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Abstract

This article discusses cointegration tests for nonlinear cointegration in the presence of vari-

ance breaks in the errors. We build on approaches of Cavaliere and Taylor (2006, Journal of

Time Series Analysis) for heteroskedastic cointegration tests and of Choi and Saikkonen (2010,

Econometric Theory) for nonlinear cointegration tests. We propose a bootstrap test and prove

its consistency.

A Monte Carlo study shows the approach to have appealing finite sample properties and

to work better than an approach using subresiduals. We provide an empirical application to

the environmental Kuznets curves (EKC), finding that the cointegration tests do not reject the

EKC hypothesis in most cases.
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1 Introduction

In the past decades, a broad literature on cointegration tests has developed, addressing a variety

of different possible features of the data like endogeneity, heteroskedasticity, and nonlinearity. For

example, the discussion of the environmental Kuznets curve in our application reveals that the data

exhibits both a nonlinear cointegrating relation as well as variance breaks.

This paper presents a framework capable to test for cointegration both when the cointegrating

relation is nonlinear and in the presence of heteroskedasticity. In order to achieve this, we mainly

build on Choi and Saikkonen (2010) and on Cavaliere and Taylor (2006). The nonlinear cointe-

grating relation can be very general and variance breaks can occur both in the integrated regressor

and in the (stationary or integrated) error term.

There are two possibilities for specifying a null hypothesis. Namely, one can formulate the null

hypothesis of no cointegration. In this field, e.g., Dickey and Fuller (1979), Phillips and Perron

(1988) and their numerous extensions test the null of the presence of a unit root for univariate

time series. Engle and Granger (1987) extended this to the context of testing for no cointegration.

Alternatively, Kwiatkowski et al. (1992) test the null of stationarity against the alternative of a

unit root (commonly known as KPSS test). Shin (1994) extended this approach to test the null of

cointegration, as we do here. The basic idea is to use the ordinary least squares (OLS) residuals of

a linear cointegrating regression to build the test statistic.

This theory has been enhanced in several directions. For example, Leybourne and McCabe

(1994) and McCabe et al. (1997) proposed extensions of the original framework. Cavaliere (2005)

and Cavaliere and Taylor (2006) incorporated variance breaks into the linear cointegration model.

Saikkonen and Choi (2004) dropped the linearity assumption of the cointegrating regression and

proposed a test for cointegrating smooth transition functions. Choi and Saikkonen (2010) further

extended this to general kinds of nonlinear cointegrating regressions. Both employed nonlinear

least squares estimation (NLS) and leads-and-lags regression instead of OLS for estimating the

cointegrating parameter vector.

The paper is organized as follows. Section 2 describes the nonlinear cointegrating regression

model and the maintained assumptions. Section 3 presents the cointegration test and develops

its large sample properties. Furthermore, Section 3 discusses a bootstrap approach for practical
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implementation of the test. Section 4 analyzes the finite sample quality of the test in a Monte

Carlo study. Section 5 illustrates the approach with an application to the environmental Kuznets

curve. Unless stated otherwise, all proofs are relegated to Appendix A.

Some notational remarks: We denote by bxc the largest integer number smaller or equal than

x ∈ R and dxe the smallest integer number larger or equal than x. 1(·) denotes the indicator function

and DRm×m [0, 1] denotes the space of m ×m matrices of càdlàg functions on [0, 1], endowed with

the Skorohod topology. Weak convergence is denoted by
w→, convergence in probability by

p→, weak

convergence in probability (see Giné and Zinn, 1990) by
w→p, and almost sure convergence by

a.s.→.

All limits are taken as T →∞, unless stated otherwise.

2 The model and assumptions

In this section, we introduce the model and the underlying assumptions. We consider (as in

Choi and Saikkonen, 2010) the nonlinear cointegrating regression

yt = g(xt, θ) + ut, t = 1, . . . , T, (1)

where yt is 1-dimensional and xt is the k-dimensional regressor vector. Both yt and xt are I(1).

We assume that g(xt, θ) is a known smooth function of xt up to the unknown k-dimensional pa-

rameter vector θ. We furthermore assume that the vector elements of xt are not cointegrated (see

Assumption 3 for a precise statement below). This also means g(xt, θ) is not I(0). The error term

is taken to be

ut = ζu,t + µt,

where

µt = µt−1 + ρµζµ,t, µ0 = 0.

The random walk behavior of xt is specified by

xt = xt−1 + ζx,t.
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The following Assumption 1 discusses the (k + 2)-dimensional vector process ζt := (ζu,t, ζ
′
x,t, ζµ,t)

′.

Assumption 1 (i) {ζu,t} and {ζµ,t} are independent.

(ii) ζt := (ζu,t, ζ
′
x,t, ζµ,t)

′ = Σ
1/2
t ζ∗t , where {ζ∗t } is a stationary, zero-mean, unit variance, strong-

mixing sequence with mixing coefficient of size −4r/(r− 4), for some r > 4 and E||ζ∗t ||r <∞

and

Σt :=


σ2
u,t σ′ux,t 0

σux,t Σx,t 0

0 0′ σ2
µ,t

 .

The scalars σ2
u,t and σ2

µ,t are strictly positive, σux,t is k-dimensional, Σx,t (k × k) is positive

definite. All entries may depend on t. We assume that Σt is positive definite for any t.

This means that ut has a random walk component unless ρµ = 0. Hence the null hypothesis of

cointegration is given by H0 : ρ2
µ = 0 against the alternative H1 : ρ2

µ > 0 of no cointegration.

Assumption 1 is similar to Assumption 1 in Cavaliere and Taylor (2006) but additionally permits

correlation between ζu,t and ζx,t to allow for endogeneity. The Monte Carlo experiments in Section

4 will reveal the proposed bootstrap approach effectively handles endogeneity. We conjecture that

a correlation between, e.g., ζu,t and ζµ,t will not reveal different insights. We, therefore, abstain

from considering further non-zero covariance terms in (ii). Moreover, we also generalize Cavaliere

and Taylor (2006, Assumption 1) in terms of permitting autocorrelation of the ζt’s. This is adopted

from Assumption 2 of Choi and Saikkonen (2010).

Following Cavaliere (2005) and Cavaliere and Taylor (2006), we allow for general forms of

heteroskedastic errors.

Assumption 2 The sequence {Σt}Tt=1 satisfies ΣT (s) := ΣbTsc = Σ(s), where Σ(·) is a non-

stochastic function which lies in D
R(k+2)×(k+2) [0, 1], with i, j-th element Σij(·).

Assumption 2 allows for many possible models for the covariance matrix of ζt. For simple

or multiple variance shifts Σij(·) is a piecewise constant function. For example, Σij(s) := Σ0
ij +

(Σ1
ij − Σ0

ij)1 (s ≥ bτijc) represents a shift from Σ0
ij to Σ1

ij at time bτijT c (0 ≤ τij ≤ 1). Other

possibilities are, e.g., affine functions (Σt,ij exhibits a linear trend), piecewise affine functions, or
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smooth transition functions. The assumption also allows for very general combinations of variance-

covariance shifts. For example, the variance of ζu,t can have a shift while ζx,t is homoskedastic or

heteroskedastic with a different shift function Σij(s). Notice that variance shifts in ζµ,t are only

relevant if the alternativeH1 is true. Although we rule out stochastic volatility here, a generalization

to stochastic a stochastic {Σt}, s.t. {Σt} is strictly exogenous w.r.t. {ζ∗t }, is possible. We refer to

Cavaliere and Taylor (2006) for details.

Furthermore, we define Ωt := t−1V ar
(∑t

i=1 ζi
)
, which can be decomposed as

Ωt =


ω2
u,t ω′ux,t 0

ωux,t Ωx,t 0

0 0′ ω2
µ,t

 .

Analogously, Ω(s) := ΩbTsc. Then, the average long-run covariance matrix limT→∞ΩT is given by

Ω̄ =

∫ 1

0
Ω(s)ds,

which can be partitioned into

Ω̄ =


ω̄2
u ω̄′ux 0

ω̄ux Ω̄x 0

0 0′ ω̄2
µ

 .

Assumption 1 & 2 imply a generalized invariance principle as stated in Lemma 1. The standard

invariance principle as in Shin (1994) would require a time-constant covariance matrix Σ.

Lemma 1 Let Assumptions 1 and 2 hold on {ζt}. Then, as T →∞,

T−1/2

bTsc∑
t=1

ζt
w→ BΩ(s), s ∈ [0, 1],

where

BΩ(s) := (B0,Ω(s), B′1,Ω(s), B2,Ω(s))′ :=

∫ s

0
Ω1/2(r)dB(r),

with B = (B0, B
′
1, B2)′ is a (k + 2)-dimensional Brownian motion with unit covariance matrix.

Proof. The proof is analogous to the proof of Lemma 1 in Cavaliere and Taylor (2006) and thus
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is omitted.

The next assumption ensures that the components of xt are not cointegrated. This is given by

the special case λ = 0.

Assumption 3 The spectral density matrix fζζ(λ) is bounded away from zero:

fζζ(λ) ≥ εIk+2, ε > 0.

Assumption 4 is the usual assumption required for deriving consistency and asymptotic distri-

bution of the NLS estimator.

Assumption 4 (i) The parameter space Θ of θ is a compact subset of Rk and the true parameter

θ0 ∈ Θ0, where Θ0 denotes the interior of Θ.

(ii) g(x, θ) is three times continuously differentiable on R×Θ∗, where Θ∗ ⊃ Θ is open.

The assumptions on xt theoretically rule out the possibility of deterministic regressors like an

intercept or a time trend because they are not I(1). However, we discuss these interesting scenarios

in Appendix B and illustrate that the bootstrap generally works well.

3 Test for nonlinear cointegration

3.1 Nonlinear least squares regression

Following Saikkonen and Choi (2004) and Choi and Saikkonen (2010) we use triangular array

asymptotics in order to study the large sample behavior of the proposed test statistic (2), presented

below. We fix the actual sample size at T0 and embed the model in a sequence of models dependent

on the sample size T , which tends to infinity. We replace the regressor xt by xtT := (T0/T )1/2xt.

This makes the regressor and regressand dependent on T and we obtain the actual model for T0 = T .

If T0 is large, the triangular asymptotics can be expected to give reasonable approximations to the

finite sample distributions of the estimator and test statistics, see Saikkonen and Choi (2004).

Choi and Saikkonen (2010) note that conventional asymptotic results on the NLS estimator are

not available when the error term ut is allowed to be serially correlated or xt is not exogenous. See
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Saikkonen and Choi (2004) and Choi and Saikkonen (2010) for a more detailed discussion about

triangular asymptotics.

