,78
NO ₂	1,013	-0,2	0,0015	0,14	9,10	1,08	2,78
NO	1,009	-0,1	0,0011	0,29	8,04	0,31	2,78

Der Vergleich von PG_s und PG_b mit $t_{0,95}$ zeigt, dass insbesondere die Unterschiede der Steigungen zwar statistisch signifikant von 1 sind, der Bereich der zulässigen Unsicherheit des Vorgabewertes (< 0,3 σ) wird aber eingehalten (Vergleiche hierzu mit Tabelle 8). Somit können keine relevanten Unterschiede zwischen robuster Medianauswertung und den Sollwerten festgestellt werden.

2.1.1 Stickstoffdioxid

Der Vergleich Vorgabewerte (Sollwerte) mit den Medianen der Teilnehmer zeigt eine gute Übereinstimmung. Die Steigung der Ausgleichsgeraden beträgt 1,013 und der Achsenabschnitt 0,15 ppb.

 Tabelle 5: Medianvergleich Stickstoffdioxid

Prüfgasange- bot	Vorgabe- wert [ppb]	Median [ppb]
PG17	196,4	199,0
PG20	101,0	102,2
PG22	64,3	64,7
PG24	25,8	25,8
PG27	15,7	15,9
PG29	-0,1	0,0

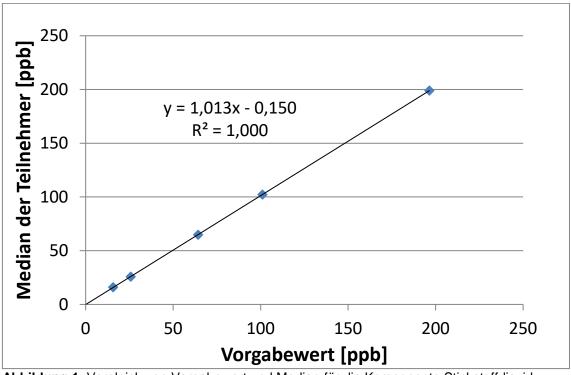


Abbildung 1: Vergleich von Vorgabewert und Median für die Komponente Stickstoffdioxid

2.1.2 Ozon

Der Vergleich Vorgabewerte (Sollwerte) mit den Medianen der Teilnehmer zeigt eine gute Übereinstimmung. Die Steigung der Ausgleichsgeraden beträgt 1,003 und der Achsenabschnitt 0 - 14 ppb.

Tabelle 6:	Medianvergleich	Ozon
Prüfgasange- bot	Vorgabe- wert [ppb]	Median [ppb]
PG18	197,0	197,5
PG21	99,9	100,2
PG23	62,2	62,2
PG25	24,5	24,3
PG28	15,3	15,2
PG29	0,1	0,1

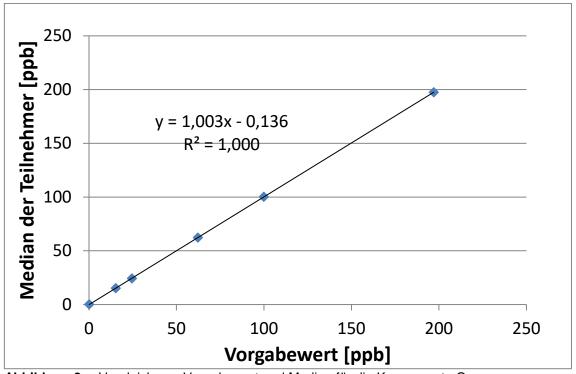


Abbildung 2: Vergleich von Vorgabewert und Median für die Komponente Ozon

2.1.3 Stickstoffmonoxid

Der Vergleich Vorgabewerte (Sollwerte) mit den Medianen der Teilnehmer zeigt eine gute Übereinstimmung. Die Steigung der Ausgleichsgeraden beträgt 1,009 und der Achsenabschnitt 0,09 ppb.

Tabelle 7: Medianvergleich Stickstoffmonoxid

Prüfgasange- bot	Vorgabe- wert [ppb]	Median [ppb]
PG16	513,2	518,0
PG17	317,5	319,4
PG19	208,9	210,6
PG20	107,9	109,0
PG26	53,4	53,8
PG29	0,1	0,1

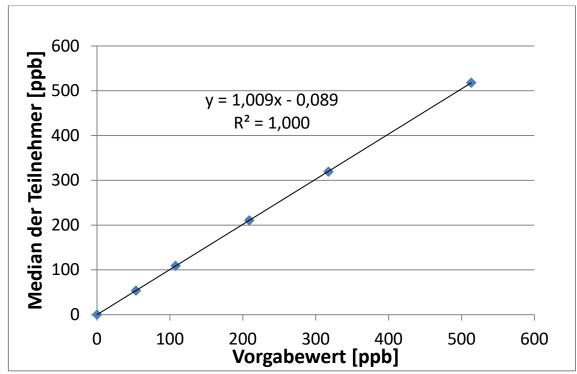


Abbildung 3: Vergleich von Vorgabewert und Median für die Komponente Stickstoffmonoxid

3 Bewertungsteil

3.1 Bewertung nach dem z'-score Verfahren

Der z'-score (z'-Wert) ist ein standardisiertes Maß für die systematische Abweichungskomponente eines Laboratoriums, berechnet unter Verwendung des zugewiesenen Wertes (Sollwert) und der Standardabweichung für die Eignungsbeurteilung.

Ein z'-score, der den Betrag von 3 überschreitet, bedeutet eine Überschreitung der Kontrollgrenzen und somit einen fehlerhaften Wert. Ein z'-score oberhalb des Betrages 2 stellt ein Warnsignal dar.

Der z'-score wird nach folgender Formel berechnet

$$z' = \frac{x - X}{\sigma}$$

z' z'-score

x Konzentration einzelner Teilnehmer

X Vorgabewert (Sollwert)

σ Standardabweichung für die Eignungsbeurteilung

Durch die Normierung auf die Präzisionsvorgabe gibt es für die z'-scores ein allgemeines Bewertungsschema:

|z'| ≤ 2 Ergebnis zufriedenstellend

2 < |z'| < 3 Ergebnis fraglich

 $|z'| \ge 3$ Ergebnis unzureichend

Grundsätzlich wird allen Teilnehmern, die z'-score-Beträge größer als 2 erzielt haben, empfohlen, ihr Analysenverfahren zu überprüfen. Um für eine Ringversuchskomponente die Bewertung "erfolgreiche Teilnahme" zu erhalten, muss für mindestens zwei der drei Konzentrationsstufen ein z'-score-Betrag kleiner gleich 2 erzielt werden, für höchstens eine Stufe darf der z'-score-Betrag auch den Wert 2 überschreiten, muss aber kleiner als 3 bleiben.

3.2 Ermittlung der Vorgabekonzentration (Sollkonzentration) und der Unsicherheit der Eignungsbekanntgabe

Der Vorgabewert der Bewertungsangebote wurde aus dem Mittelwert der Messwerte des Referenzverfahrens der beiden nationalen Referenzlaboratorien (LANUV NRW und UBA) berechnet. Durch den Einsatz zertifizierter Referenzmaterialien und rückführbarer Prüfmittel bei der Kalibrierung ist der Referenzwert auf international anerkannte Normale rückführbar. Bei den Angeboten mit Störkomponenten (z. B. feuchte Prüfgase) wurde der Vorgabewert aus den Messungen an trockenem Prüfgas, unter Kontrolle der Dosierstabilität aus den Rückmeldesignalen der Dosieranlage, berechnet. Die Plausibilität der Vorgabewerte wurde über den robusten Vergleich mit dem Teilnehmermedian jedes Prüfgasangebotes geprüft.

Bei den Angeboten mit Störkomponenten (z. B. feuchte Prüfgase) wurde der Vorgabewert aus den Messungen an trockenem Prüfgas, unter Kontrolle der Dosierstabilität aus den Rückmeldesignalen der Dosieranlage, berechnet. Die Plausibilität der Vorgabewerte wurde über den robusten Vergleich mit dem Teilnehmermedian jedes Prüfgasangebotes geprüft (siehe Abschnitt 2.1).

Die zulässige Unsicherheit eines Teilnehmermesswertes erfolgt in Anlehnung an die Durchführungsbestimmung für Messstellen im Sinne des § 29 b BImSchG. Die Unsicherheit $U_{Vorgabe}$ setzt sich zusammen aus der Unsicherheit des Referenzwertes und der zulässigen Unsicherheit des Teilnehmermesswertes U_{Lab} bzw. in der Nähe des Nullpunktes der Unsicherheit des Nullpunktes U_0 .

Die zulässige Unsicherheit U_{Lab} des Teilnehmermesswertes leitet sich von den Qualitätszielen der EU-Luftqualitätsrichtlinie bzw. der 39. BlmSchV ab. Sie entspricht der Hälfte der Präzisionsvorgabe der EU-Luftqualitätsrichtlinie.

Für Messungen in der Nähe des Nullpunktes wird die Unsicherheit als beste Schätzung angenommen mit:

KomponenteU₀Stickstoffdioxid2 ppbStickstoffmonoxid2 ppbOzon2 ppb

Die erweitere Unsicherheit des Vorgabewertes wird berechnet nach für $U_{lab} > U_0$

$$U_{Vorgabe} = \sqrt{U_{ref}^2 + U_{lab}^2}$$

und für U_{lab} ≤ U₀

$$U_{\textit{Vorgabe}} = \sqrt{U_{\textit{ref}}^2 + U_0^2}$$

Die Standardabweichung für die Eignungsbeurteilung beträgt dann:

$$\sigma = U_{Vorgabe} / 2$$

Die Homogenität der Prüfgase wurde während des Ringversuches für jedes Prüfgasangebot erfasst und kontrolliert. Die maximal auftretende Inhomogenität in der Dosieranlage wurde durch umfangreiche Validierungsuntersuchungen ermittelt. Sie ist mit Sicherheit (95 %) kleiner als maximal 0,7 %. Daher enthält die Unsicherheit des Referenzwertes U_{ref} neben der Unsicherheit des Referenzmessverfahrens noch einen Aufschlag für eine mögliche Inhomogenität von 0,7 % der dosierten Konzentration.

3.3 Prüfgasangebote

 Tabelle 8:
 Prüfgasangebote Bewertungsteil

_	i abelie o.	1 rangasangebote bewertangsten							
	Prüfgasan- gebot	Kompo- nente	Einheit	zugewiesener Wert	U _{ref}	U _{lab}	σ		
	PG17	NO_2	ppb	196,4	7,1	14,7	8,2		
	PG20	NO_2	ppb	101,0	4,1	7,6	4,3		
	PG22	NO_2	ppb	64,3	3,0	4,8	2,8		
	PG24	NO_2	ppb	25,8	1,9	2,0	1,4		
	PG27	NO_2	ppb	15,7	1,7	2,0	1,3		
	PG18	O_3	ppb	197,0	5,7	14,8	7,9		
	PG21	O ₃	ppb	99,9	3,4	7,5	4,1		
	PG23	O ₃	ppb	62,2	2,4	4,7	2,6		
	PG25	O_3	ppb	24,5	1,9	1,8	1,3		
	PG28	O ₃	ppb	15,3	1,5	1,6	1,1		
	PG16	NO	ppb	513,15	15,3	38,5	20,7		
	PG17	NO	ppb	317,45	9,6	23,8	12,8		
	PG19	NO	ppb	208,9	6,6	15,7	8,5		
	PG20	NO	ppb	107,9	3,8	8,1	4,5		
	PG26	NO	ppb	53,35	2,5	4,0	2,4		

3.4 Kenngrößen der Teilnehmermesswerte

Aus den Messwerten der Teilnehmer wurden neben Median und Standardabweichung s auch der robuste Vorgabewert X* und die robuste Standardabweichung s* nach DIN ISO 13528 Anhang C berechnet.

Tabelle 9: Kenngrößen der Teilnehmermesswerte für die Angebote des Bewertungsteiles

Prüfgasan- gebot	Kompo- nente	Median [ppb]	s [ppb]	s rel	X* [ppb]	s* [ppb]
PG17	NO ₂	199	4,9	2,47%	198,8	3,7
PG20	NO_2	102,2	2,3	2,21%	102,0	2,0
PG22	NO_2	64,7	1,7	2,64%	64,7	1,5
PG24	NO_2	25,8	1,1	4,23%	25,8	0,8
PG27	NO_2	15,9	0,5	2,87%	15,8	0,5
PG18	O ₃	197,5	2,9	1,47%	197,6	2,7
PG21	O ₃	100,2	1,1	1,08%	100,2	1,2
PG23	O ₃	62,2	0,9	1,37%	62,3	0,8
PG25	O ₃	24,3	0,4	1,47%	24,4	0,4
PG28	O ₃	15,2	0,3	1,98%	15,3	0,3
PG16	NO	518	6,8	1,31%	517,0	5,9
PG17	NO	319,4	4,3	1,33%	319,3	4,4
PG19	NO	210,6	2,9	1,36%	210,2	2,5
PG20	NO	109	1,6	1,46%	108,8	1,6
PG26	NO	53,8	0,9	1,74%	53,8	1,0

3.5 z'-score Auswertung Stickstoffdioxid

 Tabelle 10:
 z'score-Auswertung Stickstoffdioxid

l abelle 10	. 23 PG17	z'-score	PG20	z'-score	PG22	z'-score	PG24	z'-score	PG27	z'-score
Einheit	ppb		ppb		ppb		ppb		ppb	
TN02	194,9	-0,2	100	-0,2	63,1	-0,4	24,6	-0,9	15,1	-0,5
TN03	192,7	-0,5	99,1	-0,4	63,1	-0,4	25,2	-0,4	15,6	-0,1
TN04	198,3	0,2	101,6	0,1	64,7	0,1	25,8	0	15,5	-0,1
TN06	196,5	0	101,2	0	64	-0,1	25,3	-0,4	15,7	0
TN07	204,4	1	104,1	0,7	65,4	0,4	26,5	0,5	16,1	0,3
TN08	197,3	0,1	100,4	-0,1	63,5	-0,3	24,7	-0,8	15	-0,6
TN09	205,3	1,1	105,3	1	66,5	0,8	26,2	0,3	16	0,2
TN11	199	0,3	102,2	0,3	65	0,3	26,2	0,3	16	0,2
TN12	199,5	0,4	102,8	0,4	65,7	0,5	26,8	0,7	16,5	0,6
TN13	207	1,3	103,9	0,7	67,9	1,3	29,2	2,4	16,1	0,3
TN14	198,3	0,2	102,2	0,3	64,8	0,2	25,9	0,1	16,3	0,5
TN15	201	0,6	102,2	0,3	64,3	0	24,7	-0,8	14,8	-0,7
TN16	199,3	0,4	102,6	0,4	65	0,3	25,4	-0,3	15,1	-0,5
TN17	194,5	-0,2	100,4	-0,1	63,8	-0,2	25,8	0	15,8	0,1
TN18	200,8	0,5	102,7	0,4	64,6	0,1	25,7	-0,1	15,4	-0,2
TN19	199,7	0,4	100,2	-0,2	62,4	-0,7	24,9	-0,6	15,6	-0,1
TN20	217,6	2,6	110,6	2,2	70,9	2,4	29	2,3	16,6	0,7
TN21	198,6	0,3	102,1	0,3	64,8	0,2	25,8	0	15,8	0,1
TN22	193,5	-0,4	100	-0,2	63,6	-0,3	25,4	-0,3	16	0,2
TN23	194,8	-0,2	99,9	-0,3	63,5	-0,3	25,3	-0,4	15,4	-0,2
TN24	199	0,3	102,2	0,3	64,4	0	25,7	-0,1	16	0,2
TN26	198	0,2	101,8	0,2	65,5	0,4	26	0,1	16,1	0,3
TN27	202,3	0,7	103,9	0,7	66,1	0,6	26,7	0,6	16,1	0,3
TN29	202,3	0,7	103,9	0,7	66,3	0,7	26,9	0,8	16,1	0,3
TN32	201	0,6	103,9	0,7	66,3	0,7	26,5	0,5	16,4	0,6
TN34	199,6	0,4	103	0,5	65,2	0,3	26,6	0,6	16	0,2
TN37	198,5	0,3	101,4	0,1	64	-0,1	25,4	-0,3	15,7	0
TN38	195,1	-0,2	100,1	-0,2	63,3	-0,4	25,3	-0,4	15,5	-0,2
Sollwert	196,4		101		64,3		25,8		15,7	
Soll- Stdabw. Anzahl Einzel-	8,2		4,3		2,8		1,4		1,3	
werte	28		28		28		28		28	

