INFORMATIK
BERICHTE

381 — 05/2020

Distributed Arrays — An Algebra for Generic
Distributed Query Processing

Ralf Hartmut Guting, Thomas Behr, and Jan Kristof Nidzwetzki

@ FernUniversitat in Hagen

Fakultat fur Mathematik und Informatik
D-58084 Hagen

Distributed Arrays - An Algebra for
Generic Distributed Query Processing

Ralf Hartmut Giiting*, Thomas Behr, and Jan Kristof Nidzwetzki
Database Systems for New Applications
Faculty of Mathematics and Computer Science
Fernuniversitiat Hagen, Germany

May 1, 2020

Abstract

We propose a simple model for distributed query processing based on the concept of a
distributed array. Such an array has fields of some data type whose values can be stored
on different machines. It offers operations to manipulate all fields in parallel within the
distributed algebra.

Distributed arrays rest on a given set of data types and operations called the basic
algebra implemented by some piece of software called the basic engine. It can create and
delete objects of such types and evaluate expressions (queries) over objects, constants, and
operations of the basic algebra. Data types comprise simple types such as integers or strings,
but also relations or indexes on disk or in memory. Hence a basic engine provides a complete
environment for query processing on a single machine. We assume this environment is also
extensible by types and operations.

Operations on distributed arrays are implemented by one basic engine called the master
which controls a set of basic engines called the workers. It maps operations on distributed
arrays to the respective operations on their fields executed by workers. The distributed
algebra is completely generic: any type or operation added in the extensible basic engine
will be immediately available for distributed query processing.

To demonstrate the use of the distributed algebra as a language for distributed query
processing, we describe a fairly complex algorithm for distributed density-based similarity
clustering. The algorithm is a novel contribution by itself. Its complete implementation
is shown in terms of the distributed algebra and the basic algebra. As a basic engine the
SECONDO system is used, a rich environment for extensible query processing, providing useful
tools such as main memory M-trees, graphs, or a DBScan implementation.

1 Introduction

Big data management has been a core topic in research and development for the last fifteen
years. Its popularity was probably started by the introduction of the MapReduce paradigm [10]
which allowed a simple formulation of data processing tasks by a programmer which are then
executed in a highly scalable and fault tolerant way on a large set of machines. Massive data
sets arise through the global scale of the internet with applications and global businesses such
as Google, Amazon, Facebook. Other factors are the ubiquity of personal devices collecting and
creating all kinds of data, but also the ever growing detail of scientific experiments and data
collection, for example, in physics or astronomy, or the study of the human brain or the genome.

Dealing with massive data sets requires to match the size of the problem with a scalable
amount of resources; therefore distributed and parallel processing is essential. Following MapRe-
duce and its open source version Hadoop, many frameworks have been developed, for example,

*Corresponding author: rhg@fernuni-hagen.de

Hadoop-based approaches such as HadoopDB, Hive, Pig; Apache Spark and Flink; graph pro-
cessing frameworks such as Pregel or GraphX.

All of these systems provide some model of the data that can be manipulated and a language
for describing distributed processing. For example, MapReduce/Hadoop processes key-value
pairs; Apache Spark offers resilient distributed data sets in main memory; Pregel manipulates
nodes and edges of a graph in a node-centric view. Processing is described in terms of map and
reduce functions in Hadoop; in an SQL-like style in Hive; by a set of operations on tables in
Pig; by a set of operations embedded in a programming language environment in Spark; or by
functions processing messages between nodes in Pregel.

In this paper, we consider the problem of transforming an extensible query processing system
on a single machine (called the basic engine) into a scalable parallel query processing system on
a cluster of computers. All the capabilities of the basic engine should automatically be available
for parallel and distributed query processing, including extensions to the local system added in
the future.

We assume the basic engine implements an algebra for query processing called the basic
algebra. The basic algebra offers some data types and operations. The basic engine allows one
to create and delete databases and within databases to create and delete objects of data types
of the basic algebra. It allows one to evaluate terms (expressions, queries) of the basic algebra
over database objects and constants and to return the resulting values to the user or store them
in a database object.

The idea to turn this into a scalable distributed system is to introduce an additional algebra
for distributed query processing into the basic engine, the distributed algebra. The distributed
system will then consist of one basic engine called the master controlling many basic engines
called the workers. The master will execute commands provided by a user or application. These
commands will use data types and operations of the distributed algebra. The types will represent
data distributed over workers and the operations be implemented by commands and queries sent
to the workers.

The fundamental conceptual model and data structure to represent distributed data is a
distributed array. A distributed array has fields of some data type of the basic algebra; these
fields are stored on different computers and assigned to workers on these computers. Queries are
described as mappings from distributed arrays to distributed arrays. The mapping of fields is
described by terms of the basic algebra that can be executed by the basic engines of the workers.
Further, the distributed algebra allows one to distribute data from the master to the workers,
creating distributed arrays, as well as collect distributed array fields from the workers to the
master.

These ideas have been implemented in the extensible DBMS SECONDO which takes the role
of the basic engine. The SECONDO kernel is structured into algebra modules each providing some
data types and operations; all algebras together form the basic algebra. SECONDO provides query
processing over the implemented algebras as described above for the basic engine. Currently
there is a large set of algebras providing basic data types (e.g., integer, string, bool, ...), relations
and tuples, spatial data types, spatio-temporal types, various index structures including B-trees,
R-trees, M-trees; data structures in main memory for relations, indexes, graphs; and many
others. The distributed algebra described in this paper has been implemented in SECONDO.

In the main part of this paper we design the data types and operations of the distributed
algebra and formally define their semantics.

To illustrate distributed query processing based on this model, we describe an algorithm for
distributed density-based similarity clustering. That is, we show the “source code” to implement
the algorithm in terms of the distributed algebra and the basic algebra.

The contributions of the paper are as follows:

e A generic algebra for distributed query processing is presented.

Data types and operations of the algebra are designed and their semantics are formally

defined.

The implementation of the distributed algebra is explained.

A novel algorithm for distributed density-based similarity clustering is presented and its
complete implementation in terms of the distributed algebra is shown.

e A experimental evaluation of the framework shows excellent load balancing and good
speedup.

The rest of the paper is structured as follows. Related work is described in Section 2. In
Section 3, SECONDO as a generic extensible DBMS is introduced, providing a basic engine and
algebra. In Section 4, the distributed algebra is defined. Section 5 describes the implementation
of this algebra in SECONDO. In Section 6 we show the algorithm for distributed clustering and
its implementation. A brief experimental evaluation of the framework is given in Section 7.
Finally, Section 8 concludes the paper.

2 Related Work

Our algebra for generic distributed query processing in SECONDO has related work in the areas
of distributed systems, distributed databases, and data analytics. In the application section of
this paper, we present an algorithm for the density-based similarity clustering (see Section 6).
The most related work in these areas is discussed in this section.

2.1 Distributed System Coordination

Developing a distributed software system is a complex task. Distributed algorithms have to
be coordinated on several nodes of a cluster. Apache ZooKeeper [28], HashiCorp Consul [8]
and eted [15] are software components used to coordinate distributed systems. These systems
cover topics such as service discovery and configuration management. Even these components
are used in many software projects; some distributed computing engines have also implemented
their own specialized resource management components (such as YARN—Yet Another Resource
Negotiator [54], which is part of Hadoop).

In our distributed array implementation, we send the information to coordinate the system
directly from the master node to the worker nodes. The worker nodes are manually managed
in the current version of our implementation. Topics such as high availability or replication will
be part of a further version.

2.2 Distributed File Systems and Distributed Databases

In 2004, the publication of the MapReduce paper [10] proposed a new technique for the dis-
tributed handling of computational tasks. Using MapReduce, calculations are performed in two
phases: (1) a map phase and (2) a reduce phase. These tasks are executed on a cluster of nodes
in a distributed manner.

By using MapReduce the computation has to be described directly in a computer program,
containing the implementation for the map and for the reduce phase. Our distributed array
algebra uses SECONDO for query processing. SECONDO is a database management system that
contains a wide range of operations that can be directly used without writing new programs;
calculations are expressed by using a query language. SECONDO provides a wide range of data
models (e.g., the relational model) and functions (e.g., filters, joins, aggregates etc.). Fur-
thermore, sophisticated data models and functions are contained in SECONDO. For example:
(1) support for symbolic trajectories with pattern matching and indexing, (2) spatio-temporal

queries, or (3) capabilities to import data from the OpenStreetMap project [48] and match tra-
jectories against a road network. These data models and operations can now be used in a
distributed and parallel manner.

The Google File System (GFS) [20] and its open-source counterpart Hadoop File System
(HDFS) [44] are distributed file systems. These file systems represent the backbone of the
MapReduce frameworks; they are used for the input and output of large datasets. Stored files
are split up into fixed-sized chunks and distributed across a cluster of nodes. To deal with failing
nodes, the chunks can be replicated. Due to the architecture of the file systems, data are stored
in an append-only manner.

To exploit node level data locality, the MapReduce Master Node tries to schedule jobs in a
way that the chunks of the input data are stored on the node that processes the data [20, p.
5]. If the chunks are stored on another node, the data need to be transferred over a network,
which is slow and time-consuming. HDFS addresses data locality only on chunks and not
based on the value of the stored data, which can lead to performance problems [13]. In our
distributed array implementation, data are directly assigned to the nodes in a way that data
locality is exploited, and the amount of transferred data is minimized. The output of a query
can be directly partitioned and transferred to the worker nodes that are responsible for the next
processing step (see the discussion of the dfmatriz data type in Section 4). In addition, SECONDO
uses a type system. Before a query is executed, the query is checked for type errors. Therefore,
in our distributed array implementation, the data are stored typed. On a distributed file system,
data are stored as raw bytes. Type and structure information need to be implemented in the
application that reads and writes the data.

HBase [26] (the open-source counterpart of BigTable [6]) is a database built on top of HDFS.
HBase stores data in String Sorted Tables [40, 6]. SSTables are rewritten periodically to handle
deleted data on the append-only HDFS. HDF'S stores one replication of a chunk on the node that
has written the chunk. Due to this behavior and the rewritten SSTables, relevant chunks are
relocated after some time to the nodes that are responsible for the data. In our implementation,
data are assigned directly to the nodes that should process the data. In addition, HDF'S is only
a file system, whereas our implementation can also process data.

Key-Value Stores such as Amazon Dynamo [11] or RocksDB [49] provide a simple data model
consisting of a key and a value. Data stores such as HBase, BigTable, or Apache Cassandra [31]
provide a tabular data model. A key can have multiple values; internally, the data are stored
as key-value pairs on disk. The values in these implementations are limited to scalar data types
such as int, byte, or string. SECONDO supports more complex data types such as XML, spatio-
temporal data, or M-Trees. In addition, new data types can be implemented by the user and
SECONDO ships with a larger amount of operators to process the data.

Apache Hive [50] is a warehousing solution that is built on top of Apache Hadoop, which
provides an SQL-like query language to process in HDFS stored data. Hive contains only
a limited set of operations; our implementation contains more advanced operations, such as
density-based clustering, which is shown as an example in this paper.

Apache Pig [17] provides a query language (called Pig Latin [39]) for processing large amounts
of data. With Pig Latin users no longer need to write their own MapReduce programs; they
write queries which are directly translated into MapReduce jobs. Pig Latin focuses primarily
on analytical workloads. Like SECONDO and our algebra, Pig can be extended by user defined
functions (called algebras and operators in SECONDO [21]). Pig and SECONDO perform a type
check before operations are executed. In contrast to SECONDO, Pig does not allow the imple-
mentation of new data types. SECONDO, however, can be extended by own data types. In
addition, SECONDO contains a larger range of operators for data analytics.

The publication of the MapReduce paper created the foundation for many new applications
and ideas to process distributed data. A widely used framework to process data in a scalable
and distributed manner is Apache Spark [56]. In Spark, data are stored in resilient distributed

datasets (RDDs) in a distributed way across a cluster of nodes. These RDDs are processed
in a parallel way by Spark. Spark supports a wide range of different RDDs such as Hadoop,
the normal file system, HDFS, Cassandra, or HBase. In contrast to SECONDO, Spark does not
support custom data types. Spark can be extended by user defined filters. However, SECONDO
has been developed for over a decade and consists of more than 1500000 lines of code. It also
contains a wider range of operators that can now be used in the distributed and parallel fashion
by our new algebra.

Dryad [29] is a distributed execution engine that is developed at Microsoft. DryadLINQ [55]
provides an interface for Dryad which can be consumed by Microsoft programming languages
such as C#. In contrast to SECONDO and our algebra implementation, the goal of Dryad is to
provide a distributed environment for the parallel execution of user-provided programs such as
Hadoop. The goal of our implementation is to provide an extensible environment with a broad
range of predefined operators that can be used to progress data and which can also be enhanced
with new operators by the user.

Another popular framework to process large amounts of data these days is Apache Flink [5].
This software system, originating from the Stratosphere Platform [1], is designed to handle batch
and stream processing jobs. Processing batches (historical data or static data sets) is treated
as a special form of stream processing. Data batches are processed in a time-agnostic fashion
and handled as a bounded data stream. Like our system, Flink performs type checking and can
be extended by user-defined operators and data types. However, SECONDO ships with a larger
amount of operators and data types. For example, it can handle spatial and spatio-temporal
data out of the box.

PARALLEL SECONDO [32] and DISTRIBUTED SECONDO [37] are two already existing ap-
proaches to execute queries in SECONDO [23] in a distributed and parallel manner. Both ap-
proaches are integrating an existing software component into SECONDO to achieve the distributed
query execution. PARALLEL SECONDO uses Apache Hadoop (the open source counterpart of the
MapReduce framework) to distribute tasks over several SECONDO installations on a cluster of
nodes. DISTRIBUTED SECONDO uses Apache Cassandra as a distributed key-value store for
the distributed storage of data, service discovery, and job scheduling. Both implementations
use an additional component (Hadoop or Cassandra) to parallelize SECONDO. The algebra for
distributed arrays works without further components and provides the parallelization directly
in SECONDO.

2.3 Array Databases and Data Frames

Array databases such as Rasdaman (raster data manager) [3], SciDB [47], or SciQL [57] focus
on the processing of data cubes (multi-dimensional arrays). In addition to specialized databases,
there are raster data extensions for relational database management systems such as PostGIS
Raster [43] or Oracle GeoRaster [41]. Array databases are used to process data like maps (two
dimensional) or satellite image time series (three dimensional).

Our distributed array implementation works with one-dimensional (data types darray and
dfarray) and two-dimensional (data type dfmatriz) arrays. The array is used to structure the
data for the workers. Array databases use the dimensions of the array to represent the location
of the data in the n-dimensional space, which is a different concept. SECONDO works with index
structures (such as the R-Tree [25]) for efficient data access. In addition, in array databases, the
values of the array cells are restricted to primitive or common SQL types like integers or strings.
In our implementation, the data types of the values can be complex types like spatio-temporal
data.

Libraries for processing array structured data (also called data frames), such as Pandas [35] or
NumPy [38], are widely used in scientific computing these days. Such libraries are used to apply
operations such as filters, calculations, or mutations on array structured data. SciHadoop [4] is
using Hadoop to process data arrays in a distributed and parallel way. SciHive [18] is a system

that uses Hive to process array structured data. AFrame [46] is another implementation of a
data frame library which built on top of Apache AsterizDB [2]. The goal of the implementation
is to process the data frames in a distributed manner and hide the complexity of the distributed
system from the user. These libraries and systems are intended for direct integration into the
source code. These libraries simplify the handling of arrays, bring along data types and functions,
and some also allow the distributed and parallel processing of arrays. Our system instead works
with a query language to describe operator trees. Further, SECONDO is an extensible database
system that can be extended with new operators and data types by a user.

