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of both variables might not hold and propose an estimator not requiring any of these restrictions

on the interaction of monetary policy and the stock market. The proposed estimator combines

a data driven and restriction based identification approach. In particular, the estimator allows

the researcher to order and identify some shocks recursively, while other shocks can remain unre-

stricted and are identified based on independence and non-Gaussianity. We find that a positive

stock market shock contemporaneously increases the nominal interest rate, while a contractionary

monetary policy shock leads to lower stock returns on impact. Furthermore, we present evidence

that monetary policy is non-neutral with respect to long-run real stock prices.
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1 Introduction

Simultaneously identifying monetary policy and stock market shocks in a SVAR is an ongoing

challenge for econometricians. Identifying both shocks requires to impose an a priori structure.

Most of the literature covers one of two extreme cases; I) identifying all shocks based on re-

strictions concerning the short- or long-run interaction, or II) data driven approaches without

restrictions, but based on heteroskedastic or non-Gaussian shocks. We argue that neither of the

two extreme cases is suited for the application at hand. In particular, we show that commonly

used short- and long-run restrictions on the interaction of monetary policy and the stock market

are questionable. However, also purely data driven estimators do not yield conclusive insights

into the interaction of both variables, since these estimators depend on latent, volatile, or hardly

observable features which results in a poor small sample performance of the estimator.

The estimator proposed in this study combines the traditional identification approach based on

restrictions with the more recent data driven approach based on non-Gaussianity. Our estimator

allows the researcher to rely on recursiveness restrictions if possible and to be agnostic on the

interaction of the variables and rely on data driven estimates when necessary. The estimator is

applied to analyze the interaction of monetary policy and the stock market. We find evidence

against commonly used short- and long-run restrictions and demonstrate that a purely data driven

estimator leads to imprecise estimates, which barely allow any conclusions on the interaction of

monetary policy and the stock market.

In the literature, the interaction of monetary policy and the stock market has been estimated

based on short-run restrictions (see e.g. Laopodis (2013)), and based on long-run restrictions

(see Bjørnland and Leitemo (2009) or Kontonikas and Zekaite (2018)). The estimation based

on short-run restriction in Laopodis (2013) yields evidence that real stock prices are persistently

negative after a tightening of monetary policy, which is at odds with the long-run restrictions

used in Bjørnland and Leitemo (2009). However, the estimation based on long-run restrictions by

Bjørnland and Leitemo (2009) suggests that any zero restriction on the interaction of monetary

policy and the stock market is incorrect and is thus at odds with the short-run restrictions used

in Laopodis (2013). Therefore, the results from the restriction based approaches contradict each

other. We argue that neither the short- nor the long-run restrictions are plausible. In particular,
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stock market shocks can contain news about future business cycle fluctuations (see e.g. Beaudry

and Portier (2006)) and assuming that the central bank does not react simultaneously to these

shocks is debatable. Moreover, recent studies (see for instance Moran and Queralto (2018),

Bianchi et al. (2019) and Jordà et al. (2020)) find evidence against the long-run neutrality of

monetary policy, which casts doubt on long-run restrictions used to identify monetary policy

shocks.

Due to the unavailability of short- and long-run restrictions, several authors used data driven

approaches to estimate the interaction of monetary policy and the stock market (see e.g. Lanne

et al. (2017) or Lütkepohl and Netšunajev (2017)). These approaches do not require any restric-

tions on the interaction of the variables, but instead exploit a structure imposed on the statistical

properties of the shocks. Lütkepohl and Netšunajev (2017) estimate the interaction of monetary

policy and the stock market based on time-varying volatility and find a negative impact of a

tightening of monetary policy on stock prices. However, the authors are unable to clearly label

a stock market shock. Moreover, a tightening of monetary policy appears to have an unexpected

initial positive impact on output and inflation and therefore even the labeling of the monetary

policy shock is debatable. Lanne et al. (2017) estimate a SVAR based on non-Gaussianity and

find that a tightening of monetary policy has an immediate negative impact on financial condi-

tions. However, they are also unable to label any other shock and in particularly cannot label a

stock market shock.

We argue that neither the traditional restriction based approaches nor the more recent purely

data driven approaches yield conclusive insight into the interaction of monetary policy and the

stock market. The restriction based approaches fail due to the unavailability of sufficiently many

short- or long-run restrictions and the data driven approaches fail, since they impose such little

structure that finite sample estimates become highly volatile, up to the point that it becomes

difficult to even label the shocks.