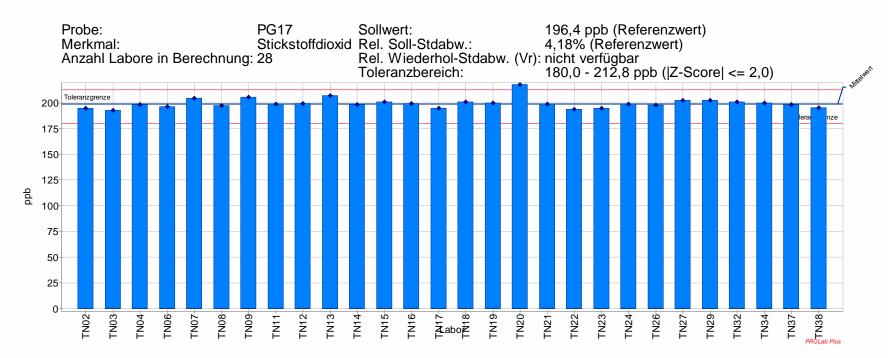
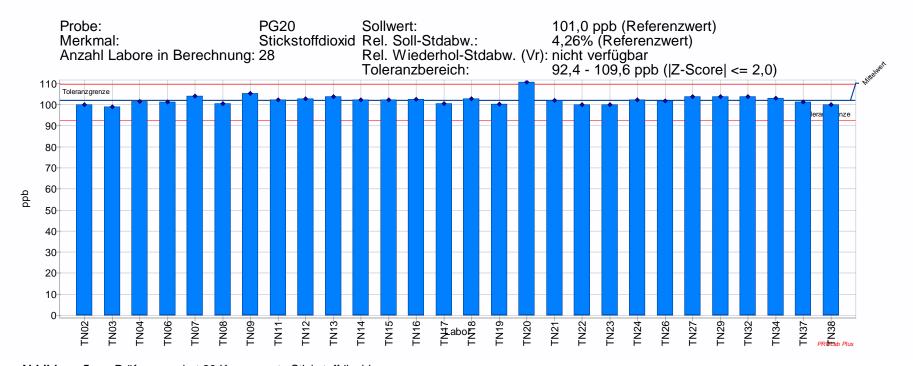



Abbildung 4: Prüfgasangebot 17 Komponente Stickstoffdioxid

Abbildung 5: Prüfgasangebot 20 Komponente Stickstoffdioxid

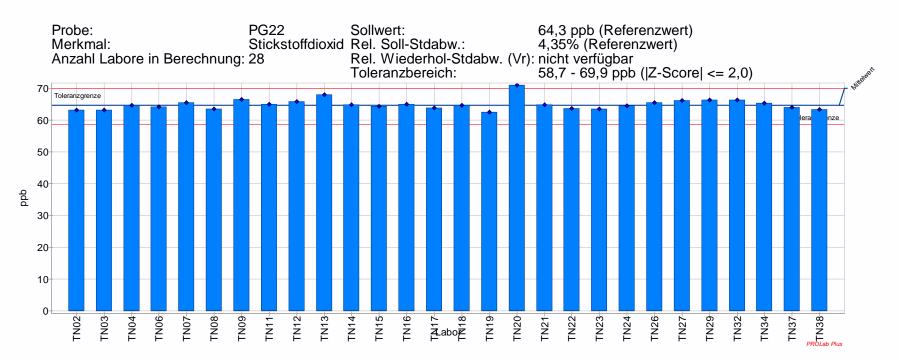


Abbildung 6: Prüfgasangebot 22 Komponente Stickstoffdioxid

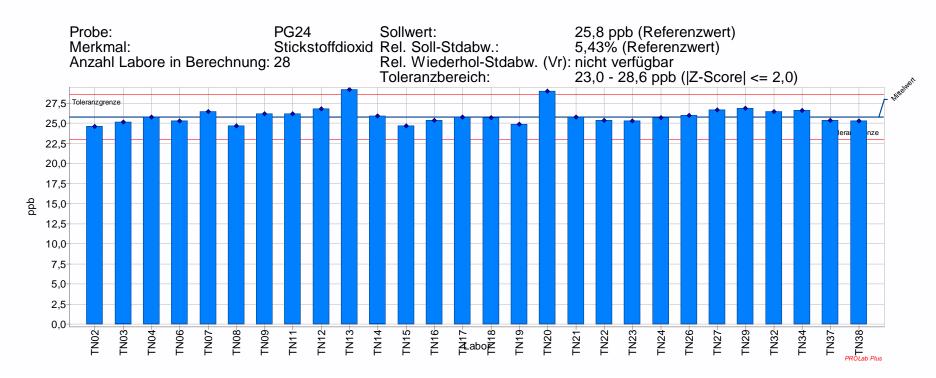
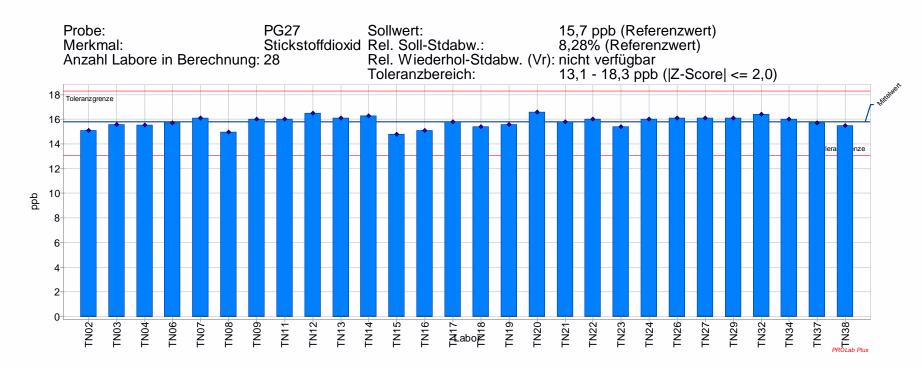



Abbildung 7: Prüfgasangebot 24 Komponente Stickstoffdioxid

Abbildung 8: Prüfgasangebot 27 Komponente Stickstoffdioxid

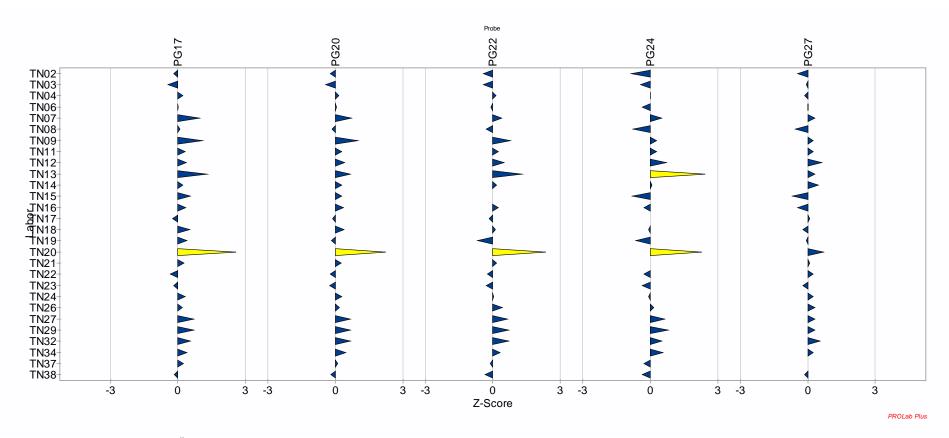
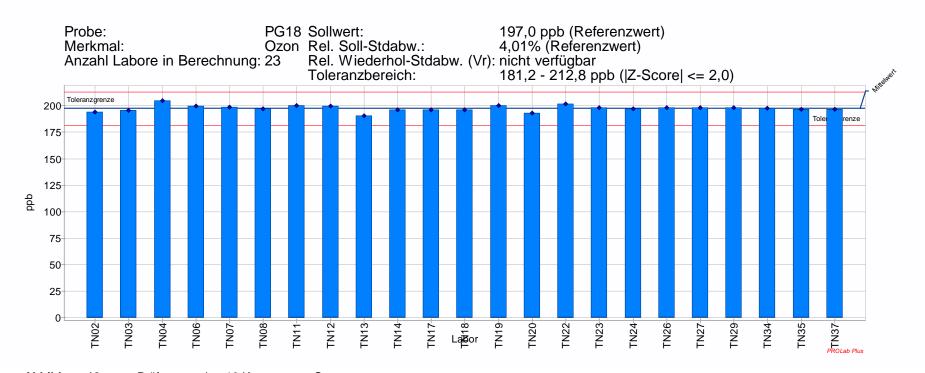



Abbildung 9: z'score Übersicht Stickstoffdioxid

3.6 z'-score Auswertung Ozon

Tabelle 11:z'-score Auswertung Ozon

	PG18	z'-score	PG21	z'-score	PG23	z'-score	PG25	z'-score	PG28	z'-score
Einheit	ppb		ppb		ppb		ppb		ppb	
TN02	194,2	-0,4	99	-0,2	61,6	-0,2	24,2	-0,2	15,1	-0,2
TN03	195,7	-0,2	99,5	-0,1	61,9	-0,1	24,1	-0,3	15,2	-0,1
TN04	204,9	1	99,2	-0,2	61,8	-0,2	24,3	-0,2	15,2	-0,1
TN06	199,6	0,3	101	0,3	64,8	1	24,8	0,2	15,6	0,3
TN07	198,6	0,2	100,7	0,2	62,5	0,1	24,4	-0,1	15,4	0,1
TN08	197,4	0	100,2	0,1	62,2	0	24,3	-0,1	15,2	-0,1
TN11	200,3	0,4	102	0,5	63,5	0,5	25,1	0,5	15,9	0,5
TN12	199,6	0,3	101,7	0,4	63,4	0,5	24,9	0,3	15,7	0,4
TN13	190,6	-0,8	101,3	0,3	63	0,3	25	0,4	15,7	0,4
TN14	195,9	-0,1	99,2	-0,2	61,7	-0,2	23,8	-0,5	14,8	-0,5
TN17	196,3	-0,1	99,6	-0,1	62	-0,1	24,3	-0,2	15,2	-0,1
TN18	196	-0,1	99,2	-0,2	61,7	-0,2	24	-0,4	14,7	-0,5
TN19	200,3	0,4	98,9	-0,2	61	-0,5	24,6	0,1	15,3	0
TN20	193,3	-0,5	98,1	-0,4	60,9	-0,5	23,7	-0,6	14,8	-0,5
TN22	201,5	0,6	102,6	0,7	63	0,3	24,8	0,2	15,6	0,3
TN23	198,3	0,2	100,9	0,2	62,8	0,2	24,6	0,1	15,5	0,2
TN24	197,2	0	100,1	0	62,3	0	24,3	-0,2	15,1	-0,2
TN26	198,2	0,2	100,5	0,1	62,4	0,1	24,4	-0,1	15,3	0
TN27	198	0,1	100,7	0,2	62,8	0,2	24,7	0,2	15,2	-0,1
TN29	198,1	0,1	100,6	0,2	62,7	0,2	24,3	-0,2	15	-0,3
TN34	197,5	0,1	100,2	0,1	62,2	0	24,3	-0,2	15,3	0
TN35	196,6	-0,1	99,9	0	62,2	0	24,4	-0,1	15,2	-0,1
TN37	196,8	0	99,8	0	62	-0,1	24,3	-0,2	15,2	-0,1
Soll- wert	197		99,9		62,2		24,5		15,3	
Soll- Stdabw. Anzahl Einzel-	7,9		4,1		2,6		1,3		1,1	
werte	23		23		23		23		23	

Abbildung 10: Prüfgasangebot 18 Komponente Ozon

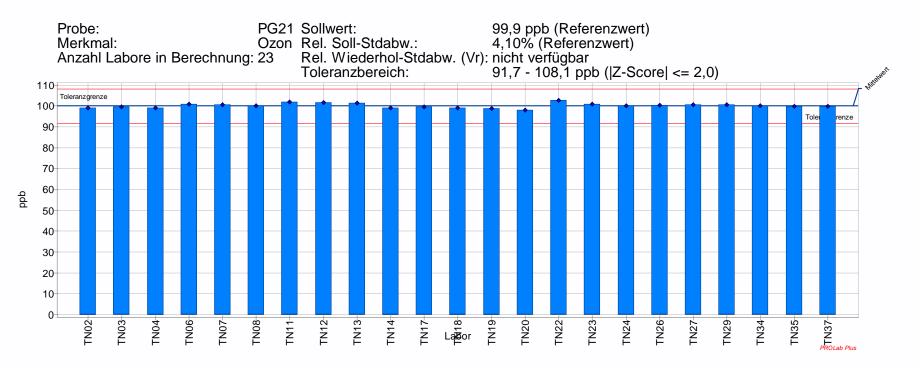
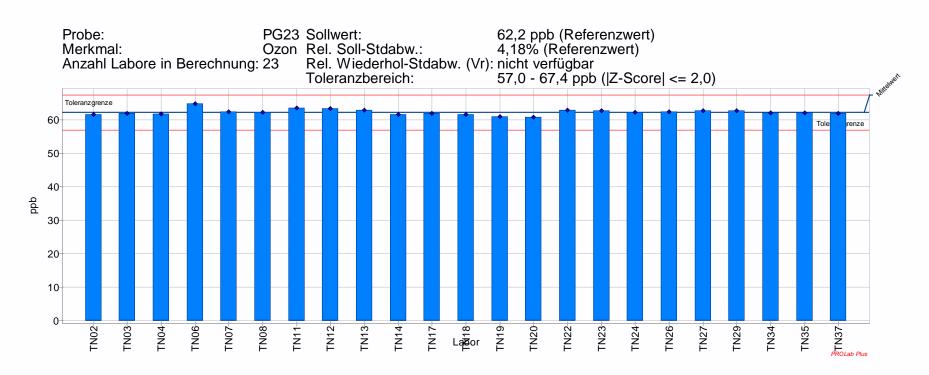



Abbildung 11: Prüfgasangebot 21 Komponente Ozon

Abbildung 12: Prüfgasangebot 23 Komponente Ozon

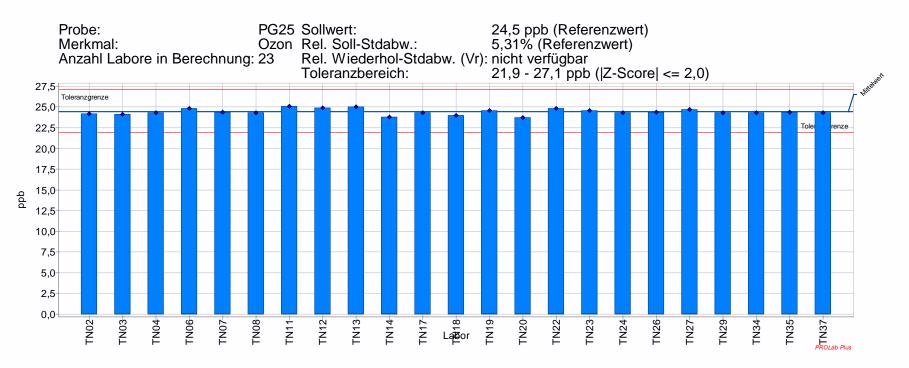
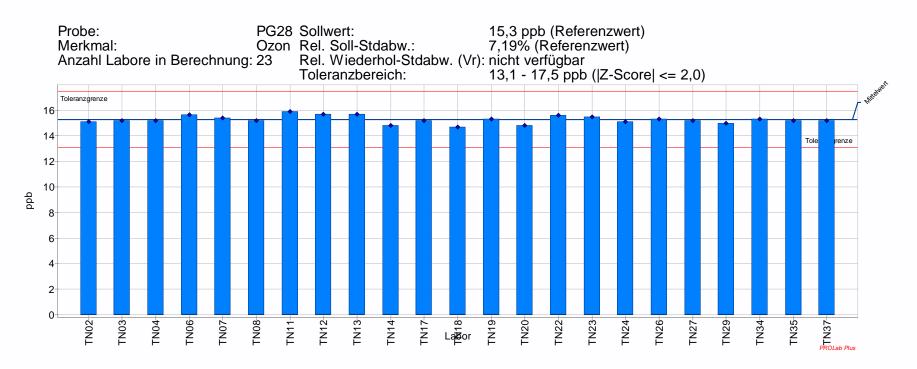