In particular, we embed the model (1) in a sequence of models

ytT = g(xtT , θ) + ut, t = 1, . . . , T.

In practice, we always choose T0 = T , so that the transformation xtT is not needed. The transfor-

mation is made only to apply triangular asymptotics. We define B0
1,Ω := T

1/2
0 B1,Ω.

We use NLS regression to estimate θ0. Let

Q(θ) =

T∑
t=1

(ytT − g(xtT , θ))
2

be the objective function to be minimized with respect to θ ∈ Θ. Since Q is continuous on Θ for

each (y1T , . . . , yTT , x1T , . . . , xTT ) and Θ is compact by Assumption 4, the NLS estimator θ̂T exists

and is Borel measurable (Pötscher and Prucha, 2013).

We need to make additional assumptions about the functions g and K, where K(x, θ0) :=

∂g(x,θ)
∂θ

∣∣∣
θ=θ0

, to show that, under the null, the NLS estimator is consistent and to derive its asymp-

totic distribution in Proposition 1 below. Assumption 5 guarantees that the limit of the objective

function is minimized (a.s.) at the true parameter vector θ0.

Assumption 5 For some s ∈ [0, 1] and all θ 6= θ0,

g
(
B0

1,Ω(s), θ
)
6= g

(
B0

1,Ω(s), θ0

)
(a.s.).

Assumption 6 shall allow to establish the limiting distribution of the NLS estimator.

Assumption 6 ∫ 1

0
K
(
B0

1,Ω(s), θ0

)
K
(
B0

1,Ω(s), θ0

)′
ds > 0 (a.s.).
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Proposition 1 Suppose that Assumptions 1–6 hold. Then, under H0,

T 1/2
(
θ̂T − θ0

)
w→
(∫ 1

0
K
(
B0

1,Ω(s), θ0

)
K
(
B0

1,Ω(s), θ0

)′
ds

)−1

·
(∫ 1

0
K
(
B0

1,Ω(s), θ0

)
dB0,Ω(s) +

∫ 1

0
K1

(
B0

1,Ω(s), θ0

)
dsκ

)
=:ψ

(
B0

1,Ω, θ0, κ
)
,

where K1(x, θ) = ∂K(x,θ)
∂x′

∣∣∣
θ=θ0

and κ =
∑∞

j=0E(θ1,0θ0,j).

Proof. The proof can be directly adapted from the proof of Theorem 2 in Saikkonen and Choi

(2004) and Theorem A.1 in Choi and Saikkonen (2010).

3.2 Test statistic and large sample behavior

This subsection introduces the test statistic we work with and establishes its large sample

behavior. In order to test for cointegration we test for the stationarity of the error process ut. The

test is residual-based and builds on to the cointegration test of Shin (1994), which, in turn, is based

on the KPSS test (Kwiatkowski et al., 1992). We use the test statistic

η̂ := (T 2ω̂2
u)−1

T∑
t=1

 t∑
j=1

ûj

2

, (2)

where ût := yt − g(xtT , θ̂T ) and

ω̂2
u := ω̂u(l)2 := T−1

T∑
t=1

û2
t + 2T−1

l∑
s=1

w(s, l)

T∑
t=s+1

ûtût−s,

where w is a kernel which fulfills, e.g., the conditions of Andrews (1991) and the lag truncation

parameter l := lT depends on the sample size. Here, ω̂2
u is a consistent estimator of the long-run

variance, as long as T/l→∞ for T →∞.

The linear case without autocorrelation gives us the model of Cavaliere and Taylor (2006). We

may then use the parametric estimator

σ̂2
u := T−1

T∑
t=1

û2
t (3)

8



for the variance. In this case one can show that σ̂2
u is consistent similarly as in Cavaliere and Taylor

(2006).

Under the null hypothesis, we obtain the following asymptotic behavior of the test statistic.

Theorem 1 Under the Assumptions 1–6 and the H0

η̂
w→ ω̄−2

u

∫ 1

0

(
B0,Ω(s)− F (s,B0

1,Ω, θ0)′ψ(B0
1,Ω, θ0, κ)

)2
ds, (4)

where F (s,B0
1,Ω, θ0) :=

∫ s
0 K(B0

1,Ω(r), θ0)dr and ψ(B0
1,Ω, θ0, κ) is defined in Proposition 1.

As the variance profile Σ(s) and thus Ω(s) is generally unknown, we see that the limiting distribution

depends on nuisance parameters, which makes tabulated critical values impractical. The bootstrap,

discussed in Section 3.3, is a natural solution.

Under the alternative asymptotic theory becomes even more tedious. Since the NLS estimator

θ̂T is not consistent anymore a limiting distribution is hard to derive. We may, however, establish

the order of magnitude of η̂ under H1, which is enough to justify consistency of the cointegration

test.

Theorem 2 Let H1 be true. Under Assumptions 1–6, η̂ = Op(T/l), where l is the lag truncation

used in the estimation of ω̂2
u.

3.3 Bootstrap procedure

We adopt a bootstrap solution to provide feasible inference building on Cavaliere and Taylor’s

(2006) bootstrap test for linear cointegration in the presence of variance breaks. They used the

heteroskedastic fixed regressor bootstrap by Hansen (2000). It treats the regressors as fixed, without

imposing strong assumptions on the data generating process (DGP). In Theorem 3 we show that

the fixed regressor bootstrap replicates the correct asymptotic distribution of the test statistic. As

usual, it does not replicate the finite sample distribution of the test statistic, see Hansen (2000).

However, Section 4 will demonstrate that the bootstrap works well in finite samples, as also observed

by Cavaliere and Taylor (2006) for testing linear cointegration. Popular other bootstraps, e.g., block

resampling (Lahiri, 1999), are not applicable because the regressor is integrated and heteroskedastic

and the error term is potentially heteroskedastic under the null hypothesis.
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More specifically, the heteroskedastic fixed regressor bootstrap works as follows:

1. Run the original NLS regression, save residuals ût and compute the test statistic η̂ as given

in (2).

2. Construct the bootstrap sample ybtT := ubt := ûtzt, t = 1, . . . , T , where {zt} is a sequence of

i.i.d. standard normal variates.

3. Estimate θ̂bT via NLS of ybtT on g(xtT , θ), save the residuals ûbt := ybtT −g(xtT , θ̂
b
T ) and compute

the bootstrap test statistic as

η̂b := (T 2(ω̂bu)2)−1
T∑
t=1

 t∑
j=1

ûbj

2

,

where (ω̂bu)2 is the long-run variance estimate using the bootstrap sample.

4. Repeat steps 2 and 3 independently B times and, given that we reject for large values, compute

the simulated bootstrap p-value p̃bT := 1 − G̃bT (η̂), where G̃bT is the empirical cumulative

distribution function of the bootstrap test statistics {η̂b}Bb=1.

The replications, for B sufficiently large, approximate the true bootstrap distribution GbT which

is the theoretical cumulative distribution function of η̂b and the associated bootstrap p-value is

defined as pbT := 1−GbT (η̂). Then, as B →∞, p̃bT
a.s.→ pbT .

The next theorem shows that (i) the bootstrap replicates the correct asymptotic null distribu-

tion, and, (ii) that the test based on the bootstrap p-values is consistent.

Theorem 3 (i) Under Assumptions 1–6 and the H0, pbT
w→ U [0, 1].

(ii) Under Assumptions 1–6 and the H1, pbT
p→ 0.

3.4 Subresidual tests

Choi and Saikkonen (2010) proposed a KPSS type test for cointegration using subresiduals

which we describe below. Its advantage is that the limiting distribution of the test statistic,

under homoskedasticity, is nuisance parameter-free and explicitly given although, for nonlinear
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cointegration, the limiting distribution of the original test statistic was of the form like that in

Theorem 1.

However, in the presence of variance breaks the limiting distribution of the subresidual-based

statistic depends on nuisance parameters, as we will show in Corollary 1. This makes its direct use

impractical. We hence favor the bootstrap approach.

The subresidual-based test statistic is of the same form as η̂ in (2) but use only a subset of the

residuals {ût}i+`−1
t=i . We define

η̂i,` = (`2(ω̂`u)2)−1
i+`−1∑
t=i

 t∑
j=i

ûj

2

.

The index i is the starting point of the subresiduals and ` denotes the size of the set of subresiduals,

also called block size. (ω̂`u)2 is the long-run variance estimate using the subset of residuals. Then

we have the following

Corollary 1 Suppose that Assumptions 1–6 and H0 hold. If `→∞ and `/T → 0 as T →∞, we

have for any i with 1 ≤ i ≤ T − ` that

η̂i,`
w→ ω̄−2

u

∫ 1

0
B2

0,Ω(s)ds. (5)

Choi and Saikkonen (2010) found that, under homoskedasticity, η̂i,` weakly converges to

∫ 1

0
W 2(s)ds, (6)

where W (s) is a standard Brownian motion. Moreover, they derived the distribution function of

(6) and provided an easy series representation. This makes the residual approach easy to use.

However, for heteroskedastic errors the variance terms in (5) do not cancel out in general. Thus,

the limiting distribution depends on nuisance parameters.

For comparative purposes, we still use the distribution of (6) for testing the null of nonlinear

cointegration in the Monte Carlo experiments in Section 4, ignoring potential heteroskedasticity.

This is because we want to investigate the impact of variance breaks for the approach. Moreover,

we will compare it with the bootstrap test.
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The c.d.f. of (6) is given by

F (z) =
√

2
∞∑
n=0

Γ(n+ 1/2)

n!Γ(1/2)
(−1)n

(
1− Erf

(√
2/2 + 2n

√
2√

2z

))
, z ≥ 0,

where Erf(x) = 2√
π

∫ x
0 exp(−y2)dy is the error function. Choi and Saikkonen (2010) demonstrated

that truncating the series at n = 10 is sufficiently accurate, and we follow their choice.

In order to aggregate subsample tests by using different starting points i Choi and

Saikkonen (2010) proposed a Bonferroni procedure. For this, we compute M test statistics

η̂i1,`, . . . , η̂iM ,` and define η̂max,` := max
{
η̂i1,`, . . . , η̂iM ,`

}
. Due to the Bonferroni-inequality

limT→∞ P
(
η̂max,` ≤ cα/M

)
≥ 1 − α, where cα/M is the α/M -critical value from the distribution

of
∫ 1

0 W
2(s)ds. We choose M = dT/`e and ` like in Choi and Saikkonen (2010) with the minimum

volatility rule proposed by Romano and Wolf (2001).