The key to gain insight into the interaction of monetary policy and the stock market is a combina-

tion of the traditional restriction based and the more recent data driven approach. The estimator

proposed in this study allows to divide the variables of the SVAR into a first block of recursively

ordered variables and a second block of non-recursive variables. Only the non-recursive block

relies on data driven estimates based on non-Gaussian and independent shocks. The more recur-
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siveness restrictions the researcher applies, the less the estimator depends on moments beyond

the variance. In a Monte Carlo simulation we show how the performance of a purely data driven

estimator based on non-Gaussianity deteriorates with a decreasing sample size and an increasing

model size. However, the simulation also shows that exploiting the partly recursive order can stop

the performance decline. Therefore, the estimator proposed in this study allows the researcher

to rely on an arbitrary number of recursiveness restrictions, which reduces the dependence of the

estimator on moments beyond the variance and thereby increases the finite sample performance

of the estimator.

In our application the variables output, investment and inflation are assumed to be rigid and are

restricted such that they cannot respond to stock market and monetary policy shocks within the

same quarter. However, interest rates and stock returns remain unrestricted and can simultane-

ously respond to all shocks. We apply the proposed partly recursive estimator and find a simulta-

neous contractionary response of the Federal Funds Rate to positive stock market shocks and an

immediate negative stock return response to contractionary monetary policy shocks. Moreover,

we present evidence that monetary policy has a long-run effect on stock prices. Additionally, we

estimate an unrestricted SVAR solely based on independent and non-Gaussian shocks. Overall,

the unrestricted estimation confirms the results of our partly recursive estimation, however, the

confidence intervals are larger and it becomes increasingly difficult to explain the estimated in-

teraction of stock prices and interest rates. The application illustrates that the partly recursive,

partly non-Gaussian identification scheme introduced in the present study serves as a helpful ad-

dition to the econometrician’s tool box when faced with situations, where only a few restrictions

on the interaction of the variables are available.

The remainder of this article is structured as follows. Section 2 shows that commonly used

identification schemes in the related literature come with caveats that render them not applica-

ble to analyze the interaction of monetary policy and the stock market. Section 3 derives our

estimator for partly recursive, partly non-Gaussian SVAR models and contains a Monte-Carlo

study illustrating how exploiting the partly recursive order increases the finite sample perfor-

mance of the estimator. In Section 4 we use the proposed partly recursive, partly non-Gaussian

SVAR estimator to analyze the interaction of the stock market and monetary policy. Section 5

concludes.
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2 Monetary policy and the stock market

2.1 The unavailability of common identifying restrictions

In this section, we use a simple asset pricing model to illustrate that there is no indisputable

answer about the short- and long-run interaction of stock markets and monetary policy. We keep

the model intentionally simple to show that only a small deviation in basic assumptions can cast

common short- or long-run restrictions inappropriate.

Consider that households can save by buying firm stocks of firm i at price vi,t, yielding dividend

di,t+1 in the next period or by a non-contingent bond bft yielding a guaranteed real interest at

rate rt. The no-arbitrage condition then is

1 + rt = Et
vi,t+1 + di,t+1

vi,t
. (1)

From this, one can acquire the central asset pricing equation of the form

vi,t = Et

∞∑
s=1

di,t+s∏s
j=1(1 + rt+j−1)

, (2)

so the current stock price is the expected discounted sum of future dividends. On the firm side

assume a continuum of infinitely small firms with mass 1 and dividends of firm i are given by

di,t+s = yi,t+s − ji,t+s + bfi,t+1+s − (1 + rt+s−1)bfi,t+s − w̄n̄, (3)

where yi,t is output, ji,t investment in the physical capital stock, bfi,t are debt sales (where∫ 1

0
bfi,tdi = bft ), w̄ the constant real wage and n̄ labor input, also assumed constant for simplicity.

We assume further an accumulation of physical capital ki,t of the form

ki,t+1 = (1− δ)ki,t + ji,t, δ ∈ (0, 1). (4)

The production function reads

yi,t = Akαi,t(Ztn̄)1−α, α ∈ (0, 1), (5)
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with A an exogenous scaling factor and Zt an aggregate productivity factor exogenous to the

individual firm. Consequently, the firm maximization problem reads

max
{ki,t+1+s,b

f
i,t+s}

∞∑
s=0

EtΛt+sdi,t+s, (6)

with Λt the firm’s discount factor and subject to (4)-(5). The optimality conditions yield the

common interest rate parity condition of the form

EtAαk
α−1
i,t+1(Zt+1n̄)1−α + (1− δ) = 1 + rt, (7)

which says that in equilibrium the interest rate on foreign capital and the return on capital

investment will coincide. Now inserting (3)-(5) into (2) yields

vi,t = Et

∞∑
s=1

Akαi,t+s(Zt+sn̄)1−α − ki,t+s+1 + (1− δ)ki,t+s + bfi,t+1+s − (1 + rt+s−1)bfi,t+s − w̄n̄∏s
j=1(1 + rt+j−1)

.

