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We propose two data-based priors for vector error correction models. Both

priors lead to highly automatic approaches which require only minimal user

input. An empirical investigation reveals that Bayesian vector error correction

(BVEC) models equipped with our proposed priors turn out to scale well to

higher dimensions and to forecast well. In addition, we find that exploiting

information in the level variables has the potential for improving long-term

forecasts. Thus, working with VARs in first differences may ignore valuable

information. A simulation study reveals that it is beneficial, in terms of esti-

mation accuracy, to use BVEC in the presence of cointegration. But if there is

no cointegration, the proposed priors provide a sufficient amount of shrinkage

so that the BVEC model has a similar estimation accuracy compared to the

Bayesian vector autoregressive (BVAR) estimated in first differences.
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1. Introduction

BVARs have a long and successful history in macroeconomic forecasting. Some researchers

estimate the BVAR with data in log-levels. They include enough lags and trust the es-

timation algorithm to clean up any unit roots in the errors (e.g., Doan et al. (1984),

Litterman (1986), Sims and Zha (1998), Bańbura et al. (2010), Giannone et al. (2015)).

More recently, BVARs estimated with data in log-differences have become more popular

(e.g., Koop (2013), Carriero et al. (2016), Korobilis and Pettenuzzo (2019), Huber and

Feldkircher (2019), Chan (2020) and Cross et al. (2020)). While a specification in levels

can exploit any cointegration relationships between the variables, a specification in differ-

ences offers some robustness in the presence of structural breaks, see Carriero et al. (2015).

Cointegration, where two or more non-stationary (integrated) variables can form a sta-

tionary linear combination and thus are tied together in the long-run, is a powerful concept

that is appealing from a forecasting standpoint. The information that the variables tend

to move together in the long-run should contain valuable and exploitable information

about their future states. VARs in log-differences ignore this information. The question

is how important the information in the level variables is for forecasting macroeconomic

variables. We address this question by providing a forecasting comparison of the BVAR

in log-differences with BVEC models and BVARs in log-levels. BVEC models are rarely

considered for forecasting macroeconomic variables. This is in particular the case for

applications in higher dimensions. Checking for cointegration with increasing dimensions

becomes burdensome and there is no automatic way to estimate BVEC models (see the

discussion of the literature below). In order to fill this gap, we propose two hierarchical

shrinkage priors for the long-run matrix of the BVEC model. For the first one, we pro-

pose a reduced rank prior which encourages shrinkage towards a low-rank, row-sparse and

column-sparse long-run matrix. For the second one, we propose the use of the horseshoe

prior which shrinks all elements of the long-run matrix towards zero. The horseshoe prior

leaves the rank of the long-run matrix unrestricted. Thus, we also use the horseshoe prior

with a reduced rank decomposition of the long-run matrix. The proposed approaches are
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highly automatic in the sense that they do not require much user input. Researchers who

estimate a BVAR (e.g., for calculating impulse response functions) in first differences may

be worried that possible cointegration between the level variables can bias their results.

In order to address this concern, they can use one of our proposed prior distributions for

the long-run matrix without any further efforts.

A simulation study reveals that BVEC models equipped with data-based priors per-

form well across a range of scenarios. In the presence of cointegration, BVEC models can

improve estimation accuracy over BVARs in first differences. In the absence of cointe-

gration, the data-based prior distributions are able to shrink the long-run matrix towards

zero so that the estimation accuracy of the BVEC model is similar compared to the VAR

estimated in first differences. Finally, BVEC models with our data-based prior turn out to

be more flexible across different simulation setups than BVECs with fixed cointegration

rank and BVARs in levels.

In an empirical investigation, based on several macroeconomic time series, we find that

BVEC models, equipped with our proposed priors, forecast well both in terms of point

and density forecasting accuracy. In particular for longer forecasting horizons, it turns out

that exploiting information in the level variables has the potential for improving forecasts.

Thus, working with VARs in first differences may ignore valuable information. Further-

more, the forecasting performance of BVARs in levels strongly depends on the model size

and whether an expanding window or rolling window is used. In contrast, the BVEC

models turn out to be more robust to such choices.

By proposing data-based priors for vector error correction models we contribute to the

Bayesian cointegration literature (e.g., Villani (2000), Villani (2001), Strachan (2003),

Strachan and Inder (2004), Villani (2005), Koop et al. (2009), Huber and Zörner (2019)

and Hauzenberger et al. (2020)). These studies estimate the BVEC conditional on the

number of cointegration relations. In practice, it may not always be straightforward to
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select the number of cointegration relations and to find sensible identifying restrictions

for the cointegration vector or space. This problem becomes more severe in higher dimen-

sions. Closely related to the cointegration literature is the prior proposed by Giannone

et al. (2019). They use a prior based on economic theory for the long-run matrix. How-

ever, they find that it does not scale well to higher dimensions. In contrast, our proposed

data-based priors are highly automatic. They do not rely on economic theory, selection

of the cointegration rank, identifying restrictions and scale well to higher dimensions.

The remainder of this paper is organized as follows. Section 2 lays out and discusses

the econometric framework. Section 3 provides a simulation study. Section 4 contains an

overview of the data and presents the empirical findings. The last section concludes.