4 Monte Carlo study

This section provides evidence that the proposed nonlinear cointegration test works well in

finite samples. We conduct several simulation studies for different settings. Especially, we study

the proposed bootstrap test for linear, polynomial, and smooth transition regression cointegration.

We compare the empirical rejection rates with those of the standard Shin (1994) test. Moreover,

we compare the bootstrap cointegration test with the subresidual-based approach. For the DGP we

extend the example of Cavaliere and Taylor (2006), who generated data with a linear cointegration

relation under variance breaks, by also considering nonlinear cointegration. We start with the linear

case.
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4.1 Linear regression model

We consider the DGP

yt = xt + ut, t = 1, . . . , T, (7)

ut = ρut−1 + ζu,t + µt, u0 = 0 (8)

µt = µt−1 + ρµζµ,t, µ0 = 0, (9)

xt = xt−1 + ζx,t, x0 = 0, (10)

where ζt := (ζu,t, ζx,t, ζµ,t)
′ = Σ

1/2
t ζ∗t , ζ∗t ∼ N(0, I3), i.i.d., |ρ| < 1 and

Σt :=


σ2
u,t σux,t 0

σux,t σ2
x,t 0

0 0′ σ2
µ,t.


In particular, here we initially consider the case of a simple linear cointegrating regression with a

single non-deterministic integrated regressor.

We consider abrupt variance breaks of the form

σ2
u,t = σ2

u,0 + (σ2
u,1 − σ2

u,0)1 (t ≥ bτuT c)

σ2
x,t = σ2

x,0 + (σ2
x,1 − σx,0)2

1 (t ≥ bτxT c)

σµ,t = σ2
µ,0 + (σ2

µ,1 − σ2
µ,0)1 (t ≥ bτµT c) .

In all simulations we set σ2
u,0 = σ2

x,0 = σ2
µ,0 = 1.

As Cavaliere and Taylor (2006) noted under the null hypothesis ρ2
µ = 0 four cases can occur:

(i) if τu = τx = 0, then yt and xt are both standard I(1) processes with homoskedastic increments

and cointegrated; (ii) if τu 6= 0, τx = 0 the permanent shocks to the system are homoskedastic (i.e.,

xt is integrated with homoskedastic innovations) but there is a variance shift in both the transitory

component of yt and in the cointegrating relation; (iii) if τu = 0, τx 6= 0, the permanent shocks to

the system are heteroskedastic with changes to both xt and yt being heteroskedastic, but there are

no variance shifts in the cointegrating relation; (iv) if τu 6= 0, τx 6= 0, the permanent shocks to the
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system are heteroskedastic, changes to both xt and yt are heteroskedastic and there is a variance

shift both in the transitory component of yt and in the cointegrating relation. If H0 is true variance

shifts in ζµ have no influence. Under the alternative we also allow for variance breaks in ζµ which

lead to variance breaks in ut which are similar to cases (ii) and (iv).

Moreover, we consider covariance breaks of the form

σux,t = σux,0 + (σux,1 − σux,0)1 (t ≥ bτuxT c) .

In our simulations we only consider the case where all variance shifts occur at the same time,

i.e., τ := τu = τx = τµ = τux. For the results on other possible scenarios see the simulation study

of Cavaliere and Taylor (2006).

We investigate the following parameter constellations. Let the sample size be T ∈ {100, 300}.

We take ρ2
µ ∈ {0, 0.001, 0.01, 0.1}. ρ2

µ = 0 is to estimate size, the other constellations are for a

power analysis. We consider variance breaks at τ ∈ {0, 0.1, 0.5, 0.9}. While the first of the τ -values

corresponds to the case of no variance breaks the latter stand for early, middle, and late variance

breaks. We also fix the magnitude of the variance breaks by setting σ2
1 = σ2

u,1 = σ2
x,1 = σ2

µ,1 ∈

{1/16, 16}, like in Cavaliere and Taylor (2006). The parameter for the covariance σux,t are chosen in

such a way that the correlation between ζu,t and ζx,t is fixed over time at λ ∈ {0, 0.5}, i.e., without

or with endogeneity. The AR(1) parameter of ut is set ρ ∈ {0, 0.5}. Empirical rejection rates are

based on 10,000 replications (unless stated otherwise) and the number of bootstrap replications is

B = 500. Finally, the nominal level of significance is α = 0.05 for the remainder of this paper.

We perform the test by estimating θ in the linear regression yt onto g(xt, θ) ≡ θxt and using

the residuals to compute η̂.1 We use the estimator σ̂2
u given in (3) for ρ = 0 and, for ρ = 0.5, a

non-parametric autocorrelation-robust estimator for the long-run variance with a Bartlett kernel

and a spectral window of
⌊
4(T/100)0.25

⌋
as suggested in Kwiatkowski et al. (1992). Table 1 reports

empirical rejection rates (as percentages) for the different parameter constellations. Panel (a) shows

the rates for the bootstrap approach, panel (b) for the subsample approach and panel (c) for the

standard Shin (1994) test. First, the bootstrap generally yields very good empirical sizes and

powers. Both time (early or late) and direction (increase or decrease) of a variance break do not

1While we formulate the theory for nonlinear cointegrating regressions we for simplicity use the OLS estimator
whenever possible to speed up the computations.
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have a notable impact on the rejection frequencies. For example, early downward variance breaks

yield lower empirical power than early upward variance breaks, and vice versa for late variance

breaks. This effect reduces with increasing ρ2
µ.

The subsample-based test is undersized in the constellation without heteroskedasticity under

absence of endogeneity and autocorrelation. Interestingly, it is oversized under endogeneity and

autocorrelation, especially in the presence of early downward variance breaks. This effect reduces

if the shifts occur later. Moreover, the bootstrap test has higher power for ρ = 0, especially if the

alternative is close to the null, otherwise the subresidual test has higher power.

Panel (c) shows the result for the test based on critical values tabulated by Shin (1994). We

observe that variance breaks are an issue and that the test oversizes or undersizes depending on

downward or upward breaks. The empirical power is generally smaller than for the bootstrap test.

4.2 Polynomial cointegrating regression

In this subsection, we consider the case of polynomial cointegrating regression, in particular a

quadratic and a cubic relation. We replace the linear model (7) and simulate according to

yt = xt + x2
t + ut,

for the quadratic relation, while (8), (9) & (10) and all further parameter constellations of Subsec-

tion 4.1 still hold. We now estimate θ = (θ1, θ2)′ by regressing yt on g(xt, θ) = θ1xt + θ2x
2
t . In this

model, we already cannot use the critical values of Shin (1994) because to consider both xt and

x2
t as integrated regressors violates the model assumptions. This is also discussed in Wagner and

Hong (2016).

Table 2 shows the tests’ rejection frequencies. Similar interpretations like in Subsection 4.1 for

the linear case apply here, too. In addition, we observe a decrease of empirical power relative to

Table 1, plausibly due to the more complex model to be fitted. The loss is more moderate for the

bootstrap test.

Inspired by the application in Section 5, we also consider a cubic cointegrating regression. We

simulate from the model

yt = xt + 2x2
t + x3

t + ut,
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Table 1: The table reports the empirical rejection frequencies for testing the null of cointegration
in the linear regression model for various parameter constellations. All rejection rates are given
as percentages. The nominal size is 5%. Panel (a) is for the bootstrap test, panel (b) for the
subresidual-based test and panel (c) for the Shin (1994) test.

ρ2µ: 0 0.001 0.01 0.1

ρ: 0 0.5 0 0.5 0 0.5 0 0.5

T τ : σ2 λ 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5

(a) 100 0 5.3 4.7 8.3 6.9 15.6 15.4 16.8 16.8 50.1 50.9 37.6 37.2 84.9 84.3 50.4 50.9
0.1 1/16 6.7 6.4 6.4 6.4 17 17.2 18.7 18.5 43.3 43.9 37.1 37.2 77 78.4 51.4 52.6

16 5.1 4.4 7.3 6.6 13.6 13.9 14.5 14.1 47.2 47.3 34 33.9 82.3 82.3 46.5 46.6
0.5 1/16 5.3 4.7 7.2 6.6 13.9 13.9 15.2 14.9 42.3 43.1 31.7 32.8 77.3 78.1 47.5 48

16 4.8 4.8 5.6 4.9 11 11.1 10.6 10.2 42.4 43.8 29.5 29.8 82.2 82 42.7 42.3
0.9 1/16 5.2 4.5 7.7 6.4 15.2 14.8 16.3 16 51 51.1 37.9 37.1 84.6 85.4 50.1 50.9

16 4.7 5.7 6.9 6.2 11.9 12.7 12.7 13.3 40.1 40 31.9 31.8 77.3 77.2 45.6 46.2
300 0 4.8 4.1 7.1 6.2 48.4 49.5 43.8 43.1 87.1 87 65 65.6 98.5 98.6 70.5 70.4

0.1 1/16 5.6 5.1 6.4 6.1 38.5 37.8 38.5 37.3 77 76.5 60.3 60 96.3 96 70.3 69.9
16 5.1 4.3 6.9 6 45.8 46.3 40.4 40.6 85.2 85.5 61.7 62.5 98.4 98.5 68.1 67.9

0.5 1/16 5.1 5.1 7.2 6.5 41.4 42.5 37.3 38.2 79.9 80.2 60 60.4 96.1 96 68.4 67.7
16 5 5.2 6.4 6.8 43.1 43.2 38.3 38 85.6 85.8 60.1 60.3 98.9 98.5 64.2 64.3

0.9 1/16 4.9 4.4 7.1 6.1 50.7 50.5 44.9 44.1 87.1 87.3 65.7 66 98.7 98.6 71.6 70.5
16 5.4 5.6 6.7 6.8 39.4 38.7 37.5 37 79.9 80.7 58.8 60.3 97.5 97.5 64.6 65.3

(b) 100 0 2 1.6 8.1 7.7 8.5 8.8 18.5 19 40.2 40.8 44.3 44.6 79.4 79.2 62.7 63.1
0.1 1/16 6.3 6.6 10.8 13 17.1 17.6 26.2 27.9 44.5 45.1 48.4 49.1 78.9 78.2 65.8 65.4

16 1.3 1.1 5.7 6.6 5.9 6 14.3 14.3 32.6 34.3 35.8 37.3 74.7 74.2 55.2 55.1
0.5 1/16 4.6 6.8 14.2 19.1 19.7 21.6 31.1 33.4 48.2 49.2 52.9 53.9 80.8 81.2 69.2 69

16 2.2 1.5 7.1 6.2 4.3 4 12.7 10.9 29.2 28.4 34.8 34.7 75.2 74.8 57.8 56.4
0.9 1/16 2.2 1.8 8.4 8.1 9.2 9 19.1 19.1 41.7 41.7 44.8 44.6 79.8 79.6 63.4 63.2