In [16] a Query Processing Framework for Large-Scale Scientific Data Analysis is proposed.
Using the described framework, large amounts of data can be processed by using an SQL-like
query language. This framework enhances Apache MRQL [36] language in such a way that array
data can be efficiently processed. MRQL uses components, such as Hadoop, Flink or Spark, for
the execution of the queries. In contrast to our distributed array implementation, the paper
focuses on the implementation of matrix operations to speed up algorithms to process the data
arrays.

2.4 Clustering

In Section 6, we present an algorithm for distributed density-based similarity clustering. The
main purpose of the section in the context of this paper is to serve as an illustration of distributed
algebra as a language for formulating and implementing distributed algorithms. Nevertheless,
the algorithm is a novel contribution by itself.

Density-based clustering, a problem introduced in [14], is a well established technology that
has numerous applications in data mining and many other fields. The basic idea is to group
together objects that have enough similar objects in their neighborhood. For an efficient imple-
mentation, a method is needed to retrieve objects close to a given object. The DBScan algorithm
[14] was originally formulated for Euclidean spaces and supported by an R-tree index. But it
can also be used with any metric distance function (see for example [30]) and then be supported
by an M-tree [7].

Here we only discuss algorithms for distributed density-based clustering. There are two main
classes of approaches. The first can be characterized as (non-recursive) divide-and-conquer,
consisting of the three steps:

1. Partition the data set.
2. Solve the problem independently for each partition.
3. Merge the local solutions into a global solution.

It is obvious that a spatial or similarity (distance-based) partitioning is needed for the problem
at hand. Algorithms falling in this category are [53, 27, 9, 42]. They differ in the partitioning
strategy, the way neighbors from adjacent partitions are retrieved, and how local clusters are
merged into global clusters. In [53] a global R-tree is introduced that can retrieve nodes across
partition (computer) boundaries. The other algorithms [27, 9, 42] include in the partitioning
overlap areas at the boundaries so that neighbors from adjacent partitions can be retrieved
locally. [27] improves on [53] by determining cluster merge candidate pairs in a distributed
manner rather than on the master. [9] strives to improve partitioning by placing partition
boundaries in sparse areas of the data set. [42] introduces a very efficient merge technique based
on a union-find structure.

These algorithms are all restricted to handle objects in vector spaces. Except for [53] they
all have a problem with higher-dimensional vector spaces because in d dimensions 2¢ boundary
areas need to be considered.

A second approach is developed in [33]. This is based on the idea of creating a k-nearest-
neighbor graph by a randomized algorithm [12]. This is modified to create edges between nodes

if their distance is less than Eps, the distance parameter of density-based clustering. On the
resulting graph, finding clusters corresponds to computing connecting components.

This algorithm is formulated for a node-centric distributed framework for graph algorithms as
given by Pregel [34] or GraphX [52]. In contrast to all algorithms of the first class, it can handle
arbitrary symmetric distance (similarity) functions. However, the randomized construction of
the kNN graph does not yield an exact result; therefore the result of clustering is also an
approximation.

The algorithm of this paper, called SDC (Secondo Distributed Clustering), follows the first
strategy but implements all steps in a purely distance-based manner. That is, we introduce a
novel technique for balanced distance-based partitioning that does not rely on Euclidean space.
The computation of overlap with adjacent partitions is based on a new distance-based criterion
(Theorem 6.1). All search operations in partitioning or local DBScan use M-trees.

Another novel aspect is that merging clusters globally is viewed and efficiently implemented
as computing connected components on a graph of merge tasks. Repeated binary merging of
components is avoided.

Compared to algorithms of the first class, SDC is the only algorithm working with arbitrary
metric similarity functions. Compared to [33] it provides an exact instead of an approximate
solution.

3 A Basic Engine: Secondo

As described in the introduction, the concept of the Distributed Algebra rests on the availability
of a basic engine, providing data types and operations for query processing. In principle, any
local! database system should be suitable. If it is extensible, the distributed system will profit
from its extensibility.

The basic engine can be used in two ways: (i) it can provide query processing, and (ii) it
can serve as an environment for implementing the Distributed Algebra. In our implementation,
SECONDO is used for both purposes.

3.1 Requirements for Basic Engines

The capabilities required from a basic engine to provide query processing are the following:

1. Create and delete, open and close a database (where a database is a set of objects given
by name, type, and value);

2. create an object in a database as the result of a query and delete an object;
3. offer a data type for relations and queries over it;

4. write a relation resulting from a query? efficiently into a binary file or distribute it into
several files;

5. read a relation efficiently from one or several binary files into query processing.

The capabilities (1) through (3) are obviously fulfilled by any relational DBMS. Capabilities
(4) and (5) are required for data exchange and might require slight extensions, depending on

the given local DBMS. In Section 4 we show how these capabilities are motivated by operations
of the Distributed Algebra.

!By this we mean a database server running on a single computer.
2For efficiency, it is preferable to avoid writing it into the database.

3.2 Secondo

In this section we provide a brief introduction to SECONDO as a basic engine. It also shows an
environment that permits a relatively easy implementation of the Distributed Algebra.

SECONDO is a DBMS prototype developed at University of Hagen, Germany, with a focus on
extensible architecture and support of spatial and spatio-temporal (moving object) data. The
architecture is shown in Figure 1.

Command Manager

Query Processor & Catalog

Optimizer

Algy | | Algy | Alg,

v
‘ SECONDO Kernel ‘ Storage Manager & Tools

(a) (b)

Figure 1: (a) SECONDO components (b) Kernel architecture

There are three major components: the graphical user interface, the optimizer and the
kernel, written in Java, Prolog, and C++4, respectively. The kernel uses BerkeleyDB as a
storage manager and is extensible by so-called algebra modules. Each algebra module provides
some types (type constructors in general, i.e., parameterized types) and operations. The query
processor evaluates expressions over the types of the available algebras. Note that the kernel
does not have a fixed data model. Moreover, everything including relations, tuples, and index
structures is implemented within algebra modules.

The data model of the kernel and its interface between system frame and algebra modules is
based on the idea of second-order signature [21]. Here a first signature provides a type system, a
second signature is defined over the types of the first signature. This is explained in more detail
in Section 4.3.

To implement a type constructor, one needs to provide a (usually persistent) data structure
and import and export functions for values of the type. To implement an operator, one needs to
implement a type mapping function and a value mapping function, as the objects manipulated
by operators are (type, value) pairs.

A database is a pair (T, 0) where T is a set of named types and O is a set of named objects.
There are seven basic commands to manipulate such a generic database:

type <identifier> = <type expression>
delete type <identifier>

create <identifier>: <type expression>
update <identifier>:= <value expression>
let <identifier> = <value expression>
delete <identifier>

query <value expression>

Here a type expression is a term of the first signature built over the type constructors of available
algebras. A wvalue expression is a term of the second signature built by applying operations of
the available algebras to constants and database objects.

The most important commands are let and query. let creates a new database object whose
type and value result from evaluating a value expression. query evaluates an expression and
returns a result to the user. Note that operations may have side effects such as updating a
relation or writing a file. Some example commands are:

let x = 5;
query Xx;
delete x;

let inc = fun(x: int) x + 1;
query inc;
query inc(7);

query 3 * 5;

query Cities feed filter[.Name = "New York"] consume;
query Cities_Name_btree Cities exactmatch["New York"] consume;

The first examples illustrate the basic mechanisms and that query just evaluates an arbitrary
expression. The last two examples show that expressions can in particular be query plans as
they might be created by a query optimizer. In fact, the SECONDO optimizer creates such
plans. Generally, query plans use pipelining or streaming to pass tuples between operators; here
the feed operator creates a stream of tuples from a relation; the consume operator creates a
relation from a stream of tuples. The exactmatch operator takes a B-tree and a relation and
returns the tuples fulfilling the exact-match query by the third argument. Operators applied to
types representing collections of data are usually written in postfix notation. Operator syntax
is decided by the implementor. Note that the query processing operators used in the examples
and in the main algorithm of this paper can be looked up in the Appendix.

Obviously SECONDO fulfills the requirements (1) through (3) stated for basic engines. It has
been extended by operators for writing streams of tuples into (many) files and for reading a
stream from files to fulfill (4) and (5).

4 The Distributed Algebra

The Distributed Algebra (technically in SECONDO the Distributed2Algebra) provides operations
that allow one SECONDO system to control a set of SECONDO servers running on the same or
remote computers. It acts as a client to these servers. One can start and stop the servers,
provided SECONDO monitor processes are already running on the involved computers. One can
send commands and queries in parallel and receive results from the servers.

The SECONDO system controlling the servers is called the master and the servers are called
the workers.

This algebra actually provides two levels for interaction with the servers. The lower level
provides operations

e to start, check and stop servers

e to send sets of commands in parallel and see the responses from all servers
e to execute queries on all servers

e to distribute objects and files

Normally a user does not need to use operations of the lower level.

The upper level is implemented using operations of the lower level. It essentially provides
an abstraction called distributed array. A distributed array has slots of some type X which are
distributed over a given set of workers. Slots may be of any SECONDO type, including relations
and indexes, for example. Each worker may store one or more slots.

Query processing is formulated by applying SECONDO queries in parallel to all slots of dis-
tributed arrays which results in new distributed arrays. To be precise, all workers work in
parallel, but each worker processes its assigned slots sequentially.

Data can be distributed in various ways from the master into a distributed array. They can
also be collected from a distributed array to be available on the master.

In the following, we describe the upper level of the Distributed Algebra in terms of its data
types and operations. We first provide an informal overview. In Section 4.3 the semantics of
types and operations is defined formally and the use of operations is illustrated by examples.

4.1 Types

The algebra provides two types of distributed arrays called

o darray(X) - distributed array - and
o dfarray(Y') - distributed file array.

There exist also variants of these types called pdarray and pdfarray, respectively, where only
some of the fields are defined (p for partial).

Here X may be any SECONDO type® and the respective values are stored in databases on
the workers. In contrast, Y must be a relation type and the values are stored in binary files on
the respective workers. In query processing, such binary files are transferred between workers,
or between master and workers. Hence the main use of darray is for the persistent distributed
database; the main use of dfarray and dfmatriz (explained below) is for intermediate results
and shuffling of data between workers.

Server 1 [1] [n+1]

Server 2 [n+2 O]
Server 3] - OJ
Server 4] O]
Server n O

Figure 2: A distributed array. Each slot is represented by a square with its slot number.

Figure 2 illustrates both types of distributed arrays. Often slots are assigned in a cyclic
manner to servers as shown, but there exist operations creating a different assignment. The
implementation of a darray or dfarray stores explicitly how slots are mapped to servers. The
type information of a darray or dfarray is the type of the slots, the value contains the number
of slots, the set of workers, and the assignment of slots to workers.

A distributed array can be constructed by partitioning data on the master into partitions
P, ..., P, and then moving partitions P; into slots S;. This is illustrated in Figure 3.

Master & GEE DOO0O0 0O00
Y

Server 1 |] n+1 O]

Server 2 | / [Jn+2 O

Server 3 - oy

Server 4 |]

Server n [

Figure 3: Creating a distributed array by partitioning data on the master.

A third type offered is

3Except the distributed types themselves, so it is not possible to nest distributed arrays.

10

o dfmatriz(Y') - distributed file matriz

Slots Y of the matrix must be relation-valued, as for dfarray. This type supports redis-
tributing data which are partitioned in a certain way on workers already. It is illustrated in
Figure 4.

Server 1 oOoon HInInIniC
Server 2 Oooodn OdoOodm
Server 3 OoOood doogdm
Server 4 agodg doogdm
Server n oo OO0Oodim

Figure 4: A distributed file matrix

The matrix arises when all servers partition their data in parallel. In the next step, each
partition, that is, each column of the matrix, is moved into one slot of a distributed file array
as shown in Figure 5.

Server 1 oogog d0Oo0Ogdem
Server 2 OO0 O00gge
Server 3 oo 0OoOooem
Server 4 oo 0O 0O 0|
Server n good OO Ogge
Y
Server 1 [¥] n1 Ol
Server 2 Y [On+2]
Server 3 - oy
Server 4 O O
Server n g

Figure 5: A distributed file matrix is collected into a distributed file array.

4.2 Operations

The following classes of operations are available:
e Distributing data to the workers

e Distributed processing by the workers

— Applying a function (SECONDO query) to each field of a distributed array

— Applying a function to each pair of corresponding fields of two distributed arrays
(supporting join)

— Redistributing data between workers

— Adaptive processing of partitioned data

e Collecting data from the workers

11

4.2.1 Distributing Data to the Workers

The following operations come in a d-variant and a df-variant (prefix). The d-variant creates a
darray, the df-variant a dfarray.

ddistribute2, dfdistribute2 Distribute a stream of tuples on the master into a distributed
array. Parameters are an integer attribute, the number of slots and a Workers relation.
A tuple is inserted into the slot corresponding to its attribute value modulo the number
of slots. See Figure 3.

ddistribute3, dfdistribute3 Distribute a stream of tuples into a distributed array. Parame-
ters are an integer ¢, a Boolean b, and the Workers. Tuples are distributed round robin
into 7 slots, if b is true. Otherwise slots are filled sequentially, each to capacity i, using as
many slots as are needed.

ddistribute4, dfdistribute4 Distribute a stream of tuples into a distributed array. Here a
function instead of an attribute decides where to put the tuple.

share An object of the master database whose name is given as a string argument is distributed
to all worker databases.

dlet Executes a let command on each worker associated with its argument array; it further
executes the same command on the master. This is needed so that the master can do type
checking on the query expressions to be executed by workers in following dmap operations.

dcommand Executes an arbitrary command on each worker associated with its argument array.
4.2.2 Distributed Processing by the Workers
Operations:

dmap Evaluates a SECONDO query on each field of a distributed array of type darray or dfarray.
Returns a dfarray if the result is a tuple stream, otherwise a darray. In a parameter query,
one refers to the field argument by “.” or $1.

Sometimes it is useful to access the field number within a parameter query. For this
purpose, all variants of dmap operators provide an extra argument within parameter
functions. For dmap, one can refer to the field number by “..” or by $2.

dmap2 Binary variant of the previous operation mainly for processing joins. Always two fields
W

with the same index are arguments to the query. One refers to field arguments by “.” and
.7, respectively, the field number is the next argument, $3.

dmap3, ..., dmap8 Variants of dmap for up to 8 argument arrays. One can refer to fields by
“r o« or by $1, ..., $8.

pdmap, ..., pdmap8 Variants of dmap which take as an additional first argument a stream
of slot numbers and evaluate parameter queries only on those slot numbers. They return
a partial darray or dfarray (pdarray or pdfarray) where unevaluated fields are undefined.

dproduct Arguments are two darrays or dfarrays with relation fields. Each field of the first
argument is combined with the union of all fields of the second argument. Can be used
to evaluate a Cartesian product or a generic join with an arbitrary condition. No specific
partitioning is needed for a join. But the operation is expensive, as all fields of the second
argument are moved to the worker storing the field of the first argument.

