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Abstract

This article discusses cointegration tests for nonlinear cointegration in the presence of vari-
ance breaks in the errors. We build on approaches of (Cavaliere and Taylor| (2006, Journal of
Time Series Analysis) for heteroskedastic cointegration tests and of |Choi and Saikkonen| (2010,
Econometric Theory) for nonlinear cointegration tests. We propose a bootstrap test and prove
its consistency.

A Monte Carlo study shows the approach to have appealing finite sample properties and
to work better than an approach using subresiduals. We provide an empirical application to
the environmental Kuznets curves (EKC), finding that the cointegration tests do not reject the

EKC hypothesis in most cases.
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1 Introduction

In the past decades, a broad literature on cointegration tests has developed, addressing a variety
of different possible features of the data like endogeneity, heteroskedasticity, and nonlinearity. For
example, the discussion of the environmental Kuznets curve in our application reveals that the data
exhibits both a nonlinear cointegrating relation as well as variance breaks.

This paper presents a framework capable to test for cointegration both when the cointegrating
relation is nonlinear and in the presence of heteroskedasticity. In order to achieve this, we mainly
build on |Choi and Saikkonen| (2010)) and on |Cavaliere and Taylor| (2006). The nonlinear cointe-
grating relation can be very general and variance breaks can occur both in the integrated regressor
and in the (stationary or integrated) error term.

There are two possibilities for specifying a null hypothesis. Namely, one can formulate the null
hypothesis of no cointegration. In this field, e.g., |[Dickey and Fuller| (1979)), Phillips and Perron
(1988)) and their numerous extensions test the null of the presence of a unit root for univariate
time series. Engle and Granger| (1987) extended this to the context of testing for no cointegration.
Alternatively, Kwiatkowski et al.| (1992) test the null of stationarity against the alternative of a
unit root (commonly known as KPSS test). Shin| (1994) extended this approach to test the null of
cointegration, as we do here. The basic idea is to use the ordinary least squares (OLS) residuals of
a linear cointegrating regression to build the test statistic.

This theory has been enhanced in several directions. For example, [Leybourne and McCabe
(1994) and McCabe et al.| (1997) proposed extensions of the original framework. Cavaliere, (2005)
and |Cavaliere and Taylor| (2006]) incorporated variance breaks into the linear cointegration model.
Saikkonen and Choi (2004) dropped the linearity assumption of the cointegrating regression and
proposed a test for cointegrating smooth transition functions. |Choi and Saikkonen| (2010) further
extended this to general kinds of nonlinear cointegrating regressions. Both employed nonlinear
least squares estimation (NLS) and leads-and-lags regression instead of OLS for estimating the
cointegrating parameter vector.

The paper is organized as follows. Section [2| describes the nonlinear cointegrating regression
model and the maintained assumptions. Section [3| presents the cointegration test and develops

its large sample properties. Furthermore, Section |3| discusses a bootstrap approach for practical



implementation of the test. Section [] analyzes the finite sample quality of the test in a Monte
Carlo study. Section [5] illustrates the approach with an application to the environmental Kuznets
curve. Unless stated otherwise, all proofs are relegated to Appendix [A]

Some notational remarks: We denote by |x| the largest integer number smaller or equal than
x € Rand [x] the smallest integer number larger or equal than z. 1(-) denotes the indicator function
and Drmxm[0,1] denotes the space of m x m matrices of cadlag functions on [0, 1], endowed with
the Skorohod topology. Weak convergence is denoted by —, convergence in probability by 2y weak
convergence in probability (see |Giné and Zinn, (1990) by ﬂp’ and almost sure convergence by =3.

All limits are taken as T" — 00, unless stated otherwise.

2 The model and assumptions

In this section, we introduce the model and the underlying assumptions. We consider (as in

Choi and Saikkonen) 2010) the nonlinear cointegrating regression

y=g(x,0) +up, t=1,...,T, (1)

where y; is 1-dimensional and z; is the k-dimensional regressor vector. Both y, and x; are I(1).
We assume that g(z¢,0) is a known smooth function of z; up to the unknown k-dimensional pa-
rameter vector . We furthermore assume that the vector elements of z; are not cointegrated (see
Assumption |3 for a precise statement below). This also means g(z¢, 6) is not 1(0). The error term

is taken to be

U = Cu,t + U,

where

pt = pt—1+ puCut,  po =0.

The random walk behavior of x; is specified by

Ty = Tp—1 + (ot



The following Assumption (1| discusses the (k + 2)-dimensional vector process (; := (Cu,t; Gz g5 Cuyt)'-

Assumption 1 (i) {Cu:} and {(u:} are independent.

(i) Gt = (Curts Crr Cut)' = E%/QCQ", where {(/} is a stationary, zero-mean, unit variance, strong-

mizing sequence with mixing coefficient of size —4r/(r —4), for some r > 4 and E||(/||" < oo

and

2

The scalars oy, 4
K

and Gi,t are strictly positive, oy is k-dimensional, X5+ (k X k) is positive

definite. All entries may depend on t. We assume that 3¢ is positive definite for any t.

This means that u; has a random walk component unless p,, = 0. Hence the null hypothesis of
cointegration is given by Hy : pi = 0 against the alternative Hj : pi > ( of no cointegration.

Assumptionis similar to Assumption 1 in Cavaliere and Taylor (2006]) but additionally permits
correlation between ¢, and (;; to allow for endogeneity. The Monte Carlo experiments in Section
[4) will reveal the proposed bootstrap approach effectively handles endogeneity. We conjecture that
a correlation between, e.g., (,¢ and ¢, will not reveal different insights. We, therefore, abstain
from considering further non-zero covariance terms in Moreover, we also generalize |(Cavaliere
and Taylor (2006, Assumption 1) in terms of permitting autocorrelation of the ¢;’s. This is adopted
from Assumption 2 of |(Choi and Saikkonen (2010).

Following Cavaliere, (2005) and (Cavaliere and Taylor, (2006]), we allow for general forms of

heteroskedastic errors.

Assumption 2 The sequence {¥;}1_, satisfies Yr(s) = Sirs) = X(s), where () is a non-

stochastic function which lies in Dgki2)xx+2) [0, 1], with i, j-th element ¥;;(-).

Assumption 2] allows for many possible models for the covariance matrix of ;. For simple
or multiple variance shifts ¥;;(-) is a piecewise constant function. For example, ¥;;(s) := Z‘?j +
(Bi; — B9 (s > |7;]) represents a shift from %P, to ¥}, at time [7;;T] (0 < 735 < 1). Other

possibilities are, e.g., affine functions (3;;; exhibits a linear trend), piecewise affine functions, or



smooth transition functions. The assumption also allows for very general combinations of variance-
covariance shifts. For example, the variance of (,; can have a shift while (;; is homoskedastic or
heteroskedastic with a different shift function 3;;(s). Notice that variance shifts in ¢, ; are only
relevant if the alternative H; is true. Although we rule out stochastic volatility here, a generalization
to stochastic a stochastic {3}, s.t. {¥;} is strictly exogenous w.r.t. {(;'}, is possible. We refer to
Cavaliere and Taylor| (2006|) for details.

Furthermore, we define € :=t~'Var (22:1 CZ-), which can be decomposed as

2 /
wu,t wu:p,t 0

Q= Wayz,t Q:):,t 0

/ 2
0 0 Wyt

Analogously, )(s) := Q7). Then, the average long-run covariance matrix limp_,, 7 is given by

which can be partitioned into

Assumption [I] & [2] imply a generalized invariance principle as stated in Lemmal[I] The standard

invariance principle as in |Shin| (1994) would require a time-constant covariance matrix .

Lemma 1 Let Assumptions cmd hold on {¢;}. Then, as T — oo,

|Ts)
7723 "¢ % Ba(s), s€(0,1],
t=1

where

Baq(s) := (Bo,a(s), Bl a(s), Baals)) = /OS Q'2(r)dB(r),

with B = (By, B, B2)" is a (k + 2)-dimensional Brownian motion with unit covariance matriz.

Proof. The proof is analogous to the proof of Lemma 1 in |Cavaliere and Taylor| (2006) and thus



is omitted. m
The next assumption ensures that the components of x; are not cointegrated. This is given by

the special case A = 0.

Assumption 3 The spectral density matriz fec(X) is bounded away from zero:

fec(N) > elji2, > 0.

Assumption [4] is the usual assumption required for deriving consistency and asymptotic distri-

bution of the NLS estimator.

Assumption 4 (i) The parameter space © of 0 is a compact subset of RE and the true parameter

0o € OV, where O denotes the interior of ©.
(ii) g(x,0) is three times continuously differentiable on R x ©*, where ©* D © is open.

The assumptions on x; theoretically rule out the possibility of deterministic regressors like an
intercept or a time trend because they are not I(1). However, we discuss these interesting scenarios

in Appendix |B| and illustrate that the bootstrap generally works well.