16 5 4.9 11 12 9.1 8.8 19.2 19.7 37.5 37.4 43.9 44.7 78 79.3 64.8 65.7
300 0 1.8 1.6 4.3 4.4 38.4 37.6 41.4 40.4 83.7 84.3 69.9 70.5 98.1 98.2 77.1 76.9

0.1 1/16 6.4 6.5 9.5 10.3 43.4 44.8 47.4 48.3 81.9 82.5 71.3 70.6 97.9 97.8 78.1 78
16 1 1 3.1 3.1 32 31.3 34.2 33.6 78.2 79.2 62.1 62.6 97.1 96.9 71.7 70.5

0.5 1/16 5.5 8.9 12 17.1 50.1 51.4 55.1 55.4 85.6 85.3 77.4 76.9 98.2 98.1 83 83
16 3.4 2.4 6.8 5.2 34.7 33.9 36.9 37.5 83 83 69.3 69 97.9 98 78.1 77.4

0.9 1/16 2.1 1.8 5.1 4.7 40.6 40.3 43.6 43.2 84.5 84.3 71 70.6 98.4 98.2 76.6 76.8
16 4.5 4.1 7.9 7.2 34.4 34.7 38.9 39.3 80.9 81.4 70.2 70.3 97.5 97.8 77.9 77.9

(c) 100 0 5 3.7 10 8.1 15.5 14.7 19.9 18.8 46.8 45.8 37.4 36.7 79.6 79.3 45.8 46.1
0.1 1/16 12.3 10.7 12.4 11.7 22.2 20.9 22.8 21.9 45 44.6 35.5 35.2 76.5 75.5 42.6 42.9

16 4.2 3.3 8.7 7.2 12.4 11.6 16.5 15.5 40.3 41.6 32.6 33.2 75.8 75.7 41.6 41.9
0.5 1/16 9.5 9.2 15.1 13.4 19.5 19.4 23.8 22.6 46.1 46.3 37.5 36.5 79.3 79.3 47.2 46.3

16 1.7 1.5 4.4 4.2 4.4 4.3 8.6 8.4 27.9 27.9 25.2 25.5 68.2 67.6 38.1 38
0.9 1/16 6.1 4.6 11 8.6 16.6 15.7 20.5 19.3 47.7 47.7 37.4 37.5 80.6 80.9 47 47.1

16 4.2 4.8 9.6 10.4 9.3 10.5 16.8 17.8 35.8 35.8 36.3 36 71.2 72.2 48.1 48.6
300 0 5 4 7.6 6.6 45.6 44.7 40.4 39 85.2 84.7 56.8 57.4 97.8 98.1 60.9 60.5

0.1 1/16 12.1 10.9 13.1 11.5 44.8 45 40.4 40.1 79.4 80 54.5 54.1 96.8 96.7 57.7 57.2
16 4 3.5 6.5 5.6 40.8 40.5 35.9 35.7 80.6 81.1 52.2 52.5 97.2 96.9 55.9 55

0.5 1/16 9.9 8 12.9 10.7 47 46.3 41.7 41.3 82.7 81.9 57.3 57.5 97.4 97 61 62
16 1.3 1.3 2.6 2.7 27.7 28 25.2 25.8 74.5 74 47.3 46.7 95.6 95.7 51.8 52.2

0.9 1/16 6.2 4.4 9.2 6.9 49 48.2 43 41.9 86 85.5 57.7 57.2 98.2 98.2 59.8 60.7
16 3.9 4.5 6.7 7.4 34.6 35.1 35.7 36 75.9 76.2 54.6 55.4 95.6 95.8 59.5 59.3
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Table 2: The table reports the empirical rejection frequencies for testing the null of cointegration
in the quadratic regression model for various parameter constellations. All rejection rates are given
as percentages. The nominal size is 5%. Panel (a) is for the bootstrap test and panel (b) for the
subresidual-based test.

σ2
µ: 0 0.001 0.01 0.1

ρ: 0 0.5 0 0.5 0 0.5 0 0.5

T τ : σ2 λ 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5

(a) 100 0 4.9 5.6 7.1 7 12.2 12.6 13.1 13.8 44.2 46.1 30.8 31.7 82.2 81.1 42.1 42.1
0.1 1/16 6.4 7.3 4.9 6.1 14.5 15.3 14.1 14.7 35.8 36.7 29.1 29.8 68.9 70.4 39.9 40.8

16 4.9 5.9 6.3 6.7 11.4 11.8 11.6 11.4 40.7 41.3 26.9 26.8 79.4 78.6 37.6 38.1
0.5 1/16 5 5.6 5.7 6 11.4 11.1 11.5 11.5 35.5 36.6 25.6 26.2 72.5 72.6 37.9 37.7

16 5.2 5.7 4.2 4.2 9.3 9.8 7.3 7.3 35.1 35.8 21.1 21.2 76.8 76.8 33.8 33.4
0.9 1/16 5 5.5 6.5 7.1 12.2 12.5 12.5 12.6 44.5 44.7 30.6 30.1 81.8 81.7 41.8 42.1

16 5.3 5.7 5.1 5.6 10.3 10.7 9.9 10.6 34.5 35.5 26.7 26.9 72.8 73.7 39.8 39.9
300 0 4.9 5.3 6.9 7.1 42.7 44.3 38.3 38.6 85.1 84.8 60.9 60.3 98.2 98.3 64.4 64.9

0.1 1/16 5.8 5.4 5.8 6.2 32 30.9 31.3 30.3 68.8 68 51.1 50 94.2 93.8 58.3 58.3
16 5.1 5 6.9 6.9 40.6 40.5 35.1 35.2 82.5 83 56.6 57.4 97.8 97.8 61.6 61.6

0.5 1/16 5.2 5.7 6.7 6.9 35.4 36 31.7 32 75.8 75.5 52.7 52.8 95.8 95.4 59.8 59.7
16 4.8 5.6 6.1 7.1 35.1 35.6 30.3 30 81.3 81.1 53.3 52.5 97.8 97.6 57.2 56.6

0.9 1/16 4.9 5.2 6.6 6.7 44.5 44.4 38.9 38.2 84.1 84.9 59.9 60.1 98.2 98.3 65.4 65.1
16 5.2 5.9 5.8 6.5 34.5 34.8 32 32 75.9 76.3 54.7 55.8 96.2 96.8 60.5 60.7

(b) 100 0 1.1 0.9 5.2 5.5 4.6 5.2 12 13 30.2 30.9 34.2 34.9 71 71.2 53.7 54.5
0.1 1/16 4.5 4.9 8 9.3 11.8 12.4 18.5 19.5 32.6 33.5 36.4 37.1 66.8 66.1 52.9 52.1

16 0.7 0.7 4 4.4 3.2 3.4 8.9 9.6 23.2 24.8 26.9 28.3 64.8 64.8 46.3 46.4
0.5 1/16 3.4 4.3 9.7 12.6 12.7 13.7 20.3 22.4 35.1 35.8 39.4 39.3 68.6 68.5 54.7 54

16 3 2.5 6.9 6.6 4.2 4.2 10.3 9.7 22.3 21.8 27.3 26.9 67.1 67.6 48.7 48.1
0.9 1/16 1.5 1 5.6 5.8 5.1 5.4 12 12.9 31.1 30.8 34.7 33.8 71.6 71.1 53.9 52.9

16 4.1 4.8 8.3 8.9 6.6 6.9 13.4 14 28.9 29.4 35.1 35.4 69 70.5 55.4 56.7
300 0 1.1 0.9 3 3 28.8 28.6 31.9 31 75.3 76.1 61.2 61.3 96.2 96.4 69.8 69.7

0.1 1/16 4.7 4.9 7 7.7 32.6 33.4 35.3 36.1 70.3 71.4 59 58.8 94.9 94.7 67.9 67.9
16 0.6 0.7 2 2.1 23.3 22.7 25.7 24.9 69.9 69.5 53.5 53.3 94.7 94.3 64.1 63.5

0.5 1/16 4 6.1 8.4 11.6 38 37.5 41.2 40.9 75.2 74.5 63.4 62.8 95.7 95.6 69.9 69.9
16 4.9 5.2 7.8 7.2 28.8 28.6 30 30 77.8 78 61.1 60.4 96.7 96.6 70.7 70.3

0.9 1/16 1.3 1.2 3.4 3.3 29.9 30.5 33 32.7 75.8 76.3 61.9 61.9 96.3 95.9 69 68.8
16 4 4.6 5.6 6.6 27.3 27.5 30.6 31.2 73.2 73.9 61.3 61.7 95.3 95.6 70.4 70.7
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Table 3: The table reports the empirical rejection frequencies for testing the null of cointegration
in the cubic regression model for various parameter constellations. All rejection rates are given
as percentages. The nominal size is 5%. Panel (a) is for the bootstrap test and panel (b) for the
subresidual-based test.

ρ2µ: 0 0.001 0.01 0.1

ρ: 0 0.5 0 0.5 0 0.5 0 0.5

T τ : σ2 λ 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5

(a) 100 0 4.9 5.8 6.3 6 10.7 11.1 10.4 11.2 40.6 42 26.1 26.5 80.7 79.9 35.9 36
0.1 1/16 5.9 6.9 4.8 5.8 13.6 14.2 12.7 13.2 34.6 35.5 27.3 27.8 68.8 70.1 38.5 39.8

16 4.7 5.6 5.3 5.5 9.9 10.6 8.8 9.3 36.9 38.1 21.9 21.7 77.5 77.3 31.5 31.5
0.5 1/16 4.9 5.1 5 4.8 9.6 10.2 9.3 9.3 31.9 33 21.3 21.6 68.9 69.2 32.3 31.8

16 4.9 5.3 3.6 3.4 8.1 8.6 5.9 5.4 29.3 30.8 14.9 15.4 73.2 72.5 25.6 24.8
0.9 1/16 4.8 5.2 5.8 5.8 10.9 11.2 10 10.3 41.6 40.9 25.8 24.9 80.6 80.6 35.7 36

16 5.2 5.1 4.8 4.7 9 9.5 8.2 8.5 30.6 31.1 22.7 22.5 70.5 71 35.2 35.4
300 0 5 5.4 7 7 39.1 40.9 34.7 34.3 83.5 83.5 58 56.9 98.2 98.2 62.2 62.4

0.1 1/16 5.3 5.8 5.5 5.8 30.5 29.7 29.8 28.2 67.7 67.4 50.1 49.3 94 93.6 57.9 58.1
16 4.8 5.2 6.4 6.6 37 36.4 31.3 30.6 80.9 81.6 53.4 53.8 97.5 97.8 58.2 58.1