Abbildung 13: Prüfgasangebot 25 Komponente Ozon

Abbildung 14: Prüfgasangebot 28 Komponente Ozon

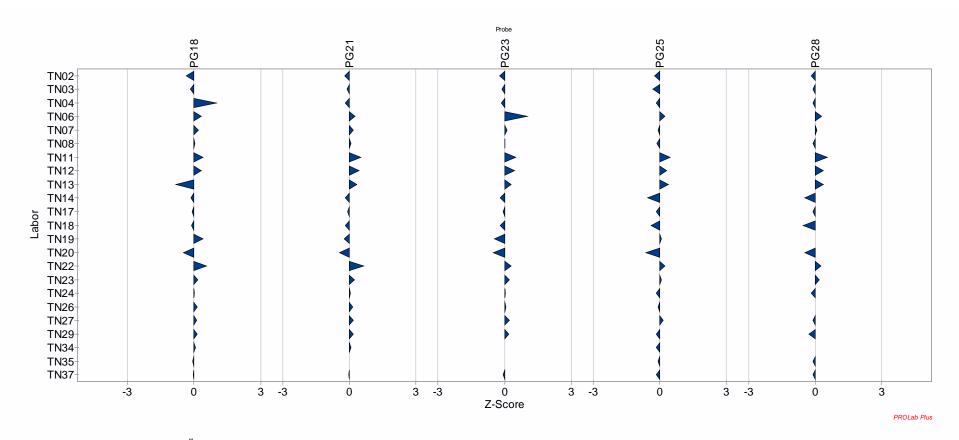


Abbildung 15: z'-score Übersicht Ozon

3.7 z'-score Auswertung Stickstoffmonoxid

 Tabelle 12:
 z'-score Auswertung Stickstoffmonoxid

Tabelle 12	PG16	z'-score	PG17	z'-score	PG19	z'-score	PG20	z'-score	PG26	z'-score
Einheit	ppb		ppb		ppb		ppb		ppb	
TN02	512,2	0	314,9	-0,2	207,8	-0,1	107	-0,2	52,8	-0,3
TN03	508,3	-0,2	314,2	-0,3	205,6	-0,4	106,4	-0,3	52,8	-0,3
TN04	516,7	0,2	319,8	0,2	210,3	0,2	108,8	0,2	53,7	0,1
TN06	516,5	0,2	319,4	0,1	209,9	0,1	108,3	0,1	53,5	0
TN07	523,3	0,5	319,5	0,2	212,5	0,4	109	0,2	54,8	0,6
TN08	519,1	0,3	323,4	0,5	210,6	0,2	110,9	0,7	53,5	0
TN11	520,7	0,4	321,9	0,3	212,1	0,4	109,9	0,4	54,7	0,5
TN12	519,3	0,3	322,7	0,4	211,6	0,3	110,3	0,5	54,5	0,5
TN13	515,3	0,1	317	0	206,9	-0,2	106,8	-0,2	51,6	-0,8
TN14	520,5	0,4	321,9	0,3	211,5	0,3	109,2	0,3	53,9	0,2
TN17	509,6	-0,2	315,1	-0,2	207,5	-0,2	107	-0,2	53	-0,2
TN18	521,5	0,4	319,2	0,1	211,8	0,3	108,9	0,2	54,3	0,4
TN19	518,3	0,2	319,1	0,1	211	0,2	110	0,5	54,5	0,5
TN20	537,7	1,2	331,9	1,1	218,2	1,1	112,3	1	55,1	0,7
TN22	507,8	-0,3	314,6	-0,2	206,9	-0,2	107	-0,2	52,8	-0,3
TN23	506,9	-0,3	313,4	-0,3	206,1	-0,3	106,5	-0,3	52,8	-0,3
TN24	517,8	0,2	319,4	0,1	210,8	0,2	109	0,2	53,8	0,2
TN26	515,6	0,1	321,1	0,3	209,4	0,1	109,3	0,3	53,5	0
TN27	524	0,5	321,8	0,3	212,5	0,4	109,2	0,3	54,2	0,3
TN29	524,1	0,5	325,4	0,6	214	0,6	111,2	0,7	55,7	1
TN34	514	0	316,6	-0,1	209,9	0,1	108,3	0,1	54	0,3
TN37	518,4	0,3	318,1	0	210,7	0,2	108,5	0,1	53,9	0,2
Sollwert	513,2		317,5		208,9		107,9		53,4	
Soll- Stdabw. Anzahl Einzel-	20,7		12,8		8,5		4,5		2,4	
werte	22		22		22		22		22	

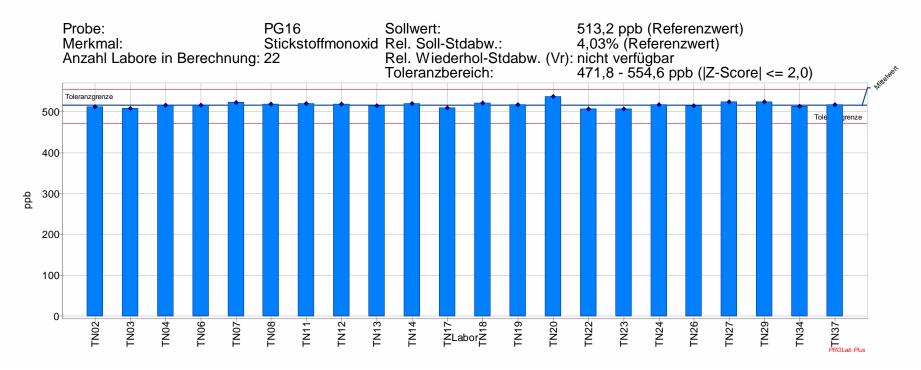


Abbildung 16: Prüfgasangebot 16 Komponente Stickstoffmonoxid

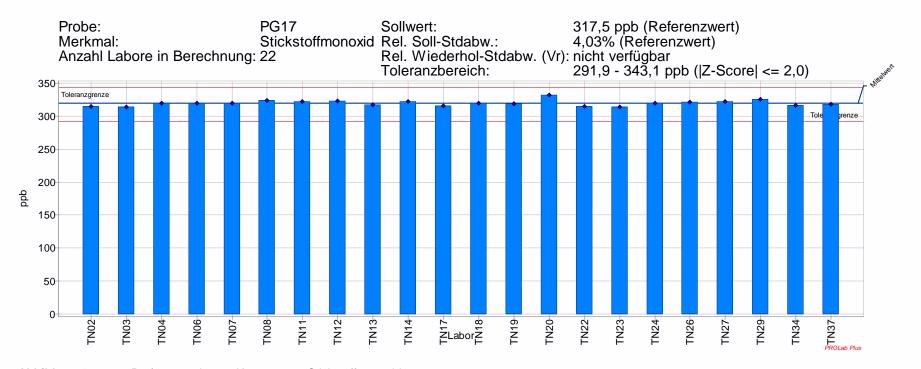


Abbildung 17: Prüfgasangebot 17 Komponente Stickstoffmonoxid

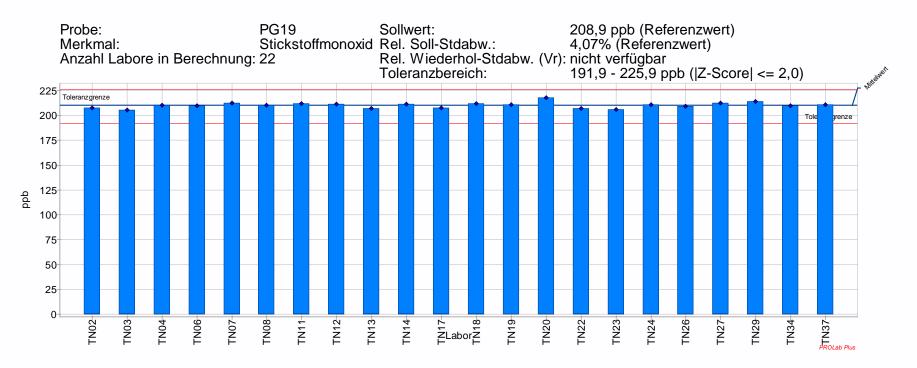


Abbildung 18: Prüfgasangebot 19 Komponente Stickstoffmonoxid

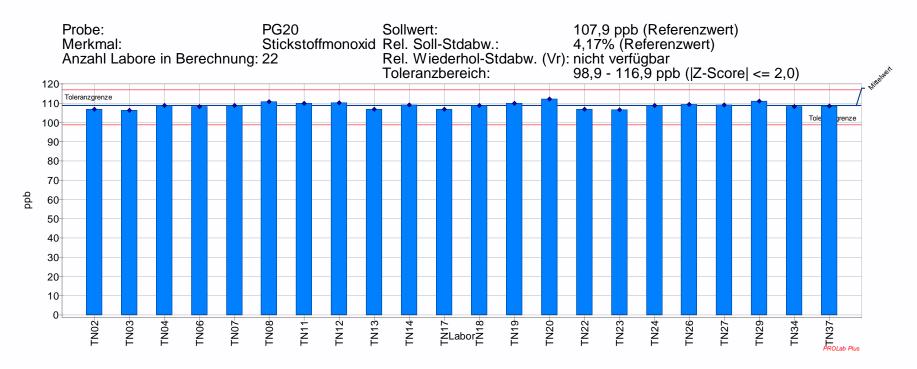


Abbildung 19: Prüfgasangebot 20 Komponente Stickstoffmonoxid

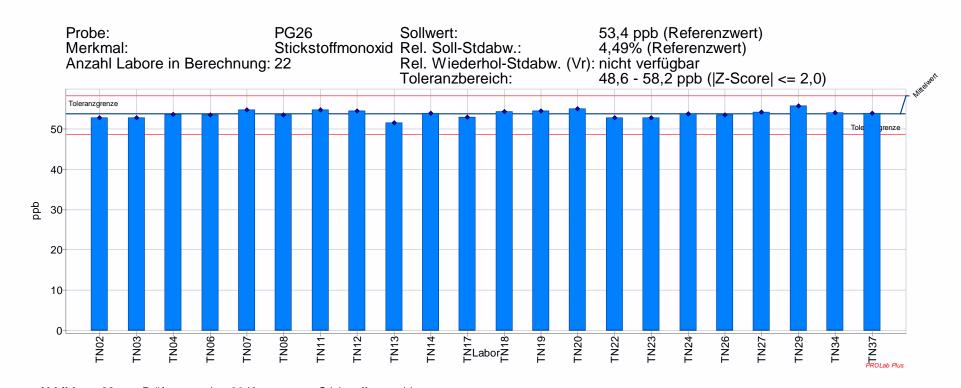


Abbildung 20: Prüfgasangebot 26 Komponente Stickstoffmonoxid

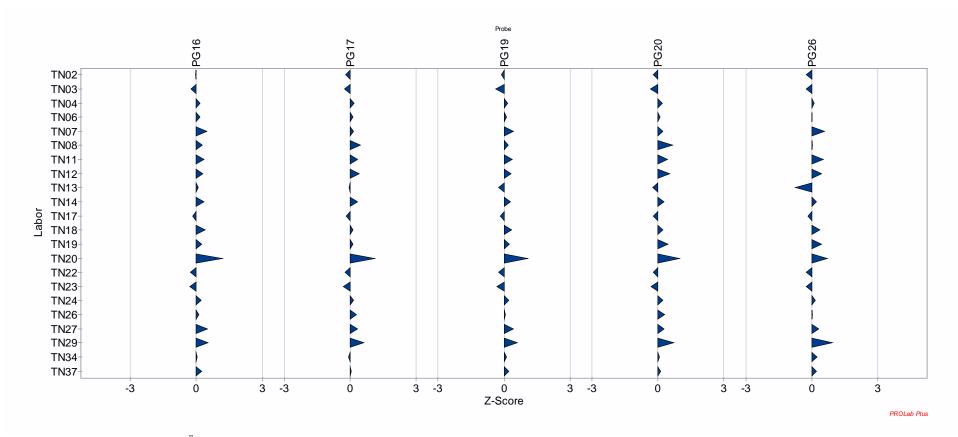


Abbildung 21: z'score Übersicht Stickstoffmonoxid

4 Ergänzende Prüfgasangebote und Auswertungen

4.1 Messunsicherheiten der Teilnehmer – E_n-Zahlen

Zusätzlich zu den Messergebnissen der Angebote des Bewertungsteils wurden die Messunsicherheiten der Teilnehmer erfasst und, wo sie vorlagen, bewertet. Die Ermittlung der Messunsicherheit und die Angabe der erweiterten Messunsicherheit zu jedem Messergebnis ist Bestandteil der europäischen Richtlinien zur Bestimmung der anorganischen Gase. Daher wird zusätzlich zum z'-score für die Beurteilung des Messwertes dessen Unsicherheit herangezogen und hierzu die sog. En-Zahl berechnet:

$$E_n = \frac{x - X}{\sqrt{U_x^2 + U_{ref}^2}}$$

mit

x Konzentration des Teilnehmers

X Vorgabewert (Sollwert)

U_x erweiterte Unsicherheit des Teilnehmerwertes

U_{ref} erweiterte Unsicherheit des Vorgabewertes (Sollwert)

Da zur Berechnung der E_n-Zahl erweiterte Unsicherheiten verwendet werden, ist hier die Grenze von 1 für kritische Werte üblich.

Die vom Teilnehmer angegebene Unsicherheit kann zusätzlich auf Plausibilität geprüft werden, indem diese kleiner oder gleich der Unsicherheitsanforderungen für Prüfgase der europäischen Richtlinien σ_p sind:

Tabelle 13: Präzisionsanforderungen an Null- und Prüfgase aus den CEN-Richtlinien

	σ _p =a⋅c+b				
Gas	a b				
		nmol/mol			
SO ₂	0,022	1			
CO	0,024	100			
O_3	0,020	1			
NO	0,024	1			
NO_2	0,020	1			

4.1.1 En-Zahlen Stickstoffdioxid

 Tabelle 14:
 En-Zahlen und Standardunsicherheiten für die NO2-Bewertungsangebote

Prüfgas	PG	§17	PG	3 20	PG	322	PG	324	PG	327
_		u(x)		u(x)		u(x)		u(x)		u(x)
Teilnehmer	En	[ppb]	En	[ppb]	En	[ppb]	En	[ppb]	En	[ppb]
TN02	-0,1	6,8	-0,1	3,5	-0,2	2,3	-0,4	1,1	-0,3	0,8
TN03	-0,3	4,1	-0,3	2,2	-0,3	1,4	-0,2	0,8	0	0,7
TN04	0,2	3,5	0,1	2,2	0,1	1,7	0	1,1	-0,1	1
TN06	0	8,6	0	4,4	0	2,8	-0,2	1,1	0	0,7
TN07	0,7	4,3	0,5	2,1	0,3	1,3	0,3	0,8	0,2	0,7
TN08	0,1	4,5	-0,1	2,3	-0,2	1,5	-0,5	0,6	-0,4	0,5
TN09	0,6	6,2	0,6	3,2	0,4	2,1	0,1	1	0,1	0,8
TN11	0,2	7,1	0,1	3,7	0,1	2,4	0,1	1,1	0,1	0,8
TN12	0,2	7,1	0,2	3,7	0,2	2,4	0,4	1,1	0,4	0,8
TN13	1	3,6	0,5	2,2	0,8	1,7	1,1	1,2	0,2	1
TN14	0,2	4,7	0,1	3,9	0,1	2,7	0	1,2	0,2	0,9
TN15		-		-		-		-		-
TN16	0,2	7,3	0,2	3,8	0,1	2,4	-0,2	0,9	-0,3	0,6
TN17	-0,2	3,5	-0,1	1,8	-0,1	1,2	0	0,7	0,1	0,6
TN18	0,3	7,8	0,2	4	0	2,6	0	1,2	-0,1	0,9
TN19	0,3	3,6	-0,1	2	-0,4	1,5	-0,3	1,1	0	1
TN20	2,8	1,2	2,1	1,2	1,7	1,2	1,1	1,2	0,3	1,2
TN21	0,2	3,2	0,2	1,7	0,1	1,1	0	0,4	0,1	0,3
TN22		-		-		-		-		-
TN23	-0,1	4,7	-0,2	2,4	-0,2	1,6	-0,2	0,8	-0,1	0,6
TN24	0,2	7,2	0,1	4	0	3	0	2,2	0,1	2,1
TN26	0,2	3	0,1	2	0,3	1,1	0,1	1,3	0,1	1,2
TN27	0,3	10,1	0,3	5,2	0,2	3,3	0,3	1,4	0,2	0,9
TN29	0,3	8,7	0,4	2,8	0,5	1,4	0,4	1,2	0,2	0,7
TN32	0,5	3,5	0,5	2,2	0,4	1,7	0,2	1,1	0,3	1
TN34	0,2	6,9	0,2	3,6	0,2	2,3	0,3	1,1	0,1	0,8
TN37	0,1	7,2	0	4	0	3	-0,1	2,2	0	2,1
TN38	-0,1	5,8	-0,1	3	-0,2	1,9	-0,2	0,9	-0,1	0,6