12

partition, partitionF Partitions the fields of a darray or dfarray by a function (similar to
ddistribute4 on the master). Result is a dfmatriz. An integer parameter decides whether
the matrix will have the same number of slots as the argument array or a different one.
Variant partitionF allows one to manipulate the input relation of a field, e.g., by filtering
tuples or by adding attributes, before the distribution function is applied. See Figure 4.

collect2, collectB Collect the columns of a dfmatriz into a dfarray. See Figure 5. The variant
collectB assigns slots to workers in a balanced way, that is, the sum of slot sizes per
worker is similar. Some workers may have more slots than others. This helps to balance
the work load for skewed partition sizes.

areduce Applies a function (SECONDO query) to all tuples of a partition (column) of a dfmatriz.
Here it is not predetermined which worker will read the column and evaluate it. Instead,
when the number of slots s is larger than the number of workers m, then each worker ¢
gets assigned slot ¢, for ¢ = 0,...,m — 1. From then on, the next worker which finishes its
job will process the next slot. This is very useful to compensate for speed differences of
machines or size differences in assigned jobs.

areduce2 Binary variant of areduce, mainly for processing joins.
4.2.3 Collecting Data From the Workers
Operations:

dsummarize Collects all tuples (or values) from a darray or dfarray into a tuple stream (or
value stream) on the master. Works also for pdarray and pdfarray.

getValue Converts a distributed array into a local array. Recommended only for atomic field
values; may otherwise be expensive.

getValueP Variant of getValue applicable to pdarray or pdfarray. Provides a parameter to
replace undefined values in order to return a complete local array on the master.

tie Applies aggregation to a local array, e.g., to determine the sum of field values. (An operation
not of the Distributed2Algebra but of the ArrayAlgebra in SECONDO).

4.3 Formal Definition of the Distributed Algebra

In this section, we formally define the syntax and semantics of the Distributed Algebra. We also
illustrate the use of operations by examples.

Formally, a system of types and operations is a (many-sorted) algebra. It consists of a
signature which provides sorts and operators, defining for each operator the argument sorts and
the result sort. A signature defines a set of terms. To define the semantics, one needs to assign
carrier sets to the sorts and functions to the operators that are mappings on the respective
carrier sets. The signature together with carrier sets and functions defines the algebra.

We assume that data types are built from some basic types and type constructors. The type
system is itself described by a signature [21]. In this signature, the sorts are so-called kinds and
the operators are type constructors. The terms of the signature are exactly the available types
of the type system.

For example, consider the signature shown in Figure 6.

It has kinds BASE and ARRAY and type constructors int, real, bool, and array. The
types defined are the terms of the signature, namely, int, real, bool, array(int), array(real),
array(bool). Note that basic types are just type constructors without arguments.

13

Type Constructor Signature

int, real, bool: — BASE
array: BASE — ARRAY

Figure 6: A Simple Type System

4.3.1 Types

The Distributed Algebra has the type system shown in Figure 7.

Type Constructor Signature

darray, pdarray BASIC — DARRAY
dfarray, pdfarray REL — DARRAY
dfmatriz REL — DMATRIX
array BASIC — ARRAY

Figure 7: Type System of the Distributed Algebra

Here BASIC is a kind denoting the complete set of types available in the basic engine; REL
is the set of relation types of that engine. In our implementation BASIC corresponds to the
data types of SECONDO. The type constructors build distributed array and matrix types in
DARRAY and DMATRIX. Finally, we rely on a generic array data type of the basic engine
used in data transfer to the master.

Semantics of types are their respective domains or carrier sets, in algebraic terminology,
denoted A; for a type t.

Let « be a type of the basic engine, « € BASIC, and let WR be the set of possible (non-
empty) worker relations.

The carrier set of darray is:

= { (f,g;n,W)|neN"We WR,
f:{0,...,n—1} = A,,
g:{0,...,n—1} = {0,...|W|—1} }

Adarmy(a)

Hence the value of a distributed array with fields of type « consists of an integer n, defining
the number of fields (slots) of the array, a set of workers W, a function f which assigns to each
field a value of type «, and a mapping ¢ describing how fields are assigned to workers.

The carrier set of type dfarray is defined in the same way; the only difference is that «
must be a relation type, a € REL. This is because fields are stored as binary files and this
representation is available only for relations.

Types pdarray and pdfarray are also defined similarly; here the difference is that f and g are
partial functions.

Let a € REL. The carrier set of dfmatrix is:

Ad[matm'x(a) = { (fvna W) ’ n < N+7W € WR,m = ’W‘a
f:{0,...,n—1} x{0,...m—1} - A, }

This describes a matrix with m rows and n columns where each row defines a partitioning
of a set of tuples at one worker and each column a logical partition, as illustrated in Figure 4.
The array type of the basic engine is defined as follows:

14

14mnmZ () = {(f, n) ‘ n e N+,f : {0, ey — 1} — Aa}

4.3.2 Operations for Distributed Processing by Workers

Here we define the semantics of operators of Section 4.2.2. For each operator op, we show the
signature and define a function f,p from the carrier sets of the arguments to the carrier set of
the result.

All operators taking darray arguments also take dfarray arguments.

All dmap, pdmap and areduce operators may return either darrays or dfarrays. The
result type depends on the resulting field type: If it is a stream (tuple((«))) type, then the result
is a dfarray, otherwise a darray. Hence in writing a query, the user can decide whether a darray
or a dfarray is built by applying consume to a tuple stream for a field or not.

We omit these cases in the sequel, showing the definitions only for darray, to keep the
formalism simple and concise.

dmap : darray(a) x (a« —) — darray(p)

Here (o — f3) is the type of functions mapping from A, to Ag.

fdmap((f’g’naw)ah) = (f/’g?naW) such that
{0, on—1} — Ag,
Vi€0,...,n—1:f(i)=h(f(i))

To illustrate the use of operators, we introduce an example database with spatial data
as provided by OpenStreetMap [48] and GeoFabrik [19]. We use example relations with the
following schemas, originally on the master. Such data can be obtained for many regions of the
world at different scales like continents, states, or administrative units.

Buildings(Osm_id: string, Code: int, Fclass: string, Name: text, Type: string,
GeoData: region)

Roads(Osm_id: string, Code: int, Fclass: string, Name: text, Ref:string,
Oneway: string, Maxspeed: int, Layer: int, Bridge: string, Tunnel: string,
GeoData: region)

Waterways(Osm_id: string, Code: int, Fclass: string, Width: int, Name: text,
GeoData: line)

Example 4.1 Assume we have created distributed arrays for these relations called BuildingsD,
RoadsD, and WaterwaysD by commands shown in Section 4.3.3. Then we can apply dmap to
retrieve all roads with speed limit 30:

let RoadsD30 = RoadsD dmap["RoadsD30", . feed filter[.Maxspeed = 30] consume]

The first argument to dmap is the distributed array, the second a string, and the third the
function to be applied. In the function, the “.” refers to the argument. The string argument
is omitted in the formal definition. In the implementation, it is used to name objects in the
worker databases; the name has the form <name>_<slot_number>, for example, RoadsD30_5.
One can give an empty string in a query where the intermediate result on the workers is not
needed any more; in this case a unique name for the object in the worker database is generated

automatically.
The result is a distributed array RoadsD30 where each field contains a relation with the roads
having speed limit 30. O

15

dmap?2 : darray(ai) X darray(as) X (a1 X ag —) — darray(B)

Famapz2((f1, 91,7, W), (f2,92,n, W), h) =
(fv g1, 1, W) such that

f:{0,..,n—1} = Ag,
Vi€0,...,n—1:f(i)=h(fi(i), f2(i))

Note that the two arrays must have the same size and that the mapping of slots to workers is
determined by the first argument. In the implementation, slots of the second argument assigned
to different workers than for the first argument are copied to the first argument worker for
execution.

Example 4.2 Using dmap2, we can formulate a spatial join on the distributed tables RoadsD
and WaterwaysD. It is necessary that both tables are spatially co-partitioned so that joins can
only occur between tuples in a pair of slots with the same index. In Section 4.3.3 it is shown
how to create partitions in this way.

“Count the number of intersections between roads and waterways.”

query RoadsD WaterwaysD dmap2["", . feed {r} .. feed {w}
itSpatialJoin[GeoData_r, GeoData_w] filter[.GeoData_r intersects .GeoData_w]
count, myPort]
getValue tiel[. + ..]

Here for each pair of slots an itSpatialJoin operator is applied to the respective pair of (tuple
streams from) relations. It joins pairs of tuples whose bounding boxes overlap. In the following
refinement step, the actual geometries are checked for intersection. The notation {r} is a
renaming operator, appending _r to each attribute in the tuple stream.

The additional argument myPort is a port number used in the implementation for data
transfer between workers. O

Further operations dmap3, ..., dmap8 are defined in an analogous manner. For all these
operators, the mapping from slots to workers is taken from the first argument and slots from
other arguments are copied to the respective workers.

pdmap : stream(int) x darray(a) x (« =) — pdarray(B)

fpdmap(< io’ ’Zk > (f7gv n, W)? h) =
(f',g',n,W) such that
f:40,..,n =1} = Ap partial,

i) = {h(f(z’)) if i € {ig, .oyik}

L otherwise
g :{0,...,n—1} — {0,...,|W]|— 1} partial,
N ifie fiy
) = {g(z) if i € {io, it}

1 otherwise

Tt is further necessary to avoid duplicate reports for pairs of objects detected in different partitions (pairs of
slots). This is omitted here for simplicity.

16

Here a stream of integer values is modeled formally as a sequence of integers. Operator
pdmap can be used if it is known that only certain slots can yield results in an evaluation;
for an example use see [51]. The operators pdmap?2, ..., pdmap8 are defined similarly; as for
dmap operators, slots are copied to the first argument workers if necessary.

The dproduct operator is defined for two distributed relations, that is, oy, s € REL.

dproduct : darray(aq) x darray(ag) X (a1 X ag —) — darray(B)

faproduct((f1, 91,11, W), (f2, g2, n2, W), h) =
(f,g1,n1, W) such that
f:{0,...,n—1} — Apg,
no—1

Vi€ 0,.,n—1:f(i) =h(fi(i), | £0))
j=0

Here it is not required that the two arrays of relations have the same size (number of slots).
Each relation in a slot of the first array is combined with the union of all relations of the second
array. This is needed to support a general join operation for which no partitioning exists that
would support joins on pairs of slots. In the implementation, all slots of the second array are
copied to the respective worker for a slot of the first array. For this, again a port number
argument is needed.

Example 4.3 “Find all pairs of roads with a similar name.”

let NamedRoadsD = RoadsD dmap["NamedRoads", . feed filter[isdefined(.Name)]
filter[.Original] project[Osm_id, Name]
consume] ;

let Similar = NamedRoadsD NamedRoadsD dproduct["Similar",
feed {a} .. feed {b}
symmjoin[ldistance(tostring(.Name_a), tostring(..Name_b)) between[1l, 2]]
filter[.Name_a < .Name_b]
consume, myPort]

Before applying the dproduct operator, we reduce to named roads, eliminate duplicates from
spatial partitioning, and project to the relevant attributes. Then for all pairs of named roads,
the edit distance of the names is determined by the ldistance operator and required to lie
between 1 and 2. The symmjoin operator is a symmetric variant of a nested loop join. The
filter condition after the symmjoin avoids reporting the same pair twice. O

partition : darray(rel(tuple(a))) x (tuple(a) — int) x int — dfmatriz(rel(tuple(a)))

fpartition((f:ga n, W)7 hap) = (fl7n/7 W) such that

, n ifp=0
n = .
p otherwise

f/ : {0, ...,n' — 1} X {0, ey ’W’ — 1} — Aﬂ(w(a))
fli,g)={te U f@i) [h(t) mod n' =i}

i€{0,...,n—1},g(i)=3

17

Here the union of all relations assigned to worker j is redistributed according to function h. See
Figure 4. The variant partitionF allows one to apply an additional mapping to the argument
relations before repartitioning. It has the following signature:

partitionF : darray(rel(tuple(«)))

< (rel(tuple(0)) — (stream(tuple(3))
X (tuple(B) — int) x int — dfmatriz(rel(tuple(B)))

The definition of the function is a slight extension to the one for fpartition and is omitted.

collect2 : dfmatriz(rel(tuple(«))) — dfarray(rel(tuple(a)))

feontect2((f, 7, W)) = (f', g,n, W) such that
f {0, n—1} — Arel(tuple(a))s
floy= U G,
je{o,...,|W|-1}
g:{0,...,n—1} — {0,...,|W|—1},
g(i) =i mod |W]|

This operator collects columns of a distributed matrix into a distributed file array, assigning
slots round robin. The variant collectB assigns slots to workers, balancing slot sizes. For it the
value of function g is not defined as it depends on the algorithm for balancing slot sizes which
is not specified here. Together, partition and collect2 or collectB realize a repartitioning of
a distributed relation. See Figure 5.

Example 4.4 “Find all pairs of distinct roads with the same name.”
Assuming that roads are partitioned spatially, we need to repartition by names before exe-
cuting the join.

let SameName = RoadsD
partitionF["", . feed filter[isdefined(.Name)] filter[.Originall
project[0Osm_id, Name], hashvalue(..Name, 999997), 0]
collect2["", myPort]
dmap["", . feed {a}, . feed {b} itHashJoin[Name_a, Name_b]
filter[.Name_a < .Name_b]]
dsummarize consume

Here after repartitioning, the self-join can be performed locally for each slot. Assuming the
result is relatively small, it is collected on the master by dsummarize. O

areduce : dfmatriz(rel(tuple(«))) x (rel(tuple(a))) — B) — darray(f))

fareduce((f; n, W), h) = (f’,g, n, W) such that
f, : {0, vy — 1} — A/g,
o=t te U fGi)
j€{0,...,|W|-1}
9: {0, =1} = {0, | W] =1}

18

Semantically, areduce is the same as collect?2 followed by a dmap. In collecting the columns
from the different servers (workers), a function is applied. The reason to have a separate operator
and, indeed, the dfmatriz type as an intermediate result, is the adaptive implementation of
areduce. Since the data of a column of the dfmatriz need to be copied between computers
anyway, it is possible to assign any free worker to do that at no extra cost. Similar as for
collectB, the value of function g is not defined for areduce as the assignment of slots to
workers cannot be predicted.

Example 4.5 The previous query written with areduce is:

let SameName = RoadsD

partitionF["", . feed filter[isdefined(.Name)] filter[.Originall
project[0sm_id, Name], hashvalue(..Name, 999997), O]
areduce["", . feed {a}, . feed {b} itHashJoin[Name_a, Name_b]

filter[.Osm_id_a < .0Osm_id_b], myPort]
dsummarize consume

Here within partitionF “.” refers to the relation and “..” refers to the tuple argument in the
first and second argument function, respectively. (I

The binary variant areduce2 has signature:

areduce2 : dfmatriz(rel(tuple(ay))) x dfmatriz(rel(tuple(as)))
x (rel(tuple(on)) x rel(tuple(az)) — f) — darray(p3))

The formal definition of semantics is similar to areduce and is omitted.

4.3.3 Operations for Distributing Data to the Workers

The operators ddistribute2, ddistribute3, and ddistribute4 and their dfdistribute variants
distribute data from a tuple stream on the master into the fields of a distributed array.> We define
the first and second of these operators which distribute by an attribute value and randomly®,
respectively. Operator ddistribute4 distributes by a function on the tuple which is similar to
ddistribute2.