0.5 1/16 5.1 5.2 6.2 6.2 31.4 32.5 27.4 27.7 72.7 72.6 48.6 48.3 95.5 94.8 54.6 55.3
16 4.9 5.9 5.4 6.5 29.8 31 24.9 24.5 77.2 77.8 46.5 46.3 97.5 96.9 49.7 49.9

0.9 1/16 5.1 5.4 6.6 6.9 40.5 40.6 34.9 34.7 82.9 83.3 57 57.5 98.1 98.3 63.7 62.3
16 5.6 5.5 5.7 5.6 30.3 30.2 28.3 27.5 73.4 73.8 51.2 52.2 95.9 96.3 57.6 57.7

(b) 100 0 0.8 0.9 3.8 4.3 3 3.4 9.1 9.7 23.7 24.5 28 28.1 64 64.1 46.4 47.3
0.1 1/16 3.3 3.6 5.9 7.1 8.4 9.1 14.4 15.4 27.5 27.6 30.7 30.9 61 60.1 47.6 46.8

16 0.5 0.6 3.1 3.4 2 2.3 6.5 7.1 17.9 19 22.2 22.9 57 57.7 39 39.5
0.5 1/16 2.9 3 7.6 9.2 9.7 10.3 16.1 17.6 28.5 29.2 32.9 33.1 61.5 61.4 48 47.7

16 3.1 2.8 5.9 5.8 4.1 3.8 8 7.7 16.8 17 20.9 21 58 57.8 38.2 38
0.9 1/16 1 0.6 4.4 4.6 3.3 3.6 8.8 10 24.8 24.2 28.5 27.3 63.3 63.4 46.5 46.9

16 3.6 3.9 6.4 6.9 5.3 5.3 10.5 11.1 23.6 24.3 29.4 29.3 62.3 64.7 49 49.6
300 0 0.8 0.8 2.4 2.2 23.2 22.7 25.7 25.1 68.8 69.7 52.9 53.8 93.8 93.9 62.1 62.5

0.1 1/16 3.4 3.8 5 5.6 27.7 28 30.5 30 65.2 65.8 54 53.2 92.2 92.5 63 63.5
16 0.4 0.5 1.5 1.6 17.5 18.2 20.2 19.4 63 63.2 46.2 45.7 92 92 56.8 55.9

0.5 1/16 4 4.2 7.3 8.1 30.7 30.9 34.2 34.1 68.4 68.2 56.1 55.5 93.1 93.3 63.8 63.8
16 5.3 6.1 7.4 7.2 23.2 23.6 23.3 23.8 70.8 71.2 51.8 51 94.7 94.7 62.9 62

0.9 1/16 0.8 1 2.4 2.7 23.2 24 26.2 25.8 68.9 69.7 54.1 54.3 93.6 93.9 61.3 61.6
16 3.9 3.6 5 4.4 22.5 22 25.2 24.9 67.8 67.9 54.4 54.8 93.2 93.6 64.3 65.1

18



where the remaining parameters are specified like in the linear and quadratic case. Table 3 shows

the rejection frequencies. Again, size is well controlled for the bootstrap test, and we observe

additional loss of power compared to the quadratic model (Table 2). The power loss is higher for

the subresidual test.

4.3 Smooth transition regression model

We now discuss an example of a cointegrating regression which is indeed nonlinear in the

parameters. Thus, NLS is needed for estimation. We adopt the example of cointegrating smooth

transition functions which is also considered in Saikkonen and Choi (2004) and Choi and Saikkonen

(2010). We generate data according to

yt = θ0 + θ1xt + θ2
1

1 + exp(−(xt − θ3))
+ ut,

with the parameter constellation θ0 = 0, θ1 = 1, θ2 = 1, θ3 = 5. In rare cases, for some generated

samples the NLS algorithm does not converge. We thus exclude these cases from the analysis. To

save computational time we run 1,000 repetitions for each constellation. Note that while the true

parameter θ0 = 0 we include θ̂0 in the estimation. This means we are in the setting beyond our

model assumptions with an additional deterministic regressor. For a more detailed discussion see

Appendix B.

Table 4 panel (a) reports the rejection rates for the bootstrap test and panel (b) for the

subresidual-based test. We observe that the bootstrap test works well, again, with some mod-

erate size problems in the presence of either endogeneity or autocorrelation (which can be solved

using leads-and-lags as in Appendix B) and somewhat larger size distortions for both endogeneity

and autocorrelation. The subresidual based test delivers mixed results, being is undersized and

oversized for different scenarios of variance breaks.

5 Application

We now discuss an application of cointegrating polynomial regressions for the environmental

Kuznets curve (EKC). It relates per capita GDP and per capita pollution of, e.g., CO2 emissions.
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Table 4: The table reports the empirical rejection frequencies for testing the null of cointegration
in the smooth transition regression model for various parameter constellations. All rejection rates
are given as percentages. The nominal size is 5%. Panel (a) is for the bootstrap test and panel (b)
for the subresidual-based test.

σ2
µ: 0 0.001 0.01 0.1

ρ: 0 0.5 0 0.5 0 0.5 0 0.5

T τ : σ2 λ 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5

(a) 100 0 4.5 7.5 5.7 10.9 12.1 14.8 12.6 18.4 43.8 48.2 38.3 38.8 88.1 89.8 53.6 56.8
0.1 1/16 8.8 9.5 6.7 9.5 8.8 11.6 8.6 11.9 29.7 29.1 26.1 26.4 70.7 70.7 41.9 41.3

16 4.4 8.8 7.4 13 11.1 15.9 14.8 18.4 47.3 50.8 40 41.2 89.5 91.5 56.2 58.9
0.5 1/16 4.8 8.8 6.1 8.5 9 9.5 8.9 9.6 32.4 37.7 24.5 28 78.3 77.6 39.5 42.1

16 6.1 7.3 5 6.7 8.6 12.8 9.3 10.6 35.2 35.8 22.7 23.8 79.9 82.5 34.5 36.6
0.9 1/16 4.7 9.1 5.7 12.1 12 17.1 14.8 19.6 49.6 50.6 39.4 40.3 88.8 89.2 55.3 55.5

16 6.4 8 6.5 9.2 9.1 10.1 8.2 11.9 26.3 30.8 23.6 27.4 70.2 70.4 39.2 40.9
300 0 5.2 8.1 7.2 11.8 43.8 47.7 44.2 46 90.3 91.5 78 77.2 99.7 99.4 79.5 78.8

0.1 1/16 7 7.5 7 9.4 21.6 27.1 24.1 27.7 69.5 69.8 52.4 54.4 96.5 96.8 63.6 60.4
16 3.9 8.4 6.2 12.2 44.9 48.8 46.5 48.6 92.2 91.8 79.1 77.9 99.6 99.8 83.5 81.7

0.5 1/16 5.5 8.9 7.2 10.9 30.9 36.2 30.8 34.7 80.5 82.5 64.5 65.7 98.9 99 70.4 70.7
16 3.3 7.9 6.2 10.8 33.1 37.2 32.5 34.6 83.3 82.7 64.3 65.3 99.3 98.8 70.9 70.3

0.9 1/16 6.4 10.1 9 14.1 48.4 47.8 47.5 46.7 90.8 91.2 76.7 75.6 99.8 99.8 81.5 81.6
16 5.2 6.5 7.5 8.6 24.2 28.1 25.1 27.9 72.7 76.6 57.9 58.4 97.5 97.8 63.5 62.8

(b) 100 0 0.2 0.2 1 1.8 0.7 1.3 3 5.6 13.2 13.6 16.4 18.9 51.2 52.3 31.8 35.8
0.1 1/16 1.2 1.1 3.2 3.5 1.4 2 3.8 5.6 8.1 7.9 13.3 13 40.6 40.2 30.1 30

16 0 0.2 0.8 1.3 0.7 1.1 4.2 3.7 13.7 15.1 15.7 19.1 52.2 53.5 34.2 36.7
0.5 1/16 2.6 3.3 4.5 7.9 3.6 4.8 7.1 10.7 13.6 15.1 18.5 19.5 41.3 43.6 30 33.7

16 5.3 5.9 6.1 6.3 7.4 7.6 10.1 9.7 22.9 24 19.9 22.9 54.9 56.4 38.5 36.2
0.9 1/16 0.1 0.1 1.4 0.7 0.5 0.9 2.8 2.7 11.5 11.6 13.7 15.8 46.8 47.7 30.2 32.2

16 2.5 3.5 3.8 4 3.7 5.4 6.3 6.4 16.7 18.9 16.4 17.7 50.5 50.1 31.6 33.7
300 0 0.1 0.1 0.2 1 13.2 14.3 16.8 14.9 59.3 58.4 42.5 37.8 91.4 91.6 46.9 48.5

0.1 1/16 1 1.2 1.8 2.7 8.1 9.1 10.9 13.3 44.3 46.9 32 30.3 85 86.2 43.6 42.8
16 0 0.2 0.3 1 14.1 14.2 13.1 14.7 59 59.2 41.3 40.6 92 92.1 48.2 50.5

0.5 1/16 4.5 5.2 7.1 8.5 20.5 22.4 25.2 26.4 56.5 56.1 44.5 42.4 88.2 88.7 51 50.8
16 9.7 11.8 9.9 11.9 31.4 32.9 32 28.3 69.9 69.8 53.6 50.5 92.8 92.7 57.6 59.1

0.9 1/16 0.1 0.1 0.2 1 12.6 12.8 15.1 15 56.6 56.6 38.5 41.2 90 90 46.7 49.3
16 2.6 4.2 3.9 4.8 17.3 20.2 16.9 20.1 58.5 58.6 45.9 41.1 90 90.4 48.5 49.1
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The term EKC refers to the inverse U-shape relation of economic development and income inequality

postulated by Kuznets (1955). Grossman and Krueger (1995) opened a very active literature with

contributions in several directions. See Stern (2004) or Stern (2018) for a more recent survey.

We build on Wagner (2015) and Stypka et al. (2017) who argued that using an ordinary

Shin (1994)-type linear cointegration test is inappropriate for polynomial cointegrating regressions

(CPR). This is because if we include the k-th power xkt of an integrated regressor into the regres-

sion this power itself is not I(1) anymore and thus violates the assumptions of the Shin (1994)

test. Based on Wagner and Hong (2016) the aforementioned authors applied a fully modified OLS

approach for CPRs. However, they did not allow for variance breaks in their approach, which could

lead to erroneous inference regarding the EKC hypothesis. We apply the bootstrap discussed above

to address this possible issue in the following.