(8)

Imposing the limiting condition limT→∞ bT = 0 then leads to future debt sales dropping out

from the asset pricing equation, as dividends cannot be debt-financed indefinitely. As becomes

evident, the dynamics of the numerator are then entirely driven by the evolution of capital. Using

equation (7) then allows to find the evolution of capital as

ki,t+1 = Et

[(
αA

rt + δ

) 1
1−α

n̄Zt+1

]
. (9)

Now consider that the real interest rate increases once such that r′t > r∗t and for the rest of the

time r′t+s = r∗t+s,∀s > 0 (primes denote variables after the shock, asterisks variables without the

shock). The resulting response of dividends and stock prices now crucially depends on what we

assume about the productivity factor Zt:

1.) Exogenous growth: Assume a neoclassical growth model with decreasing marginal returns to

capital, so Zt is some exogenously growing variable.

2.) Endogenous growth: Assume an endogenous growth model, for instance a standard learning-

by-doing technology with Zt =
∫ 1

0
ki,t−1di = Kt−1.

5



Figure 1 shows the effect of an interest rate shock on stock prices for an exogenous and endogenous

growth model1. Assuming sticky prices, thus nominal and real variables move in the same

Figure 1: Simulated response of real stock prices to a one-time exogenous interest rate increase
of about one percentage point as implied by the exogenous and endogenous growth model.
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direction in the short-run, we can interpret the exogenous real interest rate increase as equivalent

to a monetary policy shock. Both models imply an immediate reaction of stock prices to the

monetary policy shock. However, in the exogenous growth model with decreasing returns to

capital, stock prices revert back to their long-run level, while under endogenous growth with the

learning-by-doing technology, the decrease in stock prices is permanent. This is because in the

first case the lower capital stock implies a higher marginal return of capital in the future, which

drives back capital to its old steady state, while in the second case it does not, because the lower

aggregate capital stock implies lower capital investment return for the individual firm.

Furthermore, interpret a stock price shock as news about higher future productivity that is not

realized today like in Beaudry and Portier (2006). For instance assume A is no longer a constant,

1For simplicity we assume n̄ = 1, the initial debt bft = 0, w̄ = 0 and use a standard calibration of α = 1
3

,
δ = 0.1 and setting A = 0.46 to ensure a long-run output growth rate of about 3%.

6



but time dependent. Assume now that in the next period A′t+1 > A∗t+1. From equation (8) it

becomes evident that an increase in future dividends leads to an increase in stock prices now.

Because of A′t+1 > A∗t+1, we also know that y′t+1 > y∗t+1. A central bank aiming at flattening

business cycle fluctuations would immediately adjust its policy rate. Consequently, stock prices

will contemporaneously react to monetary policy shocks, as will monetary policy to stock market

shocks.

Now the econometrician’s task would be to let the data decide which of the two theoretical

approaches is correct. Of course, we need to make some assumptions to identify the structural

shocks. However, we know that a monetary policy shock will immediately influence stock prices

and vice versa, so we cannot impose a short-run restriction. Imposing a long-run restriction

means to ex ante decide that the model with decreasing returns is the right one and not the

endogenous growth model and strips us of the ability to let the data decide. Thus we are in need

of a data driven identification approach, which is the objective of the present paper.

2.2 Monetary policy and the stock market SVAR models

As a second step we review the approaches of the related literature to estimate the interaction of

monetary policy and the stock market in a SVAR. We show that there is a lack of a compelling

estimation approach that is both feasible, but not too restrictive for the problem at hand.

In a SVAR a vector of time series is explained by its past values and a linear combination of

structural shocks

yt = A1yt−1 + ...+Apyt−p + ut, (10)

ut = Bεt, (11)

with an n-dimensional vector of macroeconomic variables yt, parameter matrices A1, ..., Ap, a

non-singular matrix B, the n-dimensional vector of structural shocks εt and the n-dimensional

vector of reduced form shocks ut. Here, the vector of structural shocks will contain a monetary

policy and a stock market shock. The goal is to identify both shocks and estimate their impact on

the macroeconomic variables. The VAR imposes only little a priori structure, however, without
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further assumptions the structural shocks are not identified.

In general, the probably most frequently used identifying assumption for a SVAR is a recursive

ordering, meaning zero restrictions on the impact of some shocks, such that each variable is

simultaneously only influenced by shocks ordered in rows below the variable. However, in the

case of monetary policy and the stock market zero restrictions on the interaction of both variables

are hardly credible. In particular, stock prices can contain news about future productivity, see

Beaudry and Portier (2006). Therefore, a positive stock price shock might indicate a future boom

accompanied by inflationary pressure and a stabilizing central bank would respond immediately.