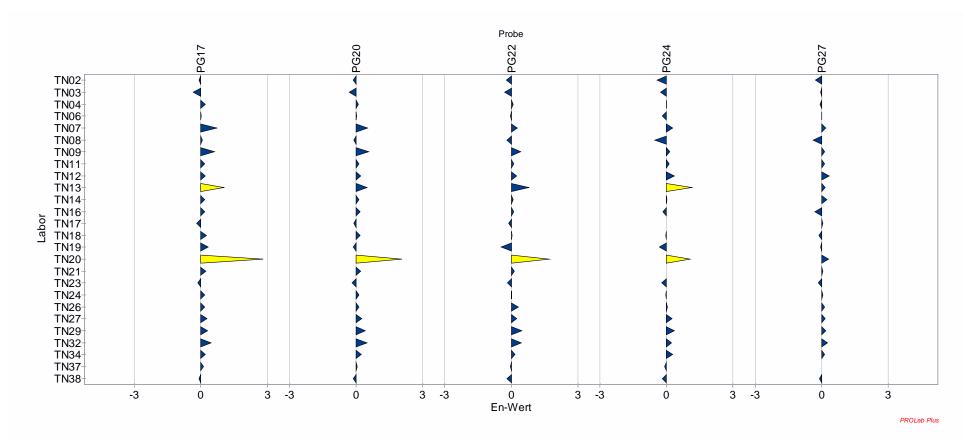


Abbildung 22: En-Zahlen Stickstoffdioxid

4.1.2 En-Zahlen Ozon

Tabelle 15: En-Zahlen und Standardunsicherheiten für die O₃-Bewertungsangebote

Prüfgas	PC	G18	PG	321	PC	3 23	PG	325	PC	328
•		u(x)		u(x)		u(x)		u(x)		u(x)
Teilnehmer	En	[ppb]	En	[ppb]	En	[ppb]	En	[ppb]	En	[ppb]
TN02	-0,2	5,6	-0,1	2,9	-0,1	1,9	-0,1	0,9	-0,1	0,8
TN03	-0,1	7,3	0	3,9	-0,1	2,6	-0,1	1,3	0	1,1
TN04	1,1	2	-0,2	1,1	-0,1	0,8	-0,1	0,5	-0,1	0,4
TN06	0,2	6,8	0,1	3,4	0,5	2,2	0,1	0,9	0,2	0,6
TN07	0,2	2,2	0,2	1,2	0,1	0,9	0	0,7	0,1	0,6
TN08	0	4,1	0,1	2,1	0	1,3	-0,1	0,5	-0,1	0,5
TN11	0,4	2,7	0,5	1,4	0,4	1	0,3	0,6	0,3	0,5
TN12	0,3	2,7	0,4	1,4	0,4	1	0,2	0,6	0,2	0,5
TN13	-0,9	1,9	0,3	1,1	0,3	0,8	0,2	0,9	0,2	0,4
TN14	-0,1	5,1	-0,1	4,4	-0,1	2,8	-0,2	1,4	-0,2	1,1
TN17	-0,1	3,4	-0,1	2,1	-0,1	1,5	-0,1	1,1	0	1
TN18	-0,1	3,6	-0,1	1,9	-0,1	1,4	-0,2	0,9	-0,3	0,8
TN19	0,4	2,4	-0,2	1,2	-0,4	0,9	0	0,6	0	0,5
TN20	-0,5	2,3	-0,3	2,3	-0,3	2,3	-0,2	2,3	-0,1	2,3
TN22		-		-		-		-		-
TN23	0,1	3,3	0,2	1,8	0,2	1,3	0	0,9	0,1	0,9
TN24	0	6,2	0	3,2	0	2,1	-0,1	1	-0,1	0,8
TN26	0,1	3	0,1	2	0,1	1,6	0	1,2	0	1,2
TN27	0,1	8,8	0,1	4,5	0,1	2,8	0,1	1,2	0	0,8
TN29	0,1	4,5	0,1	1,7	0,1	1,4	-0,1	0,9	-0,1	0,7
TN34	0,1	3	0,1	1,6	0	1,2	-0,1	0,9	0	0,8
TN35	0	5,5	0	3	0	2	0	1,2	0	1,1
TN37	0	6,2	0	3,2	0	2,1	-0,1	1	0	0,8

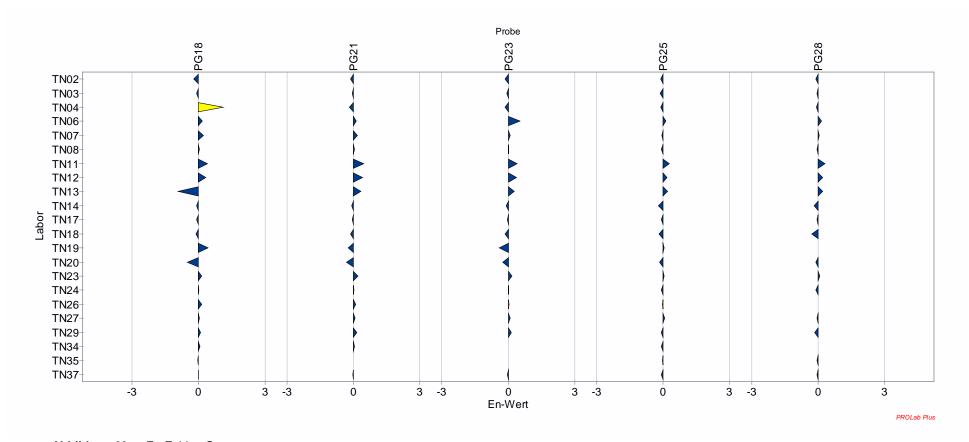


Abbildung 23: En-Zahlen Ozon

4.1.3 En-Zahlen Stickstoffmonoxid

 Tabelle 16:
 En-Zahlen und Standardunsicherheiten für die NO-Bewertungsangebote

Prüfgas	PG	16	PG	§17	PG	§19	PG	320	PG	26
	_	u(x)		u(x)	_	u(x)		u(x)		u(x)
Teilnehmer	En	[ppb]								
TN02	0	17,7	-0,1	10,9	-0,1	7,2	-0,1	3,8	-0,1	1,9
TN03	-0,2	9,5	-0,2	5,9	-0,3	3,9	-0,3	2	-0,2	1,1
TN04	0,2	7,8	0,2	5,1	0,1	3,6	0,2	2,2	0,1	1,5
TN06	0,1	22,5	0,1	13,9	0,1	9,1	0	4,7	0	2,3
TN07	0,4	12,2	0,1	7,9	0,3	5	0,2	3	0,4	1,4
TN08	0,2	11,9	0,3	7,4	0,1	4,8	0,5	2,5	0	1,2
TN11	0,2	15,3	0,2	9,4	0,2	6,2	0,3	3,3	0,3	1,7
TN12	0,2	15,2	0,2	9,5	0,2	6,2	0,3	3,3	0,3	1,7
TN13	0,1	7,7	0	5,1	-0,2	3,6	-0,2	2,2	-0,5	1,5
TN14	0,3	8,8	0,3	6,1	0,2	4,8	0,1	3,9	0,1	2,3
TN17	-0,2	7	-0,2	4,2	-0,2	2,8	-0,2	1,5	-0,1	0,9
TN18	0,2	20,1	0,1	12,3	0,2	8,2	0,1	4,2	0,2	2,2
TN19	0,2	7,9	0,1	4,9	0,2	3,4	0,4	1,9	0,3	1,3
TN20	1,6	1,2	1,5	1,2	1,3	1,2	1	1,2	0,5	1,2
TN22		-		-		-		-		-
TN23	-0,2	11,2	-0,2	7	-0,2	4,8	-0,2	2,5	-0,2	1,3
TN24	0,2	13,2	0,1	8,3	0,2	5,4	0,2	3	0,1	1,7
TN26	0,1	6,2	0,3	4,2	0,1	3,1	0,2	2,1	0	1,5
TN27	0,2	26,1	0,1	16	0,2	10,6	0,1	5,4	0,1	2,7
TN29	0,4	12,5	0,8	1,2	0,5	4,5	0,5	2,8	0,6	1,4
TN34	0	17,9	0	11	0,1	7,4	0	3,8	0,1	2
TN37	0,2	13,2	0	8,3	0,1	5,4	0,1	3	0,1	1,7

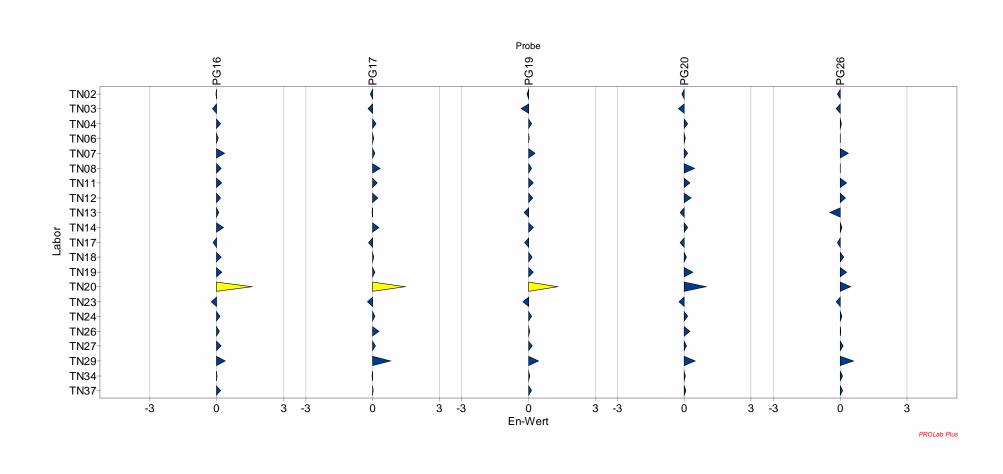


Abbildung 24: En-Zahlen Stickstoffmonoxid

4.2 Vorgabewerte Ergänzende Prüfgasangebote

Die Vorgabewerte X in der Tabelle 17 wurden mittels eines robusten Verfahrens aus Anhang C der DIN ISO 13528 (hier: Q-Methode/Hampel-Schätzer) berechnet. Bei den Angeboten PG 30 bis PG 40 wurde bei den Angeboten mit Störkomponenten der Mittelwert aus den jeweils umschließenden Angeboten (bracketing) ohne die Störkomponenten berechnet.

Tabelle 17:	Vorgahewerte	der Ergänzungsangebote
Tabelle II.	volgabeweite	dei Erganzungsangebote

Prüfgasangebot	Komponente	Vorgabewert X [ppb]
PG1	NO ₂	-0,1
PG2	NO ₂	2,1
PG3	NO_2	200,4
PG5	NO_2	0,8
PG6	NO_2	102,5
PG8	NO_2	64,5
PG10	NO_2	26
PG12	NO_2	0,2
PG13	NO_2	15,8
PG15	NO_2	-0,1
PG29	NO_2	-0,1
PG36	NO ₂	15,8
PG37	NO_2	15,8
PG38	NO_2	15,8
PG39	NO_2	15,8
PG1	Оз	0,2
PG4	O ₃	198,4
PG7	O ₃	100
PG9	O ₃	61,8
PG11	O ₃	24,6
PG14	O ₃	15,2
PG15	O ₃	0,1
PG29	O ₃	0,1
PG1	NO	0,2
PG2	NO	513,1
PG3	NO	314,7
PG5	NO	209,6
PG6	NO	108,1
PG8	NO	146,4
PG10	NO	185,3
PG12	NO	54,6
PG13	NO	38,9
PG15	NO	0,1
PG29	NO	0,1
PG30	NO	514,4
PG31	NO	0,1
PG32	NO	0,1
PG33	NO	514,4

Prüfgasangebot	Komponente	Vorgabewert X [ppb]
PG34	NO	514,4
PG35	NO	0
PG36	NO	38,9
PG37	NO	38,8
PG38	NO	38,8
PG39	NO	38,7

4.3 Kenngrößen der Teilnehmermesswerte

Aus den Messwerten der Teilnehmer wurden neben Median und Standardabweichung auch der robuste Vorgabewert X* und die robuste Standardabweichung S* nach DIN ISO 13528 Anhang C berechnet.

Tabelle 18: Kenngrößen der Teilnehmermesswerte für die Angebote des Ergänzungsteils

				Median	V4.F 1.7	0
Angebot	Komponente	s [ppb]	rel. s	[ppb]	X* [ppb]	S* [ppb]
PG1	NO ₂	0,4	-	-0,1	-0,1	0,4
PG2	NO ₂	2,2	-	1,8	2,1	1,2
PG3	NO ₂	4,7	2,34%	200,5	200,4	3,5
PG5	NO ₂	0,9	-	0,8	0,8	0,6
PG6	NO ₂	2,2	2,20%	102,4	102,5	1,8
PG8	NO ₂	1,7	2,68%	64,4	64,5	1,4
PG10	NO ₂	1,2	4,77%	26,0	26,0	1,0
PG12	NO ₂	0,5	-	0,2	0,2	0,4
PG13	NO ₂	0,5	3,18%	15,8	15,8	0,4
PG15	NO_2	0,6	-	-0,2	-0,1	0,4
PG29	NO ₂	0,5	-	0,0	-0,1	0,4
PG36	NO ₂	0,4	2,61%	15,7	15,8	0,4
PG37	NO ₂	0,6	3,62%	15,7	15,8	0,6
PG38	NO ₂	0,6	3,52%	15,6	15,7	0,6
PG39	NO ₂	0,5	3,02%	15,8	15,8	0,4
PG1	Ozon	0,4	-	0,1	0,2	0,3
PG4	Ozon	2,3	1,16%	198,5	198,4	1,7
PG7	Ozon	1,3	1,26%	100,0	100,0	1,3
PG9	Ozon	0,9	1,47%	61,9	61,8	0,9
PG11	Ozon	0,4	1,59%	24,7	24,6	0,4
PG14	Ozon	0,3	2,05%	15,2	15,2	0,4
PG15	Ozon	0,4	-	0,0	0,1	0,2
PG29	Ozon	0,2	-	0,1	0,1	0,2
PG1	NO	0,4	-	0,1	0,2	0,4
PG2	NO	6,6	1,29%	514,6	513,1	4,0
PG3	NO	4,5	1,42%	314,7	314,7	4,0
PG5	NO	3,0	1,43%	210,0	209,6	2,4
PG6	NO	1,7	1,55%	108,2	108,1	1,7
PG8	NO	2,1	1,41%	146,8	146,4	1,6
PG10	NO	2,5	1,38%	185,6	185,3	2,0
PG12	NO	1,1	2,10%	54,6	54,6	1,2
PG13	NO	0,7	1,72%	39,0	38,9	0,6
PG15	NO	0,4	-	0,1	0,1	0,3

Angebot	Komponente	s [ppb]	rel. s	Median [ppb]	X* [ppb]	S* [ppb]
PG29	NO .	0,4	-	0,1	0,1	0,3
PG30	NO	6,8	1,32%	514,8	514,4	5,9
PG31	NO	1,1	-	-0,3	-0,6	1,2
PG32	NO	1,4	-	-0,6	-0,8	1,3
PG33	NO	6,7	1,31%	505,9	505,4	5,8
PG34	NO	6,8	1,31%	504,2	503,2	4,8
PG35	NO	0,5	-	0,0	0,0	0,4
PG36	NO	0,8	2,00%	39,0	38,9	0,8
PG37	NO	0,7	1,90%	37,7	37,7	0,8
PG38	NO	0,8	2,03%	37,5	37,3	0,9
PG39	NO	0,5	1,34%	38,7	38,7	0,6