Let WR denote the set of possible worker relations (of a relation type). For a tuple type
tuple(a) let attr(a, 5) denote the name of an attribute of type 8. Such an attribute a represents
a function attr, on a tuple t so that attr,(t) is a value of type 3.

ddistribute?2 : stream(tuple(a)) x attr(a, int) x int x WR — darray(rel(tuple()))

In the following, we use the notation < sip,...,s, | f(s;) > to restrict a sequence to the
elements s; for which f(s;) = true. Functions f(s;) are written in Az.expr(z) notation.

fadistribute2(< to, -, tk—1 >, a,n, W) = (f, g,n, W) such that
Fi{0,n =1} = Ave(tuple(a))
f(@) =<to,....,tk—1 | Atj.attry(t;) mod n =i >,
g:{0,...,n—1} — {0,..,|W|—1},9(i) =i mod |W]|

5The numbering starts with 2 because another algebra in SECONDO already has a ddistribute operator.
SRandomly in the sense that the distribution does not depend on the value of the tuple.

19

Hence the attribute a determines the slot that the tuple is assigned to. Note that all ddis-
tribute operators maintain the order of the input stream within the slots.

ddistribute3 : stream(tuple(a)) x int X bool x WR — darray(rel(tuple()))

fadistributes (< to, .-y tg—1 >,n,b, W) = (f, g,m, W) such that

f : {O, ey — 1} — ALEZ(LUM(OC))’

) <ty tp—1 | Mtj.j modn=1i> ifb=true
1) =

<o,y thm1 | Atjj+n=10> if b = false
g:{0,....m—1} = {0,..,|W|—=1},¢9(i) =i mod |[W|,

n if b = true
m =
[k+n| if b= false

The operator distributes tuples of the input stream either round robin to the n slots of
a distributed array, or by sequentially filling each slot except the last one with n elements,
depending on parameter b.

Example 4.6 We distribute the Buildings relation round robin into 50 fields of a distributed
array. A relation Workers is present in the database.

let BuildingsD = Buildings feed ddistribute3["BuildingsD", 50, TRUE, Workers]

O

Example 4.7 We create a grid-based spatial partitioning of the relations Roads and Waterways.

let RoadsD = Roads feed extendstream[Cell: cellnumber(bbox(.GeoData), grid)]
extend[Original:
.Cell = cellnumber(bbox(.GeoData), grid) transformstream extract[Elem]]
ddistribute2["RoadsD", Cell, 50, Workers];

The distribution is based on a regular grid as shown in Figure 8. A spatial object is assigned
to all cells intersecting its bounding box. The cellnumber operator returns a stream of integers,
the numbers of grid cells intersecting the first argument, a rectangle. The extendstream
operator makes a copy of the input tuple for each such value, extending it by an attribute Cell
with this value. So we get a copy of each road tuple for each cell it intersects. The cell number
is then used for distribution.

In some queries on the distributed Roads relation we want to avoid duplicate results. For
this purpose, the tuple with the first cell number is designated as original. See Example 4.3.

Relation Waterways is distributed in the same way. So RoadsD and WaterwaysD are spatially
co-partitioned, suitable for spatial join (Example 4.2). O

The following two operators serve to have the same objects available in the master and
worker databases. Operator share copies an object from the master to the worker databases
whereas dlet creates an object on master and workers by a query function.

share : string x bool x WR — text

The Boolean parameter specifies whether an object already present in the worker database
should be overwritten. W R defines the set of worker databases.

The semantics for such operators can be defined as follows. These are operations affecting
the master and the worker databases, denoted as M and Dy, ..., D,,, respectively. A database

20

41 42 43 44 45 46 47 48 G

33 34 35 36 37 38 39 40

7
25 E! 27 28 29 30 31 32

Figure 8: A regular grid defining cell numbers.

is a set of named objects where each name n is associated with a value of some type, hence a
named object has structure (n, (¢t,v)) where ¢ is the type and v the value. A query is a function
on a database returning such a pair. Technically, an object name is represented as a string and
a query as a text.

We define the mapping of databases denoted d. Let (n, 0) be an object in the master database.

5share(n)((M7 Dy, ...; D)) = (M, Dy U{(n,0)},...,; Dy U{(n,0)})

Example 4.8 Operator share is in particular needed to make objects referred to in queries
available to all workers.

“Determine the number of buildings in Eichlinghofen.” This is a suburb of Dortmund,
Germany, given as a region value eichlinghofen on the master.

query share("eichlinghofen", TRUE, Workers);
query BuildingsD dmap["", . feed filter[.GeoData intersects eichlinghofen] count]
getValue tiel[. + ..]

O

Note that a database object mentioned in a parameter function (query) of dmap must be
present in the master database, because the function is type checked on the master. It must
be present in the worker databases as well because these functions are sent to workers and type
checked and evaluated there.

Whereas persistent database objects can be copied from master to worker databases, this is
not possible for main memory objects used in query processing. Again, such objects must exist
on the master and on the workers because type checking is done in both environments. This is
exactly the reason to introduce the following dlet operator.

dlet : darray(a) x string x text — stream(tuple(f3))

The dlet operator creates a new object by a query simultaneously on the master and in
each worker database. The darray argument serves to specify the relevant set of workers. The
operator returns a stream of tuples reporting success or failure of the operation for the master
and each worker. Let n be the name and p the query argument.

(5d1et(n,u)((M7 Dy, ..., Dm)) = (M U {(n7 M(M))}7 Dy U {<n7:u(D1))}v coey D U {(nvﬂ(Dm))})

An example for dlet is given in Section 6.5.

21

dcommand : darray(«) X text — stream(tuple(p)

The dcommand operator lets an arbitrary command be executed by each worker. The
command is given as a text argument. The darray argument defines the set of workers. The
result stream is like the one for dlet.

Example 4.9 To configure for each worker how much space can be used for main memory data
structures, the following command can be used:

query RoadsD dcommand['query meminit(4000)'] consume

4.3.4 Operations for Collecting Data From Workers

The operator dsummarize can be used to make a distributed array available as a stream of
tuples or values on the master whereas getValue transforms a distributed into a local array.

dsummarize : darray(rel(tuple(«))) — stream(tuple(a))

darray (o) — stream(«)

The operator is overloaded. For the two signatures, the semantics definitions are:

fasummarize((f, 9,1, W)) =< to,....tr_1 > such that {to,...t, .1} = | J (i)
1€{0,...,n—1}

fdsummarize((f,ga n, W)) =< f(O), a) f(n - 1) >
getValue : darray(a) — array(a)

fgetValue((f7gu n, W)) = (f7 n)

The operator get ValueP allows one to transform a partial distributed array into a complete
local array on the master.

getValueP : pdarray(a) X a — array(a)

fQ@) i f(i) # L

fgetValueP((f>gan>W)vv) = (f,>n) such that f/(’L) = {U T f(Z) -

Finally, the tie operator of the basic engine is useful to aggregate the fields of a local array.

tie : array(a) X (a x a = a) = «

9(0) = £(0)

fise((f:m),h) = g(n — 1) where {Q(m) = h(f(m).g(m ~1)) ifm>0

Example 4.10 Let X be an array of integers. Then

query X tiel[. + ..]

22

(1)

computes their sum. Here and “..” denote the two arguments of the parameter function

which could also be written as

query X tie[fun(x: int, y: int) x + y]

Further examples 4.2 and 4.4 demonstrate the use of these operators.

4.4 Final Remarks on the Distributed Algebra

Whereas the algebra has operations to distribute data from the master to the workers, this is not
the only way to create a distributed database. For huge databases, this would not be feasible,
the master being a bottleneck. Instead, it is possible to create a distributed array “bottom-up”
by assembling data already present on the worker computers. They may have got there by
file transfer or by use of a distributed file system such as HDFS [45]. One can then create a
distributed array by a dmap operation that creates each slot value by reading from a file present
on the worker computer. Further, it is possible to create relations (or any kind of object) in the
worker databases, again controlled by dmap operations, and then to collect these relations into
the slots of a distributed array created on top of them. This is provided by an operation called
createDarray, omitted here for conciseness. Examples can be found in [51, 22].

Note that any algorithm that can be specified in the MapReduce framework can easily
be transferred to Distributed Algebra, as map steps can be implemented by dmap, shuffling
between map and reduce stage is provided by partition and collect or areduce operations,
and reduce steps can again be implemented by dmap (or areduce) operations.

An important feature of the algebra design is that the number of slots of a distributed array
may be chosen independently from the number of workers. This allows one to assign different
numbers of slots to each worker and so to compensate for uneven partitioning or more generally
to balance work load over workers, as it is done in operators collectB, areduce, and areduce2.

5 Implementation

5.1 Implementing an Algebra in Secondo

To implement a new algebra, data types and operators working on it must be provided. For the
data types, a C++ class describing the type’s structure and some functions for the interaction
with SECONDO must be provided. In the context of this article, the SECONDO supporting
functions are less important. They can be found e.g., in the Secondo Programmer’s Guide [24].

An operator implementation consists of several parts. The two most important ones are the
type mapping and the value mapping. Other parts provide a description for the user or select
different value mapping implementations for different argument types.

The main task of the type mapping is to check whether the operator can handle the pro-
vided argument types and to compute the resulting type. Optionally further arguments can be
appended. This may be useful for default arguments or to transfer information that is available
in the type mapping only to the value mapping part.

Within the value mapping, the operator’s functionality is implemented, in particular the
result value is computed from the operator’s arguments.

5.2 Structure of the Main Types

All information about the subtypes, i.e. the types stored in the single slots, is handled by the
SECONDO framework and hence not part of the classes representing the distributed array types.

The array classes of the Distributed2Algebra consist of a label (string), a defined flag
(bool), and connection information (vector). Furthermore, an additional vector holds the

23

mapping from the slots to the workers. The label is used to name objects or files on the workers.
An object corresponding to slot X of a distributed array labeled with myarray is stored as
myarray_X. The defined flag is used in case of errors. The connection information corresponds
to the schema of the worker relation that is used during the distribution of a tuple stream. In
particular, each entry in this vector consists of the name of the server, the server’s port, an
integer corresponding to the position of the entry within the worker relation, and the name of
a configuration file. This information is collected in a vector of DArrayElement.

The partial distributed arrays (arrays of type pdarray or pdfarray) have an additional member
of type set<int> storing the set of used slot numbers.

The structure of a dfmatriz is quite similar to the distributed array types. Only the mapping
from the slots to the workers is omitted. Instead the number of slots is stored.

5.3 Class Hierarchy of Array Classes

Figure 9 shows a simplified class diagram of the array classes provided by the Distributed2-
Algebra.

DistTypeBase

- name

DArrayElement

- worker - - host

- defined

- port

- config

SDArray DArrayBase DFMatrix
-mapping

DArrayT

DArray DFArray

PDArrayT

-usedSlots

N

PDArray PDFArray

Figure 9: The class hierarchy for distributed array classes

Note that the non-framed parts are not really classes but type definitions only, e.g., the
definition of the darray type is just typedef DArrayT<DARRAY> DArray;.

5.4 Worker Connections

The connections the to workers are realized by a class ConnectionInfo. This class basically
encapsulates a client interface to a SECONDO server and provides thread-safe access to this server.
Furthermore, this class supports command logging and contains some functions for convenience,
e.g., a function to send a relation to the connected server.

Instances of this class are part of the Distributed2Algebra instance. If a connection is
requested by some operation, an existing one is returned. If no connection is available for the
specified worker, a connection is established and inserted into the set of existing connections.
Connections will be held until closing is explicitly requested or the master is finished. This
avoids the time consuming start of a new worker connection.

5.5 Distribution of Data

All distribution variants follow the same principle. Firstly the incoming tuple stream is dis-
tributed to local files on the master according to the distribution function of the operator. Each

24

file contains a relation in a binary representation. The number of created files corresponds to
the number of slots of the resulting array. After that, these files are copied to the workers in
parallel over the worker connections. If the result of the operation is a darray, the binary file
on the worker is imported into the database as a database object by sending a command to the
worker. Finally, immediate files are removed. In case of the failure of a worker, another worker
is selected adapting the slot—worker mapping of the resulting distributed array.

5.6 The dmap Family

Each variant of the dmap Operator gets one or more distributed arrays, a name for the result’s
label, a function, and a port number. The last argument is omitted for the simple dmap
operator. As described above, the implementation of an operator consists of several parts where
the type mapping and the value mapping are the most interesting ones. By setting a special flag
of the operator (calling the SetUsesArgsInTypeMapping function), the type mapping is fed not
only with the argument’s types but additionally with the part of the query that leads to this
argument. Both parts are provided as a nested list. It is checked whether the types are correct.
The query part is only exploited for the function argument. It is slightly modified and delivered
in form of a text to the value mapping of the operator.

Within the value mapping it is checked whether the slot-worker-assignment is equal for
each argument array. If not, the slot contents are transferred between the workers to ensure
the existence of corresponding slots on a single worker. In this process, workers communicate
directly with each other. The master acts as a coordinator only. For the communication, the
port given as the last argument to the dmapX operator is used. Note, that copying the slot
contents is available for distributed file arrays only but not for the darray type.

For each slot of the result, a SECONDO command is created mainly consisting of the function
determined by the type mapping applied to the current slot object(s). If the result type is a
darray, a let command is created, a query creating a relation within a binary file otherwise.
This command is sent to the corresponding worker. Each slot is processed within a single thread
to enable parallel processing. Synchronization of different slots on the same worker is realized
within the ConnectionInfo class.

At the end, any intermediate files are deleted.

5.7 Redistribution

Redistribution of data is realized as a combination of the partition operator followed by col-
lect2 or areduce.

The partition operator distributes each slot on a single worker to a set of files. The principle
is very similar to the first part of the ddistribute variants, where the incoming tuple stream is
distributed to local files on the master. Here, the tuples of all slots on this worker are collected
into a common tuple stream and redistributed to local files on this worker according to the
distribution function.

At the beginning of the collect2 operator, on each worker a lightweight server is started
that is used for file transfer between the workers. After this phase, for each slot of the result
darray, a thread is created. This thread collects all files associated to this slot from all other
workers. The contents of these files are put into a tuple stream, that is either collected into a
relation or into a single file.

The areduce operator works as a combination of collect2 and dmap. The a in the operator
name stands for adaptive, meaning that the number of slots processed by a worker depends on
its speed. This is realized in the following way. Instead for each slot, for each worker a thread is
created performing the collect2-dmap functionality. At the end of a thread, a callback function
is used to signal this state. The worker that called the function is assigned to process the next
unprocessed slot.

25

5.8 Fault Tolerance

Inherently to parallel systems is the possibility of the failure of single parts. The Distributed2-
Algebra provides some basic mechanisms to handle missing workers. Of course this is possible
only if the required data are stored not exclusively at those workers. Conditioned by the two
array types, the system must be able to handle files and database objects, i.e., relations. In
particular, a redundant storage and a distributed access are required.

In SECONDO there are already two algebras implementing these features. The DBService
algebra is able to store relations as well as any dependent indexes in a redundant way on
several servers. For a redundant storage of files, the functions of the DFSAlgebra are used. If
fault tolerance is switched on, created files and relations are stored at the desired worker and
additionally given to the corresponding parts of these algebras for replicated storage. In the
case of failure of a worker, the created command is sent to another worker and the slot-worker
assignment is adapted. In the case the slot content is not available, a worker will get the input
from the DFS and the DBService, respectively.