Consequently, a zero restriction on the response of monetary policy to stock market shocks is

difficult to defend. Nevertheless, zero restrictions on the interaction of monetary policy and the

stock market have been used to estimate the interaction of both variables, see e.g. Laopodis

(2013). However, these estimates only reflect the interaction of monetary policy and the stock

market if the identifying assumption is correct, which is at best questionable.

Due to the unavailability of credible short-run restrictions on the interaction of monetary policy

and the stock market, several authors identify the shocks based on restrictions of the long-run

interaction of both variables (see e.g. Bjørnland and Leitemo (2009) or Kontonikas and Zekaite

(2018)). In particular, the authors assume long-run neutrality of monetary policy, meaning the

monetary policy shock by construction has no long-run impact on real stock prices. Bjørnland

and Leitemo (2009) find that monetary policy and the stock market interact simultaneously. In

particular, a tightening of monetary policy leads to an immediate decrease of stock prices and a

positive stock market shock leads to an immediate tightening of monetary policy. Again, these

results only reflect the true interaction of both variables if the identifying long-run restriction is

correct. In contrast to the short-run restriction used in Laopodis (2013), the long-run restriction

used in Bjørnland and Leitemo (2009) is at least based on an underlying theory yielding long-run

neutrality of monetary policy. However, as shown in Section 2.1, a slight modification of the

theory from exogenous to endogenous growth already breaks the long-run neutrality result. In

fact, recent studies (see e.g. Moran and Queralto (2018), Bianchi et al. (2019) and Jordà et al.

(2020)) consistently find that monetary policy affects real variables much longer than usually
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assumed2. These results cast doubt on the long-run restriction and the corresponding estimated

interaction of monetary policy and the stock market.

Rigobon and Sack (2004) propose an estimator which does not require any restrictions on the

short- or long-run interaction of the stock market and monetary policy. Instead, it is based

on heteroskedastic shocks and requires to a priori specify periods of different variances of the

monetary policy shocks. The identification is thus based on a stochastic property of the structural

shocks and not on a restriction on the impact of the shocks. Specifying volatility regimes of

monetary policy may be straight-forward on a daily basis (by choosing all days with FOMC

announcements), however, with lower frequency data it becomes increasingly difficult. Therefore,

the estimator becomes infeasible in a typical macroeconomic application with monthly, quarterly

or even lower frequency data.

In general, identification based on time-varying volatility does not require to a priori spec-

ify volatility periods (see e.g. Rigobon and Sack (2003), Lanne et al. (2010), Lütkepohl and

Netšunajev (2017) or Lewis (2019)). In fact, a latent volatility process can be used for identifica-

tion without imposing much structure on the latent process. However, Lütkepohl and Netšunajev

(2017) argue that reliable estimators based on GARCH or Markov switching processes are only

available in small models and few volatility states. The intuition is simple: The more (cor-

rect) structure we impose on the latent process, the more precise the corresponding estimate.

Therefore, Lütkepohl and Netšunajev (2017) propose an estimator which imposes a parametric

smooth transition function between two states of the variance-covariance matrix of the reduced

form shocks. The estimator is applied to analyze the interaction of monetary policy and the

stock market. The authors find a small simultaneous negative response of the stock market to

a tightening of monetary policy. However, a tightening of monetary policy is also found to lead

to an initial increase of inflation and output. Due to the counterintuitive response of output and

inflation to the shock, the authors admit that labeling the shock as a monetary policy shock in a

”conventional” sense may be misleading. Additionally, the authors cannot label a stock market

shock and hence it remains unclear how monetary policy reacts to a stock market shock.

2For instance, Moran and Queralto (2018) and Bianchi et al. (2019) find that the impulse response of TFP is
significantly positive even 15 years after a negative monetary policy shock has hit the economy. Again as in the
previous section, higher productivity goes hand in hand with higher expected dividends. Therefore, stock prices
should not only decrease immediately, but permanently in response to an unexpected tightening of monetary
policy.
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Another branch of the SVAR literature uses non-Gaussian and independent shocks for identifica-

tion (see e.g. Lanne et al. (2017), Gouriéroux et al. (2017), Lanne and Luoto (2019) and Keweloh

(2020)). Theses approaches are also data driven and do not require to impose any short- or

long-run restrictions. Instead, these approaches require that the structural shocks are mutually

independent and at most one shock is allowed to be Gaussian. Intuitively, non-Gaussian shocks

do contain information in moments beyond the variance which allows to identify the simultaneous

interaction. In a short application Lanne et al. (2017) use a data driven identification approach

imposing non-Gaussian and independent shocks to estimate the interdependence of monetary

policy and the stock market. The authors find that an unexpected tightening of monetary policy

has an immediate negative impact on financial conditions. However, they are unable to label

a stock market shock. Therefore, it again remains unclear how stock market shocks influence

monetary policy.