4.4 Robuste Auswertung GPT – PG1 bis PG15

4.4.1 Stickstoffdioxid

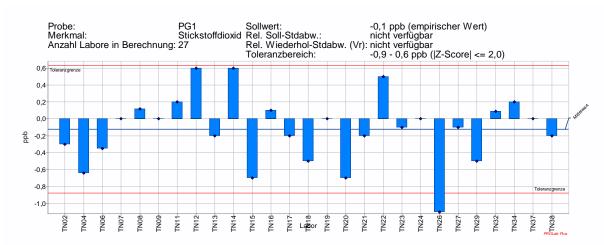


Abbildung 25: Robuste Auswertung PG1 Stickstoffdioxid

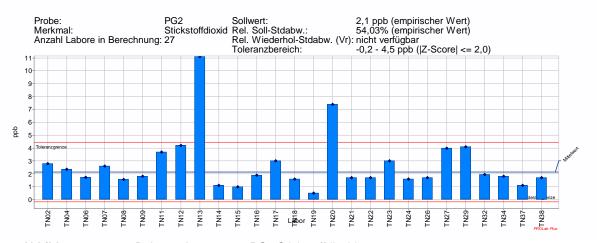


Abbildung 26: Robuste Auswertung PG2 Stickstoffdioxid

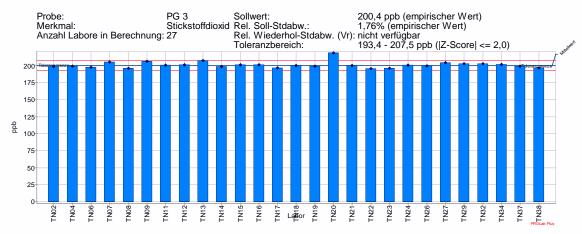


Abbildung 27: Robuste Auswertung PG3 Stickstoffdioxid

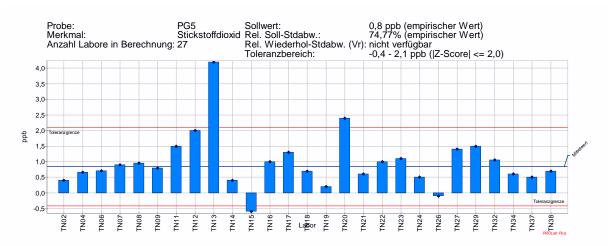


Abbildung 28: Robuste Auswertung PG5 Stickstoffdioxid

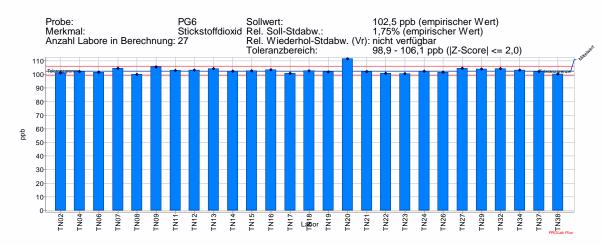


Abbildung 29: Robuste Auswertung PG6 Stickstoffdioxid

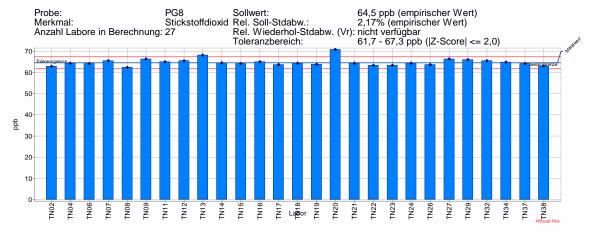


Abbildung 30: Robuste Auswertung PG8 Stickstoffdioxid

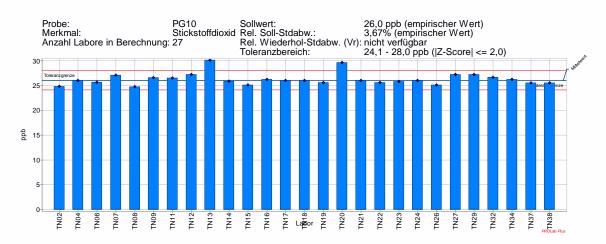


Abbildung 31: Robuste Auswertung PG10 Stickstoffdioxid

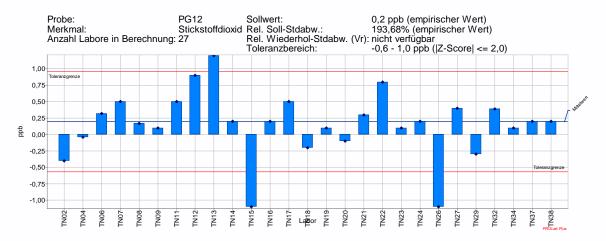


Abbildung 32: Robuste Auswertung PG12 Stickstoffdioxid

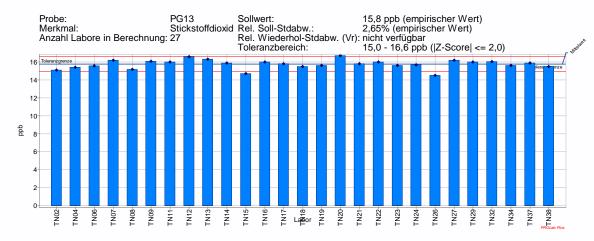


Abbildung 33: Robuste Auswertung PG13 Stickstoffdioxid

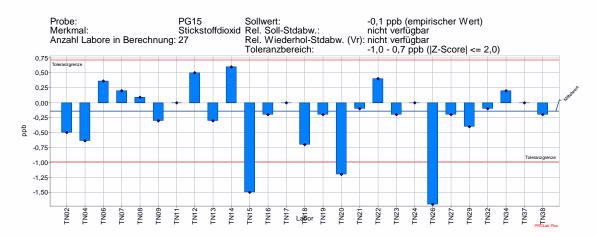


Abbildung 34: Robuste Auswertung PG15 Stickstoffdioxid

4.4.2 Ozon

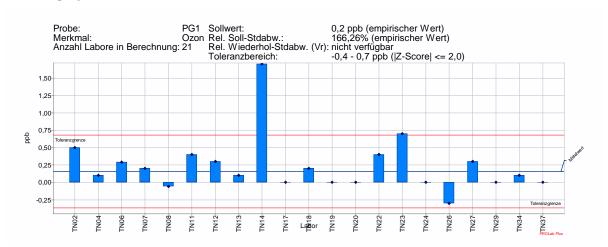


Abbildung 35: Robuste Auswertung PG1 Ozon

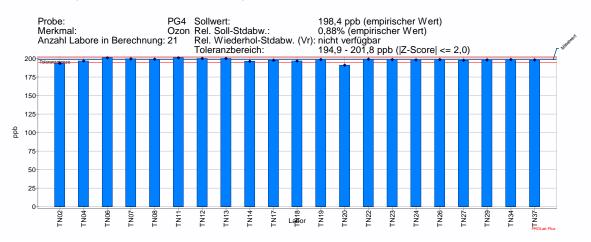


Abbildung 36: Robuste Auswertung PG4 Ozon

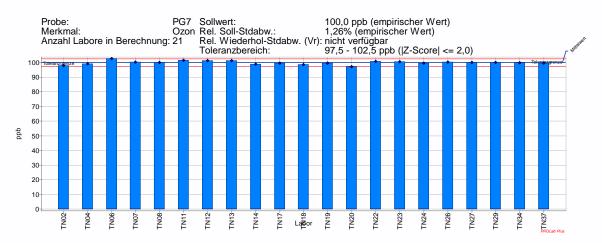


Abbildung 37: Robuste Auswertung PG7 Ozon

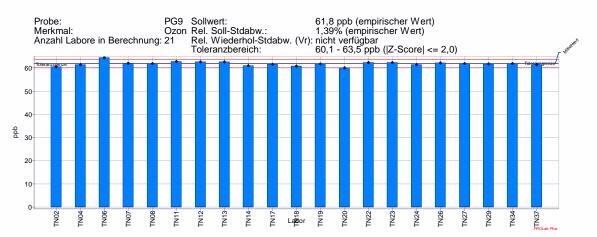


Abbildung 38: Robuste Auswertung PG9 Ozon

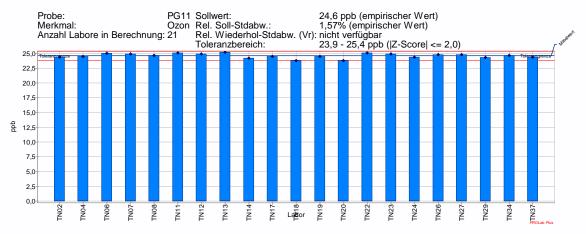


Abbildung 39: Robuste Auswertung PG11 Ozon

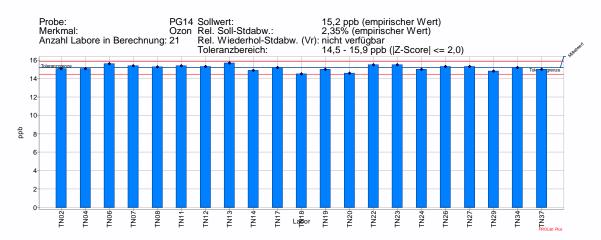


Abbildung 40: Robuste Auswertung PG14 Ozon

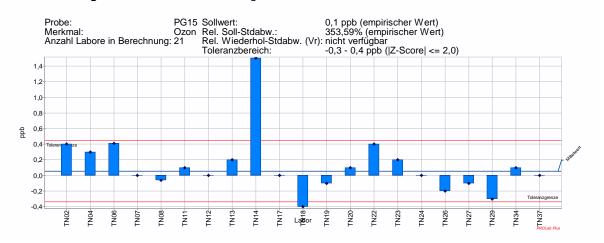


Abbildung 41: Robuste Auswertung PG15 Ozon

4.4.3 Stickstoffmonoxid

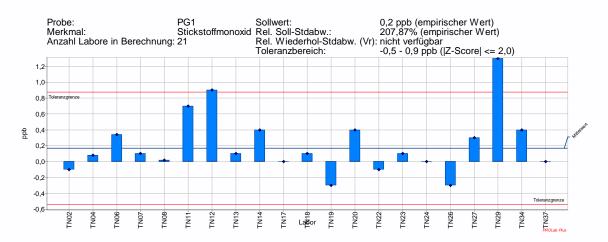


Abbildung 42: Robuste Auswertung PG1 Stickstoffmonoxid

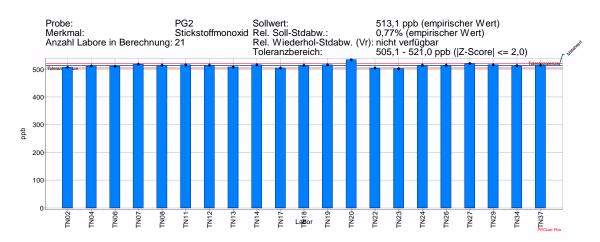


Abbildung 43: Robuste Auswertung PG2 Stickstoffmonoxid

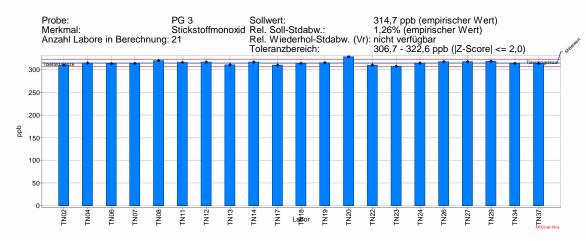


Abbildung 44: Robuste Auswertung PG3 Stickstoffmonoxid

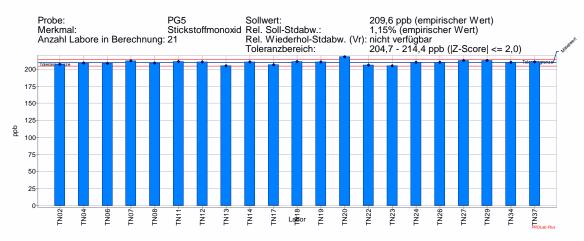


Abbildung 45: Robuste Auswertung PG5 Stickstoffmonoxid

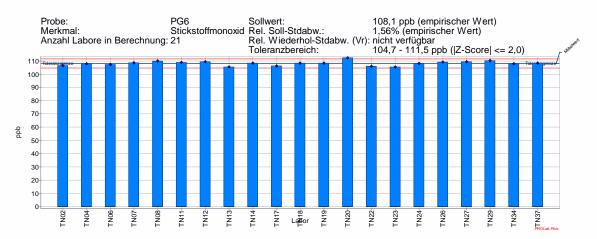


Abbildung 46: Robuste Auswertung PG6 Stickstoffmonoxid

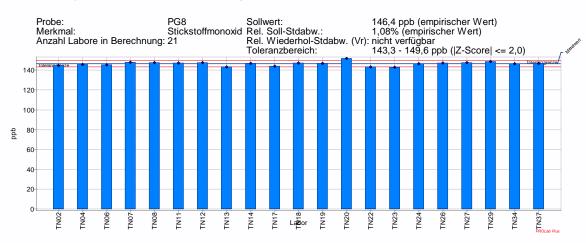


Abbildung 47: Robuste Auswertung PG8 Stickstoffmonoxid

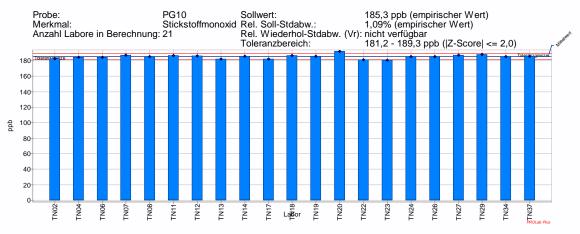


Abbildung 48: Robuste Auswertung PG10 Stickstoffmonoxid

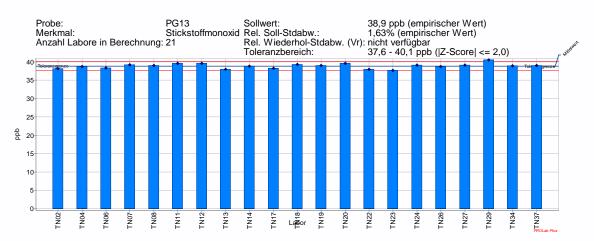
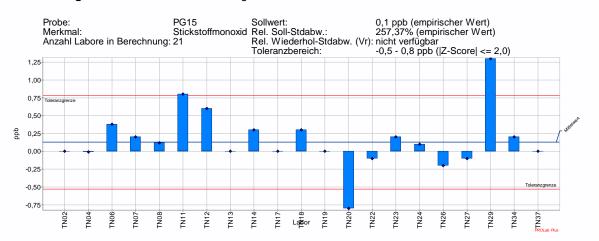
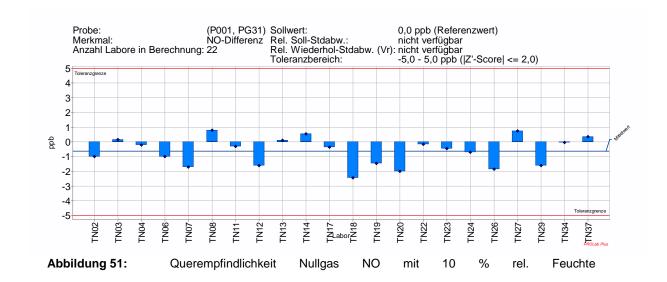


Abbildung 49: Robuste Auswertung PG13 Stickstoffmonoxid




Abbildung 50: Robuste Auswertung PG15 Stickstoffmonoxid

4.5 Störkomponenten für Stickoxide in Anlehnung an DIN EN 14211

4.5.1 Wasserdampf

Zur Ermittlung der Querempfindlichkeit wurden die Stickstoffmonoxid-Messwerte der Prüfgasangebote PG29 und PG35 gemittelt und als P001 für das trockene Nullgas zusammengefasst. Bei dem PG31 handelt es sich um Nullgas, welches mit Wasserdampf auf etwa 10 % relative Feuchte befeuchtet wurde. Die Differenz der Teilnehmermesswerte von PG31 und P001 ergibt dann die Querempfindlichkeit in nmol/mol (ppb). Analog wurde bei PG32 vorgegangen. Hier wurde das Nullgas auf etwa 25 % rel. Feuchte befeuchtet.

Tabelle 19:	Nullgas NO - S	törkomponente \	Wasserdampf 10	% rel. Feuchte
Teilnehmer	P001	PG31	Differenz	Kriterien
	[ppb]	[ppb]	[ppb]	erfüllt?
TN02	0,0	-1,0	-1,0	Ja
TN03	0,2	0,3	0,1	Ja
TN04	0,0	-0,3	-0,3	Ja
TN06	-0,1	-1,1	-1,0	Ja
TN07	0,3	-1,4	-1,7	Ja
TN08	0,0	0,8	0,8	Ja
TN11	0,6	0,3	-0,3	Ja
TN12	0,1	-1,5	-1,6	Ja
TN13	0,1	0,2	0,1	Ja
TN14	0,1	0,6	0,5	Ja
TN17	0,1	-0,3	-0,4	Ja
TN18	0,0	-2,5	-2,5	Ja
TN19	-0,4	-1,8	-1,4	Ja
TN20	-1,4	-3,4	-2,0	Ja
TN22	0,0	-0,2	-0,2	Ja
TN23	0,1	-0,4	-0,5	Ja
TN24	0,2	-0,5	-0,7	Ja
TN26	-0,3	-2,2	-1,9	Ja
TN27	0,2	0,9	0,7	Ja
TN29	0,7	-0,9	-1,6	Ja
TN34	0,2	0,1	-0,1	Ja
TN37	-0,1	0,3	0,4	Ja

Tabelle 20:	Nullgas NO - S	törkomponente '	Wasserdampf 25	% rel. Feuchte
Teilnehmer	P001	PG32	Differenz	Kriterien
	[ppb]	[ppb]	[ppb]	erfüllt?
TN02	0,0	-1,2	-1,2	Ja
TN03	0,2	0,4	0,2	Ja
TN04	0,0	-0,7	-0,7	Ja
TN06	-0,1	-1,3	-1,2	Ja
TN07	0,3	-1,0	-1,3	Ja
TN08	0,0	0,5	0,5	Ja
TN11	0,6	0,1	-0,5	Ja
TN12	0,1	-1,7	-1,8	Ja
TN13	0,1	0,2	0,1	Ja
TN14	0,1	0,3	0,2	Ja
TN17	0,1	-0,6	-0,7	Ja
TN18	0,0	-3,3	-3,3	Ja
TN19	-0,4	-2,3	-1,9	Ja
TN20	-1,4	-4,3	-2,9	Ja
TN22	0,0	-0,3	-0,3	Ja
TN23	0,1	-0,5	-0,6	Ja
TN24	0,2	-0,5	-0,7	Ja
TN26	-0,3	-3,0	-2,7	Ja
TN27	0,2	1,2	1,0	Ja
TN29	0,7	-1,4	-2,1	Ja
TN34	0,2	0,1	-0,1	Ja
TN37	-0,1	-0,1	0,0	Ja

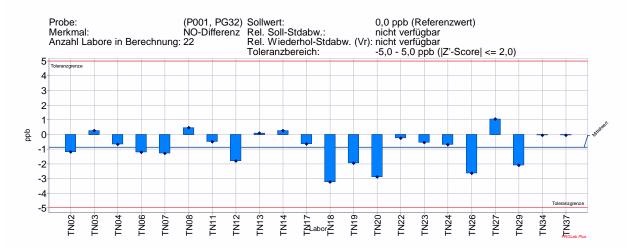


Abbildung 52: Querempfindlichkeit Nullgas NO mit 25 % rel. Feuchte

Zur Ermittlung der Querempfindlichkeit gegenüber Wasserdampf wurde, neben der Querempfindlichkeit am Nullpunkt, in Anlehnung an die DIN EN 14211 die Querempfindlichkeit analog bei 500 ppb Stickstoffmonoxid bestimmt. Als Bezugspunkt wurde das trockene Prüfgasangebot PG30 gewählt.