However, at the time of writing fault tolerance does not yet work in a robust way in SECONDO
and is still under development. It is also beyond the scope of this paper.

6 Application Example: Distributed Density-Based Similarity
Clustering

In this section, we demonstrate how a fairly sophisticated distributed algorithm can be formu-
lated in the framework of the Distributed Algebra. As an example, we consider the problem of
density-based clustering as introduced by the classical DBScan algorithm [14]. Whereas the orig-
inal DBScan algorithm was applied to points in the plane, we consider arbitrary objects together
with a distance (similarity) function. Hence the algorithm we propose can be applied to points
in the plane, using Euclidean distance as similarity function, but also to sets of images, twit-
ter messages, or sets of trajectories of moving objects with their respective application-specific
similarity functions.

6.1 Clustering

Let S be a set of objects with distance function d. The distance must be zero for two equal
objects; it grows according to the dissimilarity between objects.

We recall the basic notions of density-based clustering. It uses two parameters MinPts and
Eps. An object s from S is called a core object if there are at least MinPts elements of S within
distance Eps from s, that is, |[Ngps(s)| > MinPts where Ngps(s) = {t € S|d(s,t) < Eps}. It is
called a border object if it is not a core object but within distance Eps of a core object.

An object p is directly density-reachable from an object ¢ if ¢ is a core object and p € Npps(q).
It is density-reachable from q if there is a chain of objects p1, p2, ..., pn Where p1 = q, p, = p and
V1 <4 < n: pi41 is directly density-reachable from p;. Two objects p,r are density-connected,
if there exists an object ¢ such that both p and r are density-reachable from q. A cluster is a
maximal set of objects that are pairwise density-connected. All objects not belonging to any
cluster are classified as noise.

6.2 Overview of the Algorithm
A rough description of the algorithm is as follows.

1. Compute a small subset of S (say, a few hundred elements) as so-called partition centers.

2. Assign each element of S to its closest partition center. In this way, S is decomposed into
disjoint partitions. In addition, assign some elements of S not only to the closest partition

26

center but also to partition centers a bit farther away than the closest one. The resulting
subsets are not disjoint any more but overlap at the boundaries. Within each subset we
can distinguish members of the partition and so-called neighbors.

3. Use a single machine DBScan implementation to compute clusters within each partition.
Due to the neighbors available within the subsets, all elements of S can be correctly
classified as core, border, or noise objects.

4. Merge clusters that extend across partition boundaries and assign border elements to
clusters of a neighbor partition where appropriate.

In Step 2, the problem arises how to determine the neighbors of a partition. See Figure 10
(a). Here u and v are partition centers; the blue objects are closest to u, the red objects are

ueg

(a))

Figure 10: Determining neighbors of a partition

closest to v; the diagonal line represents equi-distance between u and v. When partition P(u) is
processed in Step 3 by a DBScan algorithm, object s needs to be classified as a core or border
object. To do this correctly, it is necessary to find object ¢ within a circle of radius Eps around
s. But t belongs to partition P(v). It is therefore necessary to include ¢ as a neighbor into the
set P’(u), the extension of partition P(u).

Hence we need to add elements of P(v) to P'(u) that can lie within distance Eps from some
object of P(u). Theorem 6.1 says that such objects can lie only 2 - Eps further away from u
than from their own partition center v. The proof is illustrated in Figure 10 (b).

Theorem 6.1 Let s,t € S andT C S. Letu,v €T be the elements of T" with minimal distance
to s and t, respectively. Then t € Ngps(s) = d(u,t) < d(v,t) +2- Eps.

Proof: t € Ngps(s) implies s € Npps(t). Let x be a location within Ngps(t) with equal
distance to u and v, that is, d(u,x) = d(v,x). Such locations must exist, because s is closer
to u and t is closer to v. Then d(v,z) < d(v,t) + Eps. Further, d(u,t) < d(u,x) + Eps =
d(v,z) + Eps < d(v,t) + Eps + Eps = d(v,t) + 2 - Eps.

Hence to set up the relevant set of neighbors for each partition, we can include an object ¢
into all partitions whose centers are within distance d; 4+ 2 - Eps, where d; is the distance to the
partition center closest to t.

6.3 The Algorithm

In more detail, the main algorithm consists of the following steps. Steps are marked as M if
they are executed on the master, MW if they describe interaction between master and workers,
and W if they are executed by the workers.

Initially, we assume the set S is present in the form of a distributed array T where elements
of S have been assigned to fields in a random manner, but equally distributed (e.g., round robin).

27

As a result of the algorithm, all elements are assigned a cluster number or they are designated
as noise.

algorithm SimilarityClustering
input: 7T - a distributed array containing a set of objects S
MinPts, Eps - parameters for density-based clustering
k - integer parameter for placing partition centers
output: X - a distributed array containing the elements of
S augmented by cluster ids or a characterization as noise.
method:

1.

MW Collect a sample subset SS C S from array T to the master, to be used in the
following step.

. M Based on S5, compute a subset PC C S as partition centers using algorithm Similari-

tyPartitioning (Section 6.6). Let PC = {pcy, ..., pcn}. Subsequently, S will be partitioned
in such a way that each object is assigned to its closest partition center.

MW Share PC and some constant values with workers.

W Compute for each object s in T; its closest partition center pc; and the distance to
it. Add to s attributes N and Dist representing the index j and the distance d(s, pc;).
Further, compute for s all partition centers within distance Dist + 2 - Eps and add their
indices in attribute N2. Repartition the resulting set of objects (tuples) by attribute N2,
resulting in a distributed array V.

The field V; now contains the objects of S closest to pc; (call this set U;) plus some objects
that are closer to other partition centers, but can be within distance Eps from an object
in U; according to Theorem 6.1.

The idea is that for each object ¢ € U; we can compute Ngps(g) within V; because
NEps(q) C Vj. So we can determine correctly whether ¢ is a core or a border object, even
across the boundaries of partition U.

Elements of U; are called members, elements of V; \ U; neighbors of the partition U,
respectively. An element of V; is a member iff N2 = N.

. W To each set V; apply a DBScan algorithm using parameters MinPts and Eps. Objects

within subset U; (members) will be correctly classified as core objects and border objects;
for the remaining objects in V; \ U; (neighbors) we don’t care about their classification.
Each object s from Vj is extended by an attribute CI1DO0 for the cluster number (-2 for
noise) and a boolean attribute IsCore with value |Ngps(s)| > MinPts. Cluster identifiers
are transformed into globally unique identifiers by setting C'ID = CID0 -n + j. The
result is stored as X;. The subset of X; containing the former members of U; is called
W;; X; \ W; contains the neighbors of partition W.

The remaining problem is to merge clusters that extend beyond partition boundaries.
W For each ¢ € (X; \ Wj) retrieve Ngy,s(q) N W;. For each p € Ng,s(q) N Wj, insert tuple
(p,CID,,IsCorey,, Ny, q) into a set Neighbors;.

Redistribute Neighbors, once by the P and once by the @ attribute into distributed arrays
NeighborsByP and NeighborsByQ), respectively, to prepare a join with predicate P = Q).

W For each pair of tuples
(¢,CIDy,1sCoreq, Ny, p) € NeighborsBy(Q),
(p,CID,,IsCorey,, Np,q) € NeighborsByP:

28

(a) If both p and ¢ are core objects, generate a task (CID,,CID,) to merge clusters
with these numbers; store tasks in a distributed table Merge.

(b) If p is a core object, but ¢ is not, generate a task (g, Ny, CID,) to assign to ¢ the
CID of p, since g is a boundary object of the cluster of p. Store such assignment
tasks in a table Assignments.”

(c) If p is not a core object, but g is, generate a task (p, Np, C1Dy) to assign the CID of
q to p.
(d) If neither p nor ¢ are core objects, leave their cluster numbers unchanged.

Redistribute assignments by the N attribute into distributed array Assignments.

8. MW Collect table Merge to the master as MergeM . Further, set MaxzCN on the master
to the maximal component number over all W;.

9. M Compute connected components in MergeM, adding to each node C'ID; a new com-
ponent number, resulting in a pair (C1D;, CIDnew;). Collect pairs (CID;, CIDnew; +
MaxCN) in a table of renumberings R.

10. MW Share R with workers.

11. W For each partition W;, apply the renumberings from Assignments; and those of R to
all elements. Now all objects in W; have received their correct cluster number.

end SimilarityClustering.

6.4 Tools for Implementation
In the SECONDO environment, we find the following useful tools for implementing this algorithm:
e Main memory relations
e A main memory M-tree
e A DBScan implementation relying on this M-tree
e A data structure for graphs in main memory
Memory Relation A stream of tuples can be collected by an mconsume operation into a

main memory relation which can be read, indexed, or updated. As long as enough memory is
available, this is of course faster in query processing than using persistent relations.

M-tree The M-tree [7] is an index structure supporting similarity search. In contrast to other
index structures like R-trees it does not require objects to be embedded into a Euclidean space.
Instead, it relies solely on a supplied distance function (which must be a metric). SECONDO has
persistent as well as main memory data types for M-trees. Operations used in the algorithm are

e mcreatemtree to create an M-tree index on a main memory relation,
e mdistRange to retrieve all objects within a given distance from a query objects, and
e mdistScan to enumerate objects by increasing distance from a query object.

More precise descriptions of these and following operations can be found in the Appendix. The
M-tree is used to support all the neighborhood searches in the algorithm.

"¢ may have been classified as a boundary object of another cluster. For simplicity we don’t check that, as an
object that is boundary object to two clusters may be assigned arbitrarily to one of them.

29

DBScan SECONDO provides several implemented versions of the DBScan algorithm [14] im-
plementing density-based clustering, using main memory R-trees or M-trees as index structure,
with an implicit or explicit (user provided) distance function. An implicit distance function is
registered with the type of indexed values. Here we use the version based on M-trees with the
operator

e dbscanM It performs density-based clustering on a stream of tuples based on some at-
tribute, extending the tuples by a cluster number or a noise identification.

This is used to do the local clustering within each partition.

Graph There exist some variants of graph data structures (adjacency lists) in memory. Here
we use the type mgraph2 with operations:

e createmgraph2 Creates a graph from a stream of tuples representing the edges, with
integer attributes to identify source and target nodes, and a cost measure.

e mg2connectedcomponents Returns connected components from the graph as a stream
of edge tuples extended by a component number attribute.

The computation of connected components is needed in the final stage of the algorithm for the
global merging of clusters.

6.5 Implementation

We now show for each step of the algorithm its implementation based on Distributed Algebra.
As an example, we use a set Buildings from OpenStreetMap data with the following schema:

Buildings(Osm_id: string, Code: int, Fclass: string, Name: text, Type: string,
GeoData: region)

The data represent buildings in the German state of North Rhine-Westphalia (NRW); the
GeoData attribute contains their polygonal shape. For clustering, we compute the center of the
polygon. We assume a dense area if there are at least 10 buildings within a radius of 100 meters.

let S = Buildings feed extend[Pos: center(bbox(.GeoData))] remove[GeoDatal consume

A distributed array T" may have been created as follows:

let nfields = ...;
let T = S feed ddistribute3["T", nfields, TRUE, Workers];

The distributed array T is initially present in the database; also the Workers relation exists.
The database is open already.

We explain the implementation of the first steps in some detail and hope this is sufficient
to let the reader understand also the remaining queries. All query processing operators can be
looked up in the Appendix.

1. MW Collect a sample subset SS C S from array T to the master, to be used in the
following step.

let sizeT = size(T);
query share("sizeT", TRUE, Workers)

let SS = T dmap["", . feed some[10000 div sizeT]] dsummarize consume

30

© © N o o » W N =

N ==
A W N R O

Here the number of fields of T is determined by the size operator and shared with the
workers. On each field, a random sample is taken by the some operator. The resulting
streams are collected by dsummarize to the master and written there into a relation by
the consume operator which is stored as S.S.

. M Based on SS, compute a subset PC' C S as partition centers using algorithm Similar-

ityPartitioning (Section 6.6). Let PC' = {pci,...,pcp}. Subsequently, S will be partitioned
in such a way that each object is assigned to its closest partition center.

let k = 50;
Q@&Scripts/SimilarityPartitioning.sec;
let n = PC count;

let MinPts = 10;

let Eps = 100.0;

let wgs84 = create_geoid("WGS1984");
let myPort = ...

The second line computes the set of partition centers PC, using SS and parameter k. The
contents of the script SimilarityPartitioning.sec are shown in Section 6.6.

. MW Share PC and some constant values with workers.

query share("PC", TRUE, Workers);
query share("MinPts", TRUE, Workers);
query share("Eps", TRUE, Workers);
query share("wgs84", TRUE, Workers);
query share("n", TRUE, Workers);

. W Compute for each object s in T; its closest partition center pc; and the distance to

it. Add to s attributes N and Dist representing the index j and the distance d(s,pc;).
Further, compute for s all partition centers within distance Dist + 2 - Eps and add their
indices in attribute N2. Repartition the resulting set of objects (tuples) by attribute N2,
resulting in a distributed array V.

query memclear(); query T dcommand['query memclear()'] consume;
query T dcommand['query meminit(3600)'] consume;

query T dlet["PCm", 'PC feed mconsume'] consume;
query T dlet["PCm_Pos_mtree", 'PCm mcreatemtree[Pos, wgs84]'] consume
let V=T

dmap["", . feed

loopjoin[fun(t: TUPLE) PCm_Pos_mtree PCm mdistScan[attr(t, Pos)] head[1]
projectextend[N; Dist: distance(attr(t, Pos), .Pos, wgs84)]]
loopjoin[fun(u: TUPLE) PCm_Pos_mtree PCm mdistRange[attr(u, Pos),
attr(u, Dist) + (2 * Eps)] projectextend[; N2: .N]]]
partition["", .N2, n]
collectB["V", myPort]

In lines 1-2, main memory objects on the master and on the workers are deleted and for
each worker, a bound of 3600 MB is set for main memory data objects. In lines 4-5, at
each worker, the set PC is set up as a main memory relation together with an M-tree
index over the Pos attribute. Using the wgs84 geoid, distances can be specified in meters,
consistent with the definition of Eps. Note that the distributed array T is only used to
specify the set of workers; its field values are not used.

31

These data structures are used in the next step in lines 7-14. For each field of T', for
each tuple t representing an element s € .S the distance to the nearest partition center is
computed (lines 10-11) and added to tuple ¢ in attribute Dist; the index of the partition
center is added in attribute V.

Tuples are further processed in the next loopjoin, determining for each tuple the elements
of PC within Dist+ 2 - Eps; the current tuple is joined with all these tuples, keeping only
their index in attribute N2.

Finally the resulting stream of tuples is repartitioned by attribute N2. Slot sizes are
balanced across workers to achieve similar loads per worker in the next step.

. W To each set V; apply a DBScan algorithm using parameters MinPts and Eps. Objects
within subset U; (members) will be correctly classified as core objects and border objects;
for the remaining objects in V; \ U; (neighbors) we don’t care about their classification.
FEach object s from Vj is extended by an attribute CIDO for the cluster number (-2 for
noise) and a boolean attribute IsCore with value |Ngps(s)| > MinPts. Cluster identifiers
are transformed into globally unique identifiers by setting CID = CI1D0-n+ j. The result
is stored as X;j. The subset of X; containing the former members of U; is called W;;
X; \ Wj contains the neighbors of partition W.

let X =V
dmap ["X", $1 feed extend[Pos2: gk(.Pos)] dbscanM[Pos2, CIDO, Eps, MinPts]
extend[CID: (.CIDO * n) + $2] consume
]

The remaining problem is to merge clusters that extend beyond partition boundaries.