To sum up, the commonly used short- and long-run restriction regarding the interaction of mon-

etary policy and the stock market have implications on the underlying data generating process.

Until now there is no consensus on which theoretical model is correct and the estimation should

not depend on an a priori restriction to one or another model, but rather be able to decide which

fits the data best. On the other side, there are identification approaches that do not rely on short-

or long-run restrictions, but they are either not able to be generalized to a broader macroeco-

nomic setup or become less feasible the more variables are included into the VAR. Ideally, the

SVAR estimator should allow to factor in a priori restrictions that we are certain about, but also

allow a data driven identification, when we are not certain about the underlying theory. In the

following section we propose an estimator that fulfills these criteria.

3 A partly recursive, partly non-Gaussian SVAR estimator

A non-Gaussian SVAR with independent shocks can be estimated based on restrictions governing

the interaction of the variables or based on information contained in moments beyond the variance

and without any assumptions on the interaction of the variables. At first glance, in a non-Gaussian

SVAR and from an asymptotic point of view, the traditional identification approach based on

restrictions appears to be unnecessarily restrictive. However, we show that in a small sample the
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performance of a data driven estimator based on non-Gaussianity quickly deteriorates with an

increasing model size, while the performance of a restriction based estimator is less affected by the

model and sample size. In macroeconomic applications, we can oftentimes derive some credible

restrictions based on economic theory. However, in many cases we cannot derive sufficiently many

restrictions to identify the SVAR based on second moments and the researcher is forced to rely

on additional less credible restrictions or to use an unreliable data driven estimator.

The estimator proposed in this section combines the traditional restriction based approach with

the more recent data driven approach based on non-Gaussianity. Our estimator allows the re-

searcher to rely on recursiveness restrictions if possible and to be agnostic on the interaction of

the variables and relying on data driven estimates when necessary. In particular, the proposed

estimator allows to order some, but not all, shocks recursively. While the impact of the recursive

shocks is estimated based on second moments, the impact of the non-recursive shocks is estimated

based on non-Gaussianity. We show that in comparison to an unrestricted estimator solely based

on non-Gaussian and independent shocks, exploiting the partly recursive structure i) improves

the finite sample performance of the estimator, ii) reduces the burden of labeling the shocks, and

iii) relaxes the non-Gaussianity and independence assumptions.

3.1 Derivation of the estimator

Consider a partly recursive SVAR, meaning there exists m ∈ N with 0 ≤ m ≤ n and

B =



b11 0 . . . 0
...

. . .
. . .

...

bm1 . . . bmm 0 . . . 0

bm+1,1
. . . bm+1,m bm+1,m+1 bm+1,n

...
...

...

bn1 . . . bnm bn,m+1 bnn


. (12)

Therefore, the first m variables are ordered recursively, meaning they cannot contemporaneously

be influenced by structural shocks in rows ordered below. However, the last n − m variables

are not ordered recursively and can contemporaneously be influenced by all structural shocks.
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Since the matrix B is only partly recursive, it cannot be identified solely by second moments.

However, the partly recursive structure can be combined with estimators based on independent

and non-Gaussian shocks.

The partly recursive SVAR can be estimated in three steps. For simplicity, consider a SVAR with

four variables and the following partly recursive structure
u1

u2

u3

u4

 =


b11 0 0 0

b21 b22 0 0

b31 b32 b33 b34

b41 b42 b43 b44




ε1

ε2

ε3

ε4

 . (13)

The recursive part can be written asu1
u2

 =

b11 0

b21 b22

ε1
ε2

 , (14)

which is a simple recursive SVAR and can be identified and estimated based on second moments

(e.g. by applying the Cholesky decomposition to the variance-covariance matrix of the reduced

form shocks, see Kilian and Lütkepohl (2017)). The non-recursive part can be written as

u3
u4

 =

b31 b32

b41 b42

ε1
ε2

+

ν3
ν4

 , (15)

with ν3
ν4

 =

b33 b34

b43 b44

ε3
ε4

 . (16)

Using the estimated structural shocks ε̂1 and ε̂2 from the first step allows to estimate the lower-

left block of B in equation (15) by OLS. The residuals ν in equation (15) represent the variation

in u3 and u4 which is unexplained by the structural shocks in the recursive block and can be

explained by the shocks in the non-recursive block with equation (16) which yields a non-recursive

SVAR. The structural shocks of the non-recursive block are globally identified up to labeling if
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the shocks of the block are mutually independent and at most one shock is Gaussian. The non-

recursive lower-right block of B can then be estimated by an estimator based on non-Gaussian

and independent shocks, see e.g. Lanne et al. (2017), Gouriéroux et al. (2017), Lanne and Luoto

(2019) or Keweloh (2020).