We study data of 19 industrialized countries (see Table 5) over the period from 1870 to

2014.2 We use per capita GDP data of the Maddison database (https://www.rug.nl/ggdc/

historicaldevelopment/maddison/). CO2 data is taken from the homepage of the Carbon Diox-

ide Information Analysis Center (https://cdiac.ess-dive.lbl.gov/) and is expressed as 1,000

tons per capita. We convert all time series to natural logarithms. Among others, Wagner (2015)

also examined sulfur dioxide data, but discussion and results are similar. For brevity, we only focus

on (the more relevant) CO2 emissions. Let et denote log per capita GDP and yt denote log CO2

emissions per capita. We then study the model

et = c+ δt+ θ1yt + θ2y
2
t + θ3y

3
t + ut.

To assess whether variance breaks are present in the error term we follow Cavaliere and Taylor

(2008) and define the empirical variance profile as

ρ̂(s) :=

∑bTsc
t=1 û2

t + (sT − bTsc)û2
bTsc+1∑T

t=1 û
2
t

(11)

for s ∈ (0, 1), with ρ̂(0) := 0 and ρ̂(1) := 1. In case of homoskedasticity, we should have ρ̂(s) ≈ s.

Figure 1 plots the empirical variance profile for Australia, Austria, Belgium and Canada against

2New Zealand is an exception were data is available for 1878-2014.
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s. Figures 2–5 for the remaining countries are given in Appendix C. We observe the presence of

variance breaks for all countries (except maybe Denmark). For example, there is an early upward

variance break for Canada. Thus, the usage of heteroskedasticity-robust tests is advisable.

Next, we run a few univariate tests to characterize the series. In particular, we test for station-

arity using a KPSS test (with the null of no unit root) and the test by Phillips and Perron (1988)

(with the null of a unit root). Note that heteroskedasticity is an issue for the KPSS test making

critical values derived by Kwiatkowski et al. (1992) invalid. A possible remedy is to proceed as in

Cavaliere (2005). We use the proposed bootstrap for the series yt and et instead for residuals to

test if they have no unit root.

We perform three tests for cointegration, the bootstrap test using NLS residuals, the bootstrap

test using leads-and-lags (LL) residuals (see Appendix B) and the subresidual based test. We use

a non-parametric autocorrelation-robust estimator for the variance with a Bartlett kernel and a

spectral window of
⌊
4(T/100)0.25

⌋
as suggested in Kwiatkowski et al. (1992).

Table 5 reports the test results for the different countries given in the first column. The second

to fourth column are for the cointegration tests with NLS, LL and the subresidual-based test.

Columns 5 and 6 give results for the KPSS test for et and yt, and column 7 and 8 for the Phillips-

Perron (PP) test, resp. All test results are given by the corresponding p-values where very small

p-values are abbreviated with < .01.

For the common level of significance of 5% we draw the following conclusions. In almost all

cases the KPSS test leads to a rejection of the null of no unit root of both et and yt while the

PP test does not reject the null of a unit root. This provides evidence that the regressor and the

regressand are both I(1).

The three cointegration tests reveal mixed results. The first observation is that all three lead to

acceptance of the null in the majority of the cases. We recall that the subresidual-based test is both

in general undersized and second not robust to variance breaks, making it unreliable. Of course,

bootstrap tests are dependent on simulation. Moreover, the p-values are all close to the nominal

size, so that decisions may hinge on simulation variability. To reduce the effects of randomness we

increased the number of bootstrap runs to 2,000. The bootstrap tests come to different test results

in the case of Canada, Germany, Japan and Switzerland. Both tests reject only for Australia, New

Zealand, Portugal and the United States. In the other cases both tests accept the null, providing
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Figure 1: Empirical variance profile (11) for different countries. The dashed line is the reference
line for homoskedasticity.
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some support for the EKC hypothesis. Wagner (2015) rejected the null for the majority of countries

using fully modified OLS for cointegrating polynomial regressions. However, tests which are not

robust to variance breaks can lead to over-rejections.3

Table 5: p-values for different tests. pbNLS gives the p-value for the bootstrap NLS-based test and
pbLL for the bootstrap LL version, pCS for the test by Choi and Saikkonen (2010), pKPSS,y for the
KPSS test for the CO2 emissions, pKPSS,y for the KPSS test for the GDP, pPP,y for the PP-test
for the CO2 emissions, pPP,y for the PP-test for the GDP.

Country pbNLS pbLL pCS pKPSS,e pKPSS,y pPP,e pPP,y

Australia .035 .032 .024 < .01 < .01 .686 .399
Austria .390 .366 .469 < .01 < .01 .044 .774
Belgium .560 .474 .797 .010 < .01 .040 .952
Canada .053 .043 .316 < .01 .020 .738 .023
Denmark .097 .142 .659 < .01 < .01 > .99 .747
Finland .251 .187 .757 .029 < .01 .034 .739
France .186 .163 .674 < .01 < .01 .607 .708
Germany .027 .068 .124 < .01 < .01 .065 .582
Italy .134 .143 .584 .045 < .01 .152 .900
Japan .061 .019 .611 < .01 < .01 .130 .794
Netherlands .329 .276 .719 .085 < .01 .017 .814
New Zealand .024 .027 .032 .029 < .01 .094 .233
Norway .090 .103 .695 .018 < .01 .073 .959
Portugal .016 .026 .051 < .01 < .01 < .01 .951
Spain .191 .113 .264 < .01 < .01 .430 .970
Sweden .538 .432 .900 < .01 < .01 .478 .735
Switzerland .049 .053 .063 .016 < .01 .239 .935
United Kingdom .174 .111 .427 < .01 < .01 .015 .731
United States .042 .037 .114 < .01 < .01 .830 .071
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A Appendix: Proofs

Proof of Theorem 1. Consider T−1/2
∑bTsc

t=1 ût. Since ût = ut − (g(xtT , θ̂T ) − g(xtT , θ0)), a

second-order Taylor expansion of g(xtT , θ̂T ) around θ0 gives

T−1/2

bTsc∑
t=1

ût =T−1/2

bTsc∑
t=1

ut − T−1/2

bTsc∑
t=1

K(xtT , θ0)′(θ̂T − θ0) (12)

+ T 1/2(θ̂T − θ0)′

T−1

bTsc∑
t=1

∂2g(xtT , θ̃)

∂θ∂θ′

 (θ̂T − θ0),

where ||θ̃ − θ0|| ≤ ||θ̂T − θ0||.
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For the first term in (12) Lemma 1 gives that, under H0,

T−1/2

bTsc∑
t=1

ut = T−1/2

bTsc∑
t=1

ζu,t
w→ B0,Ω(s).

For the second term in (12), recall that T 1/2(θ̂T − θ0)
w→ ψ

(
B0

1,Ω, θ0, κ
)

(Proposition 1). By

Lemma 1,

xtT = (T0/T )1/2xt = (T0/T )1/2

bTsc∑
j=1

ζ1,j
w→ T0B1,Ω(s) =: B0

1,Ω(s).

This implies that

T−1

bTsc∑
t=1

xtT
w→
∫ s

0
B0

1,Ω(r)dr,

and by the continuous mapping theorem,

T−1

bTsc∑
t=1

K(xtT , θ0)
w→
∫ s

0
K(B0

1,Ω(r), θ0)dr =: F (s,B0
1,Ω, θ0).

We conclude that

T−1/2

bTsc∑
t=1

ût
w→ B0,Ω(s)− F (s,B0

1,Ω, θ0)′ψ
(
B0

1,Ω, θ0, κ
)
,

since all weak convergences hold jointly. Another application of the continuous mapping theorem

yields

T−2
T∑
t=1

 t∑
j=1

ûj

2

w→
∫ 1

0

(
B0,Ω(s)− F (s,B0

1,Ω, θ0)′ψ(B0
1,Ω, θ0, κ)

)2
ds.

Finally, (4) follows by the continuous mapping theorem.

Proof of Theorem 2. Under the alternative H1 : ρ2
µ > 0

T−1/2ubTsc = T−1/2ζ0,bTsc + T−1/2ρµ

bTsc∑
t=1

ζµ,t
w→ ρµB2,Ω(s).

This implies that T−3/2
∑bTsc

t=1 ut
w→ ρµ

∫ s
0 B2,Ω(r)dr and hence T−3/2

∑bTsc
t=1 ut = Op(1).
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Like in the proof of Theorem 1 we use a Taylor expansion to obtain

T−3/2

bTsc∑
t=1

ût = T−3/2

bTsc∑
t=1

ut − T−3/2

bTsc∑
t=1

K(xtT , θ0)′(θ̂T − θ0) + op(1).

Next, observe |θ̂T − θ0| = Op(T
1/2). To see this we use a linear approximation

g(xtT , θ̂T ) ≈ g(xtT , θ0) +Kt(θ̂T − θ0),

where K is the Jacobian matrix with entries Kti = ∂g(xtT ,θ)
∂θi

, for t = 1, . . . , T , i = 1, . . . , k, and Kt

is its t-th row. We can use this approximation and the following normal equations of a linear model

(K ′K)−1(θ̂T − θ0) = K ′ỹ,

with ỹt = ytT − g(xtT , θ0). We now obtain the asymptotics as for ordinary least squares as in Shin

(1994) and McCabe et al. (1997) using that
∑bTsc

t=1 g(xtT , θ0) = Op(T ),
∑bTsc

t=1 K(xtT , θ0) = Op(T ),

and
∑bTsc

t=1 ut = Op(T
3/2).

Thus,
∑bTsc

t=1 ût = Op(T
3/2), which leads to

T−2
T∑
t=1

 t∑
j=1

ûj

2

= Op(T
2).

Moreover, Kwiatkowski et al. (1992) showed that the long-run variance estimator ω̂2
u = O(lT )

which implies η̂ = Op(T/l). As long as T/l→∞ for T →∞ the test is consistent.

Proof of Theorem 3.

(i) Similarly to the proof of Theorem 3 in Cavaliere and Taylor (2006) consider the process M b
t

s.t.

M b
T (s) := T−1/2

bTsc∑
t=1

ubt = T−1/2

bTsc∑
t=1

ûtzt.

Conditionally on {ût, xtT }Tt=1, this is an exact Gaussian process with kernel

ΛMT (s, s′) = T−1

bT (s∧s′)c∑
t=1

û2
t ,
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where s ∧ s′ denotes the minimum of s and s′.