3 Test for nonlinear cointegration

3.1 Nonlinear least squares regression

Following |Saikkonen and Choi (2004) and |Choi and Saikkonen (2010) we use triangular array
asymptotics in order to study the large sample behavior of the proposed test statistic (2]), presented
below. We fix the actual sample size at Ty and embed the model in a sequence of models dependent
on the sample size T, which tends to infinity. We replace the regressor x; by zyp := (To/T )1/ 224
This makes the regressor and regressand dependent on 7" and we obtain the actual model for Ty = T'.
If Tp is large, the triangular asymptotics can be expected to give reasonable approximations to the
finite sample distributions of the estimator and test statistics, see Saikkonen and Choi (2004)).
Choi and Saikkonen| (2010) note that conventional asymptotic results on the NLS estimator are

not available when the error term u; is allowed to be serially correlated or z; is not exogenous. See



Saikkonen and Choil (2004) and |Choi and Saikkonen| (2010) for a more detailed discussion about
triangular asymptotics.

In particular, we embed the model in a sequence of models

yir = g(zer, 0) +ug, t=1,...,T.

In practice, we always choose Ty = T, so that the transformation z;7 is not needed. The transfor-
mation is made only to apply triangular asymptotics. We define B%Q = TO1 / QBLQ.
We use NLS regression to estimate 6y. Let
T
Q0) = (wr — glaer, 0))?

t=1

be the objective function to be minimized with respect to 6 € ©. Since @ is continuous on © for
each (yi7,...,yrr, 1T, - - ., T77) and © is compact by Assumption 4} the NLS estimator éT exists
and is Borel measurable (Potscher and Pruchaj, 2013).

We need to make additional assumptions about the functions g and K, where K(x,6p) :=
9g(z,0)

=57 , to show that, under the null, the NLS estimator is consistent and to derive its asymp-

totic distribution in Proposition [1] below. Assumption [5| guarantees that the limit of the objective

function is minimized (a.s.) at the true parameter vector 6y.

Assumption 5 For some s € [0,1] and all 6 # 0o,

9(Bla(s).0) # 9 (Bials).to) (as.).

Assumption [0 shall allow to establish the limiting distribution of the NLS estimator.

Assumption 6

1
/0 K (3[1)79(8),90) K (B(l),Q(s),HOYds >0 (as.).



Proposition 1 Suppose that Assumptions[IH0 hold. Then, under Hy,

T2 <9T - 90) = </01K (BYa(s),00) K (Big(s),0 )/d8> i
| </1 . (B?’Q(S),GO) dBo.a(s) + /1 K, (B?,Q(S)y 6o) ds;<;>
; 0

:37/’ (B[l),ﬂa 007 ’%) )

where Ky (x,0) = 812(;,’6) ‘67 and K = Z?io E(61,000,5)-

=bo
Proof. The proof can be directly adapted from the proof of Theorem 2 in [Saikkonen and Choi
(2004) and Theorem A.1 in |Choi and Saikkonen| (2010). m

3.2 Test statistic and large sample behavior

This subsection introduces the test statistic we work with and establishes its large sample
behavior. In order to test for cointegration we test for the stationarity of the error process u;. The
test is residual-based and builds on to the cointegration test of [Shin (1994), which, in turn, is based

on the KPSS test (Kwiatkowski et al., [1992]). We use the test statistic

2

t
~wy (Y ) @
t=1 \j=1
where 4, 1=y — g(ayr, 9}) and
T l T
W2 =0, (1)? = Z 271 “w(s,l) Y gy,
t=1 s=1 t=s+1

where w is a kernel which fulfills, e.g., the conditions of Andrews| (1991) and the lag truncation

parameter [ := Iz depends on the sample size. Here, &2

is a consistent estimator of the long-run
variance, as long as T/l — oo for T' — oo.
The linear case without autocorrelation gives us the model of (Cavaliere and Taylor| (2006). We

may then use the parametric estimator

Q»
IS )

T
= Z? (3)



for the variance. In this case one can show that 62 is consistent similarly as in |Cavaliere and Taylor
(2006).

Under the null hypothesis, we obtain the following asymptotic behavior of the test statistic.

Theorem 1 Under the Assumptions[1Hf and the Hy
w, ! 2
i — @72/ (Boa(s) — F(s, BY g, 00)¥(B} g, 00, k)" ds, (4)
0

where F(s, B?’Q, 00) == [y K(B?,Q(r), 0o)dr and w(B?,Q, 0o, k) is defined in Proposition .

As the variance profile ¥(s) and thus (s) is generally unknown, we see that the limiting distribution
depends on nuisance parameters, which makes tabulated critical values impractical. The bootstrap,
discussed in Section is a natural solution.

Under the alternative asymptotic theory becomes even more tedious. Since the NLS estimator
Or is not consistent anymore a limiting distribution is hard to derive. We may, however, establish
the order of magnitude of 7 under Hj, which is enough to justify consistency of the cointegration

test.

Theorem 2 Let Hy be true. Under Assumptions @ 1 = Op(T/1), where | is the lag truncation

used in the estimation of 2.

3.3 Bootstrap procedure

We adopt a bootstrap solution to provide feasible inference building on |Cavaliere and Taylors
(2006) bootstrap test for linear cointegration in the presence of variance breaks. They used the
heteroskedastic fized regressor bootstrap by Hansen| (2000). It treats the regressors as fixed, without
imposing strong assumptions on the data generating process (DGP). In Theorem [3| we show that
the fixed regressor bootstrap replicates the correct asymptotic distribution of the test statistic. As
usual, it does not replicate the finite sample distribution of the test statistic, see [Hansen! (2000).
However, Section [ will demonstrate that the bootstrap works well in finite samples, as also observed
by |Cavaliere and Taylor| (2006)) for testing linear cointegration. Popular other bootstraps, e.g., block
resampling (Lahiri, [1999), are not applicable because the regressor is integrated and heteroskedastic

and the error term is potentially heteroskedastic under the null hypothesis.



More specifically, the heteroskedastic fixed regressor bootstrap works as follows:

1. Run the original NLS regression, save residuals @; and compute the test statistic 7 as given
in .

2. Construct the bootstrap sample yi’T =l =Gz, t = 1,..., T, where {2} is a sequence of

i.i.d. standard normal variates.

3. Estimate é% via NLS of yfT on g(x7, ), save the residuals 4% := yfT —g(zyr, él%) and compute

the bootstrap test statistic as

2

b

)2 is the long-run variance estimate using the bootstrap sample.

where (@

4. Repeat steps 2 and 3 independently B times and, given that we reject for large values, compute
the simulated bootstrap p-value p4 = 1 — Gl}(ﬁ), where ébT is the empirical cumulative

distribution function of the bootstrap test statistics {#?}Z_,.

The replications, for B sufficiently large, approximate the true bootstrap distribution G?p which
is the theoretical cumulative distribution function of #* and the associated bootstrap p-value is
defined as p%. := 1 — G5(7)). Then, as B — oo, p} =% Y.

The next theorem shows that (i) the bootstrap replicates the correct asymptotic null distribu-

tion, and, (ii) that the test based on the bootstrap p-values is consistent.

Theorem 3 (i) Under Assumptions and the Hy, p5 = U0, 1].

(ii) Under Assumptions @ and the Hy, p’. 2.

3.4 Subresidual tests

Choi and Saikkonen| (2010) proposed a KPSS type test for cointegration using subresiduals
which we describe below. Its advantage is that the limiting distribution of the test statistic,

under homoskedasticity, is nuisance parameter-free and explicitly given although, for nonlinear

10



cointegration, the limiting distribution of the original test statistic was of the form like that in
Theorem [1}

However, in the presence of variance breaks the limiting distribution of the subresidual-based
statistic depends on nuisance parameters, as we will show in Corollary [[} This makes its direct use
impractical. We hence favor the bootstrap approach.

The subresidual-based test statistic is of the same form as 7 in but use only a subset of the

residuals {at}iif_l. We define

‘ i+0—1 t 2
=)D Y Y
t=i \ j=i

The index i is the starting point of the subresiduals and ¢ denotes the size of the set of subresiduals,

14

)2 is the long-run variance estimate using the subset of residuals. Then

also called block size. (@

we have the following

Corollary 1 Suppose that Assumptions ﬁ and Hy hold. If { — oo and £/T — 0 as T — oo, we

have for any i with 1 <¢ <T — { that

1
it 8 5o /O B2 o (s)ds. (5)

Choi and Saikkonen| (2010) found that, under homoskedasticity, /¢ weakly converges to

/ W2 ()ds, (6)
0

where W (s) is a standard Brownian motion. Moreover, they derived the distribution function of
@ and provided an easy series representation. This makes the residual approach easy to use.
However, for heteroskedastic errors the variance terms in do not cancel out in general. Thus,
the limiting distribution depends on nuisance parameters.