. W For each q € (X; \ Wj) retrieve Ngps(q) N Wj. For each p € NEps(q) N Wj, insert a
tuple (p, CID,, IsCorey,, Np,q) into a set Neighbors;.

An equivalent formulation is:

For each p in W; retrieve Ngps(p) N (X; \ Wj). For each ¢ € Ngps(p) N (X, \ Wj), insert a
tuple (p, C1Dy, IsCorey, Ny, q) into a set Neighbors;.

An advantage of the second formulation is that we need to search on the much smaller set
(X; \ W;) instead of W;. As we will use a main memory index for this set, far less memory
is needed and larger data sets can be handled.

Redistribute Neighbors, once by the P and once by the Q attribute into distributed arrays
NeighborsByP and NeighborsByQ), respectively, to prepare a join with predicate P = Q).

query T dcommand['query memclear()'] filter[.0k] count;

let Wm = X dmap["Wm", . feed filter[.N # .N2] mconsume];
let Wm_Pos_mtree = Wm dmap["Wm_Pos_mtree", . mcreatemtree[Pos, wgs84]];

let Neighbors = X Wm_Pos_mtree Wm
dmap3["Neighbors", $1 feed filter[.N = .N2]
loopsel[fun(t: TUPLE) $2 $3 mdistRange[attr(t, Pos), Eps]
projectextend[; P: attr(t, Osm_id), PosP: attr(t, Pos), CIDO: attr(t, CIDO),
CIDp: attr(t, CID), IsCoreP: attr(t, IsCore), Np: attr(t, N), Q: .Osm_id,
QPos: .Pos]l]
, myPort]

let NeighborsByP = Neighbors partition["", hashvalue(.P, 999997), 0]
collect2["NeighborsByP", myPort];

let NeighborsByQ = Neighbors partition["", hashvalue(.Q, 999997), 0]
collect2["NeighborsByQ", myPort];

32

7. W For each pair of tuples (¢, CIDg, IsCoreq, Ng,p) € NeighborsByQ,

10.

(p,CID,, IsCorey,, Np,q) € NeighborsByP:

(a) If both p and q are core objects, generate a task (CI1D,, CID,) to merge clusters with
these numbers; store tasks in a distributed table Merge.

p is a core object, but q is not, generate a task (q, Ng, 0 assign to q the

b) If p i bject, but q i t t task (q, Nq, CI1D,) t gn t th
CID of p, since q is a boundary object of the cluster of p. Store such assignment
tasks in a table Assignments.

(c) If p is not a core object, but q is, generate a task (p, Np, CIDy) to assign the CID of
q to p.

(d) If neither p nor q are core objects, leave their cluster numbers unchanged.

Redistribute assignments by the N attribute into distributed array Assignments.

let Merge = NeighborsByQ NeighborsByP
dmap2["Merge", . feed {n1} .. feed {n2} itHashJoin[Q_nl, P_n2]
filter[.P_nl1 = .Q_n2]
filter[.IsCoreP_nl and .IsCoreP_n2]
project [CIDp_nl, CIDp_n2]
rduph[]
consume, myPort

]

let Assignments = NeighborsByQ NeighborsByP
dmap2["", . feed {n1} .. feed {n2} itHashJoin[Q_nl, P_n2]
filter[.P_nl1 = .Q_n2]
filter[.IsCoreP_nl and not(.IsCoreP_n2)]
projectextend[; P: .P_n2, N: .Np_n2, CID: .CIDp_ni]

krduph [P]
consume, myPort
]
partition["", .N, O]

collect2["Assignments", myPort]

For the Assignments, we remove duplicates with respect to only attribute P because we
can assign the object p to only one cluster, even if it should be in the neighborhood of two
different clusters.

MW Collect table Merge to the master into a graph MergeM . Further, set MaxCN on
the master to the mazximal component number over all W;.

let MergeM = Merge dsummarize rduph[] createmgraph2[CIDp_nl, CIDp_n2, 1.0];
let MaxCN = X dmap["", . feed max[CID] feed transformstream] dsummarize max[Elem];

M Compute connected components in MergeM , adding to each node CID; a new compo-
nent number, resulting in a pair (C1D;, CIDnew;). Collect pairs

(CID;,CIDnewj + MaxCN) in a table of renumberings Renumber.

let Renumber = MergeM mg2connectedcomponents projectextend[; CID: .CIDp_ni,
CIDnew: .CompNo + MaxCN] rduph[] consume

MW Share Renumber with workers.

query share("Renumber", TRUE, Workers);

33

11. W For each partition W;, apply the renumberings from Assignments; and those of Renumber
to all elements. Now all objects in W; have received their correct cluster number.

query X Assignments
dmap2["", $1 feed addid filter[.N = .N2] $2 feed krduph[P] {a}
itHashJoin[Osm_id, P_a] $1 updatedirect2[TID; CID: .CID_a] count, myPort

]
getValue tiel[. + ..]

query X
dmap["", $1 feed addid filter[.N = .N2] Renumber feed krduph[CID] {a}
itHashJoin[CID, CID_a] $1 updatedirect2[TID; CID: .CIDnew_a] count

]
getValue tiel[. + ..]

6.6 Balanced Partitioning

In Step 2 of the algorithm SimilarityClustering, partition centers are determined. Since in
parallel processing each partition will be processed in a task by some worker, partition sizes
should be as similar as possible. This is the easiest way to balance workloads between workers.
As partition sizes are solely determined by the choice of partition centers, a good placement of
partition centers is crucial.

To adapt to the density of the data set S to be clustered, there should be more partition
centers in dense areas than in sparse areas. We therefore propose the following strategy: Com-
pute for each element of S its radius r(s) as the distance to the k-the nearest neighbor, for some
parameter k. We obtain for each s € S a disk with radius r(s). The disk will be small in dense
areas, large in sparse areas. Place these disks in some arbitrary order but non-overlapping into
the underlying space. That is, a disk can be placed if it does not intersect any disks already
present; otherwise it is ignored.

The algorithm is shown in Figure 11. In practice, it is not necessary to apply the algorithm
to the entire data set to be clustered. Instead, a small random sample can be selected that
reflects the density distribution. In our experiments, we use a sample of size 10000.

algorithm SimilarityPartitioning
input: S - a set of objects with a distance function d
k - an integer parameter controlling the density of placing partition centers
output: PC - a set of partition centers
method:
for each s € S: let r(s) be the distance of s to its k-th nearest neighbor
within S;
PC := ()
for each s € S:
if Vp € PC : d(s,p) > r(s) + r(p) then PC := PC U {s};
return PC
end SimilarityPartitioning.

Figure 11: Algorithm for computing partition centers

Figure 12 shows the result of the algorithm for the set of buildings in the German state of
North-Rhine Westphalia. One can observe that small disks lie in the area of big cities.?

8Disks are drawn as circles in geographic coordinates. They appear as ovals due to mercator projection for
the background map.

34

S W

© © N o u

10
11
12
13

Figure 12: Result of algorithm SimilarityPartitioning for buildings in the German state NRW

Implementation

An efficient implementation of this algorithm must rely on a data or index structure supporting
k-nearest-neighbor search as well as distance range search. In SECONDO, we can again use a
main memory M-tree providing such operations.

query memclear();

let SSm = SS feed mconsume;
let SSm_Pos_mtree = SSm mcreatemtree[Pos]

let Balls = SS feed
extend[Radius: fun(t: TUPLE)
distance(attr(t, Pos),
SSm_Pos_mtree SSm mdistScan[attr(t, Pos)] head[k] taill[1] extract[Pos])]
sortby [Radius]
mconsume

let maxRadius = Balls mfeed max[Radius]

In line 3, a main memory relation SSm is created from the sample SS. Next, a main memory
M-tree index SSm_Pos_mtree indexing elements by Pos is built over SSm.

In lines 6-11, a main memory relation Balls is created where each tuple of S5 is extended
by an attribute Radius containing the distance to the kth-nearest neighbor. The distance is
determined by an mdistScan operation which enumerates indexed tuples by increasing distance
from the starting point, the position of the current tuple. The head operator stops requesting
tuples from its predecessor after k elements; from its output via tail the last element is taken
and the position value extracted.

In line 13 we determine the maximum radius of any element.

let PCm = Balls mfeed head[0] mconsume;
let PCm_Pos_mtree = PCm mcreatemtree[Pos]

query Balls mfeed filter[fun(t: TUPLE)
PCm_Pos_mtree PCm mdistRange[attr(t, Pos), attr(t, Radius) + maxRadius]
filter[distance(attr(t, Pos), .Pos) < attr(t, Radius) + .Radius]
count = 0]
minsert [PCm]

35

9

11
12
13
14

minsertmtree [PCm_Pos_mtree, Pos]
count

let PC = PCm mfeed project[Osm_id, Pos, Radius] addcounter[N, 0]
extend[C: circle(.Pos, .Radius, 20)]
consume

In lines 1-2, an empty main memory relation PC'm is created with the same schema as that
of Balls. Also an index PCm_Pos_mtree is built over it, initially empty as well.

Lines 4-10 implement the second for each loop of algorithm SimilarityPartitioning. Fach
tuple from Balls is checked in the filter operator, using the condition that in a distance range
search on the already present elements of PC'm no tuples are found whose distance to this tuple
is less than the sum of their radii. That is, their disks or balls would overlap. If no such tuple
is found, the current tuple is inserted into PC'm and the index over it.

Finally, from the main memory relation PCm a persistent relation PC with the partition
centers is created, adding an index IV, used in the main algorithm, and a circle for visualization.

7 Experimental Evaluation

In this section we provide a brief experimental evaluation of the framework, addressing the
quality of balanced partitioning, load balancing over workers, and speedup. A detailed evaluation
of the clustering algorithm and comparison with competing approaches is left to future work.

7.1 Balanced Partitioning

We consider the data set introduced in Section 6.5 of Buildings in the German state of NRW.
There are 7842728 buildings. They are partitioned by the method of Section 6.6 yielding 123
partition centers as shown in Figure 12. Each building is then assigned to its closest partition
center (and possibly some more centers as explained in Step 4 of the algorithm). The total
number of buildings assigned to slots is 8046065, so there are about 2.6 % duplicates assigned
to several centers. The size distribution of the resulting partitions is shown in Figure 13.

Figure 13: Slot sizes for the partitioning of buildings in NRW (slots horizontal, slot size vertical)

One can see that slot sizes are somewhat balanced in the sense that there are no extremely
large or small slots. Nevertheless they vary quite a bit. To describe this variation, we intro-
duce a measure called wutilization. The term utilization results from the idea that slots could
be processed in parallel on different computers and the total time required is defined by the
computer processing the largest slot. Utilization is the work done by all computers relative
to what they could have done. Hence for a set of slot sizes S = {s1,..., s}, it is defined as

Util(§) = izl ™

nXmax;=1,...,n Si
For the slot sizes S shown in Figure 13, we have Util(S) = 50.75%. Hence assigning these
slots directly to different computers would not be very efficient.

which is the same as avg(S)/max(S).

36

7.2 Load Balancing over Workers

Fortunately in our framework slots are distributed over workers so that each worker processes
several slots sequentially. By the standard “round robin” assignment of slots to workers, different
slot sizes already balance out to some extent. The resulting worker loads are shown in Figure 14.
Here we have Util(WL) = 67.7%.

Figure 14: Worker loads by round robin assignment for the partitioning of buildings in NRW

A still better load balancing between workers can be achieved by the collectB operator. It
assigns partitions to workers based on their size (number of tuples) when they are transferred
from a dfmatriz. The algebra definition does not prescribe by which algorithm this is done. In
our implementation, the following heuristic is used:

1. Divide the set of available workers into standard and reserve workers (e.g., designate 5 %
as reserve workers).

2. Sort slots descending by size into list S.

3. Traverse list S, assigning slots sequentially to standard workers. In each assignment, select
a worker with the minimal load assigned so far.

4. Sort the worker loads descending by size into list A.

5. Traverse list A, removing from each assignment the last slot and assigning it to the reserve
worker with the smallest assignment so far, until reserve worker loads get close to the
average worker load (computed beforehand).

Here the basic strategy is to assign large slots first, small slots last to the worker with smallest
load so far, which lets worker loads fill up equally. This happens in Steps 1 to 3. The last two
steps 4 and 5 are motivated by the fact that sometimes in a relatively well balanced distribution
there are a few workers with higher loads. The idea is to take away from them the last (small)
assigned slots and move these to the reserve workers.

We have evaluated these strategies in a series of experiments on the given example database
with Buildings in NRW. We vary the size of the sample SS using sizes 10000, 20000, and 50000;
for each size the partitioning and assignment algorithm is run three times. The parameter k is
fixed to 50. Note that with increasing sample size the number of partitions grows, because from
each point a circle enclosing the closest k neighbors gets smaller. Hence more circles fit into the
same space. Due to the randomness of samples, the numbers of partitions and all results vary
a bit between experiments.

Table 1 shows the results. Here the last four columns have the following meaning;:

UtilSizes | Utilization for the distribution of partition sizes as in Section 7.1
UtilRR | Utilization for worker loads with round robin assignment

UtilS Utilization for worker loads with assignment descending by size (Steps
1 through 3 of the algorithm) without reserve workers

UtilSR Utilization for worker loads with assigment descending by size and reas-
signment (Steps 1 through 5)

37

Table 1: Evaluation of Load Balancing Strategies

Experiment | Sample Size | # Partitions | UtilSizes | UtilRR | UtilS | UtilSR

10a 10000 122 0.521 0.765 | 0.874 | 0.901
10b 10000 124 0.530 0.635 | 0.857 | 0.878
10c 10000 127 0.593 0.671 | 0.866 | 0.866
20a 20000 243 0.568 0.808 | 0.943 | 0.980
20b 20000 246 0.502 0.779 | 0.950 | 0.984
20c 20000 243 0.517 0.777 10.945 | 0.981
50a 50000 618 0.469 0.852 | 0.982 | 0.989
50b 50000 618 0.460 0.830 | 0.982 | 0.992
50c 50000 622 0.529 0.845 | 0.983 | 0.991

One can observe that we have about 3 slots per worker for sample size 10000 (as there are
40 workers), about 6 for 20000, and about 15 for 50000. The variation in slot sizes and the
respective utilization (UtilSizes) remains at around 50% for the increasing number of partitions.
However, the round robin utilization (UtilRR) improves from about 70% to about 85%.

Assignment descending by size (UtilS) is clearly better than round robin assignment and
reaches already 95% for 6 slots per worker and 98% for 15 slots per worker. Using reserve workers
and reassignment (UtilSR) can in some cases still improve utilization by a small percentage.

The fact that the partitioning algorithm returns slots of somewhat varying size is actually
an advantage as having small slots allows one to fill up worker loads evenly. At the same time
it is crucial not to have single slots that are extremely large.

In any case, by using enough slots per worker (e.g., 6 in this experiment) we can achieve an
almost perfect load balancing in terms of the sizes of data to be processed.