Tabelle 21:	500 ppb NO -	Störkomponente	Wasserdampf 10	% rel. Feuchte
Teilnehmer	PG30	PG33	Differenz	Kriterien
	[ppb]	[ppb]	[ppb]	erfüllt?
TN02	509,2	501,4	-7,8	nein
TN03	504,7	492,3	-12,4	nein
TN04	513,9	505,6	-8,3	nein
TN06	513,5	506,0	-7,5	nein
TN07	521,1	509,8	-11,3	nein
TN08	514,1	505,8	-8,3	nein
TN11	517,6	508,1	-9,5	nein
TN12	516,3	504,3	-12,0	nein
TN13	511,4	505,2	-6,2	nein
TN14	517,7	510,3	-7,4	nein
TN17	507,3	499,1	-8,2	nein
TN18	519,6	509,3	-10,3	nein
TN19	518,6	516,3	-2,3	Ja
TN20	534,4	523,8	-10,6	nein
TN22	504,7	498,5	-6,2	nein
TN23	504,2	494,8	-9,4	nein
TN24	515,5	506,6	-8,9	nein
TN26	516,1	504,8	-11,3	nein
TN27	518,4	506,6	-11,8	nein
TN29	521,7	509,5	-12,2	nein
TN34	514,1	506,2	-7,9	nein
TN37	512,4	500,5	-11,9	nein



Abbildung 53: Querempfindlichkeit 500ppb NO mit 10 % rel. Feuchte

Teilnehmer	PG30	PG34	Differenz	Kriterien
	[ppb]	[ppb]	[ppb]	erfüllt?
TN02	509,2	499,8	-9,4	nein
TN03	504,7	490,3	-14,4	nein
TN04	513,9	503,9	-10,0	nein
TN06	513,5	504,1	-9,4	nein
TN07	521,1	505,6	-15,5	nein
TN08	514,1	504,0	-10,1	nein
TN11	517,6	505,7	-11,9	nein
TN12	516,3	501,7	-14,6	nein
TN13	511,4	505,6	-5,8	nein
TN14	517,7	508,0	-9,7	nein
TN17	507,3	497,3	-10,0	nein
TN18	519,6	507,6	-12,0	nein
TN19	518,6	515,1	-3,5	Ja
TN20	534,4	521,6	-12,8	nein
TN22	504,7	496,5	-8,2	nein
TN23	504,2	492,7	-11,5	nein
TN24	515,5	505,4	-10,1	nein
TN26	516,1	502,6	-13,5	nein
TN27	518,4	505,4	-13,0	nein
TN29	521,7	506,3	-15,4	nein
TN34	514,1	504,3	-9,8	nein
TN37	512,4	497,5	-14,9	nein

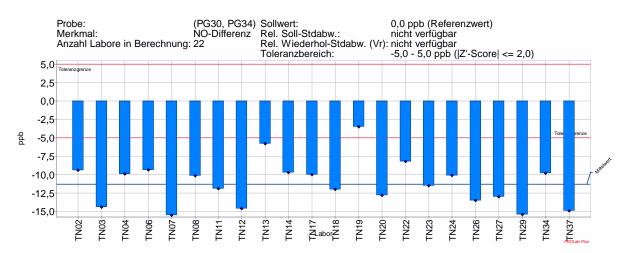


Abbildung 54: Querempfindlichkeit 500 ppb NO mit 25 % rel. Feuchte

4.5.2 Gasphasentritration – Querempfindlichkeit gegenüber Wasserdampf

Um die relevante Querempfindlichkeit bei üblichen Außenluftkonzentrationen für die Komponenten NO und NO₂ zu ermitteln, wurden die trockenen Angebote PG36 und PG39 für die Komponenten NO und NO₂ zu P002 zusammengefasst. Das Angebot PG37 wurde auf 10 % rel. Feuchte angefeuchtet und aus der Differenz von PG37 und P002 die Querempfindlichkeit ermittelt.

Beim Angebot PG38 wurde analog mit 25 % rel. Feuchte vorgegangen.

Tabelle 23: Gasphasentitration PG37 - 36ppb NO Störkomponente Wasserdampf 10 % rel. Feuchte

		Tabelle 23. Gasphasentitiation 1 Go7 Gopps No Glorkomponente Wasserdamp					
Teilnehmer	P002	PG37	Differenz	Kriterien			
	[ppb]	[ppb]	[ppb]	erfüllt?			
TN02	38,6	37,0	-1,6	Ja			
TN03	38,4	38,0	-0,4	Ja			
TN04	38,8	37,9	-0,9	Ja			
TN06	37,6	37,4	-0,2	Ja			
TN07	39,6	37,5	-2,1	Ja			
TN08	39,3	38,8	-0,5	Ja			
TN11	39,5	38,6	-0,9	Ja			
TN12	39,0	36,9	-2,1	Ja			
TN13	37,8	38,0	0,2	Ja			
TN14	39,0	39,2	0,2	Ja			
TN17	38,4	37,7	-0,7	Ja			
TN18	39,0	36,7	-2,3	Ja			
TN19	39,0	37,3	-1,7	Ja			
TN20	39,0	36,7	-2,3	Ja			
TN22	38,2	37,3	-0,9	Ja			
TN23	37,9	37,1	-0,8	Ja			
TN24	39,2	38,1	-1,1	Ja			
TN26	38,7	37,4	-1,3	Ja			
TN27	39,3	39,3	0,0	Ja			
TN29	40,0	37,6	-2,4	Ja			
TN34	38,8	37,9	-0,9	Ja			
TN37	38,9	38,1	-0,8	Ja			

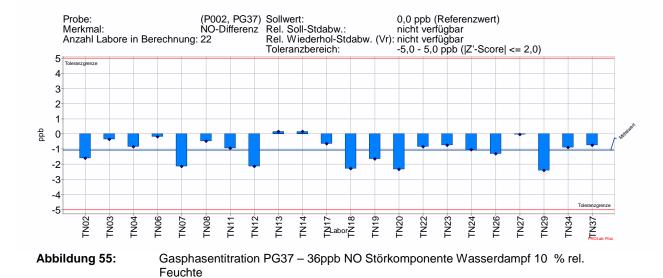
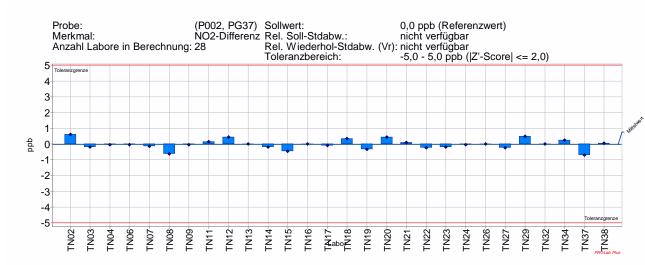



Tabelle 24: Gasphasentitration PG37 - 14 ppb NO₂ Störkomponente Wasserdampf 10 % rel. Feuchte

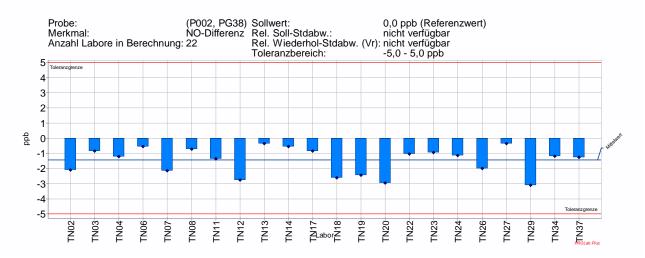

Teilnehmer	P002	PG37	Differenz	Kriterien
	[ppb]	[ppb]	[ppb]	erfüllt?
TN02	14,9	15,5	0,6	Ja
TN03	15,6	15,4	-0,2	Ja
TN04	15,6	15,6	0,0	Ja
TN06	15,6	15,6	0,0	Ja
TN07	16,5	16,3	-0,2	Ja
TN08	15,7	15,1	-0,6	Ja
TN09	16,1	16,1	0,0	Ja
TN11	15,9	16,1	0,2	Ja
TN12	16,4	16,8	0,4	Ja
TN13	16,5	16,5	0,0	Ja
TN14	15,9	15,7	-0,2	Ja
TN15	15,1	14,6	-0,5	Ja
TN16	15,7	15,7	0,0	Ja
TN17	15,6	15,5	-0,1	Ja
TN18	15,4	15,8	0,4	Ja
TN19	15,2	14,8	-0,4	Ja
TN20	16,4	16,9	0,5	Ja
TN21	15,7	15,8	0,1	Ja
TN22	16,5	16,2	-0,3	Ja
TN23	15,3	15,1	-0,2	Ja
TN24	15,6	15,6	0,0	Ja
TN26	16,3	16,3	0,0	Ja
TN27	16,1	15,9	-0,2	Ja
TN29	15,9	16,4	0,5	Ja
TN32	15,8	15,8	0,0	Ja
TN34	16,1	16,4	0,3	Ja
TN37	15,7	15,0	-0,7	Ja
TN38	15,6	15,6	0,0	Ja

Abbildung 56: Gasphasentitration PG37 – 14 ppb NO₂ Störkomponente Wasserdampf 10 % rel. Feuchte

Tabelle 25:Gasphasentitration PG38 – 36ppb NO Störkomponente Wasserdampf 25 % rel. Feuchte

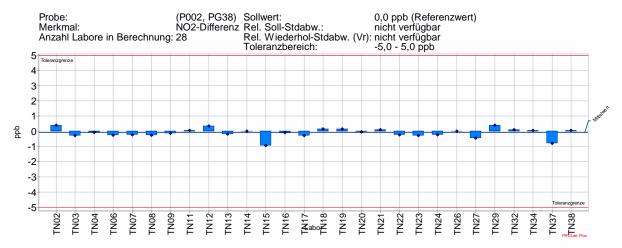

Teilnehmer	P002	PG38	Differenz	Kriterien
	[ppb]	[ppb]	[ppb]	erfüllt?
TN02	38,6	36,5	-2,1	Ja
TN03	38,4	37,5	-0,9	Ja
TN04	38,8	37,6	-1,2	Ja
TN06	37,6	37,0	-0,6	Ja
TN07	39,6	37,5	-2,1	Ja
TN08	39,3	38,6	-0,7	Ja
TN11	39,5	38,2	-1,3	Ja
TN12	39,0	36,3	-2,7	Ja
TN13	37,8	37,5	-0,3	Ja
TN14	39,0	38,5	-0,5	Ja
TN17	38,4	37,5	-0,9	Ja
TN18	39,0	36,4	-2,6	Ja
TN19	39,0	36,5	-2,5	Ja
TN20	39,0	36,1	-2,9	Ja
TN22	38,2	37,1	-1,1	Ja
TN23	37,9	36,9	-1,0	Ja
TN24	39,2	38,0	-1,2	Ja
TN26	38,7	36,7	-2,0	Ja
TN27	39,3	39,0	-0,3	Ja
TN29	40,0	36,9	-3,1	Ja
TN34	38,8	37,6	-1,2	Ja
TN37	38,9	37,6	-1,3	Ja

Abbildung 57:: Gasphasentitration PG38 – 36ppb NO Störkomponente Wasserdampf 25 % rel. Feuchte

Tabelle 26: Gasphasentitration PG38 - 14 ppb NO₂ Störkomponente Wasserdampf 25 % rel. Feuchte

Teilnehmer	P002	PG38	Differenz	Kriterien
	[ppb]	[ppb]	[ppb]	erfüllt?
TN02	14,9	15,3	0,4	Ja
TN03	15,6	15,3	-0,3	Ja
TN04	15,6	15,5	-0,1	Ja
TN06	15,6	15,3	-0,3	Ja
TN07	16,5	16,2	-0,3	Ja
TN08	15,7	15,4	-0,3	Ja
TN09	16,1	16,0	-0,1	Ja
TN11	15,9	16,0	0,1	Ja
TN12	16,4	16,7	0,3	Ja
TN13	16,5	16,3	-0,2	Ja
TN14	15,9	15,9	0,0	Ja
TN15	15,1	14,1	-1,0	Ja
TN16	15,7	15,6	-0,1	Ja
TN17	15,6	15,3	-0,3	Ja
TN18	15,4	15,6	0,2	Ja
TN19	15,2	15,3	0,1	Ja
TN20	16,4	16,4	0,0	Ja
TN21	15,7	15,8	0,1	Ja
TN22	16,5	16,2	-0,3	Ja
TN23	15,3	15,0	-0,3	Ja
TN24	15,6	15,4	-0,2	Ja
TN26	16,3	16,3	0,0	Ja
TN27	16,1	15,7	-0,4	Ja
TN29	15,9	16,3	0,4	Ja
TN32	15,8	15,9	0,1	Ja
TN34	16,1	16,2	0,1	Ja
TN37	15,7	14,9	-0,8	Ja
TN38	15,6	15,6	0,0	Ja

Abbildung 58: Gasphasentitration PG38 – 14 ppb NO₂ Störkomponente Wasserdampf 25 % rel. Feuchte

4.6 Vergleichsmessungen ORSA-Röhrchen

4.6.1 Benzol

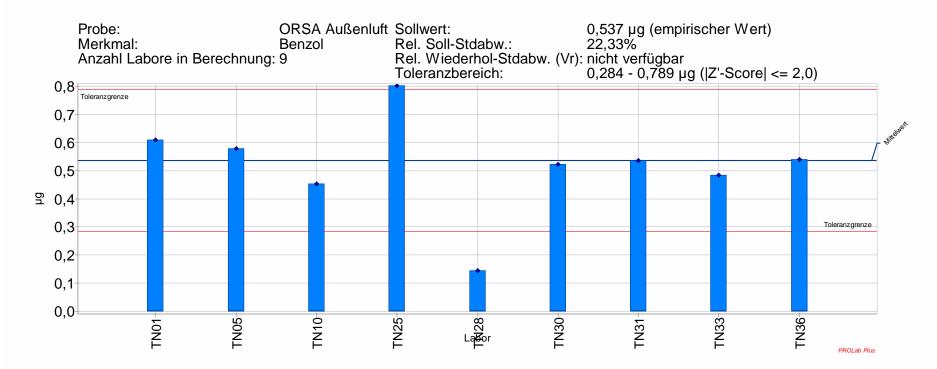



Abbildung 59: Robuste Auswertung Benzol - Probe ORSA-Außenluft

Abbildung 60: Robuste Auswertung Benzol - Probe ORSA Blindwert

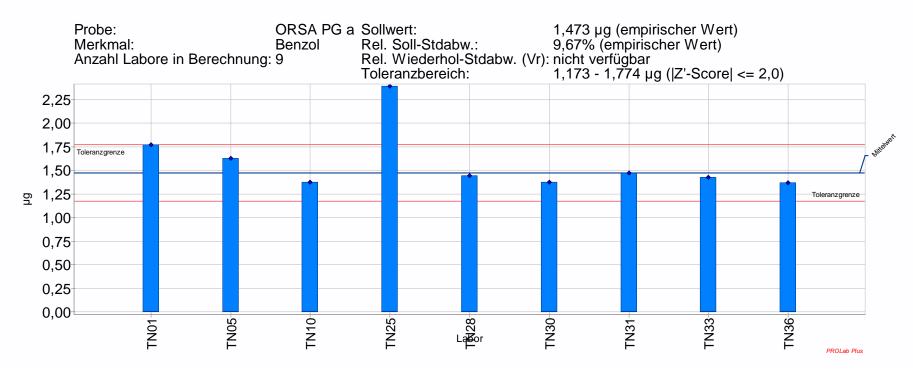


Abbildung 61: Robuste Auswertung Benzol – Probe ORSA Prüfgas A

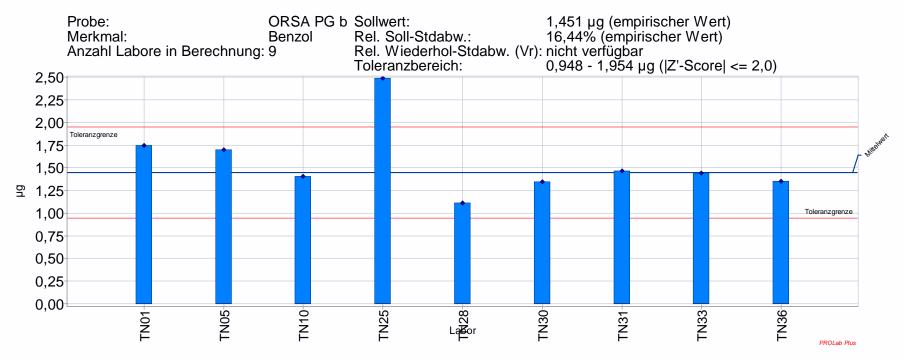


Abbildung 62: Robuste Auswertung Benzol – Probe ORSA Prüfgas B

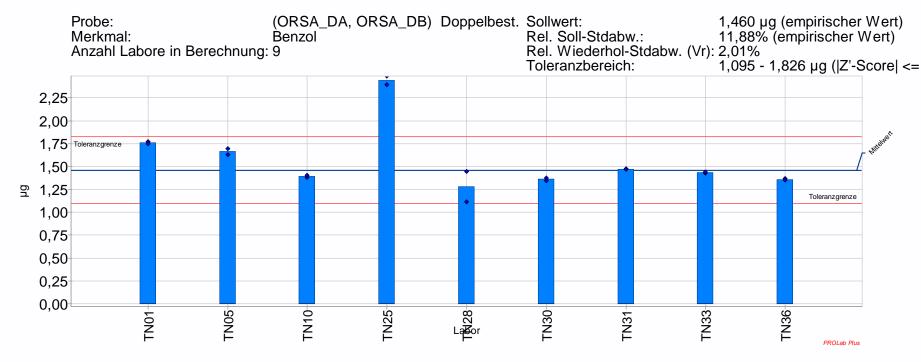


Abbildung 63: Robuste Auswertung Benzol mit Doppelbestimmung – Proben ORSA Prüfgas A & B