Under the null, V ar(ut) = σ2
u,t and σ2(s) = σ2

u,bTsc which is the variance profile of the ut. As

in the proof of Lemma A.5 in Cavaliere et al. (2010) we see that

T−1

bT (s∧s′)c∑
t=1

û2
t = T−1

bT (s∧s′)c∑
t=1

u2
t + op(1)

p→
∫ s∧s′

0
σ2(r)dr,

pointwise, where the first equality follows by McCabe et al. (1997). Since T−1
∑bTsc

t=1 û2
t is

monotonically increasing in s and the limit function is continuous in s the convergence in

probability is also uniform. The RHS is the kernel of the Gaussian process Wσ s.t. Wσ(s) :=∫ s
0 σ(r)dW (r), where W is a standard Brownian motion. This implies that M b

T (s)
w→p Wσ(s),

as in Hansen (1996).

Analogously, applying the same mappings as in the proof of Theorem 1,

T−2
T∑
t=1

 t∑
j=1

ûbj

2

w→p

∫ 1

0

(
Wσ(s)− F (s,B0

1,Ω, θ0)′ψ(B0
1,Ω, θ0, κ)

)2
ds.

Now, we derive the large sample behavior of (ω̂bu)2.

(ω̂bu)2 = T−1
T∑
t=1

(ûbt)
2 + 2T−1

l∑
s=1

w(s, l)
T∑

t=s+1

ûbt û
b
t−s

= T−1
T∑
t=1

(ubt)
2 + 2T−1

l∑
s=1

w(s, l)
T∑

t=s+1

ubtu
b
t−s + op(1)

p→
∫ 1

0
σ2(r)dr,

because E(ztzt−s|{ût, xtT }Tt=1) = 0 for all s > 0 and = 1 for s = 0, and the same argument

as above by McCabe et al. (1997).

This implies that the bootstrap test statistic η̂b samples from a distribution that has the

same variance profile as the distribution of η̂ but with white noise serial correlation. Using

the arguments in Demetrescu et al. (2019) which are based upon Kiefer and Vogelsang (2005)

the bootstrap (asymptotically) controls size.
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(ii) We again consider M b
T (s) and ΛMT (s, s′) but now it suffices to look at the order of convergence.

Recall that under the alternative
∑bTsc

t=1 ût = Op(T
3/2) and

∑bTsc
t=1 û2

t = Op(T
2). This implies

that ΛMT (s, s′) = Op(T ) and, like in part (i), T−1/2M b
T (s) converges weakly in probability to

a Gaussian process where the kernel is given by the weak limit of T−1ΛMT (s, s′).

By the continuous mapping theorem it follows that
∑T

t=1 û
b
t = Op(T ) and, hence, that

T∑
t=1

 t∑
j=1

ûbj

2

= Op(T
3).

Consider next the long-run variance estimator (ω̂bu)2. Again, as in the proof of Theorem 2,

(ω̂bu)2 is consistent under the alternative of order O(lT ). All in all, we get η̂b = Op(1/l). Since

η̂ = Op(T/l) (Theorem 2) it follows that pbT
w→ 0, as long as l→∞ for T →∞.

Proof of Corollary 1. As in Choi and Saikkonen (2010) we modify equation (12) to

`−1/2

b`s+i−1c∑
t=i

ût = `−1/2

b`s+i−1c∑
t=i

ut − `−1

b`s+i−1c∑
t=i

K(xtT , θ0)′
√
T (θ̂T − θ0)

√
`

T

+ T (θ̂T − θ0)′

`−3/2

b`s+i−1c∑
t=i

∂2g(xtT , θ̃)

∂θ∂θ′

 (θ̂T − θ0)
`

T
.

We use the arguments from the proof of Theorem 1 and `
T → 0 to see

`−1/2

b`s+i−1c∑
t=i

ût
w→ B0,Ω(s).

The remainder follows by the continuous mapping theorem and (ω̂`u)2 → ω̄u.

B Appendix: Additional Simulations

This section discusses the case of estimating polynomial regressions with additional deterministic

regressors. This is beyond our model assumptions, following the assumption of Choi and Saikkonen

(2010) that all regressors are integrated. Deterministic regressors are not integrated. However,

deterministic regressors are useful in many applications. Therefore, we extend the simulations
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of Section 4.2 to study the impact of an intercept or a time trend to the rejection rates for the

bootstrap test. More specifically, we discuss the cubic regression model with deterministic because

it is the model in Section 5. Unreported results show that the results are qualitatively similar for

a linear cointegrating regression model with a deterministic regressor.

First we consider the cubic model including an intercept

yt = 1 + xt + 2x2
t + x3

t + ut.

Panel (a) of Table 6 shows, analogously to the previous results, the rejection frequencies with the

bootstrap test using NLS. We observe that in the presence of endogeneity the test is somewhat

oversized with a rejection rate of about 10%.

We also discuss a version of the cubic polynomial regression with a time trend of the form

yt = 1 + t+ xt + 2x2
t + x3

t + ut.

We do so mainly because there are some notable differences to the case without deterministic

components, and because we use this model for the application in Section 5. Panel (a) of Table 7

shows, analogously to the previous results, the rejection frequencies with the bootstrap test using

NLS. We observe that in the presence of endogeneity the test is oversized with a rejection rate

of about 10%. This is no surprise as the literature already documented this issue and proposed

several solutions. For example, one could use fully modified OLS developed in Phillips and Hansen

(1990) as suggested in Wagner and Hong (2016). We here follow Choi and Saikkonen (2010) who

use the leads-and-lags (LL) estimator proposed by Saikkonen (1991) (which is also known under

the name dynamic (non)-linear least squares). We briefly describe the procedure. We estimate the

coefficients in the model

yt = c+ δt+ θ1xt + θ2x
2
t + θ3x

3
t +

K∑
j=−K

πj∆xt−j + et,

which means that we include 2K leads and lags into the regression. As in Choi and Saikkonen

(2010) we take K = 1, 2, 3. However, panel (b) in Table 7 only reports the case of K = 1 as the

others have shown similar results. We compute test statistics and bootstrap p-values analogously,
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Table 6: The table reports the empirical rejection frequencies for testing the null of cointegration in
the cubic regression model with intercept for various parameter constellations. All rejection rates
are given as percentages. The nominal size is 5%. Panel (a) is for the bootstrap test using least
squares and panel (b) is for the bootstrap test using leads and lags.

σ2
µ: 0 0.001 0.01 0.1

ρ: 0 0.5 0 0.5 0 0.5 0 0.5

T τ : σ2 λ 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5

(a) 100 0 4,5 7,8 6,7 9,7 11,2 16,3 13,7 16,8 43 49,7 34,7 40,5 85,7 87,7 49,9 50,2
0,1 0,0625 6,2 6,5 7 8,3 8,7 11,5 8,3 12,3 28,3 29,3 24,9 28,8 71,5 71,3 39,2 43

16 5,8 8 5,9 10,9 12,3 17 14,5 16,6 45,8 48,2 38,1 35,3 87,5 88,8 51,6 52
0,5 0,0625 5,2 6,5 4,3 6 9,7 10 6,9 11,5 30,5 35,9 21,9 25,6 76,4 77,9 31,6 36,5

16 4,8 7,9 6,4 7 9,2 10,8 8,3 8,5 34,9 35,4 24,1 26,1 80,5 81,1 39,8 37,3
0,9 0,0625 5,6 6,9 6,8 8,1 12,3 14,2 13,2 14,9 47,9 49,1 38,2 37,8 88 89,7 52,5 52,9

16 4,4 5,1 4,4 7,4 7,3 9,4 8,6 11,1 27,9 29,2 24,9 25,7 70,5 72,7 38,2 41,7
300 0 5,7 8,3 6,8 11,3 44,9 48,7 43,2 47,2 90,7 89,4 78,1 73,2 99,4 99,8 81 80,1

0,1 0,0625 5,9 8 7,6 9,4 22,5 25,1 25,8 26,1 73,6 68,9 59,2 54,7 96,5 97,8 60,4 65,9
16 5,1 8,7 7 11,5 45,9 49,8 46 48,9 90,1 92,4 76,1 78,5 99,7 99,9 81,9 79,8

0,5 0,0625 6,7 8,5 7,6 9,5 29,4 35,4 29,9 34,3 81,1 81,4 64,4 65 99 98,4 71 69,9
16 5,3 8,8 6,8 11,4 36 36,9 34,5 35,8 82,4 82,3 65,4 65,6 99,2 98,7 70,6 69,4

0,9 0,0625 4,4 8,5 7,1 11,7 43,3 49,3 44,3 47,7 89,6 90,7 76,4 75,7 99,3 99,8 78,3 80,8
16 5,9 6,2 6,7 10 25,6 26,2 28,4 27,8 71,2 71,9 55,5 57,5 96 97,2 64,4 66,3

(b) 100 0 5,2 5,4 9,9 8,5 12,2 14,8 16,1 19,7 41 47,7 41,4 44,9 87,6 90,3 63,9 63,6
0,1 0,0625 9,2 8 12 11,7 10,5 13,3 14 17,8 28,5 33,1 32,3 35 74,4 77,2 56,5 51,7

16 4,6 4,7 8,2 10,7 12,2 13,9 16,1 18 44,8 51,6 41,4 47,2 86,9 90,5 62,4 62,1
0,5 0,0625 6,2 4 7,6 8,4 9,1 10,4 13,2 14,1 30,3 37,8 27,9 31,8 76,4 78,1 51,4 49,6

16 4,8 5,8 8,1 7,2 10,3 9,7 12,3 11,9 34,5 37,4 30 33,6 79,5 83,8 51,6 52,1
0,9 0,0625 6 5,1 8,7 12,3 12,5 15,5 17,2 21,2 47 50,2 44,5 45,9 88,3 90,2 64,8 65,7

16 7,7 6,6 9 11,5 9,2 11,4 13,4 15,9 30,9 34,5 33,9 34,8 71,3 79,5 53,4 55,9
300 0 5,2 4,7 8,6 8,8 44,6 49,3 44,6 48,9 89,1 92,6 74,6 77,6 99,6 99,8 80,7 79,4

0,1 0,0625 5 5,7 9,3 9,5 25,9 29,8 27,9 31,9 72 78,2 58,2 57,6 97,7 97,6 67,1 66,2
16 4,8 4,5 7,6 10,5 44,8 50,1 44,6 47,1 88,8 92,4 75,5 76,9 99,6 100 82,7 82,5

0,5 0,0625 4,8 6,1 6,5 7,7 30,1 37,6 33,7 38,1 77,9 84,9 63,6 68 99,1 99,1 71,3 73,3
16 5,2 5,7 5,9 8,3 33,1 38,1 32,5 36 79,7 85,4 64,1 66,2 98,7 99,2 72,1 73,8