2. Econometric Framework

2.1. VAR

Let yt = (y1,t, . . . , yn,t) be an 1× n vector of endogenous variables at time t. A standard

VAR in levels can be written as:

yt = yt−1φ1 + · · ·+ yt−pφp + ut (1)

where ut ∼ N(0,Σ) and φ1, . . . ,φp are n×n VAR coefficient matrices. Subtracting yt−1

on both sides of the equation and rearranging terms yields the error correction model

∆yt = yt−1Π + ∆yt−1γ1 + · · ·+ ∆yt−p+1γp−1 + ut (2)

where ∆yt = yt − yt−1, Π = (φ1 + · · · + φp) − In and γ l = −(φl+1 + · · · + φp), with

l = 1, . . . , p − 1. Thus, using a VAR with variables in first differences implicitly sets the

long-run matrix Π = 0 and thereby ignores information in the level variables. We inves-

tigate whether information in the level variables is useful for forecasting macroeconomic

variables. Furthermore, we propose two data-based priors for Π. For the VAR coeffi-
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cient matrices γ1, . . . ,γp−1 we employ the Minnesota prior which has led to the success of

BVARs. Cross et al. (2020) compare the forecasting performance of the Minnesota prior

with a range of other proposed priors in the literature and find that the Minnesota prior

remains a solid choice. We provide a derivation of the Gibbs sampler for estimating the

BVEC model in the online appendix.

2.2. Minnesota prior for the VAR coefficients

It is well known that VAR models are often overparametrized and that the most recent

lags of a variable are expected to contain more information about the variable’s current

value than previous lags. We therefore use the Minnesota prior, which shrinks more

distant lags more heavily towards zero, for the VAR coefficients

γijl ∼ N(0, V ij
l ) (3)

for i = 1, . . . , n and j = 1, . . . , n, with

V ij
l =


κ21
l2
, if i = j

κ22
l2
, if i 6= j

. (4)

The hyperparameters κ1 and κ2 control the informativeness of the prior. Giannone et al.

(2015) estimate them by using a hierarchical prior for the hyperparameters. Gelman

(2006) provides strong arguments for using the half-Cauchy distribution over an inverse

gamma distribution for the scale parameters and Polson and Scott (2012) show that the

half-Cauchy prior has excellent frequentist risk properties. Against this background, we

employ the half-Cauchy prior for the hyperparameters

κ1 ∼ C+(0, 1), (5)

κ2 ∼ C+(0, 1), (6)

respectively. Note that for the VAR in levels we use the same type of prior but with
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mean one for the first own lag coeffcients.

2.3. Cointegration

If the n time series in yt are stationary, Π is a full rank matrix. If they all are non-

stationary, integrated of order 1 or I(1), but there is no cointegration, Π will be a zero

matrix. In the latter case, no information is lost by using the VAR in first differences. In

the error correction model, the focus is on the indeterminate case where Π is of reduced

rank 0 < r < n. It is possible to decompose Π into two n × r matrices Π = βα′ with

β forming r cointegrating relations, ytβ, or stationary linear combinations of the I(1)

variables in yt. In practice, it may not be straightforward to select r and the uncertainty

surrounding the cointegrating rank is seldom formally incorporated into the analysis.

Note that α and β are not identified since any transformation with a full-rank matrix

α̃′ = Pα′, β̃ = βP−1 leaves Π unchanged. The traditional approach in the Bayesian

cointegration literature (e.g., Villani (2001)) is to impose the normalization β = (Ir,β∗)′

conditioning on the cointegration rank, implying r2 restrictions on β. Two recent ex-

amples using this normalization are Huber and Zörner (2019) and Hauzenberger et al.

(2020). From a practical perspective, this identification scheme is sensitive with respect

to permutations of the elements in yt, rendering the ordering of the variables an impor-

tant modelling decision. In addition, as noted by, among others, Kleibergen and van

Dijk (1994) and Geweke (1996), it is crucial that proper priors are used for α and β.

An alternative approach is to place a prior on the cointegrating space, which is the only

object the data is informative about, see Villani (2000). Such types of priors are studied

in Strachan (2003), Strachan and Inder (2004), Villani (2005) and Koop et al. (2009).

2.4. Data-based Priors for the long-run Matrix

We propose two data-based priors for the vector error correction model. For the first

approach, we work within a parameter-expanded framework, see Liu and Wu (1999), and

assign shrinkage priors to α and β to shrink the redundant columns and rows towards zero.

5



This means we set r = n and leave α and β unidentified. The second approach involves

placing a hierarchical prior directly on Π. Both alternatives are highly automatic. They

do not need economic theory, ordering of the variables, fine tuning of hyperparameters

and selection of the cointegration rank.

2.4.1. Reduced Rank Prior

Goh et al. (2017) show that low-rankness and row/column sparsity of Π can be repre-

sented as a certain row/column sparsity of α and that β and such representations are

invariant to any nonsingular transformation. Here we formulate a prior that encourages

shrinkage towards a low-rank, row-sparse and column-sparse matrix Π. We leave α and

β unidentified and employ the following prior

βij ∼ N(0, λ2
β,iλ

2
η,j) (7)

αij ∼ N(0, λ2
α,iλ

2
η,j) (8)

for i = 1, . . . , n and j = 1, . . . , n. The hyperparamter λη,j shrinks the elements of the

j-th column of β and α. If the columns of α and β are sparse, Π is of reduced rank.

Thus, λη,j effectively shrinks the cointegration rank. The hyperparamter λβ,i shrinks the

i-th row of β. Shrinking the i-th row of β towards zero implies that variable yi is not im-

portant for forming a stationary combination with any other set of variables. Finally, the

hyperparamter λα,i shrinks the i-th row of α. If the i-th row of α is sparse, ∆yi does not

adjust to any stationary combination of variables, i.e., it is weakly exogenous. Therefore,

λα,i controls whether the information in the level variables helps explain variation in ∆yi.