4.6.2 Toluol

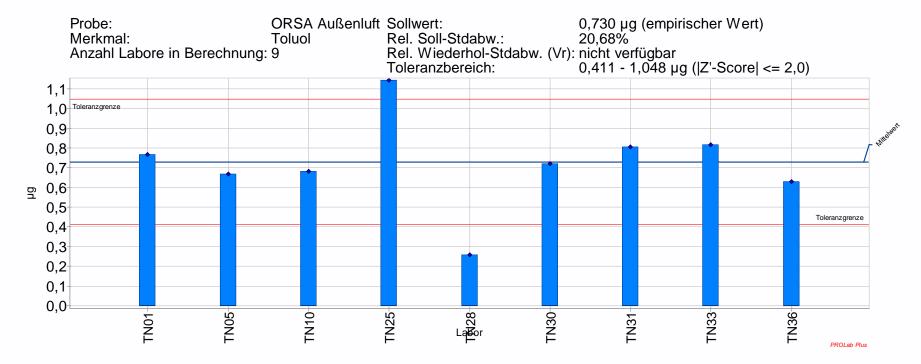
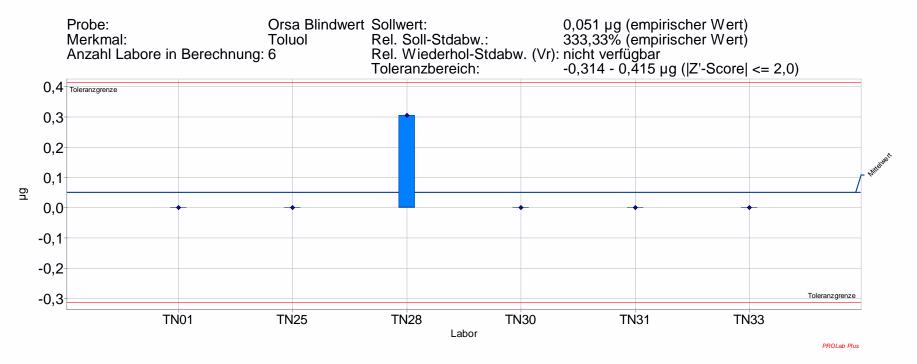



Abbildung 64: Robuste Auswertung Toluol - Probe ORSA Außenluft

Abbildung 65: Robuste Auswertung Toluol - Probe ORSA Blindwert

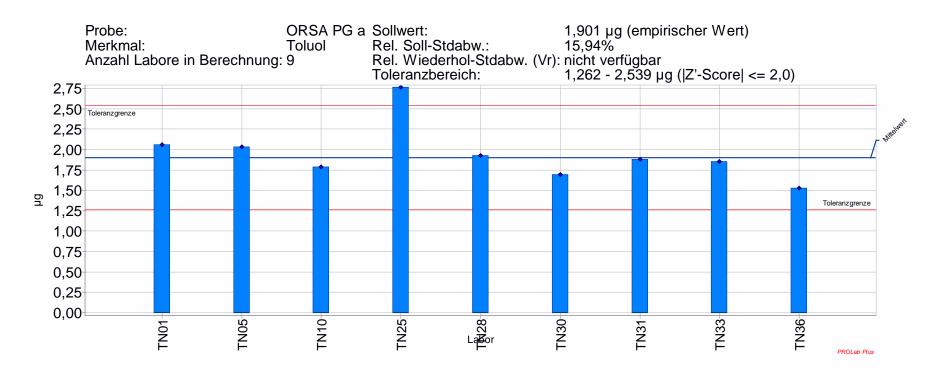


Abbildung 66: Robuste Auswertung Toluol - Probe ORSA Prüfgas A

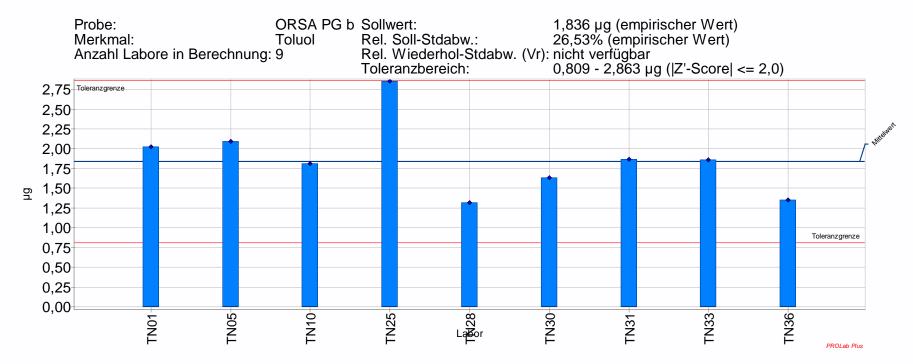


Abbildung 67: Robuste Auswertung Toluol - Probe ORSA Prüfgas B

4.6.3 m-/p-Xylol

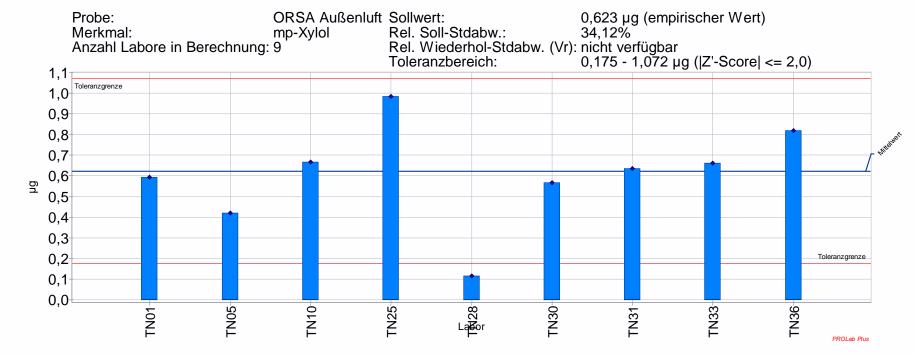
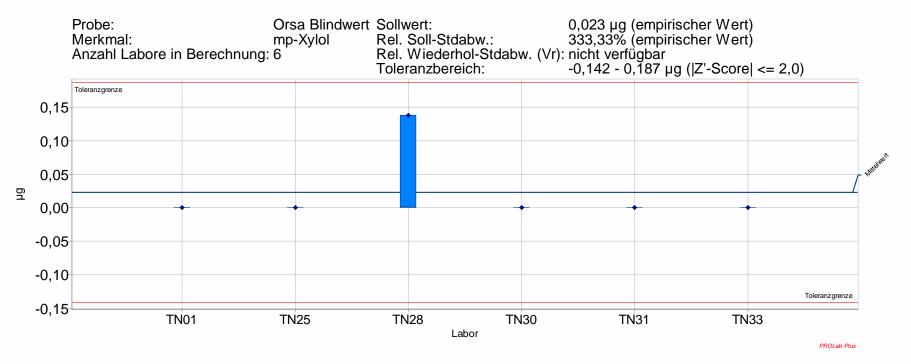



Abbildung 68: Robuste Auswertung m-/p-Xylol - Probe ORSA Außenluft

Abbildung 69: Robuste Auswertung m-/p-Xylol - Probe ORSA Blindwert

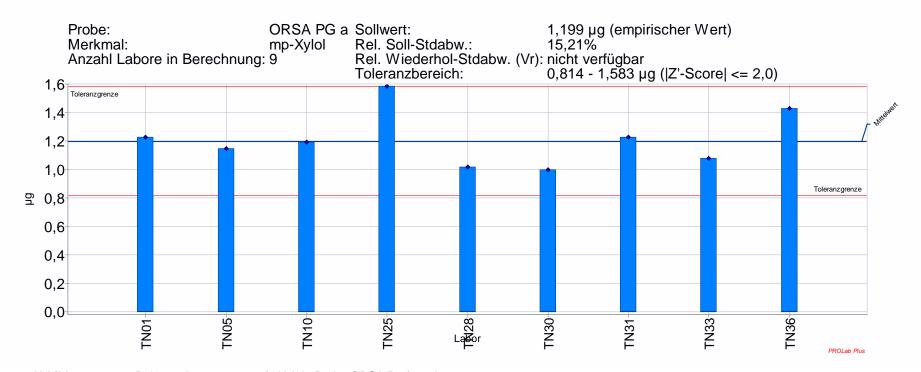


Abbildung 70: Robuste Auswertung m-/p-Xylol - Probe ORSA Prüfgas A

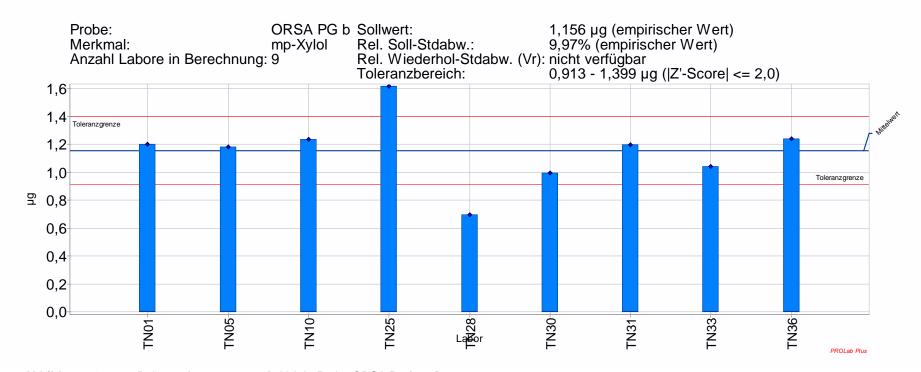
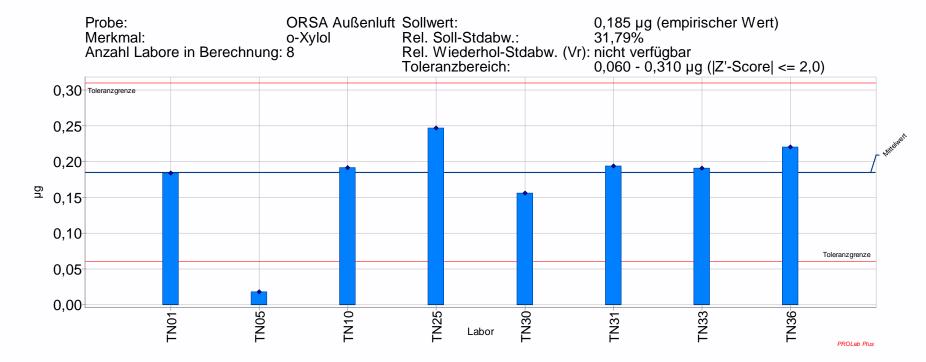
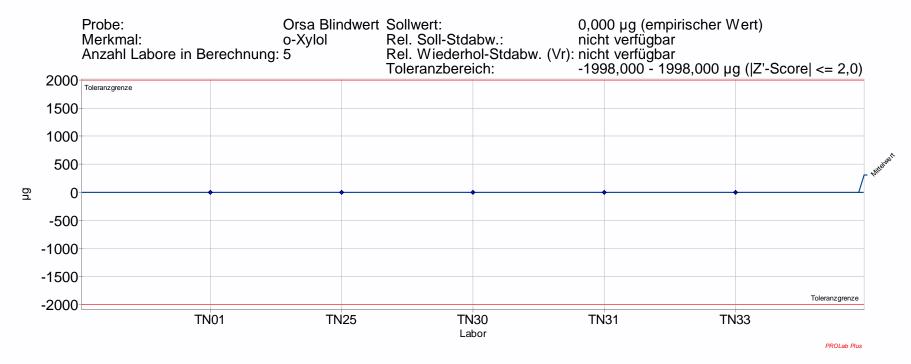




Abbildung 71: Robuste Auswertung m-/p-Xylol - Probe ORSA Prüfgas B

4.6.4 o-Xylol

Abbildung 72: Robuste Auswertung o-Xylol - Probe ORSA Außenluft

Abbildung 73: Robuste Auswertung o-Xylol - Probe ORSA Blindwert

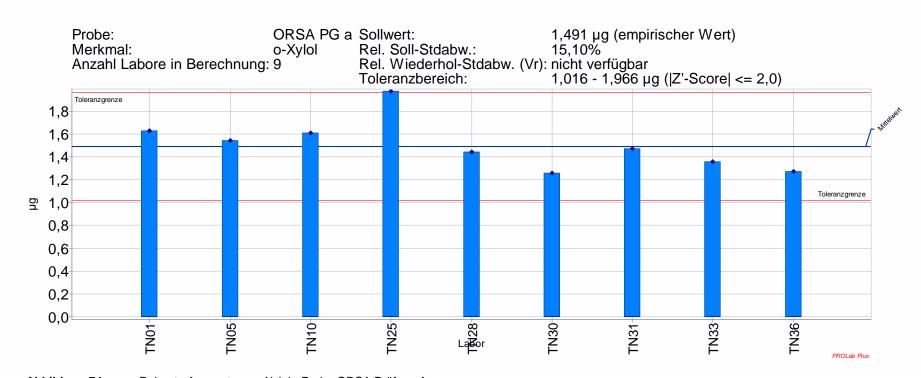


Abbildung 74: Robuste Auswertung o-Xylol - Probe ORSA Prüfgas A

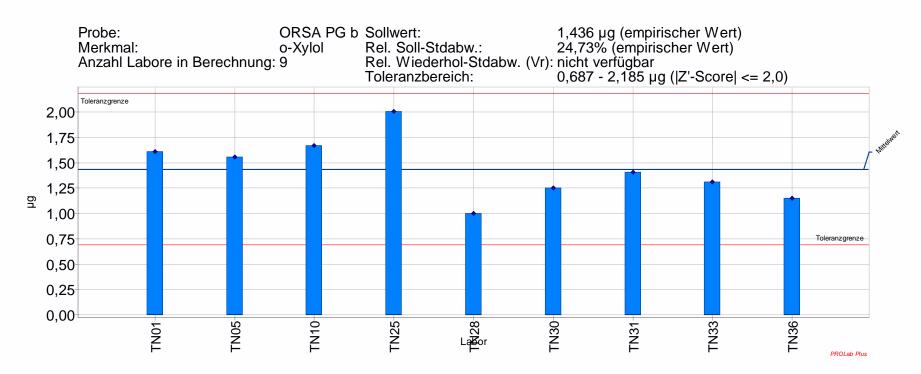


Abbildung 75: Robuste Auswertung o-Xylol - Probe ORSA Prüfgas B

4.6.5 Ethylbenzol

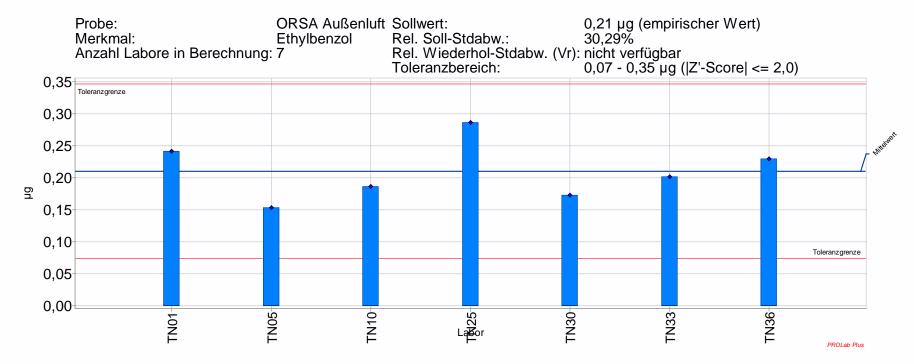
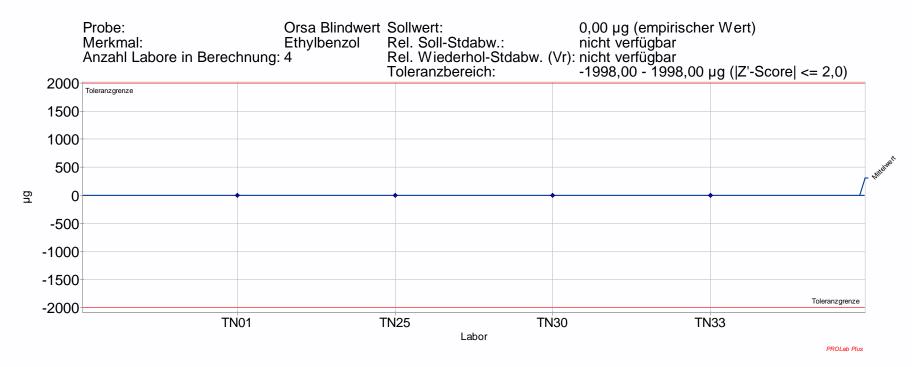
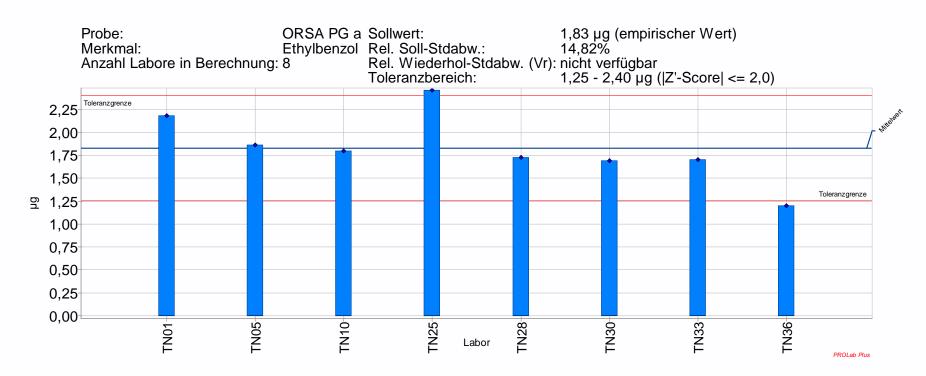