If the SVAR is only block recursive, such that there exists m ∈ N with 0 ≤ m ≤ n and

B =



b11 ... bm1 0 . . . 0
...

. . .
. . .

...
...

bm1 . . . bmm 0 . . . 0

bm+1,1
. . . bm+1,m bm+1,m+1 bm+1,n

...
...

...

bn1 . . . bnm bn,m+1 bnn


, (17)

the approach proposed above yields inconsistent estimates for the upper-left and lower-left block

of B, but remains consistent for the lower-right block3.

The partly recursive, partly non-Gaussian estimator can also be calculated in a single step. For

example, a partly recursive version of the GMM estimator proposed in Keweloh (2020) can be

obtained by including the second-order moment conditions of all shocks and the higher-order

moment conditions associated with the shocks in the non-recursive block. Some estimators based

on non-Gaussianity rely on an initial whitening step, see e.g. the PML estimator proposed

in Gouriéroux et al. (2017) or the whitened GMM estimators proposed in Keweloh (2020). In

the preliminary whitening step the reduced form shocks are transformed into uncorrelated shocks

with unit variance and in the second step the optimization is performed over orthogonal matrices,

3Falsely imposing a recursive order in equation (14) yields inconsistent estimates of the upper-left block of B.
Additionally, using the shocks of the first step, here ε̂1 and ε̂2, to estimate equation (15) will also yield inconsistent
estimates of the lower-left block of B. However, if the shocks in the non-recursive block, here ε3 and ε4, have
no simultaneous impact on the variables in the first block, the shocks ε̂1 and ε̂2 obtained from the first step
are equal to a linear combination of the true shocks ε1 and ε2. Therefore, the residuals ν in equation (15) still
represent the variation in u3 and u4 which is unexplained by the structural shocks in the recursive block and
hence, the non-recursive SVAR in equation (16) remains valid. The proposed estimator thus allows to identify
and consistently estimate the impact of a non-recursive block of variables, as long as equation (17) holds, meaning
that all the shocks in the second and non-recursive block have no simultaneous impact on the variables in the first
block of variables.
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which correspond to rotations of the transformed reduced form shocks4. Whitening is equivalent

to an optimization subject to the constraint that the estimated structural shocks are uncorrelated

with unit variance in the given sample, compare Keweloh (2020). However, in the partly recursive

SVAR defined in equation (12), the firstm columns of B are uniquely determined by the whitening

constraint, imposing that the estimated structural shocks have to be uncorrelated with unit

variance. Therefore, a whitened estimator with partly recursive constraints by definition only

relies on second moments to identify and estimate the impact of the shocks in the recursive block,

see Appendix A.1 for more details.

Exploiting the partly recursive structure yields several advantages compared to an unrestricted

estimator solely identified by independence and non-Gaussianity. First, the Monte Carlo study in

Section 3.2 shows that exploiting the partly recursive order and thus decreasing the dependence

of the estimator on higher moments leads to an increase of the small sample performance of the

estimator. Second, every identification approach requires to impose an a priori structure. In

particular, if no restrictions on the interaction of the variables are imposed, the researcher has

to impose that all shocks are independent and at most one shock is allowed to be Gaussian.

Sometimes there is clear evidence in favor of non-Gaussianity, as for instance in the case of

financial shocks, but sometimes there is not. For instance it is unclear if inflation shocks are

Gaussian or not. By moving the inflation shock into the recursive block, we do not need to impose

any non-Gaussianity assumptions on the inflation shock and instead can rely on the standard

argument of rigid prices. Third, a data driven identification scheme based only on non-Gaussian

and independent shocks only identifies the shocks up to labeling. Therefore, the researcher has to

decide which impulse response belongs to which shock. The task of labeling the shocks becomes

increasingly difficult the more shocks are identified by this procedure, especially if the impulse

responses of the variables are quite similar with respect to two or more shocks. Imposing a partly

recursive structure alleviates this burden on the econometrician, since the shocks in the recursive

block are already labeled by the identifying assumptions of the partly recursive order.

In summary, we propose an estimator for partly recursive, partly non-Gaussian SVAR models.

Exploiting the partly recursive structure allows to relax the independence and non-Gaussianity

4Optimizing over orthogonal matrices is computationally simple, since it can be pulled back to an optimization
problem over the euclidean space, see Lezcano-Casado and Mart́ınez-Rubio (2019). In Appendix A.1 we propose
a similar transformation for the optimization problem over orthogonal matrices with partly recursive constraints.
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assumptions, it decreases the dependence on higher moments and it simplifies the task of labeling

the estimated shocks.