0,9 0,0625 4,9 4,7 6,8 8,2 42,4 51,8 43,3 47,9 90,5 91,3 77,7 77 99,8 99,6 82,1 82,8
16 6,2 5,1 8 8,1 22,7 26,8 26,4 30,7 71,6 79,4 56,5 62,3 96,9 98,2 67 66,6

(c) 100 0 0 0,1 1,3 1,6 0,5 1 3,1 4,1 10,3 13,6 12,2 16,6 47 45,1 32 28,9
0,1 0,0625 1,1 0,7 3,1 2,3 1,7 1,5 4,4 5,5 7,3 8,1 13,3 14,3 39,5 39,3 30,9 30,2

16 0,2 0,3 0,9 1,3 0,6 0,6 2,5 2,9 15,1 13,5 16,3 16,2 45,8 48,4 32,7 30,7
0,5 0,0625 2,3 2,9 5,5 7 2,5 4,3 6,8 8,6 12,4 14,7 18,8 20 42,8 42,5 31,6 33,3

16 5,1 6 5,4 6,6 8 10 10,1 10,9 23,7 23,7 24,5 21,1 50,2 49,7 35 32,2
0,9 0,0625 0 0,1 1,3 2,5 0,7 1 2,9 4,1 12,6 11,1 15,1 14,2 47,3 46,9 31,9 30,8

16 2,4 3,3 3,5 5,5 3,3 4,1 5,5 7,3 16,3 16,9 18,1 15,9 49,9 48,8 33,4 31,8
300 0 0,1 0,2 0,7 0,7 12,6 12,7 14,6 12,8 49,8 54,1 33,8 35,3 87 84,9 45,4 44,7

0,1 0,0625 1,5 0,8 3 2,3 8,2 7,1 10,5 10,1 42,2 47,3 30,7 32,4 86,2 83,4 46,1 42,3
16 0 0 0,2 0,7 15,1 14 14,7 14,6 52,7 54,5 35,4 36,4 87,8 87,7 45,1 44,1

0,5 0,0625 3,1 2,8 7 6,6 20,4 19,4 24,7 21,7 51,3 53,7 39,3 42 85,2 85,4 47,7 46,8
16 7,1 13,4 8,9 13,3 30,1 30,9 30,4 29,6 63,8 66,3 47 46,8 90,6 88,6 50,3 51,3

0,9 0,0625 0 0,1 0,5 0,8 10,8 12 13,1 14,3 52 54,2 37,2 35,3 86,9 87,3 43,4 47,2
16 3,1 4 2,9 3,6 17,8 19,8 18,4 18,4 55,7 54,1 41,4 37,1 85,8 86,7 49,8 46,5
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now using residuals êt. To save computational time we run 1,000 replications in this example for

all settings.

Comparing both panels of Table 7 shows that the size problem is corrected. Moreover, the em-

pirical power is of comparable magnitude. We also employ this test based on LL for the application

in Section 5.

C Appendix: Plots
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Table 7: The table reports the empirical rejection frequencies for testing the null of cointegration
in the cubic regression model with time trend for various parameter constellations. All rejection
rates are given as percentages. The nominal size is 5%. Panel (a) is for the bootstrap test using
least squares and panel (b) is for the bootstrap test using leads and lags.

σ2
µ: 0 0.001 0.01 0.1

ρ: 0 0.5 0 0.5 0 0.5 0 0.5

T τ : σ2 λ 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5

(a) 100 0 4.9 10.7 3.6 6.3 6.4 14.1 5.2 7.3 24 33.2 12.8 15 78.6 82.4 22.6 25.6
0.1 1/16 6.9 10.1 4.5 5.2 9.5 11.7 6.3 5.4 15.5 18.8 9 8.6 60 61.7 20.1 19.4

16 4.8 9.1 3.4 5.6 6.8 13.4 3.8 6.4 24.9 34.1 11.9 16.4 80.2 81.9 22 25
0.5 1/16 5 11.9 2.1 3.8 7.8 9.8 2.1 4 21.3 27.2 8.3 8.7 69.3 72.2 20.3 20.4

16 4.3 8.9 3.1 3.1 6.9 10.1 4 3.4 22.3 23.8 8.4 11.6 72.6 73.4 23.6 21.5
0.9 1/16 6 9.2 3.4 5.1 7.3 11 4.7 4.5 24.5 30 13 14.1 79.9 83.5 24.6 25.6

16 6.8 7.7 4.1 3.7 6.6 9.4 2.9 5.3 15.3 19 7.5 8.9 61.7 62.5 17.5 16.3
300 0 4.9 9.2 8.6 14.6 25.2 29.8 25.8 32.7 84 85.1 67.4 67.4 99.9 99.9 75.3 76.6

0.1 1/16 6.4 8.2 6.9 10.6 12.4 16.9 14.3 19.2 60.4 59.2 47.8 42.6 98 98.3 58.2 62
16 4.9 10 8.2 14.9 23.8 32.9 25.9 34.7 84.1 85.6 68.6 69.8 99.9 100 76.9 74.2

0.5 1/16 4.8 9.4 8 12 18.1 28.8 20 29.5 74.4 73.4 58 59 99 99.4 70 68.8
16 5.1 9.3 7.2 13.7 20.8 26.5 21.5 26.3 76 76.1 60.1 58.3 99.3 99.4 71.7 69.1

0.9 1/16 5.5 10.8 7.3 16.1 25.4 29.7 27.7 32 82.2 85.8 66.2 68.5 99.7 99.7 78.1 75.4
16 5.4 8.8 7.5 10.8 14.3 18.7 16.2 20.4 59.6 62.3 45.4 45.7 97.9 98.1 61.6 63.9

(b) 100 0 6.2 4.9 6.4 9.5 6.2 9.5 9.7 10.5 24.6 30.7 24.8 26 78.4 85.2 44.7 48.5
0.1 1/16 9.5 7.5 11.3 9.9 10.5 10.2 12.3 12.6 19.3 19.6 19.1 18.4 63.1 70.4 36.1 44.8

16 6.3 4.9 6.9 10.1 7.9 8.7 7.4 10.3 28.3 31 22.7 22.5 80.7 85.7 43.8 45.5
0.5 1/16 6.2 5.5 5.6 5.5 6.8 8 7.8 8.4 22.7 26.5 17.6 20.5 71.4 73 41.2 37.5

16 6.3 4.5 5.5 6.7 6.5 8.7 7.2 9.1 23.5 26.2 17.9 19.9 72.7 79.5 38.7 40.7
0.9 1/16 5.2 5.2 6.5 8.8 7.4 8 8.6 11.8 24.7 29.4 22.4 24 78.6 82.4 44.7 43.2

16 7.6 8.1 7.2 9.2 9.8 9.5 11.6 11.7 18 21.4 16.3 21 61.3 70.1 35 38.9
300 0 6.5 4.2 8.6 10.5 22.1 30.6 28.4 31.1 82.2 87 70.7 69.9 99.8 99.8 78.7 77.1

0.1 1/16 6.3 6.1 7.7 10.4 14.2 17.2 15.1 21.4 59.5 68.9 47.6 52.7 98.2 98.7 65.4 67.1
16 5.8 5.1 8 11.9 25.8 31.3 27.7 31.7 80.6 89 68.9 70.7 99.8 100 79.8 79.3

0.5 1/16 5.5 5 8.6 9.3 18.7 28.3 23.5 29 71.4 81.3 59.8 62.7 99.4 99.6 72 69.5
16 5.9 5.6 7.7 9.2 21.1 26.2 23.9 30.2 74.4 80.2 58.2 62 99.1 99.4 69.1 71.7

0.9 1/16 5.5 5.9 9 11.8 24.8 29.4 28 31.8 84 86.7 67.5 68.6 99.8 99.9 78.6 79.1
16 6.5 5.2 7.9 9.1 12.4 17 17.1 21.3 59.1 71.5 46.8 53.2 97.6 98.9 65.1 64.1

(c) 100 0 0 0 0 0 0 0.1 0.1 0 0.4 0.6 0.1 0.1 10.7 10.9 0.9 0.5
0.1 1/16 0.2 0.3 0 0.3 0.2 0.4 0.3 0.1 1.2 1.6 0 0.4 14.5 14.6 0.7 1.1

16 0 0 0 0.1 0 0 0 0.1 0.5 0.6 0.2 0.1 9.6 10.5 0.6 1
0.5 1/16 0.5 0.9 1.2 0.9 0.8 1.3 0.8 0.9 4 5.2 2 2.9 26.2 25.9 6.1 6.7

16 0.5 0.9 0 0.4 0.7 1 0.1 0.4 2.9 3.3 0.2 0.3 16 16.5 1.1 1.2
0.9 1/16 0 0 0.1 0.2 0 0 0.1 0 0.5 0.5 0.1 0.2 10.5 11.4 1.2 0.9

16 0.1 0.1 0 0.1 0.1 0.1 0.1 0.1 0.3 0.4 0.1 0.2 5.1 5.4 0.5 0.4
300 0 0 0 0.1 0.1 0.3 0.5 0.2 0.1 13.1 13.8 1.8 3.8 58 57.9 9.1 6.9

0.1 1/16 0.3 0.4 0.1 0.3 1.6 1.3 0.5 0.6 16.7 17.5 4.1 4.7 57.6 58.2 10.1 9.7
16 0 0 0 0 0.4 0.3 0.1 0.2 13.3 13.7 3.1 3.9 59 58.6 7.9 8.3

0.5 1/16 0.6 0.7 1.5 1.9 3.5 4.1 5.1 5.5 27.1 28.5 13.7 15.8 69.7 69.2 21.6 23.1
16 1.6 3.2 1.5 2.1 9.4 10.5 3.3 4 38.6 39.8 7.4 7.9 77 76.7 9.6 9.2

0.9 1/16 0 0 0.1 0 0.4 0.5 0.3 0.3 13 13.4 3.4 3.7 56 57 9.2 10.8
16 0.2 0.2 0 0.1 0.5 0.7 0.2 0.2 9.9 10.9 1.7 1.9 56.6 57.4 5.6 5
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Figure 2: Empirical variance profile (11) for different countries. The dashed line is the reference
line for homoskedasticity.
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Figure 3: Residuals vs. fitted values for Austria, Belgium, Norway, USA to inspect heteroskedas-
ticity. The red solid lines are LOWESS curves.
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Figure 4: Empirical variance profile (11) for different countries. The dashed line is the reference
line for homoskedasticity.
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Figure 5: Empirical variance profile (11) for different countries. The dashed line is the reference
line for homoskedasticity.
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