7.3 Speedup

In this section we describe experiments with a larger data set to examine the speedup behaviour
of the framework. Experiments are run on a small cluster consisting of 5 server computers, each
with the following configuration:

e 8 cores, 32 GB main memory, 4 disks, Intel Xeon CPU E5-2630, running Ubuntu 18.04
e (up to) 8 workers, each using one core, 3.6 GB main memory, two workers sharing one disk

In addition, the master runs on one of the computers, using all memory, if needed. For the
algorithm of this paper, the master uses almost no memory.

The data set to be clustered consists of the nodes of the OpenStreetMap data set for Germany.
Each node defines a point in the plane; all geometries (e.g., roads, buildings, etc.) are defined
in terms of nodes. There are 315.113.976 nodes. For clustering, we use the same parameters as
in Section 6.5, namely Eps = 100 meters, MinPts = 10. In all experiments we use the same
sample S5 of size 30888 and parameter k = 100 which leads to 188 partitions.

The algorithm of Section 6.5 was run 4 times, for sets of 10, 20, 30, and 40 workers denoted
W10, ..., W40. W10 is considered as a baseline and we observe the speedup achieved relative to
W10. Table 2 shows the elapsed time for the 11 steps of the algorithm.”

Due to the fact that the same precomputed sample was used in all 4 experiments, the
computation of SS is missing in Step 1, which would add about 53 seconds. One can observe

9Some steps have a few seconds more than the sums of Table 3 due to bookkeeping operations added for
experimental evaluation.

38

Table 2: Running Times for Similarity Clustering, 10 Workers

Steps W10

1

2

3

4

5

6

7

8

9

10

11

Time [seconds]

0,6

25,2

13

3857,7

17746,3

1033,7

3207.3

1783

0,5

0,6

1199,2

that Steps 1, 2, 3, 8, 9, 10 have negligible running times. Note that the global computation on
the master in Steps 8 through 10 is in no way a bottleneck.

The remaining steps we consider in more detail for 10 to 40 workers in Table 3. Here within
each step the running times for queries are given by the names of the resulting objects. The
right part of the table shows the respective speedups defined as time(W10)/time(Wz). The
numbers are visualized in Figure 15.

Table 3: Running Times for Similarity Clustering

Step Object Created Running Time [seconds| Speedup
W10 \ W20 \ W30 \ W40 || W10 \ W20 \ W30 \ W40
Step4d | V 3857 | 2153 | 2128 | 1432 1,00 | 1,79 | 1,81 | 2,69
Stepb | X 17746 | 9974 | 7075 | 5812 1,00 | 1,78 | 2,51 | 3,05
Step 6 | Wm 127 130 50 57 || 1,00 | 0,98 | 2,54 | 2,23
Wm_Pos_mtree 9 7 5 4 1,00 | 1,29 | 1,80 | 2,25
Neighbors 1266 | 873 | 530 | 411 1,00 | 1,45 | 2,39 | 3,08
NeighborsByP, Neigh- 521 415 | 382 | 359 | 1,00 | 1,26 | 1,36 | 1,45
borsByQ
Step 7 | Merge 1603 | 947 | 663 | 513 || 1,00 | 1,69 | 2,42 | 3,12
Assignments 1600 | 956 | 687 | 541 1,00 | 1,67 | 2,33 | 2,96
Step 11 | X apply Assignments 206 166 102 95 1,00 | 1,24 | 2,02 | 2,17
X apply Renumber 988 | 664 | 460 374 1,00 | 1,49 | 2,15 | 2,64
Running Time by Steps Speedup by Steps
— 20000 3,50
£ 12000 3,00
8 14000 8250 T —
2 12000 A r E e S N N |
£ “wio (301 E EF N FE N F N QU
3 4000 11 =W20 e I DR T L e
L e e m s N e a e
FFHFPTEESE W40 P F &S wao
PN EON NG IR EONE RO
« & T «~ 3 ¥
&&}z*ﬁy 09@@\\"&@

Figure 15: (a) Running Time, (b) Speedup, by Steps of the algorithm, for 10 to 40 workers

Especially Figure 15(a) illustrates that by far most of the time is spent in the local DBScans
(Step 5, X) and the initial partitioning of the data (Step 4, V). Regardless of running times,
the right part of the table and Figure 15(a) show the speedups for various queries. One can
observe that computations involving shuffling of data have a weaker speedup (e.g., Step 6,
NeighborsBy...). This is because for more workers there is more data exchange. But for most
queries good speedups can be achieved, e.g., by a factor around 3 going from 10 to 40 workers.

The overall running times and speedups are shown in Table 4.

Finally, Figure 16 illustrates the result of the algorithm. The largest 3 clusters discovered

39

Table 4: Overall Running Times and Speedups

Running Time [seconds] Speedup
W10 | W20 | W30 | W40 || W10 | W20 | W30 | W40

[28151 | 16506 | 12212 [9740 || 1,00 [1,71 | 2,31 | 2,89 |

Danmark

Groninge

derland

i,
chhey
imnsc@ o

vvvvv

Figure 16: (a) Partition centers for Germany and two clusters, (b) One cluster in detail, com-
posed of four local clusters

have sizes of 158.798.786, 15.279.845, and 7.539.633, respectively. Figure 16(a) shows the parti-
tion centers for Germany and two clusters at ranks 29 and 30 with 462.800 and 445.079 elements,
respectively (of which only a few sample elements are selected for visualization). Figure 16(b)
shows the bottommost cluster in more detail; the four local clusters that have been merged to
the global cluster are illustrated by color. The boundaries of local clusters are defined by the
Voronoi diagram over partition centers.

8 Conclusions

In this paper, we have proposed an algebra with formal semantics which allows a precise formu-
lation of distributed algorithms or distributed query processing in general. It is based on the
simple and intuitive concept of a distributed array, an array whose fields lie on and are processed
by different computers. The algebra focuses on the aspect of distribution and is generic with
respect to the possible field types or operations on them. It does, however, provide some specific
operations to deal with collections of objects represented as relations. Otherwise, field types
and operations are supplied by some single server database system, called the basic engine in
this paper. Different such systems may be used in principle.

It would not be satisfactory to present such an algebra without demonstrating its application
to formulate distributed algorithms. Therefore, we have included a fairly advanced algorithm for
distributed clustering. The algorithm is interesting in its own right: It includes a new technique
for purely distance-based partitioning using any metric similarity function and it is the first
precise distributed algorithm for density-based similarity clustering relying only on distance.

The formulation of the algorithm shows a new style of describing distributed algorithms. In
addition to a precise mathematical formulation, it is possible to show the complete implemen-

40

tation in terms of high level operations of a database system with defined semantics, either of
the distributed algebra or of the basic engine. One can see precisely which data structures and
algorithms are used. This is in contrast to many published algorithms where certain steps are
only vaguely described and hard to understand.

The framework has been implemented and is publicly available. In a brief experimental
evaluation, we have studied the variation of partition sizes in the distance based partitioning,
load balancing over workers, and speedup. The results show that partition sizes vary but are not
extreme, and load balancing over workers can provide almost perfect load distribution, using a
sufficient number of slots. Here it is crucial that the number of slots of a distributed array can
be chosen independently from the number of workers. Finally, a good linear speedup is achieved
for most queries.

Future work may address the following aspects:

e Provide fault tolerance for the distributed persistent database, for intermediate results in
files, and for intermediate results in memory. For the persistent database and memory
data, fault tolerance must maintain extensibility, that is, support arbitrary new indexes
and other data types that are added to the basic engine.

e The presented algebra offers a basic generic layer for distributed query processing. On top
of it more specialized layers may be added. This may include an algebra for distributed
relations, providing several partitioning techniques and keeping track of partitioning in
the data type, handling duplicates in spatial partitioning, and repartition automatically
for joins. Another algebra may handle updates on distributed relations. All of this can be
expressed in the Distributed Algebra, but will be easier to use at the higher level algebras.

e Provide an SQL level with cost-based optimization, handling of spatial partitioning in
at least two and three dimensions (which includes moving objects) and spatial duplicate
elimination.

e The given distributed arrays are static in their mapping of slots to workers. Provide
dynamic distributed arrays which can adapt to a dataset whose density changes under
updates, as well as to changing available resources.

e Embed other database systems such as PostgreSQL/PostGIS or MySQL in the role of
basic engines.

References

[1] A. Alexander, R. Bergmann, S. Ewen, J.C. Freytag, F. Hueske, A. Heise, O. Kao, M. Le-
ich, U. Leser, V. Markl, F. Naumann, M. Peters, A. Rheinldnder, M.J. Sax, S. Schelter,

M. Hoger, K. Tzoumas, and D. Warneke. The stratosphere platform for big data analytics.
The VLDB Journal, 23(6):939-964, December 2014.

[2] S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. Borkar, Y. Bu, M. Carey, I. Cetindil,
M. Cheelangi, K. Faraaz, and et al. Asterixdb: A scalable, open source bdms. Proc. VLDB
Endow., 7(14):1905-1916, October 2014.

[3] P. Baumann, P. Furtado, R. Ritsch, and N. Widmann. The rasdaman approach to multidi-
mensional database management. In Proceedings of the 1997 ACM Symposium on Applied
Computing, SAC ’97, pages 166—173, New York, NY, USA, 1997. ACM.

[4] J.B. Buck, N. Watkins, J LeFevre, K. Ioannidou, C. Maltzahn, N. Polyzotis, and S.A.
Brandt. SciHadoop: array-based query processing in Hadoop. In Scott Lathrop, Jim
Costa, and William Kramer, editors, SC, pages 66:1-66:11. ACM, 2011.

41

[5]

[10]

[11]

[18]

[19]

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas. Apache
flink™: Stream and batch processing in a single engine. IEEE Data Eng. Bull., 38(4):28—
38, 2015.

F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows, T. Chandra,
A. Fikes, and R.E. Gruber. Bigtable: A distributed storage system for structured data.
ACM Trans. Comput. Syst., 26(2):4:1-4:26, June 2008.

P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for similarity
search in metric spaces. In VLDB’97, Proceedings of 23rd International Conference on
Very Large Data Bases, August 25-29, 1997, Athens, Greece, pages 426—435, 1997.

Website of the HashiCorp Consul project. https://www.hashicorp.com/blog/
consul-announcement/, 2019. [Online; accessed 20-Dec-2019].

Bi-Ru Dai and I-Chang Lin. Efficient map/reduce-based DBSCAN algorithm with opti-
mized data partition. In 2012 IEEE Fifth International Conference on Cloud Computing,
Honolulu, HI, USA, June 24-29, 2012, pages 59-66, 2012.

J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. In
Proceedings of the 6th Conference on Symposium on Opearting Systems Design € Implemen-
tation - Volume 6, OSDI’04, pages 10-10, Berkeley, CA, USA, 2004. USENIX Association.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Siva-
subramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly available key-value
store. SIGOPS Oper. Syst. Rev., 41(6):205-220, October 2007.

Wei Dong, Moses Charikar, and Kai Li. Efficient k-nearest neighbor graph construction for
generic similarity measures. In Proceedings of the 20th International Conference on World
Wide Web, WWW 2011, Hyderabad, India, March 28 - April 1, 2011, pages 577-586, 2011.

M.Y. Eltabakh, Y. Tian, F. Ozcan, R. Gemulla, A. Krettek, and J. McPherson. Cohadoop:
Flexible data placement and its exploitation in hadoop. Proc. VLDB Endow., 4(9):575-585,
June 2011.

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering
clusters in large spatial databases with noise. In Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining, KDD’96, pages 226-231. AAAI
Press, 1996.

Website of the etcd project. https://etcd.io/, 2019. [Online; accessed 20-Dec-2019].

L. Fegaras. A Query Processing Framework for Large-Scale Scientific Data Analysis, pages
119-145. Springer Berlin Heidelberg, Berlin, Heidelberg, 2018.

A.F. Gates, O. Natkovich, S. Chopra, P. Kamath, S.M. Narayanamurthy, C. Olston,
B. Reed, S. Srinivasan, and U. Srivastava. Building a High-Level Dataflow System on
Top of Map-Reduce: The Pig Experience. Proc. VLDB Endow., 2(2):1414-1425, August
2009.

Y. Geng, X. Huang, M. Zhu, H. Ruan, and G. Yang. Scihive: Array-based query processing
with hiveql. In TrustCom/ISPA/IUCC, pages 887-894. IEEE Computer Society, 2013.

Website of GeoFabrik. https://download.geofabrik.de/, 2020. [Online; accessed 09-01-
2020).

42

[20]

[21]

[22]

[23]

[24]

[29]

[30]

S. Ghemawat, H. Gobioff, and S.T. Leung. The Google File System. In Proceedings of
the Nineteenth ACM Symposium on Operating Systems Principles, SOSP 03, pages 2943,
New York, NY, USA, 2003. ACM.

R.H. Giiting. Second-order signature: A tool for specifying data models, query processing,
and optimization. In Proceedings of the 1993 ACM SIGMOD International Conference on
Management of Data, Washington, DC, USA, May 26-28, 1993, pages 277-286, 1993.

R.H. Giiting and T. Behr. Tutorial: Distributed Query Processing in SEC-
ONDO. http://dna.fernuni-hagen.de/Secondo.html/files/Documentation/General/
DistributedQueryProcessinginSecondo.pdf, 2019.

R.H. Giiting, T. Behr, and C. Diintgen. Secondo: A platform for moving objects database
research and for publishing and integrating research implementations. [EEE Data Eng.
Bull., 33(2):56-63, 2010.

R.H. Giiting, V.T. de Almeida, D. Ansorge, T. Behr, C. Diintgen, S. Jandt, and M. Spiek-
ermann. SECONDO Programmer’s Guide. http://dna.fernuni-hagen.de/Secondo.

html/files/Documentation/Programming/ProgrammersGuide.pdf, Version 10, Septem-
ber 2017.

A. Guttman. R-trees: A dynamic index structure for spatial searching. SIGMOD Rec.,
14(2):47-57, June 1984.

Website of Apache HBase. https://hbase.apache.org/, 2018. [Online; accessed 12-Feb-
2018].

Yaobin He, Haoyu Tan, Wuman Luo, Huajian Mao, Di Ma, Shengzhong Feng, and Jianping
Fan. MR-DBSCAN: an efficient parallel density-based clustering algorithm using mapre-
duce. In 17th IEEE International Conference on Parallel and Distributed Systems, ICPADS
2011, Tainan, Taiwan, December 7-9, 2011, pages 473-480, 2011.

P. Hunt, M. Konar, F.P. Junqueira, and B. Reed. Zookeeper: Wait-free coordination for
internet-scale systems. In Proceedings of the 2010 USENIX Conference on USENIX Annual
Technical Conference, USENIXATC’10, pages 11-25, Berkeley, CA, USA, 2010. USENIX
Association.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and Dennis D. Fetterly. Dryad: Distributed
data-parallel programs from sequential building blocks. In Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007, EuroSys 07, page
59-72, New York, NY, USA, 2007. Association for Computing Machinery.

Eshref Januzaj, Hans-Peter Kriegel, and Martin Pfeifle. DBDC: density based distributed
clustering. In Advances in Database Technology - EDBT 2004, 9th International Con-
ference on Extending Database Technology, Heraklion, Crete, Greece, March 14-18, 2004,
Proceedings, pages 88—105, 2004.

A. Lakshman and P. Malik. Cassandra: a decentralized structured storage system. SIGOPS
Oper. Syst. Rev., 44(2):35-40, April 2010.