For comparative purposes, we still use the distribution of @ for testing the null of nonlinear
cointegration in the Monte Carlo experiments in Section {4} ignoring potential heteroskedasticity.
This is because we want to investigate the impact of variance breaks for the approach. Moreover,

we will compare it with the bootstrap test.

11



The c.d.f. of @ is given by

n+1/2) " V2/2 4 2nV/2
fnz:: n'I‘+1/é 1) <1Erf</\/+§z )),zzo,

where Erf(z) = % 5 exp(—y*)dy is the error function. (Choi and Saikkonen| (2010) demonstrated
that truncating the series at n = 10 is sufficiently accurate, and we follow their choice.

In order to aggregate subsample tests by using different starting points ¢ [Choi and
Saikkonen| (2010) proposed a Bonferroni procedure. For this, we compute M test statistics
gt ot and define Amext = max{ﬁil’f, .. .,ﬁiM’e}. Due to the Bonferroni-inequality
limy oo P (ﬁma"’e < ¢, /M) > 1 — «a, where ¢,/ is the /M-critical value from the distribution
of fo W?2(s)ds. We choose M = [T/¢] and ¢ like in |Choi and Saikkonen| (2010) with the minimum

volatility rule proposed by [Romano and Wolf (2001)).

4 Monte Carlo study

This section provides evidence that the proposed nonlinear cointegration test works well in
finite samples. We conduct several simulation studies for different settings. Especially, we study
the proposed bootstrap test for linear, polynomial, and smooth transition regression cointegration.
We compare the empirical rejection rates with those of the standard |Shin| (1994) test. Moreover,
we compare the bootstrap cointegration test with the subresidual-based approach. For the DGP we
extend the example of |Cavaliere and Taylor| (2006)), who generated data with a linear cointegration
relation under variance breaks, by also considering nonlinear cointegration. We start with the linear

case.

12



4.1 Linear regression model

We consider the DGP

yy=wx+u, t=1,...,T, (7)
U = pug—1 + Cuye + pe,  up =0 (8)
pt = pt—1 + puCuts  po =0, 9)
Ty =Tg1+ Cet, To =0, (10)

where ¢; 1= (Cuts Cots Cut) = S172¢E, ¢ ~ N(0,I3), iid., [p| < 1 and

2
Out Ouxit 0
Y= | oyt o};’t 0
/ 2
0 0 Tt

In particular, here we initially consider the case of a simple linear cointegrating regression with a
single non-deterministic integrated regressor.

We consider abrupt variance breaks of the form

Ui,t = 05,0 + (03,1 - 05,0)1 (t > [rT])
02y =000+ (051 —020)°1 (t > [7.T))

Opt = Ui,o + (Ui,l - 02,0)]1 (t > [m.T]).

In all simulations we set 05,0 = 0926’0 = O'Z}O =1

As |Cavaliere and Taylor| (2006)) noted under the null hypothesis pz = 0 four cases can occur:
(i) if 7, = 7, = 0, then y; and z; are both standard I(1) processes with homoskedastic increments
and cointegrated; (ii) if 7, # 0,7, = 0 the permanent shocks to the system are homoskedastic (i.e.,
x4 is integrated with homoskedastic innovations) but there is a variance shift in both the transitory
component of y; and in the cointegrating relation; (iii) if 7, = 0,7, # 0, the permanent shocks to
the system are heteroskedastic with changes to both x; and y; being heteroskedastic, but there are

no variance shifts in the cointegrating relation; (iv) if 7, # 0,7, # 0, the permanent shocks to the

13



system are heteroskedastic, changes to both x; and y; are heteroskedastic and there is a variance
shift both in the transitory component of y; and in the cointegrating relation. If Hy is true variance
shifts in ¢, have no influence. Under the alternative we also allow for variance breaks in ¢, which
lead to variance breaks in u; which are similar to cases (ii) and (iv).

Moreover, we consider covariance breaks of the form
0
Oux,t = oA (qu,l - Uuz,O)]l (t > I_TumTJ) .

In our simulations we only consider the case where all variance shifts occur at the same time,
ie, 7:=7, =T, =T, = Tyg. For the results on other possible scenarios see the simulation study
of (Cavaliere and Taylor (2006).

We investigate the following parameter constellations. Let the sample size be T' € {100, 300}.
We take pi € {0,0.001,0.01,0.1}. pi = 0 is to estimate size, the other constellations are for a
power analysis. We consider variance breaks at 7 € {0,0.1,0.5,0.9}. While the first of the T-values

corresponds to the case of no variance breaks the latter stand for early, middle, and late variance

2 _ 2 _ 9
wl = 0z1 = 0u1 €

breaks. We also fix the magnitude of the variance breaks by setting 0? = o
{1/16, 16}, like in |Cavaliere and Taylor| (2006). The parameter for the covariance oy, + are chosen in
such a way that the correlation between (,; and (;; is fixed over time at A € {0, 0.5}, i.e., without
or with endogeneity. The AR(1) parameter of u; is set p € {0,0.5}. Empirical rejection rates are
based on 10,000 replications (unless stated otherwise) and the number of bootstrap replications is
B = 500. Finally, the nominal level of significance is a = 0.05 for the remainder of this paper.

We perform the test by estimating € in the linear regression y; onto g(x¢,0) = 0z, and using
the residuals to compute 77E| We use the estimator 62 given in for p = 0 and, for p = 0.5, a
non-parametric autocorrelation-robust estimator for the long-run variance with a Bartlett kernel
and a spectral window of [4(T/100)%2°| as suggested in Kwiatkowski et al.[ (1992). Table|l|reports
empirical rejection rates (as percentages) for the different parameter constellations. Panel (a) shows
the rates for the bootstrap approach, panel (b) for the subsample approach and panel (c) for the
standard [Shin| (1994) test. First, the bootstrap generally yields very good empirical sizes and

powers. Both time (early or late) and direction (increase or decrease) of a variance break do not

"While we formulate the theory for nonlinear cointegrating regressions we for simplicity use the OLS estimator
whenever possible to speed up the computations.

14



have a notable impact on the rejection frequencies. For example, early downward variance breaks
yield lower empirical power than early upward variance breaks, and vice versa for late variance
breaks. This effect reduces with increasing pi.

The subsample-based test is undersized in the constellation without heteroskedasticity under
absence of endogeneity and autocorrelation. Interestingly, it is oversized under endogeneity and
autocorrelation, especially in the presence of early downward variance breaks. This effect reduces
if the shifts occur later. Moreover, the bootstrap test has higher power for p = 0, especially if the
alternative is close to the null, otherwise the subresidual test has higher power.

Panel (c) shows the result for the test based on critical values tabulated by [Shin| (1994). We
observe that variance breaks are an issue and that the test oversizes or undersizes depending on

downward or upward breaks. The empirical power is generally smaller than for the bootstrap test.

4.2 Polynomial cointegrating regression

In this subsection, we consider the case of polynomial cointegrating regression, in particular a

quadratic and a cubic relation. We replace the linear model and simulate according to
_ 2
Y¢ = Ty + xp + Uy,

for the quadratic relation, while , @ & and all further parameter constellations of Subsec-
tion [4.1] still hold. We now estimate § = (61,62)’ by regressing y; on g(x,0) = 6124 + 6222, In this
model, we already cannot use the critical values of Shin| (1994)) because to consider both x; and
r? as integrated regressors violates the model assumptions. This is also discussed in [Wagner and
Hong (2016).

Table 2] shows the tests’ rejection frequencies. Similar interpretations like in Subsection for
the linear case apply here, too. In addition, we observe a decrease of empirical power relative to
Table [T} plausibly due to the more complex model to be fitted. The loss is more moderate for the
bootstrap test.

Inspired by the application in Section [5, we also consider a cubic cointegrating regression. We

simulate from the model

Yo = o + 227 + 2 + uy,

15



Table 1: The table reports the empirical rejection frequencies for testing the null of cointegration
in the linear regression model for various parameter constellations. All rejection rates are given
as percentages. The nominal size is 5%. Panel (a) is for the bootstrap test, panel (b) for the

subresidual-based test and panel (c) for the Shin| (1994) test.