3.2 Finite sample performance

In the following Monte Carlo study, we show that data driven estimators based on non-Gaussianity

suffer from a curse of dimensionality, i.e. the bias and variance increases quickly with an increasing

model size and a decreasing sample size. However, we show that exploiting the partly recursive

structure can stop the curse of dimensionality.

We simulate a partly recursive SVAR with n = 4 and n = 2 variables. The structural shocks are

drawn from a t-distribution with seven degrees of freedom5 and the mixing matrices B are given

by

B =

 1 0

0.5 1

 and B =


1 0 0 0

0.5 1 0 0

0.5 0.5 1 0

0.5 0.5 0.5 1

 . (18)

The Monte Carlo study analyzes the impact of imposing a partly recursive order on the PML

estimator proposed by Gouriéroux et al. (2017), where the shocks have been correctly specified

as t-distributed shocks with seven degrees of freedom. In the small SVAR with n = 2 we impose

no recursive order. In the large SVAR with n = 4 one estimator is calculated without imposing a

recursive order and a second estimator is estimated which uses the restriction that the first two

shocks are ordered recursively. In an online Appendix we provide additional simulations with

the GMM estimators proposed in Keweloh (2020), different shock distributions, different mixing

matrices B (in particular a block-recursive mixing similar to equation (17)), different restrictions,

and larger models. However, none of the conclusions drawn in this section is sensitive to the

alternative simulations.

Table 1 shows the mean and standard deviation of each estimated element of B. The simulation

shows how the performance of estimates based entirely on non-Gaussianity decreases with an

5The shocks have been normalized to unit variance by multiplying each shock with 1/
√

(v/(v − 2)) and v = 7.
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Table 1: Finite sample performance

n = 2 n = 4 n = 4
PML PML partly recursive PML

T = 150

0.97
(1.37)

0.0
(6.7)

0.48
(7.26)

0.97
(3.0)




0.92
(2.08)

0.01
(6.81)

0.01
(6.79)

−0.0
(7.29)

0.46
(7.55)

0.92
(3.76)

0.01
(8.09)

−0.0
(8.95)

0.46
(9.12)

0.47
(9.66)

0.92
(5.48)

−0.0
(10.1)

0.46
(11.17)

0.47
(12.02)

0.46
(12.1)

0.9
(8.57)




1.0

(0.94)
0.0
(0.0)

0.0
(0.0)

0.0
(0.0)

0.5
(1.28)

0.99
(0.95)

0.0
(0.0)

0.0
(0.0)

0.5
(1.56)

0.5
(1.23)

0.96
(1.35)

−0.01
(6.96)

0.5
(1.78)

0.5
(1.48)

0.49
(7.36)

0.96
(3.15)



T = 500

0.99
(1.1)

0.0
(5.87)

0.5
(6.22)

0.99
(2.46)




0.98
(1.47)

0.0
(6.32)

−0.0
(6.4)

0.0
(6.32)

0.49
(6.65)

0.98
(3.12)

−0.0
(7.83)

0.0
(8.01)

0.49
(8.32)

0.49
(8.12)

0.98
(4.56)

−0.0
(8.91)

0.49
(9.58)

0.49
(10.16)

0.49
(9.43)

0.98
(6.21)




1.0

(0.97)
0.0
(0.0)

0.0
(0.0)

0.0
(0.0)

0.5
(1.23)

1.0
(1.01)

0.0
(0.0)

0.0
(0.0)

0.5
(1.46)

0.5
(1.27)

0.99
(1.12)

−0.0
(5.68)

0.5
(1.72)

0.5
(1.47)

0.5
(5.93)

0.99
(2.61)



T = 5000

 1.0
(1.0)

0.0
(4.57)

0.5
(4.8)

1.0
(2.17)




1.0
(0.98)

0.0
(4.68)

0.0
(4.55)

0.0
(4.41)

0.5
(4.98)

1.0
(2.18)

0.0
(5.67)

0.0
(5.65)

0.5
(5.88)

0.5
(5.95)

1.0
(3.34)

0.0
(6.79)

0.5
(6.89)

0.5
(6.9)

0.5
(6.95)

1.0
(4.53)




1.0

(0.96)
0.0
(0.0)

0.0
(0.0)

0.0
(0.0)

0.5
(1.24)

1.0
(0.98)

0.0
(0.0)

0.0
(0.0)

0.5
(1.49)

0.5
(1.21)

1.0
(1.01)

0.0
(4.47)

0.5
(1.68)

0.5
(1.5)

0.5
(4.66)

1.0
(2.17)


Monte Carlo simulation with sample sizes 150, 500, and 5000 each with 5000 iterations. The simulated SVAR
has n = 2 or n = 4 variables and the diagonal of the mixing matrix B is equal to 1, the lower-left triangular
of B is equal to 0.5 and the upper-right triangular of B is equal to 0. The structural shocks are drawn from a
t-distribution with v = 7 degrees of freedom and have been normalized to unit variance shocks by multiplying
each shock with 1/

√
(v/(v − 2)). The SVAR is estimated by the PML estimator proposed by Gouriéroux et al.