J. Lu and R.H. Giiting. Parallel secondo: Boosting database engines with hadoop. 2013
International Conference on Parallel and Distributed Systems, 0:738-743, 2012.

Alessandro Lulli, Matteo Dell’Amico, Pietro Michiardi, and Laura Ricci. NG-DBSCAN:
scalable density-based clustering for arbitrary data. PVLDB, 10(3):157-168, 2016.

43

[34]

[35]

[36]

[37]

Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph processing.
In Proceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10, 2010, pages 135-146, 2010.

W. McKinney. Data structures for statistical computing in python. In Proceedings of the
9th Python in Science Conference, pages 51 — 56, 2010.

MRQL. The Apache MRQL Project, 2019. http://incubator.apache.org/projects/
mrql.html - [Online; accessed 20-Dec-2019].

J.K. Nidzwetzki and R.H. Giiting. Distributed Secondo: An FExtensible and Scalable
Database Management System. Distributed and Parallel Databases, 35(3-4):197-248, De-
cember 2017.

T.E. Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: A not-so-foreign
language for data processing. In Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’08, pages 1099-1110, New York, NY, USA,
2008. ACM.

P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The log-structured merge-tree (Ism-tree).
Acta Inf., 33(4):351-385, June 1996.

Oracle. The Documentation of the spatial GeoRaster feature, 2019. https://docs.
oracle.com/cd/B19306_01/appdev.102/b14254/geor_intro.htm - [Online; accessed 20-
Dec-2019].

Md. Mostofa Ali Patwary, Diana Palsetia, Ankit Agrawal, Wei-keng Liao, Fredrik Manne,
and Alok N. Choudhary. A new scalable parallel DBSCAN algorithm using the disjoint-set
data structure. In SC Conference on High Performance Computing Networking, Storage
and Analysis, SC ’12, Salt Lake City, UT, USA - November 11 - 15, 2012, page 62, 2012.

PostGIS. The Documentation of the raster datatype, 2019. https://postgis.net/docs/
RT_reference.html - [Online; accessed 20-Dec-2019].

K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop distributed file system. In
Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), MSST ’10, pages 1-10, Washington, DC, USA, 2010. IEEE Computer Society.

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The hadoop
distributed file system. In IEEE 26th Symposium on Mass Storage Systems and Technolo-
gies, MSST 2012, Lake Tahoe, Nevada, USA, May 3-7, 2010, pages 1-10, 2010.

P. Sinthong and M.J. Carey. AFrame: Extending DataFrames for Large-Scale Modern Data
Analysis (Extended Version). CoRR, abs/1908.06719, 2019.

M. Stonebraker, P. Brown, J. Becla, and D. Zhang. Scidb: A database management system
for applications with complex analytics. Computing in Science and Engg., 15(3):54-62,
May 2013.

The Open Street Map Project. Open Street Map Project Website, 2019. http://www.
openstreetmap.org - [Online; accessed 20-Dec-2019].

The Website of the RocksDB Project. Website of the RocksDB Project, 2019. http:
//rocksdb.org/ - [Online; accessed 20-Dec-2019].

44

[50]

[51]

[52]

[53]

[54]

[55]

[57]

A. Thusoo, J.S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, and
R. Murthy. Hive: A warehousing solution over a map-reduce framework. Proc. VLDB
Endow., 2(2):1626-1629, August 2009.

F. Valdés, T. Behr, and R.H. Giiting. Parallel Trajectory Management in SECONDO. Tech-
nical report, Fernuniversitat in Hagen, Informatik-Report 380, 2020.

Reynold S. Xin, Joseph E. Gonzalez, Michael J. Franklin, and Ion Stoica. Graphx: a
resilient distributed graph system on spark. In First International Workshop on Graph Data
Management Experiences and Systems, GRADES 2013, co-loated with SIGMOD/PODS
2013, New York, NY, USA, June 24, 2013, page 2, 2013.

Xiaowei Xu, Jochen Jéger, and Hans-Peter Kriegel. A fast parallel clustering algorithm for
large spatial databases. Data Min. Knowl. Discov., 3(3):263-290, 1999.

Website of the Apache Hadoop YARN (Yet Another Resource Negotiator) project. https:
//hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html,
2019. [Online; accessed 20-Dec-2019).

Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P.K. Gunda, and J. Currey.
Dryadling: A system for general-purpose distributed data-parallel computing using a high-
level language. In 8th USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI 2008, December 8-10, 2008, San Diego, California, USA, Proceedings, pages
1-14, 2008.

M. Zaharia, R.S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen,
S. Venkataraman, M.J. Franklin, A. Ghodsi, J. Gonzalez, A. Shenker, and I. Stoica. Apache
spark: A unified engine for big data processing. Commun. ACM, 59(11):56-65, October
2016.

Y. Zhang, M. Kersten, and S. Manegold. SciQL: Array Data Processing Inside an RDBMS.
In Proceedings of the 2013 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’13, pages 1049-1052, New York, NY, USA, 2013. ACM.

Appendix
] Operator and Syntax ‘ Arguments ‘ Result or Side Effect
s addcounter[Id, n| s - a stream of tuples stream s extended by an integer
Id - a new attribute name attribute /d counting the tuples in
n - an integer the stream, starting from n
s addid s - a stream of tuples stream s extended by an attribute
TID containing the tuple iden-
tifier from the relation storing
the tuple (normally contained only
implicitly in the tuple representa-
tion). Via the TID value, a tuple
can be accessed directly within its
relation.
s t concat s,t - two streams of tuples of | the concatenation of the two
the same type streams
s consume s - a stream of tuples a relation containing the tuples
from s

45

] Operator and Syntax

Arguments

‘ Result or Side Effect

r count

r - a relation or stream of tu-
ples

an integer containing the number
of tuples of the relation or of the
stream

s createmgraph?2]a, b,

f]

s - a stream of tuples

a,b - two integer attributes
of s

f - a function from tuples in
s into real

a main memory graph. The oper-
ator interprets each tuple t of the
input stream s as a directed edge
with source node identifier t.a and
target node identifier ¢.b. Func-
tion f(t) determines the cost of
the edge.

s dbscanM]a, Id, Eps,
MinPts]

s - a stream of tuples

a - an attribute of s

Id - a new attribute name
Eps - a real

MinPts - an integer

a stream of tuples, containing all
tuples from s. The operator has
clustered tuples by attribute a us-
ing a dbscan algorithm with pa-
rameters Eps and MinPts, re-
lying on a main memory M-tree
built internally by the operator.
The result of clustering is ex-
pressed by appending to each tu-
ple a new integer attribute Id
which contains cluster identifiers,
or the value -2 for noise. In addi-
tion, a boolean attribute IsCore is
added expressing whether the tu-
ple represents a core or a border
object.

i exactmatch[p]

r - a main memory relation
i - a B-tree index over r

p - a value of the attribute
type indexed in

a stream of all tuples from r with
value p in the indexed attribute.

s extend[b; : f1, ...
el

,bp

s - a stream of tuples

by, ...,b; - names for new at-
tributes

fi, ..., fr - functions mapping
a tuple from s into a value of
some attribute type

a stream of tuples. Tuples ¢
from s are extended by new
attributes bq,...,b; with wvalues

fi1(t), ..., fr(t), respectively.

s extendstreamb : f]

s - a stream of tuples

b - a name for a new attribute
f - a function mapping a tu-
ple from s into a stream of
values of some attribute type

a stream of tuples. For each tuple
t € s there are as many copies of
t as there are values in f(t); each
copy is extended by one of these
values in attribute b.

s extract[a)

s - a stream of tuples
a - an attribute of s

the value of a of the first tuple in
s

f - a function from tuples of
s into bool

r feed r - a relation a stream of tuples from r

v feed v - an atomic value of some | a stream of such values containing
attribute type the single element v

s filter[f] s - a stream of tuples a stream of tuples containing all

tuples ¢ € s for which f(t) = true

46

Operator and Syntax

Arguments

‘ Result or Side Effect

s head|[n]

s - a stream of tuples
n - an integer

a stream of tuples consisting of the
first n tuples of s

s t itHashJoin[u, v]

s,t - two streams of tuples
u,v - an attribute of s and
an attribute of ¢ of the same

type

a stream of tuples representing the
join of s and t with condition
s.u = t.v. This is implemented via
hashjoin.

s t itSpatialJoin|u, v]

s,t - two streams of tuples
u,v - an attribute of s and
an attribute of ¢ of a spatial
data type

a stream of tuples representing the
join of s and t with the condition
that the bounding boxes of u and v
intersect. This is implemented via
repeated search on a main mem-
ory R-tree.

s krduphlay, ..., a,, m|

s - a stream of tuples
ai,...,a, - attributes of tu-
ples in s

m - an integer (optional)

a stream of tuples from s. Keeps
from each subset of tuples with
equal values in attributes aq, ..., a,
only the first tuple. Implements
duplicate elimination by hashing
with optional parameter m as for
rduph.

s loopjoin][f]

s - a stream of tuples

f - a function, mapping a tu-
ple t from s into a stream of
tuples

a stream of tuples, where each in-
put tuple ¢ € s is concatenated
with each tuple in f(¢)

s loopsel[f] s - a stream of tuples a stream of tuples, the concatena-
f - afunction, mapping a tu- | tion of all tuple streams f(¢) for
ple t from s into a stream of | t € s
tuples

s max|al s - a stream of tuples a value of the type of a represent-

a - an attribute of s

ing the maximum over all tuples
in s

S mconsume

s - a stream of tuples

a main memory relation contain-
ing the tuples from s

r mcreatemtree[a, g]

r - a main memory relation
a - an attribute of r
g - a geoid (optional)

a main memory M-tree index over
r by attribute a. If a is of type
point, a geoid argument can be
given. In that case, distances are
in meters.

i r mdistRange|[p, d]

r - a main memory relation
1 - an M-tree index over r

p - a value of the attribute
type indexed in

d - a real

a stream of tuples from r whose
indexed attribute values lie within
distance d from p.

i r mdistScan|p]

r - a main memory relation
1 - an M-tree index over r

p - a value of the attribute
type indexed in ¢

a stream of tuples from r ordered
by increasing distance from p.

r mfeed

r - a main memory relation

a stream of tuples from r

47

|

Operator and Syntax

|

Arguments

‘ Result or Side Effect

g mg2connected-
components

g - a main memory graph

a stream of tuples representing the
edges of the graph. The opera-
tor computes strongly connected
components and returns these in
the form of an additional attribute
CompNo appended to the tuples.

memclear()

none

Side effect: all main memory ob-
jects are deleted.

meminit(n)

n - an integer

Side effect: allow a total of n MB
for main memory objects of this
SECONDO instance

s minsert|r|

s - a stream of tuples
r - a main memory relation

Side effect: all tuples from s are
inserted into r. Stream s is re-
turned extended by a TID at-
tribute, the tuple identifier allow-
ing direct access to the tuple in the
main memory relation.

s minsertmtree|t, a]

s - a stream of tuples con-
taining a T'ID attribute

t - a main memory M-tree

a - an attribute of s

Side effect: all tuples from s are
inserted into r by attribute a, us-
ing the TID to refer to the tuple
position in the main memory rela-
tion. Stream s is returned.

s project[ay, ..., ay]

s - a stream of tuples
ai,...,a, - attributes of tu-
ples in s

a stream of tuples. Tuples from
s are projected to attributes in

A1y enny Qe

s projectextend
[al, ceey A ;g b1 : fl, ,bk :

fx]

s - a stream of tuples
ai,...,a, - attributes of tu-
ples in s

b1, ..., b - names for new at-
tributes

f1, .-, fx - functions mapping
tuples from s into values of
attribute types

a stream of tuples. Tuples ¢ from
s are projected to attributes in
ai,...,a, and extended by new
attributes bq,...,b; with values

fi(t), ..., fr(t), respectively.

s rduph|m)|

s - a stream of tuples
m - an integer (optional)

s without duplicate tuples. The
operator implements duplicate
elimination by hashing. The
optional parameter m defines
the number of buckets, default is
999997.

s remove|ay, ..., p]

s - a stream of tuples
a1, ..., 0, - attributes of tu-
ples in s

a stream of tuples. Tuples from s
are projected to all attributes ex-
cept ay, ..., Qn.

V)

rename|x]
{x} (short notation)

w

s - a stream of tuples
T - a string of letters and dig-
its starting with a letter

stream s. However, all attributes
have been renamed by appending
string x

s some(n|

s - a stream of tuples
n - an integer

a random sample from s of size n
obtained by reservoir sampling

s sortby/[ay, ..., a,]

s - a stream of tuples
ai,...,a, - attributes of tu-
ples in s.

stream s sorted lexicographically
by the specified attributes.

48

] Operator and Syntax

‘ Arguments

‘ Result or Side Effect

|

s t symmjoin|f]

s,t - two streams of tuples
f - a function with Boolean
result relating a pair of tu-
ples from s and ¢

a stream of tuples representing a
general join of s and ¢ with an ar-
bitrary condition. This is imple-
mented via a symmetric variant of
nested-loop join.

s tail[n]

s - a stream of tuples
n - an integer

a stream of tuples consisting of the
last n tuples of s

s transformstream

s - a stream of tuples with a
single attribute

a stream of the attribute values

s transformstream

s - a stream of values of some
attribute type

a stream of tuples containing the
values within an attribute Elem

s r updatedirect2
[TID; a;
en)

L€l ...

,An t

s - a stream of tuples

r - a relation

TID - an attribute in s con-
taining tuple identifiers from
r

ai,...,a, - attributes of tu-
ples in r

e1, ..., € - functions mapping
tuples from 7 into values of
attribute types

a stream of tuples from r corre-
sponding to the tuple identifiers
within s. The tuple identifier and
for each attribute, the old and
the new value is contained in the
tuple. (The output stream can
be used to further update index
structures on r.)

Side effect:
dated.

tuples in r are up-

49

[370]

[371]

[372]

[373]

[374]

[375]

[376]

[377]

[378]

[379]

[380]

Verzeichnis der zuletzt erschienenen Informatik-Berichte

Bortfeldt, A., Hahn, T., Mannel, D., Moénch, L.:
Metaheuristics for the Vehicle Routing Problem with Clustered
Backhauls and 3D Loading Constraints, 8/2014

Giting, R. H., Nidzwetzki, J. K.:
DISTRIBUTED SECONDO: An extensible highly available and scalable
database management system, 5/2016

M. Kula$
A practical view on substitutions, 7/2016

Valdés, F., Giting, R.H.:
Index-supported Pattern Matching on Tuples of Time-dependent
Values, 7/2016

Sebastian Reil, Andreas Bortfeldt, Lars Monch:
Heuristics for vehicle routing problems with backhauls, time windows,
and 3D loading constraints, 10/2016

Ralf Hartmut Giting and Thomas Behr:
Distributed Query Processing in Secondo, 12/2016

Marija Kulas:
A term matching algorithm and substitution generality, 11/2017

Jan Kristof Nidzwetzki, Ralf Hartmut Giting:
BBoxDB - A Distributed and Highly Available Key-Bounding-Box-Value
Store, 5/2018

Marija Kulas:
On separation, conservation and unification, 06/2019

Fynn Terhar, Christian Icking:
A New Model for Hard Braking Vehicles and Collision Avoiding
Trajectories, 06/2019

Fabio Valdés, Thomas Behr, Ralf Hartmut Giting:
Parallel Trajectory Management in Secondo, 01/2020