% 0.001 0.01 0.1

0.5 0.5 0.5 0.5
T T o2 A 0 05 0 05 0 05 0 05 0 05 0 05 0 05 0 05
(a) 100 O 53 47 83 69 156 154 16.8 16.8 50.1 50.9 37.6 372 849 843 504 50.9
0.1 1/16 6.7 64 64 6.4 17 17.2 187 185 43.3 439 371 37.2 77 784 514 526
16 51 44 73 6.6 13.6 13.9 145 14.1 472 473 34 339 823 823 46,5 46.6
0.5 1/16 53 47 7.2 6.6 13.9 139 152 149 423 43.1 31.7 328 773 781 475 48
16 48 48 56 4.9 11 11.1 106 10.2 424 438 29.5 29.8 822 82 427 423
0.9 1/16 52 45 7.7 64 152 148 16.3 16 51 51.1 379 371 846 854 50.1 50.9
16 47 57 69 62 119 127 127 133 40.1 40 319 31.8 773 772 456 46.2
300 0 48 41 71 6.2 484 495 438 43.1 87.1 87 65 65.6 98.5 98.6 70.5 70.4
0.1 1/16 56 51 64 6.1 385 37.8 385 373 77 765 60.3 60  96.3 96 70.3  69.9
16 51 43 6.9 6 458 46.3 404 406 852 855 61.7 625 984 985 68.1 67.9
0.5 1/16 51 51 7.2 65 414 425 373 382 799 80.2 60 60.4 96.1 96 684 67.7
16 5 52 64 68 431 432 383 38 856 858 60.1 603 989 985 642 64.3
0.9 1/16 49 44 71 6.1 50.7 505 449 441 871 87.3 657 66 98.7 986 71.6 705
16 54 56 6.7 6.8 394 387 375 37 799 80.7 588 603 975 975 646 65.3
(b) 100 O 2 16 81 7.7 85 88 185 19 40.2 40.8 443 446 794 79.2 62.7 63.1
0.1 1/16 6.3 6.6 10.8 13 17.1 17.6 26.2 27.9 445 451 484 49.1 789 782 658 654
16 1.3 1.1 57 6.6 59 6 14.3 143 326 343 358 37.3 747 742 552 551
0.5 1/16 46 68 142 191 19.7 21.6 31.1 334 482 492 529 539 808 81.2 69.2 69
16 22 1.5 71 62 43 4 127 109 29.2 284 348 347 752 748 578 564
09 1/16 22 1.8 84 81 92 9 19.1 19.1 41.7 41.7 448 446 798 79.6 634 632
16 5 4.9 11 12 91 88 19.2 19.7 375 374 439 447 78 79.3 64.8 65.7
300 0 1.8 1.6 43 44 384 376 414 404 83.7 843 69.9 705 981 982 771 76.9
0.1 1/16 64 65 95 10.3 434 448 474 483 819 8.5 713 706 979 978 78.1 78
16 1 1 31 31 32 313 342 336 782 79.2 621 626 97.1 969 717 70.5
0.5 1/16 55 89 12 171 50.1 514 551 554 856 853 774 769 982 98.1 83 83
16 34 24 6.8 52 347 339 369 375 83 83  69.3 69 97.9 98 781 774
09 1/16 2.1 1.8 51 47 406 403 43.6 432 845 843 71 706 98.4 98.2 76.6 76.8
16 45 41 79 72 344 347 389 393 809 814 702 703 975 97.8 779 779
(¢c) 100 O 5 3.7 10 81 155 147 199 188 46.8 458 374 36.7 79.6 793 458 46.1
0.1 1/16 12.3 107 124 11.7 222 209 228 21.9 45 446 355 352 765 755 426 42.9
16 42 33 87 72 124 116 165 155 403 41.6 32.6 33.2 758 757 41.6 41.9
0.5 1/16 9.5 9.2 151 134 195 194 23.8 226 46.1 46.3 37.5 365 793 793 472 46.3
16 1.7 1.5 44 42 44 43 86 84 279 279 252 255 682 67.6 381 38
0.9 1/16 6.1 4.6 11 86 16.6 157 20.5 19.3 477 477 374 375 80.6 80.9 47 471
16 42 48 96 104 93 105 168 17.8 358 358 36.3 36 712 722 48.1 486
300 0 5 4 7.6 6.6 45.6 447 404 39 852 847 56.8 574 97.8 981 60.9 60.5
0.1 1/16 12.1 109 13.1 11.5 44.8 45 404 40.1 79.4 80 545 541 968 96.7 57.7 572
16 4 35 65 56 408 405 359 357 80.6 81.1 522 525 97.2 96.9 55.9 55
0.5 1/16 9.9 8 129 10.7 A7 463 41.7 41.3 827 819 573 575 974 97 61 62
16 1.3 1.3 26 2.7 277 28 252 258 745 74 473 467 956 957 51.8 52.2
0.9 1/16 6.2 44 92 6.9 49 482 43 41.9 86 85.5 57.7 572 982 982 59.8 60.7
16 39 45 6.7 74 346 351 357 36 759 762 546 554 956 958 59.5 59.3
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Table 2: The table reports the empirical rejection frequencies for testing the null of cointegration
in the quadratic regression model for various parameter constellations. All rejection rates are given
as percentages. The nominal size is 5%. Panel (a) is for the bootstrap test and panel (b) for the
subresidual-based test.

0.001 0.01 0.1

0.5 0.5 0.5 0.5
T T a? 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5
(a) 100 O 49 56 7.1 7T 122 126 13.1 13.8 442 46.1 30.8 31.7 822 811 421 421
0.1 1/16 64 73 49 6.1 145 153 141 147 358 36.7 291 298 689 704 399 40.8
16 49 59 6.3 6.7 114 118 11.6 11.4 407 413 269 268 794 786 376 381
0.5 1/16 5 5.6 5.7 6 114 111 115 11.5 355 36.6 256 262 725 726 379 37.7
16 52 57 42 4.2 9.3 9.8 7.3 73 351 358 21.1 212 768 76.8 33.8 334
0.9 1/16 5 55 6.5 7.1 122 125 125 126 445 447 306 30.1 818 81.7 41.8 42.1
16 53 57 5.1 5.6 103 10.7 9.9 106 345 355 267 269 728 73.7 39.8 39.9
300 O 49 53 69 7.1 427 443 383 386 8.1 848 609 603 982 983 644 64.9
0.1 1/16 58 54 58 6.2 32 309 313 30.3 688 68 51.1 50 94.2 93.8 583 583
16 5.1 5 6.9 6.9 40.6 405 35.1 352 825 83 56.6 574 97.8 97.8 61.6 61.6
0.5 1/16 52 5.7 6.7 6.9 354 36 31.7 32 758 755 527 528 958 954 59.8 59.7
16 48 56 6.1 7.1 351 356 30.3 30 81.3 81.1 533 525 97.8 976 572 56.6
0.9 1/16 49 52 6.6 6.7 445 444 389 382 841 849 599 60.1 982 983 654 651
16 52 59 538 6.5 345 348 32 32 759 763 547 558 96.2 96.8 60.5 60.7
(b) 100 O 1.1 09 52 5.5 4.6 5.2 12 13 302 309 342 349 71 712 53.7 545
0.1 1/16 4.5 4.9 8 9.3 11.8 124 185 195 326 33,5 364 37.1 66.8 66.1 529 521
16 0.7 0.7 4 4.4 3.2 3.4 8.9 9.6 232 248 269 283 648 648 463 464
0.5 1/16 34 43 97 126 127 13.7 203 224 351 358 394 393 686 685 54.7 54
16 3 25 69 6.6 4.2 4.2 10.3 9.7 223 218 273 269 67.1 676 487 48.1
09 1/16 1.5 1 56 5.8 5.1 5.4 12 129 311 308 347 338 716 71.1 539 529
16 4.1 48 83 8.9 6.6 6.9 134 14 289 294 351 354 69 70.5 554 56.7
300 O 1.1 09 3 3 288 28,6 319 31 753 761 612 61.3 962 964 698 69.7
0.1 1/16 4.7 4.9 7 77 326 334 353 36.1 703 714 59 58.8 949 94.7 679 679
16 0.6 0.7 2 2.1 233 227 257 249 699 695 53.5 533 947 943 641 63.5
0.5 1/16 4 6.1 84 116 38 375 41.2 409 752 745 634 628 957 956 699 69.9
16 49 52 78 7.2 288 286 30 30 T77.8 78 61.1 604 96.7 96.6 70.7 70.3
09 1/16 1.3 12 34 3.3 299 305 33 327 758 763 619 619 963 959 69 68.8
16 4 46 5.6 6.6 273 275 306 312 732 739 613 617 953 956 704 70.7
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Table 3: The table reports the empirical rejection frequencies for testing the null of cointegration
in the cubic regression model for various parameter constellations. All rejection rates are given
as percentages. The nominal size is 5%. Panel (a) is for the bootstrap test and panel (b) for the
subresidual-based test.