Abbildung 76: Robuste Auswertung Ethylbenzol - Probe ORSA Außenluft

Abbildung 77: Robuste Auswertung Ethylbenzol – Probe ORSA Blindwert

Abbildung 78: Robuste Auswertung Ethylbenzol - Probe ORSA Prüfgas A

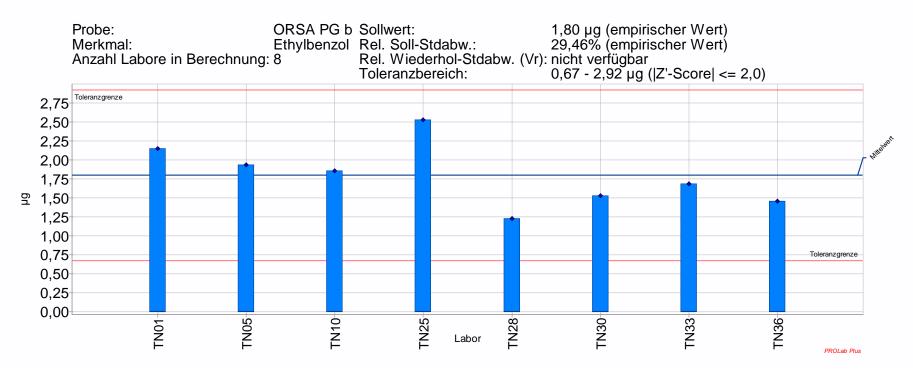


Abbildung 79: Robuste Auswertung Ethylbenzol - Probe ORSA Prüfgas B

5 Anhang: Teilnehmerwerte der Ergänzungsangebote

5.1 ORSA-Vergleichsmessungen

 Tabelle 27:
 Messwerte und Kenngrößen - Probe Außenluft

	Benzol	Toluol	m-/p-Xylol	o-Xylol	Ethylbenzol
Teilnehmer	μg	μg	μg	μg	μg
TN01	0,610	0,766	0,594	0,184	0,240
TN05	0,579	0,668	0,419	0,018	0,150
TN10	0,453	0,682	0,666	0,191	0,190
TN25	0,802	1,143	0,985	0,247	0,290
TN28	0,145	0,258	0,114		
TN30	0,523	0,720	0,568	0,156	0,170
TN31	0,536	0,806	0,635	0,194	
TN33	0,484	0,816	0,662	0,191	0,200
TN36	0,540	0,630	0,820	0,220	0,230
Sollwert	0,537	0,730	0,623	0,185	0,210
Soll-Stdabw.	0,120	0,151	0,213	0,059	0,060
Vergleich-Stdabw.	0,120	0,151	0,213	0,059	0,060
Standardfehler	0,040	0,050	0,071	0,021	0,020
Anzahl Einzelwerte	9	9	9	8	7

Tabelle 28: Messwerte und Kenngrößen - Probe Blindwert

	Benzol	Toluol	m-/p-Xylol	o-Xylol	Ethylbenzol
Teilnehmer	μg	μg	μg	μg	μg
TN01	0,000	0,000	0,000	0,000	0,000
TN10	< 0,015	< 0,015	< 0,015	< 0,015	< 0,01
TN25	0,034	0,000	0,000	0,000	0,000
TN28	0,185	0,305	0,138		
TN30	0,119	0,000	0,000	0,000	0,000
TN31	0,000	0,000	0,000	0,000	
TN33	0,000	0,000	0,000	0,000	0,000
Sollwert	0,054	0,051	0,023	0,000	0,000
Soll-Stdabw.	0,079	0,169	0,076	0,000	0,000
Vergleich-Stdabw.	0,079	0,169	0,076	0,000	0,000
Standardfehler	0,032	0,069	0,031		
Anzahl Einzelwerte	6	6	6	5	4

Tabelle 29: Messwerte und Kenngrößen - Probe Prüfgas A

	Benzol	Toluol	m-/p-Xylol	o-Xylol	Ethylbenzol
Teilnehmer	μg	μg	μg	μg	μg
TN01	1,770	2,058	1,226	1,630	2,180
TN05	1,628	2,031	1,149	1,545	1,860
TN10	1,378	1,785	1,194	1,611	1,800
TN25	2,393	2,762	1,585	1,974	2,460
TN28	1,446	1,924	1,016	1,444	1,730
TN30	1,375	1,691	0,997	1,258	1,690
TN31	1,473	1,879	1,226	1,473	
TN33	1,430	1,854	1,077	1,360	1,700
TN36	1,370	1,530	1,430	1,270	1,200
Sollwert	1,473	1,901	1,199	1,491	1,830
Soll-Stdabw.	0,142	0,303	0,182	0,225	0,270
Vergleich-Stdabw.	0,142	0,303	0,182	0,225	0,270
Standardfehler	0,047	0,101	0,061	0,075	0,100
Anzahl Einzelwerte	9	9	9	9	8

Tabelle 30: Messwerte und Kenngrößen - Probe Prüfgas B

	Benzol	Toluol	m-/p-Xylol	o-Xylol	Ethylbenzol
Teilnehmer	μg	μg	μg	μg	μg
TN01	1,746	2,026	1,200	1,608	2,150
TN05	1,697	2,093	1,180	1,556	1,930
TN10	1,406	1,813	1,236	1,667	1,860
TN25	2,489	2,853	1,616	2,004	2,530
TN28	1,115	1,314	0,694	1,002	1,230
TN30	1,346	1,636	0,994	1,251	1,530
TN31	1,469	1,864	1,198	1,409	
TN33	1,442	1,862	1,042	1,312	1,680
TN36	1,350	1,350	1,240	1,150	1,460
Sollwert	1,451	1,836	1,156	1,436	1,800
Soll-Stdabw.	0,239	0,487	0,115	0,355	0,530
Vergleich-Stdabw.	0,239	0,487	0,115	0,355	0,530
Standardfehler	0,080	0,162	0,038	0,118	0,190
Anzahl Einzelwerte	9	9	9	9	8

5.2 Ergänzende Prüfgasangebote PG1 bis PG15

5.2.1 Stickstoffmonoxid

	PG1	PG2	PG3	PG5	PG6	PG8	PG10	PG12	PG13	PG15
Einheit	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
TN02	-0,1	507,3	309,8	207,1	106,4	144,6	182,9	53,4	38,1	0,0
TN03	k.A.	k.A.	k.A.	k.A.	k.A.	k.A.	k.A.	k.A.	k.A.	k.A.
TN04	0,1	512,5	314,7	209,3	107,9	145,9	184,7	54,3	38,7	0,0
TN06	0,3	510,3	313,1	208,8	107,2	145,5	184,4	54,0	38,4	0,4
TN07	0,1	518,1	314,0	212,0	108,6	147,8	187,2	54,8	39,2	0,2
TN08	0,0	514,6	319,9	209,0	109,9	147,6	185,4	53,9	39,0	0,1
TN11	0,7	515,6	316,2	211,0	108,9	147,4	186,6	55,3	39,6	0,8
TN12	0,9	514,6	317,2	210,5	109,3	147,6	186,3	55,3	39,6	0,6
TN13	0,1	508,5	310,9	205,0	105,3	143,3	182,2	52,8	38,0	0,0
TN14	0,4	515,3	317,0	210,5	108,4	146,8	186,1	54,6	38,8	0,3
TN17	0,0	504,7	309,9	206,3	106,2	144,0	182,2	53,6	38,2	0,0
TN18	0,1	515,2	314,3	211,0	108,2	147,3	186,6	55,1	39,3	0,3
TN19	-0,3	515,5	315,7	210,5	108,2	146,8	185,8	57,7	39,0	0,0
TN20	0,4	534,4	328,4	218,2	112,2	151,8	192,1	56,0	39,6	-0,8
TN22	-0,1	505,1	309,9	205,9	106,0	143,4	181,5	53,3	38,0	-0,1
TN23	0,1	502,4	308,0	205,0	105,5	142,9	180,8	53,3	37,7	0,2
TN24	0,0	514,2	315,0	209,9	108,1	146,6	185,4	54,5	39,1	0,1
TN26	-0,3	514,8	318,1	209,9	109,2	147,1	185,6	54,2	38,7	-0,2
TN27	0,3	520,4	318,1	212,6	109,4	147,7	187,4	55,1	39,1	-0,1
TN29	1,3	516,4	318,6	212,6	110,2	148,7	188,3	56,3	40,5	1,3
TN34	0,4	513,1	314,1	210,0	107,7	146,5	185,3	54,7	38,9	0,2
TN37	0,0	515,1	314,1	210,6	108,2	147,0	186,1	54,8	39,0	0,0
Median	0,1	514,6	314,7	210,0	108,2	146,8	185,6	54,6	39,0	0,1
Sollwert	0,2	513,1	314,7	209,6	108,1	146,4	185,3	54,6	38,9	0,1

	PG1	PG2	PG3	PG5	PG6	PG8	PG10	PG12	PG13	PG15
Einheit	ppb	ppb	ppb	ppb						
Soll-Stdabw.	0,4	4,0	4,0	2,4	1,7	1,6	2,0	1,2	0,6	0,3
Anzahl Einzelwerte	21	21	21	21	21	21	21	21	21	21

5.2.2 Stickstoffdioxid

Angebot	PG1	PG2	PG3	PG5	PG6	PG8	PG10	PG12	PG13	PG15
Einheit	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
TN02	-0,3	2,8	198,8	0,4	101,0	62,9	24,8	-0,4	15,1	-0,5
TN03	k.A.	k.A.	k.A.	k.A.	k.A.	k.A.	k.A.	k.A.	k.A.	k.A.
TN04	-0,6	2,4	199,6	0,7	102,0	64,4	26,0	0,0	15,4	-0,6
TN06	-0,3	1,7	197,8	0,7	101,7	64,1	25,6	0,3	15,6	0,4
TN07	0,0	2,6	205,7	0,9	104,6	65,6	27,1	0,5	16,2	0,2
TN08	0,1	1,6	196,2	0,9	100,0	62,4	24,7	0,2	15,2	0,1
TN09	0,0	1,8	206,6	0,8	105,6	66,3	26,6	0,1	16,1	-0,3
TN11	0,2	3,7	201,0	1,5	102,9	65,0	26,5	0,5	16,0	0,0
TN12	0,6	4,2	201,4	2,0	103,3	65,5	27,2	0,9	16,6	0,5
TN13	-0,2	11,1	207,7	4,2	104,2	68,2	30,1	1,2	16,3	-0,3
TN14	0,6	1,1	198,6	0,4	102,3	64,6	25,9	0,2	15,9	0,6
TN15	-0,7	1,0	201,2	-0,6	102,6	64,2	25,1	-1,1	14,7	-1,5
TN16	0,1	1,9	201,4	1,0	103,5	65,1	26,2	0,2	16,0	-0,2
TN17	-0,2	3,0	196,5	1,3	100,9	63,7	26,0	0,5	15,8	0,0
TN18	-0,5	1,6	200,5	0,7	102,6	64,3	26,0	-0,2	15,5	-0,7
TN19	0,0	0,5	199,5	0,2	101,9	63,9	25,6	0,1	15,6	-0,2
TN20	-0,7	7,4	218,7	2,4	111,5	70,8	29,6	-0,1	16,7	-1,2
TN21	-0,2	1,7	200,2	0,6	102,2	64,4	26,0	0,3	15,8	-0,1
TN22	0,5	1,7	195,8	1,0	100,7	63,4	25,6	0,8	16,0	0,4
TN23	-0,1	3,0	196,3	1,1	100,5	63,3	25,8	0,1	15,6	-0,2
TN24	0,0	1,6	200,6	0,5	102,4	64,3	26,0	0,2	15,7	0,0
TN26	-1,1	1,7	200,0	-0,1	101,7	63,7	25,1	-1,1	14,5	-1,7

Angebot	PG1	PG2	PG3	PG5	PG6	PG8	PG10	PG12	PG13	PG15
Einheit	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
TN27	-0,1	4,0	204,6	1,4	104,5	66,3	27,2	0,4	16,2	-0,2
TN29	-0,5	4,1	202,8	1,5	104,0	66,0	27,2	-0,3	16,0	-0,4
TN32	0,1	1,9	202,9	1,1	104,2	65,6	26,7	0,4	16,0	-0,1
TN34	0,2	1,8	202,1	0,6	103,2	64,8	26,2	0,1	15,6	0,2
TN37	0,0	1,1	199,4	0,5	102,2	64,2	25,5	0,2	15,9	0,0
TN38	-0,2	1,7	196,6	0,7	100,3	63,0	25,5	0,2	15,5	-0,2
Median	-0,1	1,8	200,5	0,8	102,4	64,4	26,0	0,2	15,8	-0,2
Sollwert	-0,1	2,1	200,4	0,8	102,5	64,5	26,0	0,2	15,8	-0,1
Soll-Stdabw.	0,4	1,2	3,5	0,6	1,8	1,4	1,0	0,4	0,4	0,4
Anzahl Einzelwerte	27	27	27	27	27	27	27	27	27	27

5.2.3 Ozon

	PG1	PG4	PG7	PG9	PG11	PG14	PG15
Einheit	ppb	ppb	ppb	ppb	ppb	ppb	ppb
TN02	0,5	193,3	98,0	60,6	24,4	15,1	0,4
TN03	k.A.	k.A.	k.A.	k.A.	k.A.	k.A.	k.A.
TN04	0,1	196,6	99,1	61,4	24,5	15,1	0,3
TN06	0,3	200,7	102,7	64,4	25,0	15,6	0,4
TN07	0,2	199,4	100,4	62,0	24,9	15,4	0,0
TN08	-0,1	199,0	100,2	61,9	24,7	15,3	-0,1
TN11	0,4	200,8	101,6	62,8	25,1	15,4	0,1
TN12	0,3	200,1	101,4	62,6	24,9	15,3	0,0
TN13	0,1	200,2	101,3	62,7	25,2	15,7	0,2
TN14	1,7	196,0	99,0	61,0	24,2	14,9	1,5
TN17	0,0	197,5	99,6	61,6	24,5	15,2	0,0
TN18	0,2	196,7	98,7	60,8	23,8	14,5	-0,4
TN19	0,0	198,5	99,7	61,7	24,5	15,0	-0,1
TN20	0,0	191,2	97,1	60,1	23,8	14,6	0,1

	PG1	PG4	PG7	PG9	PG11	PG14	PG15
Einheit	ppb	ppb	ppb	ppb	ppb	ppb	ppb
TN22	0,4	199,2	100,9	62,4	25,1	15,5	0,4
TN23	0,7	198,5	100,7	62,3	24,9	15,5	0,2
TN24	0,0	198,2	99,7	61,5	24,4	15,0	0,0
TN26	-0,3	198,6	100,3	62,2	24,8	15,3	-0,2
TN27	0,3	197,4	100,0	61,9	24,8	15,3	-0,1
TN29	0,0	198,1	100,1	61,8	24,3	14,8	-0,3
TN34	0,1	198,6	99,9	61,9	24,7	15,2	0,1
TN35	k.A.	k.A.	k.A.	k.A.	k.A.	k.A.	k.A.
TN37	0,0	198,0	99,6	61,4	24,4	15,0	0,0
Median	0,1	198,5	100,0	61,9	24,7	15,2	0,0
Sollwert	0,2	198,4	100,0	61,8	24,6	15,2	0,1
Soll-Stdabw.	0,3	1,7	1,3	0,9	0,4	0,4	0,2
Anzahl Einzelwerte	21	21	21	21	21	21	21

Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen

Leibnizstraße 10 45659 Recklinghausen Telefon 02361 305-0 poststelle@lanuv.nrw.de

www.lanuv.nrw.de