The selection of all three hyperparameters is important. In order to avoid fixing them

at inappropriate values we estimate all three hyperparameters in a Bayesian fashion by

placing half-Cauchy priors on them

λβ,i ∼ C+(0, 1), (9)

λα,i ∼ C+(0, 1), (10)
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λη,j ∼ C+(0, 1). (11)

This hierarchical Bayes approach allows us to take uncertainty about the hyperparam-

eters into account. Note that Chakraborty et al. (2020) use a related prior approach for

rank reduction in Bayesian sparse multiple regression.

2.4.2. Horseshoe prior

It is possible to leave the rank of Π unrestricted and place a prior directly on its elements.

Here we follow Carvalho et al. (2010) and use the horseshoe prior, which is free of tuning

parameters and has many appealing frequentist properties, see, e.g., Ghosh et al. (2016),

Armagan et al. (2013) and van der Pas et al. (2014). The horseshoe prior takes the form

Πij ∼ N(0, τ 2ψ2
ij), (12)

τ ∼ C+(0, 1), (13)

ψij ∼ C+(0, 1). (14)

The idea of this prior is that the global component τ 2 shrinks all components towards zero

and that the local component ψ2
ij prevents important coefficients from being shrunken to

zero. The horseshoe prior requires absolutely no input from the researcher, while retaining

its excellent shrinkage properties at the same time.

2.4.3. Rank selection and reduced rank decomposition

The horseshoe prior leaves the rank of Π unrestricted. However, it is possible to combine

the horseshoe prior with a reduced rank decomposition of Π. Therefore, we need to select

the rank of Π. Based on the rank selection criterion (RSC) of Bunea et al. (2011), it is

possible to determine the rank of Π. For this purpose, it is useful to write the model in

(2) in more compact form

Y ∆ = Y −1βα
′ +XΓ +U . (15)

The dependent variables are stacked into a T × n matrix Y ∆ so that its t-th row
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is ∆yt, the t-th row of Y −1 is yt, the t-th row of X is (∆yt−1, . . . ,∆yt−p+1) and

Γ = (γ ′1, . . . ,γ
′
p−1)′.

The estimated rank r̂ is given by the number of eigenvalues of the matrix Ỹ
′
∆P Ỹ ∆

which exceeds a threshold µ:

r̂ = max{r : λr(Ỹ
′
∆P Ỹ ∆) ≥ µ}, (16)

with Ỹ ∆ = Y ∆ −XΓ, P = Y −1(Y ′−1Y −1)−1Y ′−1 being the projection matrix onto the

column space of Y −1 and λr denotes the r-th largest eigenvalue of Ỹ
′
∆P Ỹ ∆.

Following the recommendation of Bunea et al. (2011), the threshold µ is set equal to

µ = 4S2n with

S2 =
||Ỹ ∆ − P Ỹ ∆||2

Tn− n2
. (17)

We can use a reduced rank decomposition of Π for any selection of the cointegration

rank. Let Π = WDV ′ be the singular value decomposition of Π. Collect the r largest

singular values and corresponding vectors in the matricesD∗ = diag(d1, d2, . . . , dr),W
∗ =

(w1,w2, . . . ,wr) and V ∗ = (v1,v2, . . . ,vr). A rank r < n restriction to Π is then

given by Π = W ∗D∗V ∗′. Carriero et al. (2011) and Chakraborty et al. (2020) use

the singular value decomposition for the posterior mean of the coefficient matrix for

reduced rank estimation. In order to account for parameter uncertainty and uncertainty

about the cointegration rank r, we determine r̂, set r = r̂ and employ the singular value

decomposition for each posterior draw of Π.

3. Simulation Study

In this section, we evaluate the frequentist properties of the proposed priors in a Monte

Carlo study. We wish to establish that it can be beneficial, in terms of estimation accuracy,

to use BVEC models in the presence of cointegration. But if no cointegration is present,
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the proposed priors provide sufficient shrinkage so that the BVEC has similar estimation

accuracy compared to the VAR estimated in first differences. We employ the four DGPs

used in Kleibergen and Paap (2002):

∆y′t =


0.1

0.1

0.1

+ γ ′1∆y′t−1 + γ ′2∆y′t−2 + εt,

∆y′t =


0.1

0.1

0.1

+


−0.2

0.2

0.2


(

1 0 −1

)
y′t−1 + γ ′1∆y′t−1 + γ ′2∆y′t−2 + εt,

∆y′t =


0.1

0.1

0.1

+


−0.2 −0.2

0.2 −0.2

0.2 0.2


1 0 −1

0 1 −1

y′t−1 + γ ′1∆y′t−1 + γ ′2∆y′t−2 + εt,

∆y′t =


0.1

0.1

0.1

+


−0.2 −0.2 −0.2

0.2 −0.2 −0.2

0.2 0.2 −0.2




1 0 −1

0 1 −1

0 0 1

y′t−1 + γ ′1∆y′t−1 + γ ′2∆y′t−2 + εt,

where εt ∼ N(0, I). The four DGPs, denoted by DGP1, DGP2, DGP3 and DGP4,

contain zero, one, two and three cointegrating relations, respectively. Setting γ1 = γ2 = 0

and using the sample size T = 100 gives the exact simulation setups used in Kleibergen

and Paap (2002). For our purposes we extend the simulation setups by setting γij1 = 0.2

if i = j and γij1 = 0.1 if i 6= j and similarly γij2 = −0.1 if i = j and γij2 = −0.01 if

i 6= j. We denote the four DGPs with γ1 = γ2 = 0 by DGP1a, DGP2a, DGP3a and

DGP4a and the four DGPs with γ1 6= γ2 6= 0 by DGP1b, DGP2b, DGP3b and DGP4b,

respectively. Finally, we also consider a sample size of T = 200. Both considered sample

sizes are typical in macroeconomic applications.