P2 0 0.001 0.01 0.1
0 0.5 0 0.5 0 0.5 0 0.5

T T o2 A 0 05 0 05 0 05 0 05 0 05 0 05 0 05 0 05
100 0 49 58 6.3 6 107 11.1 104 11.2 40.6 42 26.1 265 80.7 79.9 359 36
0.1 1/16 59 6.9 48 58 136 142 127 132 346 355 27.3 27.8 688 70.1 385 398

16 47 56 53 55 99 106 88 93 369 381 219 217 775 773 315 315

0.5 1/16 49 5.1 5 48 9.6 102 93 93 319 33 213 21.6 689 69.2 323 318

16 49 53 36 34 81 86 59 54 293 308 149 154 732 725 256 24.8

0.9 1/16 48 52 58 58 109 11.2 10 103 416 40.9 258 249 80.6 80.6 35.7 36

16 52 51 4.8 4.7 9 95 82 85 306 311 227 225 705 71 352 354

300 0 5 5.4 7 7 391 409 347 343 835 835 58 56.9 98.2 982 622 624
0.1 1/16 53 58 55 58 305 29.7 29.8 282 67.7 674 50.1 49.3 94 936 579 581

16 48 52 64 6.6 37 364 313 306 809 81.6 534 53.8 975 978 582 58.1

0.5 1/16 51 52 62 62 314 325 274 277 727 726 486 483 955 948 546 553

16 49 59 54 6.5 298 31 249 245 772 77.8 465 463 975 969 49.7 49.9

0.9 1/16 51 54 6.6 69 405 40.6 349 347 829 833 57 57.5 981 983 63.7 62.3

16 56 55 57 56 303 302 283 275 734 738 512 522 959 963 57.6 57.7

100 0 0.8 09 38 43 3 34 91 97 237 245 28 28.1 64 64.1 46.4 47.3
0.1 1/16 33 36 59 71 84 91 144 154 275 276 30.7 309 61 60.1 47.6 46.8

16 0.5 06 31 34 2 23 65 71 179 19 222 229 57 57.7 39 395

0.5 1/16 2.9 3 76 92 97 103 161 176 285 292 329 331 615 614 48 477

16 31 28 59 58 41 38 8 7.7 168 17 209 21 58 57.8 38.2 38

0.9 1/16 1 06 44 46 33 36 88 10 248 242 285 273 633 634 465 46.9

16 36 39 64 69 53 53 105 11.1 23.6 243 294 293 623 64.7 49  49.6

300 0 0.8 08 24 22 232 227 257 251 688 69.7 529 538 938 93.9 621 625
0.1 1/16 34 38 5 56 27.7 28 30.5 30 652 65.8 54 532 922 925 63  63.5

16 04 05 1.5 1.6 175 182 202 194 63 63.2 46.2 45.7 92 92 56.8 55.9

0.5 1/16 4 42 73 81 307 309 342 341 684 682 56.1 555 931 93.3 63.8 638

16 53 6.1 74 7.2 232 236 233 238 708 712 518 51 947 947 629 62

09 1/16 0.8 1 24 2.7 232 24 262 258 689 69.7 541 543 93.6 939 613 61.6

16 3.9 36 5 44 225 22 252 249 67.8 679 544 548 932 93.6 643 65.1
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where the remaining parameters are specified like in the linear and quadratic case. Table [3] shows
the rejection frequencies. Again, size is well controlled for the bootstrap test, and we observe
additional loss of power compared to the quadratic model (Table . The power loss is higher for

the subresidual test.

4.3 Smooth transition regression model

We now discuss an example of a cointegrating regression which is indeed nonlinear in the
parameters. Thus, NLS is needed for estimation. We adopt the example of cointegrating smooth
transition functions which is also considered in [Saikkonen and Choi| (2004)) and |Choi and Saikkonen

(2010)). We generate data according to

1

o O e e o 09)

+ut7

with the parameter constellation §y = 0,67 = 1,05 = 1,03 = 5. In rare cases, for some generated
samples the NLS algorithm does not converge. We thus exclude these cases from the analysis. To
save computational time we run 1,000 repetitions for each constellation. Note that while the true
parameter 8y = 0 we include 6y in the estimation. This means we are in the setting beyond our
model assumptions with an additional deterministic regressor. For a more detailed discussion see
Appendix [B]

Table [4| panel (a) reports the rejection rates for the bootstrap test and panel (b) for the
subresidual-based test. We observe that the bootstrap test works well, again, with some mod-
erate size problems in the presence of either endogeneity or autocorrelation (which can be solved
using leads-and-lags as in Appendix and somewhat larger size distortions for both endogeneity
and autocorrelation. The subresidual based test delivers mixed results, being is undersized and

oversized for different scenarios of variance breaks.

5 Application

We now discuss an application of cointegrating polynomial regressions for the environmental

Kuznets curve (EKC). It relates per capita GDP and per capita pollution of, e.g., CO2 emissions.
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Table 4: The table reports the empirical rejection frequencies for testing the null of cointegration
in the smooth transition regression model for various parameter constellations. All rejection rates
are given as percentages. The nominal size is 5%. Panel (a) is for the bootstrap test and panel (b)

for the subresidual-based test.

0.001 0.01 0.1

0.5 0.5 0.5 0.5
T T a? 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5
(a) 100 O 4.5 7.5 57 109 121 148 126 184 43.8 482 383 388 8.1 89.8 53.6 56.8
0.1 1/16 8.8 9.5 6.7 9.5 8.8 11.6 8.6 119 297 291 261 264 707 707 419 413
16 4.4 8.8 7.4 13 111 159 148 184 473 50.8 40 412 895 91.5 56.2 589
0.5 1/16 4.8 8.8 6.1 8.5 9 9.5 8.9 9.6 324 377 245 28 783 776 395 421
16 6.1 7.3 5 6.7 8.6 12.8 9.3 106 352 358 227 238 799 825 345 36.6
0.9 1/16 4.7 9.1 5.7 121 12 171 148 196 49.6 50.6 394 40.3 888 89.2 553 555
16 6.4 8 6.5 9.2 9.1 10.1 82 119 263 308 236 274 702 704 392 409
300 O 5.2 81 7.2 11.8 43.8 47.7 44.2 46 90.3 91.5 78 Tr.2 997 994 795 788
0.1 1/16 7 7.5 7 94 216 271 241 277 695 69.8 524 544 965 96.8 63.6 604
16 3.9 84 6.2 122 449 488 465 486 922 918 79.1 779 996 99.8 835 817
0.5 1/16 5.5 89 72 109 309 362 308 347 805 825 645 657 989 99 704 70.7
16 3.3 79 62 108 331 372 325 346 833 827 643 653 993 988 709 703
0.9 1/16 6.4 10.1 9 141 484 478 475 46.7 908 91.2 76.7 756 99.8 99.8 81.5 81.6
16 5.2 6.5 7.5 8.6 242 281 251 279 727 766 579 584 975 978 63.5 62.8
(b) 100 O 0.2 0.2 1 1.8 0.7 1.3 3 56 132 136 164 189 51.2 523 31.8 358
0.1 1/16 1.2 1.1 32 3.5 1.4 2 3.8 5.6 8.1 7.9 133 13 40.6 40.2 30.1 30
16 0 0.2 038 1.3 0.7 1.1 4.2 3.7 13.7 151 157 19.1 522 53,5 342 36.7
0.5 1/16 2.6 3.3 4.5 7.9 3.6 4.8 7.1 107 13.6 151 185 19.5 413 43.6 30 33.7
16 5.3 59 6.1 6.3 7.4 7.6 10.1 9.7 229 24 199 229 549 564 385 36.2
09 1/16 0.1 01 14 0.7 0.5 0.9 2.8 2.7 115 116 13.7 158 46.8 477 30.2 322
16 2.5 3.5 3.8 4 3.7 5.4 6.3 6.4 16.7 189 164 177 505 50.1 316 33.7
300 O 0.1 0.1 0.2 1 132 143 168 149 59.3 584 425 378 914 916 469 485
0.1 1/16 1 1.2 1.8 2.7 8.1 9.1 109 13.3 443 46.9 32 30.3 85 86.2 43.6 42.8
16 0 02 03 1 141 142 131 147 59 59.2 413 40.6 92 921 482 50.5
0.5 1/16 4.5 52 7.1 85 205 224 252 264 56.5 56.1 445 424 88.2 88.7 51  50.8
16 9.7 11.8 9.9 119 314 329 32 283 699 69.8 536 505 928 927 57.6 59.1
09 1/16 0.1 0.1 0.2 1 126 128 15.1 15 56.6 56.6 38.5 41.2 90 90 46.7 49.3
16 2.6 4.2 39 48 173 202 169 20.1 585 586 459 41.1 90 904 48.5 49.1
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The term EKC refers to the inverse U-shape relation of economic development and income inequality
postulated by Kuznets| (1955)). |Grossman and Krueger| (1995) opened a very active literature with
contributions in several directions. See Stern| (2004) or |Stern! (2018]) for a more recent survey.

We build on Wagner| (2015) and Stypka et al. (2017) who argued that using an ordinary
Shin| (1994)-type linear cointegration test is inappropriate for polynomial cointegrating regressions
(CPR). This is because if we include the k-th power z¥ of an integrated regressor into the regres-
sion this power itself is not /(1) anymore and thus violates the assumptions of the [Shin (1994])
test. Based on |Wagner and Hong| (2016]) the aforementioned authors applied a fully modified OLS
approach for CPRs. However, they did not allow for variance breaks in their approach, which could
lead to erroneous inference regarding the EKC hypothesis. We apply the bootstrap discussed above
to address this possible issue in the following.

We study data of 19 industrialized countries (see Table over the period from 1870 to
2014E] We use per capita GDP data of the Maddison database (https://www.rug.nl/ggdc/
historicaldevelopment/maddison/)). CO;y data is taken from the homepage of the Carbon Diox-
ide Information Analysis Center (https://cdiac.ess-dive.lbl.gov/) and is expressed as 1,000
tons per capita. We convert all time series to natural logarithms. Among others, Wagner] (2015)
also examined sulfur dioxide data, but discussion and results are similar. For brevity, we only focus
on (the more relevant) CO2 emissions. Let e; denote log per capita GDP and y; denote log CO,

emissions per capita. We then study the model
et = c+ 6t + 01y + 0257 + O3y} + .

To assess whether variance breaks are present in the error term we follow |Cavaliere and Taylor
(2008) and define the empirical variance profile as
Ts| .
tL_iJ 42 4 (sT — LTSJ)U%TS

R — 41
p(s) = : (11)
Zthl “%

for s € (0,1), with p(0) := 0 and p(1) := 1. In case of homoskedasticity, we should have p(s) ~ s.

Figure (1] plots the empirical variance profile for Australia, Austria, Belgium and Canada against

2New Zealand is an exception were data is available for 1878-2014.
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s. Figures 2Hp] for the remaining countries are given in Appendix [C] We observe the presence of
variance breaks for all countries (except maybe Denmark). For example, there is an early upward
variance break for Canada. Thus, the usage of heteroskedasticity-robust tests is advisable.

Next, we run a few univariate tests to characterize the series. In particular, we test for station-
arity using a KPSS test (with the null of no unit root) and the test by [Phillips and Perron| (1988])
(with the null of a unit root). Note that heteroskedasticity is an issue for the KPSS test making
critical values derived by Kwiatkowski et al.| (1992)) invalid. A possible remedy is to proceed as in
Cavaliere| (2005). We use the proposed bootstrap for the series y; and e; instead for residuals to
test if they have no unit root.

We perform three tests for cointegration, the bootstrap test using NLS residuals, the bootstrap
test using leads-and-lags (LL) residuals (see Appendix [Bf) and the subresidual based test. We use
a non-parametric autocorrelation-robust estimator for the variance with a Bartlett kernel and a
spectral window of |4(T/100)%2°| as suggested in Kwiatkowski et al. (1992).

Table [p| reports the test results for the different countries given in the first column. The second
to fourth column are for the cointegration tests with NLS, LL and the subresidual-based test.
Columns 5 and 6 give results for the KPSS test for e; and y;, and column 7 and 8 for the Phillips-
Perron (PP) test, resp. All test results are given by the corresponding p-values where very small
p-values are abbreviated with < .01.

For the common level of significance of 5% we draw the following conclusions. In almost all
cases the KPSS test leads to a rejection of the null of no unit root of both e; and y; while the
PP test does not reject the null of a unit root. This provides evidence that the regressor and the
regressand are both I(1).

The three cointegration tests reveal mixed results. The first observation is that all three lead to
acceptance of the null in the majority of the cases. We recall that the subresidual-based test is both
in general undersized and second not robust to variance breaks, making it unreliable. Of course,
bootstrap tests are dependent on simulation. Moreover, the p-values are all close to the nominal
size, so that decisions may hinge on simulation variability. To reduce the effects of randomness we
increased the number of bootstrap runs to 2,000. The bootstrap tests come to different test results
in the case of Canada, Germany, Japan and Switzerland. Both tests reject only for Australia, New

Zealand, Portugal and the United States. In the other cases both tests accept the null, providing
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Figure 1: Empirical variance profile for different countries. The dashed line is the reference
line for homoskedasticity.
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some support for the EKC hypothesis. Wagner| (2015)) rejected the null for the majority of countries
using fully modified OLS for cointegrating polynomial regressions. However, tests which are not

robust to variance breaks can lead to over—rejectionsE]

Table 5: p-values for different tests. pl]’v g gives the p-value for the bootstrap NLS-based test and
p%L for the bootstrap LL version, pcg for the test by |Choi and Saikkonen| (2010), px pss,, for the
KPSS test for the CO9 emissions, pxpgs,, for the KPSS test for the GDP, ppp, for the PP-test
for the CO2 emissions, ppp,, for the PP-test for the GDP.

Country Prs Phr  Pos PkPSse DPKPSSy DPPPe DPPy
Australia .035 .032 .024 < .01 < .01 686 .399
Austria 390 .366 .469 < .01 < .01 .044 774
Belgium 560 474 797 .010 < .01 .040 .952
Canada .053 .043 .316 < .01 .020 738 .023
Denmark 097 .142 .659 < .01 <.01 >.99 747
Finland 251 187 .7HT7 .029 < .01 .034 739
France 186 .163  .674 < .01 < .01 .607 .708
Germany 027  .068 .124 < .01 < .01 .065 .82
Ttaly 134 143 584 .045 < .01 152 .900
Japan .061 .019 .611 < .01 < .01 .130 794
Netherlands 329 276 719 .085 < .01 .017 .814
New Zealand 024 .027 .032 .029 < .01 .094 233
Norway .090 .103 .695 018 < .01 073 .959
Portugal 016 .026 .051 < .01 <.01 <.01 951
Spain 191 113 .264 < .01 < .01 430 970
Sweden 538  .432  .900 < .01 < .01 A78 735
Switzerland .049 .053 .063 .016 < .01 .239 935
United Kingdom A74 111 427 < .01 < .01 015 731
United States .042 .037 .114 < .01 < .01 .830 071
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A Appendix: Proofs

Proof of Theorem Consider T-1/2 Zgij Gy. Since Gy = uy — (g(zer, 07) — glaer, 60)), a

second-order Taylor expansion of g(zr, éT) around 6y gives

|Ts| |Ts] [Ts]
T-1/2 Z =723 up =771/ Z K (zi7,00) (01 — b0) (12)
t=1 =
) LTSJ 8 g l'tT
1/2 -1 ’ )
+T (QT—GO T Z 9000 (QT_QO)v

where [|0 — 0o|| < |07 — 6o]|.
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For the first term in Lemma |1| gives that, under Hy,

| Ts| | Ts|
T71/2 Z Ut = T71/2 Z Cu7t E) BQQ(S).
t=1 t=1

For the second term in (12), recall that TY2(07 — 6y) 2 (B%Q,Ho, /<;> (Proposition . By
Lemma

LT's]

zer = (To/T) e = (To/T)? Y ¢ ToBrals) =: BY o(s).
j=1

This implies that
[T's]

S
7! Z T — / B%Q(r)dr,
t=1 0

and by the continuous mapping theorem,

[Ts] B
TS K(wr, 00) % / K(BY o (r), 00)dr =: F(s, BY. ).
t=1 0
We conclude that
[1's]
T71/2 Z ﬂt ﬂ) BO,Q(S) - F(S7 B?,Q) 90)/¢ (B?,Qa 007 K) ;
t=1

since all weak convergences hold jointly. Another application of the continuous mapping theorem

yields
T t 2 1 )
723 > | 4 / (Boa(s) — F(s, BY . 00)¥(BY g, 00,5))" ds.
t=1 \j=1 0

Finally, follows by the continuous mapping theorem. m
Proof of Theorem Under the alternative H; : pi >0
|T's]
T71/2ULT5J = Tﬁl/QCO,LTsJ +T72p, Z Cut = puBaa(s).

t=1

This implies that 73/ thZiJ w = py [y Ba2,a(r)dr and hence 7'-3/2 Egij ur = Op(1).
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Like in the proof of Theorem [I] we use a Taylor expansion to obtain

| T's) | T's) [Ts) R
T7-3/2 Z iy = T—3/? Z ug — T2 Z K (z47,00)" (01 — 00) + 0p(1).
t=1 t=1 t=1

Next, observe |07 — 6| = O,(T"/?). To see this we use a linear approximation

g(zer, 07) ~ g(zer,00) + Ki(07 — 60),

where K is the Jacobian matrix with entries Ky; = % fort=1,...,7T,i=1,...,k, and K;

is its t-th row. We can use this approximation and the following normal equations of a linear model
(K'K)~"Y(0r — 69) = K,

with ¢ = yir — g(zr, 0p). We now obtain the asymptotics as for ordinary least squares as in [Shin
(1994) and McCabe et al. (1997) using that 3" g(aer, 60) = O,(T), S K (wer, 00) = 0,(T),
and ZH;J up = O, (T3/?).

Thus, Zt iy = 0,(T??), which leads to

2
T t
T2Y D iy | = 0,(T?).
t=1 \j=1

Moreover, [Kwiatkowski et al.| (1992) showed that the long-run variance estimator &2 = O(IT)
which implies /) = O,(T'/1). As long as T'/l — oo for T' — oo the test is consistent. m
Proof of Theorem [3l

(i) Similarly to the proof of Theorem 3 in |Cavaliere and Taylor (2006) consider the process M}

s.t.
| Ts| |Ts]

7-1/2 Z b_ p-1/2 Z Gz,

Conditionally on {4, 77 }1_;, this is an exact Gaussian process with kernel
[T(s1s")]

A (s, sy =171 Z a?,

t=1
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where s A s’ denotes the minimum of s and s'.