We compare the estimation accuracy of the BVAR both in levels and first differences

with the BVEC model. The BVEC model is estimated with the reduced rank prior

(BVECrr), with the horseshoe prior (BVEChh) and with the horsehoe prior combined
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with the reduced rank based on the SVD decomposition (BVEChhrs). Finally, we also

estimate the BVEC with a fixed rank of r = 1, r = 2 and r = 3. In this case, we

leave α and β unidentified and place fairly uninformative independent N(0, 1) priors on

their elements.1 All models use the Minnesota prior described in equation (3) and use

p = 5 (five lags for the BVAR in level and four lags for the BVAR in differences), as in

our empirical investigation. In order to be able to compare the estimation accuracy, we

transform the coefficient estimates of the BVAR in differences and the BVEC into the

level coefficients φ in equation (1). We do the same for the true coefficients to calculate

the mean absolute error2 (MAE) using S = 500 simulations

MAE =
1

S × n2 × p

S∑
s=1

n∑
i=1

n∑
j=1

p∑
l=1

|φijl − φ̂
ij
l (s)|. (18)

The MAE for the all DGPs is summarized in the top half of Table 1. The simulation

study shows that in case of cointegration the BVAR in first differences generates the least

precise estimates. In this case, estimation accuracy can be improved by using BVEC

models. In case of no cointegration relations, the data-based priors are able to shrink the

long-run matrix towards zero so that the BVEC models have similar estimation accuracy

compared to the BVAR estimated in first differences. The BVAR in levels performs best

when γ1 = γ2 = 0 and no cointegration is present. In the other cases it provides the

worst estimation accuracy among all models. The reason is that the Minnesota prior of

the BVAR in levels shrinks the coefficients towards a random walk. In cases of cointegra-

tion and when γ1 6= γ2 6= 0, BVEC leads to improved estimation accuracy compared to

the BVAR in levels. Moreover, the BVEC models improve much more than the BVAR in

first differences or BVAR in levels in terms of relative MAE for T = 100 versus T = 200.

Overall, the BVEC models equipped with data-based priors turn out to be safe options

as they are doing well across all simulation setups. They increase estimation accuracy in

case of cointegration, but if no cointegration is present the data-based priors provide a

sufficient amount of shrinkage so that the BVEC model yields similar estimation accuracy

1We also considered N(0, 5) priors, which led to very similar results.
2We also have calculated the mean squared error which leads to the same conclusions.
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Table 1: Simulation Results

Model DGP1a DGP2a DGP3a DGP4a DGP1b DGP2b DGP3b DGP4b

T = 100 MAE

BVARdiff 0.0181 0.0442 0.0656 0.0705 0.0493 0.0606 0.0745 0.0777
BVARlevel 0.0062 0.0251 0.0322 0.0338 0.0662 0.0623 0.0599 0.0548
BVEChh 0.0192 0.0299 0.0255 0.0270 0.0502 0.0540 0.0512 0.0498
BVEChhrs 0.0193 0.0288 0.0257 0.0271 0.0501 0.0540 0.0521 0.0499
BVECrr 0.0197 0.0234 0.0253 0.0263 0.0503 0.0511 0.0515 0.0488
BVECr=1 0.0211 0.0228 0.0339 0.0379 0.0506 0.0498 0.0554 0.0541
BVECr=2 0.0228 0.0236 0.0240 0.0277 0.0515 0.0508 0.0507 0.0490
BVECr=3 0.0239 0.0239 0.0242 0.0250 0.0521 0.0512 0.0512 0.0488

T = 200 MAE

BVARdiff 0.0124 0.0429 0.0635 0.0680 0.0401 0.0541 0.0692 0.0702
BVARlevel 0.0032 0.0207 0.0273 0.0277 0.0605 0.0511 0.0490 0.0448
BVEChh 0.0129 0.0165 0.0164 0.0176 0.0404 0.0414 0.0405 0.0393
BVEChhrs 0.0128 0.0165 0.0164 0.0177 0.0404 0.0414 0.0405 0.0393
BVECrr 0.0133 0.0151 0.0163 0.0169 0.0405 0.0406 0.0403 0.0386
BVECr=1 0.0139 0.0147 0.0295 0.0337 0.0406 0.0401 0.0462 0.0462
BVECr=2 0.0148 0.0152 0.0162 0.0206 0.0408 0.0406 0.0402 0.0396
BVECr=3 0.0152 0.0164 0.0165 0.0167 0.0410 0.0410 0.0405 0.0386

T = 100 MSFE

BVARlevel 1.0280 0.9758 0.8851 0.8690 1.0308 1.0049 0.9159 0.8447
BVEChh 1.0210 0.9710 0.8759 0.8638 1.0076 0.9896 0.9111 0.8454
BVEChhrs 1.0287 0.9661 0.8803 0.8784 1.0235 0.9939 0.9180 0.8511
BVECrr 1.0240 0.9512 0.8665 0.8642 1.0064 0.9671 0.9056 0.8358
BVECr=1 1.0226 0.9476 0.9039 0.9093 1.0078 0.9495 0.9517 0.8970
BVECr=2 1.0499 0.9539 0.8640 0.8820 1.0250 0.9675 0.8965 0.8548
BVECr=3 1.0673 0.9647 0.8669 0.8612 1.0346 0.9827 0.8999 0.8336