Under the null, Var(u;) = o2, and 2(s) = 02 \75) Which is the variance profile of the ;. As

in the proof of Lemma A.5 in |Cavaliere et al.,| (2010) we see that

[T(sAs")] [ T(sAs")] SAs'
T! Z a; =T Z u? +o,(1) & / o?(r)dr,
t=1 t=1 0

pointwise, where the first equality follows by McCabe et al| (1997). Since 7! EgiJ a? is
monotonically increasing in s and the limit function is continuous in s the convergence in
probability is also uniform. The RHS is the kernel of the Gaussian process W, s.t. W, (s) :=
Jo o(r)dW (r), where W is a standard Brownian motion. This implies that M?%(s) =, W(s),

as in [Hansen, (1996).

Analogously, applying the same mappings as in the proof of Theorem
T t 2 1 )
T2y YAk | 5, /0 (Wa(s) — F(s, BY g, 00)¥(BY .00, k)" ds.
t=1 \j=1

Now, we derive the large sample behavior of (@%)2.

T l T

P =Y a2 Y we) Y i
t=1 s=1 t=s+1
T l

T
TSP Y i) 3 ik o)
t=1 s=1

t=s+1
1
EN / o2 (r)dr,
0

because F(zzi—s|{tt, rir}i_;) = 0 for all s > 0 and = 1 for s = 0, and the same argument

as above by McCabe et al.| (1997)).

This implies that the bootstrap test statistic #° samples from a distribution that has the
same variance profile as the distribution of 7 but with white noise serial correlation. Using
the arguments in \Demetrescu et al.| (2019)) which are based upon Kiefer and Vogelsang (2005)

the bootstrap (asymptotically) controls size.
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ii) We again consider MY (s) and AY (s, s') but now it suffices to look at the order of convergence.

(ii) g T T g
Recall that under the alternative Z}Z? iy = O,(T%?) and Zt sl = 0,(T?). This implies
that A (s,s') = O,(T) and, like in part (i), T~/2M%(s) converges weakly in probability to
a Gaussian process where the kernel is given by the weak limit of T771AM (s, s").

By the continuous mapping theorem it follows that Z?zl 4! = O,(T) and, hence, that

2
t

T
> Z = 0,(T?).

t=1 7j=1

Consider next the long-run variance estimator (@%)2. Again, as in the proof of Theorem
(@h)? is consistent under the alternative of order O(IT). All in all, we get 7 = O,(1/1). Since

i = Op(T'/1) (Theorem [2)) it follows that p% = 0, as long as [ — oo for T — co.

Proof of Corollary As in |Choi and Saikkonen| (2010) we modify equation (12]) to

[£s+i—1] [£s+i—1] [£s+i—1]

. l
671/2 tZ: — 1/2 Z g — 0 1 tz: K(iUtT, 00)/\/T(9T - 90)\/;
[€s+i—1] .9 5
. _ 0°g(xyr,0) \ 4 ¢
_ ooy | 32 g I\, Y) —0y)—
T (6 — 60) | ¢ ; 2005 | (01 —00)7

We use the arguments from the proof of Theorem (1| and % — 0 to see
[£s+i—1]

2N iy S Boals).
t=1

The remainder follows by the continuous mapping theorem and (@%)? — @,. =

B Appendix: Additional Simulations

This section discusses the case of estimating polynomial regressions with additional deterministic
regressors. This is beyond our model assumptions, following the assumption of |(Choi and Saikkonen
(2010) that all regressors are integrated. Deterministic regressors are not integrated. However,

deterministic regressors are useful in many applications. Therefore, we extend the simulations
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of Section [:2] to study the impact of an intercept or a time trend to the rejection rates for the
bootstrap test. More specifically, we discuss the cubic regression model with deterministic because
it is the model in Section [} Unreported results show that the results are qualitatively similar for
a linear cointegrating regression model with a deterministic regressor.

First we consider the cubic model including an intercept
Yy = 1+xt+2xf+x?+ut.

Panel (a) of Table |§| shows, analogously to the previous results, the rejection frequencies with the
bootstrap test using NLS. We observe that in the presence of endogeneity the test is somewhat
oversized with a rejection rate of about 10%.

We also discuss a version of the cubic polynomial regression with a time trend of the form
ye =1+t + a4+ 227 + 2 + wy.

We do so mainly because there are some notable differences to the case without deterministic
components, and because we use this model for the application in Section [5} Panel (a) of Table
shows, analogously to the previous results, the rejection frequencies with the bootstrap test using
NLS. We observe that in the presence of endogeneity the test is oversized with a rejection rate
of about 10%. This is no surprise as the literature already documented this issue and proposed
several solutions. For example, one could use fully modified OLS developed in |Phillips and Hansen
(1990) as suggested in |Wagner and Hong| (2016). We here follow |Choi and Saikkonen! (2010) who
use the leads-and-lags (LL) estimator proposed by |Saikkonen| (1991)) (which is also known under
the name dynamic (non)-linear least squares). We briefly describe the procedure. We estimate the

coefficients in the model

K
Yyt = c+ 0t + Oray + ngg + 93.%'? + Z ﬂijt_j + et
=K

which means that we include 2K leads and lags into the regression. As in |Choi and Saikkonen
(2010) we take K = 1,2,3. However, panel (b) in Table [7| only reports the case of K = 1 as the

others have shown similar results. We compute test statistics and bootstrap p-values analogously,
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Table 6: The table reports the empirical rejection frequencies for testing the null of cointegration in
the cubic regression model with intercept for various parameter constellations. All rejection rates
are given as percentages. The nominal size is 5%. Panel (a) is for the bootstrap test using least
squares and panel (b) is for the bootstrap test using leads and lags.