T = 200 MSFE

BVARlevel 1.0157 0.9526 0.8944 0.8532 1.0467 0.9906 0.9199 0.8508
BVEChh 1.0132 0.9398 0.8830 0.8497 1.0108 0.9778 0.9094 0.8507
BVEChhrs 1.0149 0.9455 0.8817 0.8496 1.0153 0.9944 0.9110 0.8502
BVECrr 1.0092 0.9283 0.8820 0.8477 1.0112 0.9653 0.9090 0.8491
BVECr=1 1.0168 0.9210 0.9096 0.9184 1.0052 0.9579 0.9551 0.9206
BVECr=2 1.0248 0.9330 0.8807 0.8648 1.0141 0.9683 0.9085 0.8812
BVECr=3 1.0365 0.9364 0.8842 0.8457 1.0172 0.9724 0.9087 0.8455

The top half of the table shows the MAE as defined in equation (18). The bottom half of the table
shows the MSFE as defined in equation (19) relative to the BVAR in first differences. We consider
the BVAR in first differences (BVARdiff), the BVAR in levels (BVARlevel), the BVEC model with
horseshoe prior (BVEChh), with horseshoe prior combined with rank selection (BVEChhrs), with
reduced rank prior (BVECrr) and with fixed rank (BVECr=x).
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compared to the BVAR estimated in first differences.

Comparing the BVEC models with data-based priors with the BVEC models with fixed

rank reveals that it is beneficial in terms of estimation accuracy if the selected rank is

equal to the true cointegration rank. However, there is a high risk, in terms of estimation

accuracy, to select the wrong rank. This is in particular the case if the selected rank is

smaller than the true rank. The BVEC models with data-based priors do better if the

true rank is equal to zero but do not do much worse if the true rank is larger than zero. In

particular, the reduced rank prior does a good job in shrinking the rank so that estimation

accuracy is only slightly worse than the BVEC which fixes the rank equal to the true rank.

So far we have focused on estimation accuracy. Next we consider the out-of-sample fore-

casting performance measured by the mean squared forecasting error (MSFE) averaged

over all variables and all S = 500 simulations

MSFE =
1

S × n

S∑
s=1

n∑
i=1

(y
(s)
i,T+1 − ŷ

(s)
i,T+1)2. (19)

The results for the MSFE can be found in the bottom half of Table 1. We report

the MSFE of each model by dividing it by the MSFE of the BVAR in first differences.

Thus, values lower than one indicate better forecasting performance than the BVAR in

first differences. Plausibly, we find, in case of no cointegration, that the BVAR in first

differences provides the best forecasting performance. Nevertheless, the BVEC models

with data-based priors are not much worse in this case. In the presence of cointegration

the BVEC models and the BVAR in levels outperform the BVAR in first differences.

These results are in line with the results for the estimation accuracy. Thus, we find that

higher estimation accuracy translates into better out-of-sample forecasting performance.

Comparing the BVEC models with data-based priors with the BVEC models with fixed

cointegration rank reveals that fixing the cointegration at the true rank improves the

forecasting performance. However, selecting the cointegration rank lower than the true

rank is harmful for the forecasting performance. In contrast, the BVECs with data-based
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priors perform well for all DGPs and only perform slightly worse than the BVECs with

fixed rank equal to the true rank.

Finally, we wish to emphasize the benefit of the shrinkage priors in a situation where

additional variables are added to the system which may not be cointegrated with any

other variable. In the online appendix we provide results for this case. In particular,

we consider adding one variable to the DGPs which is not cointegrated with the other

variables. In this setup, the BVEC models with data-based priors improve relative to the

BVEC models with fixed rank. This illustrates the advantage of the data-based priors.

In order to save space, we do not report the forecasting results for the BVEC models

with fixed rank for macroeconomic time series, but instead note that they are in line with

our simulation results. In particular, the data-based priors turn out to be important as a

protection against overfitting which translates into poor out-of-sample forecasts.

4. Empirical Investigation

4.1. Data

We consider 15 macroeconomic time series, documented in Table 2, which are typical

choices in the BVAR literature. All data are sourced from the Federal Reserve Bank of

St. Louis economic database. The quarterly data cover the period from 1959-Q1 to 2019-

Q4. We use a logarithmic transformation for all variables. We assume that all variables in

log-differences are approximately stationary. This is a standard assumption in the BVAR

literature and thus allows us to stay in line with the variable transformations (model spec-

ifications) used in the BVAR literature. For the estimation, all variables are standardized

and for the forecasting evaluation we undo the standardization of the variables.
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Table 2: Macroeconomic Time series

Name ID

Real Gross Domestic Product GDPC1
Real Personal Consumption Expenditures PCECC96
Real Gross Private Domestic Investment GPDIC1
Consumer Price Index for All Urban Consumers: All Items CPIAUCSL
Civilian Employment CE16OV
Gross Domestic Product: Chain-type Price Index GDPCTPI
Gross Private Domestic Investment: Chain-type Price Index GPDICTPI
Average Hourly Earnings of Production and Nonsupervisory Employees CES2000000008
Nonfarm Business Sector: Real Output Per Hour of All Persons OPHNFB
Real M2 Money Stock M2REAL
Private Residential Fixed Investment PRFI
Industrial Production Index INDPRO
Industrial Production: Final Products IPFINAL
All Employees, Service-Providing SRVPRD
Personal Consumption Expenditures: Chain-type Price Index PCECTPI

All times series have been downloaded from the FRED database.