0.001 0.01
0.5 0.5 0.5 0.5

T 7 o2 0 05 0 05 0 05 0 05 0 05 0 05 0 05 0 05

(a) 100 0 45 78 67 97 11,2 163 13,7 16,8 43 497 34,7 40,5 857 87,7 499 50,2

0,1 0,0625 62 65 7 83 87 11,5 83 123 283 293 249 288 71,5 71,3 392 43

16 5,8 8§ 59 10,9 12,3 17 14,5 16,6 458 482 38,1 353 87,5 888 516 52

0,5 0,0625 52 65 4,3 6 97 10 69 11,5 305 359 219 256 764 779 31,6 365

16 48 79 64 7 92 108 83 85 349 354 241 261 80,5 81,1 398 373

0,9 0,0625 56 69 68 81 123 14,2 132 14,9 479 49,1 382 378 88 897 52,5 529

16 44 51 44 74 73 94 86 11,1 27,9 292 24,9 257 705 727 382 41,7

300 0O 57 83 68 11,3 44,9 487 432 47,2 90,7 894 781 732 994 998 81 80,1

0,1 0,0625 5,9 8 76 94 225 251 258 26,1 73,6 689 592 547 965 97,8 60,4 65,9

16 510 87 7 11,5 459 49,8 46 489 90,1 924 761 785 99,7 99,9 81,9 79,8

0,5 0,0625 67 85 7.6 95 294 354 299 343 81,1 814 644 65 99 984 Tl 69,9

16 53 88 68 114 36 369 345 358 824 823 654 656 992 98,7 70,6 69,4

0,9 0,0625 44 85 7,1 11,7 433 49,3 443 47,7 89,6 90,7 764 757 99,3 998 783 808

16 50 62 67 10 256 262 284 278 71,2 71,9 555 57,5 96 97,2 64,4 66,3

(b) 100 0 52 54 99 85 122 148 161 19,7 41 47,7 414 44,9 87,6 90,3 63,9 63,6

0,1 0,0625 9,2 § 12 11,7 10,5 13,3 14 17,8 285 33,1 323 35 744 77,2 56,5 517

16 46 47 82 10,7 122 13,9 16,1 18 44,8 51,6 41,4 47,2 86,9 90,5 624 62,1

0,5 0,0625 6,2 4 76 84 91 104 132 14,1 30,3 378 27,9 318 764 781 514 496

16 48 58 81 72 103 97 123 11,9 345 374 30 336 795 838 51,6 521

0,9 0,0625 6 51 87 123 125 155 17,2 21,2 47 50,2 44,5 459 88,3 90,2 64,8 657

16 77 66 9 115 92 114 134 159 30,9 345 339 348 71,3 795 534 559

300 0 52 47 86 88 44,6 493 44,6 489 891 92,6 74,6 77,6 99,6 99,8 80,7 79,4

0,1 0,0625 5 57 93 95 259 298 279 31,9 72 782 582 576 97,7 976 67,1 66,2

16 48 45 7.6 105 44,8 50,1 44,6 47,1 888 924 755 769 996 100 82,7 82,5

0,5 0,0625 48 6,1 65 7,7 301 376 337 381 77,9 849 636 68 991 991 71,3 733

16 52 57 59 83 331 381 325 36 797 854 64,1 662 987 992 721 738

0,9 0,0625 49 47 68 82 424 51,8 433 479 905 91,3 77,7 77T 998 996 82,1 82,8

16 62 51 8 81 227 268 264 307 716 794 565 623 969 982 67 666

(c) 100 0 0o 01 13 1,6 05 1 31 41 10,3 136 12,2 16,6 47 451 32 289

0,1 0,0625 11 07 31 23 1,7 15 44 55 73 81 133 143 395 393 30,9 30,2

16 02 03 09 1,3 06 06 25 29 151 135 163 162 458 484 327 30,7

0,5 0,0625 23 29 55 725 43 68 86 124 14,7 188 20 42,8 425 31,6 33,3

16 5,1 6 54 66 § 10 10,1 10,9 23,7 23,7 245 21,1 50,2 49,7 35 32,2

0,9 0,0625 0 01 13 25 07 129 41 126 11,1 151 142 47,3 46,9 31,9 30,8

16 24 33 35 55 33 41 55 7,3 163 169 181 159 49,9 488 334 31,8

300 0O 01 02 07 0,7 126 12,7 146 12,8 498 541 338 353 87 849 454 447

0,1 0,0625 1,5 08 3 23 82 71 105 10,1 422 47,3 30,7 324 862 834 461 42,3

16 0 0 02 07 151 14 14,7 14,6 52,7 54,5 354 36,4 87,8 87,7 451 44,1

0,5 0,0625 31 28 7 66 204 194 24,7 21,7 51,3 537 393 42 852 854 47,7 46,8

16 71 134 89 133 30,1 30,9 304 296 638 663 47 46,8 90,6 88,6 50,3 51,3

0,9 0,0625 o o1 05 08 108 12 131 143 52 542 37,2 353 869 87,3 434 47,2

16 3,1 4 29 36 178 198 184 184 557 54,1 414 37,1 858 86,7 498 46,5
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now using residuals é;. To save computational time we run 1,000 replications in this example for
all settings.

Comparing both panels of Table [7] shows that the size problem is corrected. Moreover, the em-
pirical power is of comparable magnitude. We also employ this test based on LL for the application

in Section [Bl

C Appendix: Plots
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Table 7: The table reports the empirical rejection frequencies for testing the null of cointegration
in the cubic regression model with time trend for various parameter constellations. All rejection
rates are given as percentages. The nominal size is 5%. Panel (a) is for the bootstrap test using
least squares and panel (b) is for the bootstrap test using leads and lags.

0.001 0.01

0.5 0.5 0.5 0.5
T T: a? 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5
(a) 100 O 4.9 10.7 3.6 6.3 6.4 14.1 5.2 7.3 24 332 128 15 78.6 824 226 256
0.1 1/16 6.9 10.1 4.5 5.2 9.5 11.7 6.3 5.4 155 188 9 8.6 60 61.7 201 194
16 4.8 9.1 3.4 5.6 6.8 134 3.8 6.4 249 341 119 164 80.2 819 22 25
0.5 1/16 5 11.9 2.1 3.8 7.8 9.8 2.1 4 213 272 8.3 87 693 722 203 204
16 4.3 8.9 3.1 3.1 6.9 10.1 4 3.4 223 238 84 116 726 734 236 215
0.9 1/16 6 9.2 3.4 5.1 7.3 11 4.7 4.5 245 30 13 141 799 835 246 256
16 6.8 7.7 4.1 3.7 6.6 9.4 2.9 5.3 153 19 7.5 89 617 625 17.5 16.3
300 O 4.9 9.2 8.6 146 252 29.8 258 327 84 851 674 674 999 999 753 76.6
0.1 1/16 6.4 8.2 6.9 106 124 169 143 192 604 59.2 47.8 42.6 98 98.3 58.2 62
16 4.9 10 82 149 238 329 259 347 84.1 856 686 69.8 999 100 769 74.2
0.5 1/16 4.8 9.4 8 12 18.1 28.8 20 295 744 734 58 59 99  99.4 70 68.8
16 5.1 9.3 72 137 208 265 21.5 26.3 76 76.1 60.1 583 99.3 994 717 69.1
0.9 1/16 5.5 10.8 7.3 16.1 254 29.7 277 32 822 858 66.2 685 99.7 99.7 781 754
16 5.4 8.8 75 108 143 187 16.2 204 59.6 623 454 457 979 981 61.6 63.9
(b) 100 O 6.2 4.9 6.4 9.5 6.2 9.5 9.7 105 246 30.7 248 26 784 85.2 44.7 48.5
0.1 1/16 9.5 7.5 11.3 9.9 105 102 123 126 193 196 19.1 184 63.1 704 36.1 448
16 6.3 4.9 6.9 10.1 7.9 8.7 74 103 283 31 227 225 80.7 857 43.8 455
0.5 1/16 6.2 5.5 5.6 5.5 6.8 8 7.8 8.4 227 265 176 205 714 73 412 375
16 6.3 4.5 5.5 6.7 6.5 8.7 7.2 9.1 235 262 179 199 727 79.5 387 40.7
09 1/16 5.2 5.2 6.5 8.8 7.4 8 8.6 11.8 247 294 224 24 786 824 44.7 43.2
16 7.6 8.1 7.2 9.2 9.8 9.5 11.6 11.7 18 214 16.3 21 61.3 70.1 35 38.9
300 O 6.5 4.2 8.6 105 221 30.6 284 31.1 822 87 70.7 699 99.8 998 787 T7.1
0.1 1/16 6.3 6.1 7.7 104 142 172 151 214 595 689 47.6 52.7 982 987 654 67.1
16 5.8 5.1 8§ 119 258 313 277 317 80.6 89 689 70.7 99.8 100 79.8 79.3
0.5 1/16 5.5 5 8.6 9.3 18.7 283 235 29 714 813 59.8 627 994 99.6 72 69.5
16 5.9 5.6 7.7 9.2 211 262 239 302 744 80.2 582 62 99.1 994 69.1 717
09 1/16 5.5 5.9 9 11.8 248 294 28 318 84 86.7 675 68.6 99.8 99.9 786 79.1
16 6.5 5.2 7.9 9.1 124 17 171 21.3 59.1 71.5 46.8 532 976 989 65.1 64.1
(¢) 100 O 0 0 0 0 0 0.1 0.1 0 0.4 0.6 0.1 0.1 10.7 10.9 0.9 0.5
0.1 1/16 0.2 0.3 0 0.3 0.2 0.4 0.3 0.1 1.2 1.6 0 0.4 145 146 0.7 1.1
16 0 0 0 0.1 0 0 0 0.1 0.5 0.6 0.2 0.1 9.6 10.5 0.6 1
0.5 1/16 0.5 0.9 1.2 0.9 0.8 1.3 0.8 0.9 4 5.2 2 29 262 259 6.1 6.7
16 0.5 0.9 0 0.4 0.7 1 0.1 0.4 2.9 3.3 0.2 0.3 16 16.5 1.1 1.2
0.9 1/16 0 0 0.1 0.2 0 0 0.1 0 0.5 0.5 0.1 0.2 105 114 1.2 0.9
16 0.1 0.1 0 0.1 0.1 0.1 0.1 0.1 0.3 0.4 0.1 0.2 5.1 5.4 0.5 0.4
300 O 0 0 0.1 0.1 0.3 0.5 0.2 0.1 13.1 138 1.8 3.8 58 579 9.1 6.9
0.1 1/16 0.3 0.4 0.1 0.3 1.6 1.3 0.5 0.6 16.7 17.5 4.1 4.7 576 582 10.1 9.7
16 0 0 0 0 0.4 0.3 0.1 0.2 133 13.7 3.1 3.9 59 58.6 7.9 8.3
0.5 1/16 0.6 0.7 1.5 1.9 3.5 4.1 5.1 55 271 285 13.7 158 69.7 69.2 21.6 23.1
16 1.6 3.2 1.5 2.1 9.4 105 3.3 4 386 39.8 7.4 7.9 7T 76.7 9.6 9.2
0.9 1/16 0 0 0.1 0 0.4 0.5 0.3 0.3 13 134 3.4 3.7 56 57 9.2 10.8
16 0.2 0.2 0 0.1 0.5 0.7 0.2 0.2 9.9 10.9 1.7 1.9 56.6 574 5.6 5
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Figure 2: Empirical variance profile for different countries. The dashed line is the reference
line for homoskedasticity.
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Figure 3: Residuals vs. fitted values for Austria, Belgium, Norway, USA to inspect heteroskedas-
ticity. The red solid lines are LOWESS curves.
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Figure 4: Empirical variance profile for different countries. The dashed line is the reference
line for homoskedasticity.
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Figure 5: Empirical variance profile for different countries. The dashed line is the reference
line for homoskedasticity.
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