4.2. Forecasting setup

We consider both an expanding window and a rolling window (using 100 periods) to eval-

uate the forecasts from 1984-Q2 to 2019-Q4. The rolling window approach allows us to

investigate the importance of taking into account structural breaks in the BVEC models.

In order to investigate how well the models and different priors scale to higher dimen-

sions, we estimate BVARs with 4 variables, BVARs with 10 variables and BVARs with

15 variables. The four variable VAR includes real gross domestic product (GDP), real

consumption, real investment and consumer prices (CPI), the 10 variable VAR includes

the first 10 variables in Table 2 and the 15 variables VAR includes all variables in Table 2.

Combining the expanding window approach and rolling window approach with the four,

ten and fifteen variable VAR gives us six different scenarios which we use for our forecast-

ing comparison. Using six different scenarios allows us to compare the robustness of the

different BVARs. For real GDP, real consumption and CPI we compute point forecasts

ŷi,t+h as well as density forecasts p(yi,t+h|Y 1:t) for the horizons h = 1, . . . , 40. As argued

by Giannone et al. (2019), the accuracy of long-term forecasts is of direct importance in

many VAR applications, including the estimation of impulse response functions, obtained
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as the difference between conditional and unconditional forecasts. Furthermore, the anal-

ysis of long-run forecasts appears to be a particularly useful device to detect spurious

deterministic overfitting, a type of model misspecification that can affect all other aspects

and applications of VARs, for detailed discussion, see Giannone et al. (2019). The fore-

casts are evaluated at t = t0, . . . , T − h. Let yoi,t+h denote the actual value of the variable

yi,t+h. The mean squared forecasting error (MSFE) is calculated by

MSFE =

∑T−h
t=t0

(yoi,t+h − ŷi,t+h)2

T − h− t0 + 1
(20)

and the average log predictive likelihood (ALPL) is calculated as

ALPL =
1

T − h− t0 + 1

T−h∑
t=t0

log p(yi,t+h = yoi,t+h|Y 1:t). (21)

In our forecasting evaluation we compare the BVAR in log-levels, the BVAR in log-first

differences and the BVEC models with each other. We consider the BVEC model with the

horseshoe prior, the BVEC model with the horseshoe prior combined with rank selection

and the BVEC model with the reduced rank prior. Consistent with quarterly data, we

use p = 5 (five lags for the BVAR in levels and four lags for the BVAR in differences). As

a simple benchmark we use an AR(1) model.

4.3. Forecasting Results

We start with the discussion of the short-run forecasting performance followed by a dis-

cussion about the forecasting results for all 40 horizons. In particular, we first focus on

the more conventional forecasting horizons of one quarter, one year and two years. These

can be found in Figures A.1 to A.6. The first three figures show the MSFE, relative to the

AR(1) benchmark model, for GDP, Consumption and CPI, respectively. The last three

show the ALPL, relative to the AR(1) benchmark model, for GDP, Consumption and

CPI, respectively. Furthermore, each figure contains the results for all six forecasting se-

tups. In most cases the different BVAR models outperform the benchmark AR(1) model.

This is in particular the case for one and two years ahead and for density forecasts. In

15



addition, we find that the BVEC equipped with our different priors forecasts well. This

finding tends to hold across the different model sizes. Furthermore, in several cases the

forecasting performance improves with a higher model size. This shows the BVEC models

with the data-based priors scale well to higher dimensions. Overall, they can deliver the

best forecasting performance, but where not, they do not go too far wrong. This stresses

the potential importance of using information in the level variables. However, the BVAR

in levels tends to forecast worse at short horizons compared to the BVEC models.

The best forecasting performance of the BVARs depends on the predicted variable,

forecasting horizons and whether a rolling or an expanding window is used. For the pre-

dicted variable GDP, no single best model forecasts emerges. Nevertheless, it is always a

BVEC model which provides the best point or density forecasts for all horizons. For one

quarter ahead, the BVEC model with the horseshoe prior, four variables and an expand-

ing window provides the best point forecasts. For one year ahead, the BVEC model with

the reduced rank prior, 15 variables and an expanding window approach provides the best

point forecasts. Finally, for two years ahead, the BVEC model with the horseshoe prior,

10 variables and a rolling window provides the best point forecasts. In terms of density

forecasts, we find that the BVEC model with the horseshoe prior, four variables and a

rolling window for one quarter ahead does best. The BVEC model with the reduced rank

prior, 15 variables and a expanding window for one year ahead provides the best density

forecasts. Finally, the BVEC with the reduced rank prior, 15 variables and a rolling win-

dow provides the best density forecasts for two years ahead.

For consumption, we obtain a clearer picture. We find that the BVEC with the horse-

shoe prior and 15 variables using a rolling window provides the best point and density

forecasts. Only for one quarter ahead, the BVEC model with four variables provides

slightly better density forecasts. Finally, for CPI it turns out that the BVAR in log-

differences tends to provide the best point as well as density forecasts. The forecasting

performance of the BVEC models is in many cases only slightly worse or equal. For one
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quarter ahead, the BVEC models with the horseshoe prior and the BVAR in log-differences

with 15 variables and a rolling window provide the best point forecasts. The best point

forecasts for one year and two years are provided by the BVAR in log-differences using 10

variables and a rolling window. In terms of density forecasts, the BVAR in log-differences

does best for one quarter and one year ahead. Finally, for two years ahead the BVAR

in log-differences with 15 variables and an expanding window and the BVEC model with

the horseshoe prior, 15 variables and a rolling approach provide the best density forecasts

for CPI.

Figures A.7 to A.12 show the out-of-sample forecasting results for all 40 horizons. The

first three figures depict the MSFE for GDP, Consumption and CPI, respectively. The

last three figures show the ALPL for GDP, Consumption and CPI, respectively. Fur-

thermore, each figure contains the results for all six forecasting setups. These figures

reveal that the BVEC models tend to outperform the BVAR in differences as well as the

AR(1) benchmark model for all variables. These findings hold for all six scenarios and for

point as well as density forecasts at forecasting horizons higher than two years. Thus, in

particular for forecasting at long horizons, the information from the level variables turn

out to be valuable. The forecasting performance of the BVAR in levels strongly depends

on the model size and whether an expanding window size or rolling window approach

is used. Although they do best in some cases, they perform quite poorly in other cases.

In contrast, the BVEC models turns out to be more robust and appears to be a safe choice.

5. Conclusion

We have proposed two different priors for the BVEC models. These priors are free of

tuning parameters, do not require economic theory, and do not require the selection of the

cointegration rank. We provide a simulation study which illustrates that it is beneficial,

in terms of estimation accuracy, to use a BVEC model in the presence of cointegration.

In the presence of no cointegration, the proposed priors sufficiently shrink the coefficients,
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so that the BVEC has similar estimation accuracy compared to the BVAR estimated in

first differences. Furthermore, BVEC models with our data-based prior turn out to be

more flexible across different simulation setups than BVEC models with fixed rank and

BVARs in levels. A comparison of the point as well as the density forecasting performance

of BVARs in log-differences with BVEC models and BVARs in log-levels reveals that it

can be beneficial to use information from the level variables for out-of-sample forecasting.

Furthermore, we find that BVEC models scale well to higher dimensions and deliver

precise forecasts.
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Bańbura, M., Giannone, D., and Reichlin, L. (2010). Large Bayesian vector auto regres-

sions. Journal of Applied Econometrics, 25(1):71–92.

Bunea, F., She, Y., and Wegkamp, M. (2011). Optimal selection of reduced rank estima-

tors of high-dimensional matrices. The Annals of Statistics, 39(2):1282–1309.

Carriero, A., Clark, T., and Marcellino, M. (2015). Bayesian VARs: Specification choices

and forecast accuracy. Journal of Applied Econometrics, 30(1):46–73.

Carriero, A., Clark, T., and Marcellino, M. (2016). Common drifting volatility in large

Bayesian VARs. Journal of Business and Economic Statistics, 34(3):375–390.

Carriero, A., Kapetanios, G., and Marcellino, M. (2011). Forecasting large datasets

with Bayesian reduced rank multivariate models. Journal of Applied Econometrics,

26(5):735–761.

Carvalho, C., Polson, N., and Scott, J. (2010). The horseshoe estimator for sparse signals.

Biometrika, 97(2):465–480.

Chakraborty, A., Bhattacharya, A., and Mallick, B. (2020). Bayesian sparse multiple re-

gression for simultaneous rank reduction and variable selection. Biometrika, 107(1):205–

221.

Chan, J. (2020). Large Bayesian VARs: A flexible kronecker error covariance structure.

Journal of Business and Economic Statistics, 38(1):68–79.

Cross, J., Hou, C., and Poon, A. (2020). Macroeconomic forecasting with large Bayesian

VARs: Global-local priors and the illusion of sparsity. International Journal of Fore-

casting, 36(3):899–915.

19



Doan, T., Litterman, R., and Sims, C. (1984). Forecasting and conditional projection

using realistic prior distributions. Econometric Reviews, 3(1):1–100.

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models.

Bayesian Analysis, 1(3):515–534.

Geweke, J. (1996). Bayesian reduced rank regression in econometrics. Journal of Econo-

metrics, 75(1):121–146.

Ghosh, P., Tang, X., Gosh, M., and Chakrabarti, A. (2016). Asymptotic properties of

Bayes risk of a general class of shrinkage priors in multiple hypothesis testing under

sparsity. Bayesian Analysis, 11(3):753–796.

Giannone, D., Lenza, M., and Primiceri, G. (2015). Prior selection for vector autoregres-

sions. Review of Economics and Statistics, 97(2):436–451.

Giannone, D., Lenza, M., and Primiceri, G. (2019). Priors for the long run. Journal of

the American Statistical Association, 114(526):565–580.

Goh, G., Dey, D., and Chen, K. (2017). Bayesian sparse reduced rank multivariate

regression. Journal of Multivariate Analysis, 157:14–28.

Hauzenberger, N., Huber, F., Pfarrhofer, M., and Zörner, T. (2020). Stochastic model

specification in Markov switching vector error correction models. Studies in Nonlinear

Dynamics and Econometrics.

Huber, F. and Feldkircher, M. (2019). Adaptive shrinkage in Bayesian vector autoregres-

sive models. Journal of Business and Economic Statistics, 37(1):27–39.

Huber, F. and Zörner, T. (2019). Threshold cointegration in international exchange rates:

A Bayesian approach. International Journal of Forecasting, 35(2):458–473.

Kleibergen, F. and Paap, R. (2002). Priors, posteriors and bayes factors for a bayesian

analysis of cointegration. Journal of Econometrics, 111(2):223–249.

20



Kleibergen, F. and van Dijk, H. (1994). On the shape of the likelihood/posterior in

cointegration models. Econometric Theory, 10(3-4):514–551.

Koop, G. (2013). Forecasting with medium and large Bayesian VARs. Journal of Applied

Econometrics, 28(2):177–203.
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Appendix A. Figures

Figure A.1: Short-run MSFEs for GDP. The MSFE of each model is divided by the MSFE
of an AR(1) benchmark model. We consider the BVAR estimated in first dif-
ferences (BVARdiff), the BVAR estimated in levels (BVARlevel), the BVEC
model with horseshoe prior (BVEChh), the BVEC model with horseshoe
prior combined with rank selection (BVEChhrs) and the BVEC model with
reduced rank prior (BVECrr).
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Figure A.2: Short-run MSFEs for Consumption. The MSFE of each model is divided by
the MSFE of an AR(1) benchmark model. We consider the BVAR estimated
in first differences (BVARdiff), the BVAR estimated in levels (BVARlevel),
the BVEC model with horseshoe prior (BVEChh), the BVEC model with
horseshoe prior combined with rank selection (BVEChhrs) and the BVEC
model with reduced rank prior (BVECrr).

Figure A.3: Short-run MSFEs for CPI. The MSFE of each model is divided by the MSFE
of an AR(1) benchmark model. We consider the BVAR estimated in first dif-
ferences (BVARdiff), the BVAR estimated in levels (BVARlevel), the BVEC
model with horseshoe prior (BVEChh), the BVEC model with horseshoe
prior combined with rank selection (BVEChhrs) and the BVEC model with
reduced rank prior (BVECrr).
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Figure A.4: Short-run ALPLs for GDP. The ALPL of each model is subtracted by the
ALPL of an AR(1) benchmark model. We consider the BVAR estimated
in first differences (BVARdiff), the BVAR estimated in levels (BVARlevel),
the BVEC model with horseshoe prior (BVEChh), the BVEC model with
horseshoe prior combined with rank selection (BVEChhrs) and the BVEC
model with reduced rank prior (BVECrr).

Figure A.5: Short-run ALPLs for Consumption. The ALPL of each model is subtracted by
the ALPL of an AR(1) benchmark model. We consider the BVAR estimated
in first differences (BVARdiff), the BVAR estimated in levels (BVARlevel),
the BVEC model with horseshoe prior (BVEChh), the BVEC model with
horseshoe prior combined with rank selection (BVEChhrs) and the BVEC
model with reduced rank prior (BVECrr).

24



Figure A.6: Short-run ALPLs for CPI. The ALPL of each model is subtracted by the
ALPL of an AR(1) benchmark model. We consider the BVAR estimated
in first differences (BVARdiff), the BVAR estimated in levels (BVARlevel),
the BVEC model with horseshoe prior (BVEChh), the BVEC model with
horseshoe prior combined with rank selection (BVEChhrs) and the BVEC
model with reduced rank prior (BVECrr).

Figure A.7: Long-run MSFEs for GDP. We consider the BVAR estimated in first dif-
ferences (BVARdiff), the BVAR estimated in levels (BVARlevel), the BVEC
model with horseshoe prior (BVEChh), the BVEC model with horseshoe prior
combined with rank selection (BVEChhrs), the BVEC model with reduced
rank prior (BVECrr) and a AR(1) benchmark model.
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Figure A.8: Long-run MSFEs for Consumption. We consider the BVAR estimated in
first differences (BVARdiff), the BVAR estimated in levels (BVARlevel), the
BVEC model with horseshoe prior (BVEChh), the BVEC model with horse-
shoe prior combined with rank selection (BVEChhrs), the BVEC model with
reduced rank prior (BVECrr) and a AR(1) benchmark model.

Figure A.9: Long-run MSFEs for CPI. We consider the BVAR estimated in first differences
(BVARdiff), the BVAR estimated in levels (BVARlevel), the BVEC model
with horseshoe prior (BVEChh), the BVEC model with horseshoe prior com-
bined with rank selection (BVEChhrs), the BVEC model with reduced rank
prior (BVECrr) and a AR(1) benchmark model.
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Figure A.10: Long-run ALPLs for GDP. We consider the BVAR estimated in first differ-
ences (BVARdiff), the BVAR estimated in levels (BVARlevel), the BVEC
model with horseshoe prior (BVEChh), the BVEC model with horseshoe
prior combined with rank selection (BVEChhrs), the BVEC model with
reduced rank prior (BVECrr) and a AR(1) benchmark model.

Figure A.11: Long-run ALPLs for Consumption. We consider the BVAR estimated in
first differences (BVARdiff), the BVAR estimated in levels (BVARlevel),
the BVEC model with horseshoe prior (BVEChh), the BVEC model with
horseshoe prior combined with rank selection (BVEChhrs), the BVEC model
with reduced rank prior (BVECrr) and a AR(1) benchmark model.
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Figure A.12: Long-run ALPLs for CPI. We consider the BVAR estimated in first differ-
ences (BVARdiff), the BVAR estimated in levels (BVARlevel), the BVEC
model with horseshoe prior (BVEChh), the BVEC model with horseshoe
prior combined with rank selection (BVEChhrs), the BVEC model with
reduced rank prior (BVECrr) and a AR(1) benchmark model.
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