(2017), where the shocks have been correctly specified as t-distributed shocks with seven degrees of freedom. The
last column shows the PML estimator with the restriction that the first two shocks are ordered recursively. The
table shows the mean of b̂ij and in parentheses the standard deviation of

√
T (b̂ij − bij) of all estimated elements

b̂ij .

increasing model size. Moreover, we find that this curse of dimensionality is more pronounced in

smaller samples. Note that we do not find such a performance decrease due to additional shocks in

a recursive SVAR, see the online Appendix. Therefore, the simulation illustrates how in a typical

macroeconomic application, which rarely contains more than a few hundred observations, data

driven estimates based on non-Gaussianity become less reliable the more variables and shocks

the SVAR contains.

However, the simulation also shows that exploiting the partly recursive structure stops the de-

terioration of the performance induced by a larger model. In the large SVAR with n = 4 the
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first two columns of the partly recursive PML estimator are fixed by the whitening step and are

thus entirely determined by second moments6 and only the unrestricted elements of the last two

columns depend on higher moments. However, these unrestricted elements perform very similar

to the estimates of the small model with n = 2. Therefore, the simulation shows that including a

priori information on the recursive order can break the curse of dimensionality of the data driven

estimator based on non-Gaussianity.

In macroeconomic applications, we oftentimes face relatively large models but only small samples

with at best a few hundred observations. In this case, purely data driven estimates based on

non-Gaussianity become volatile and in a given application it can become difficult to draw any

conclusions on the interaction of the variables or even label the shocks. However, econometricians

have put much work into deriving and defending restrictions on the interaction of macroeconomic

variables and the simulation shows, how including traditional zero restrictions increases the finite

sample performance of a data driven estimator based on non-Gaussianity. Therefore, we argue

that in a given application, the researcher should include restrictions when possible and rely on

a data driven estimation when necessary.

4 The interdependence of monetary policy and stock mar-

ket in U.S. data

In this section, we apply the proposed estimator to analyze the interaction of monetary policy and

the stock market. Our SVAR contains a first block of macroeconomic variables and a second block

of financial variables. We first apply our partly recursive SVAR estimator and impose that the

first block is ordered recursively, however, the second block containing the monetary policy and

stock market shock remains unrestricted. Afterwards, we apply an unrestricted purely data driven

estimator, to check on the validity of our recursive ordering for the first block of variables. Both

estimators indicate that a tightening of monetary policy leads to an immediate and permanent

decrease in stock prices, while a positive stock market shock leads to an immediate increase

6The first two columns of the unrestricted PML estimator depend on higher moments. Comparing the first
two columns of the unrestricted and partly recursive estimator shows the possible performance gains of decreasing
the dependence of the estimator on higher moments. However, note that this difference is driven by the degree of
non-Gaussianity of the shocks and more or less Gaussian shocks would result in a smaller or larger difference.
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in interest rates. Additionally, the unrestricted estimation indicates that the macroeconomic

variables do not simultaneously respond to stock market and monetary policy shocks and hence it

supports the partly recursive order. However, the unrestricted and purely data driven estimation

leads to large confidence intervals and the dynamics which potentially explain the interaction of

monetary policy and the stock market remain hidden. In contrast to that, the partly recursive

estimator yields smaller confidence bands and we find that a tightening of monetary policy is

followed by a recession which explains the decrease in stock returns, while a stock market shock

behaves equivalent to a news shock and indicates a future business cycle expansion with an

increase in output and inflation, which explains the response of monetary policy.

We consider a SVAR in five variables and quarterly U.S. data from 1983Q1 to 2019Q1 of the

form 

yt

It

πt

it

st


= α+ γt+

p∑
i=1

Ai



yt−1

It−1

πt−1

it−1

st−1


+



uyt

uIt

uπt

uit

ust


, (19)

where y denotes output growth, I investment growth, π the inflation rate, i the federal funds

rate and s real stock returns7. Moreover, we set p = 2 as suggested by the Akaike and Schwarz-

Bayesian information criterion. The linear time trend t is added to catch an eventual long-term

decline in the interest rate as discussed by for instance Carvalho et al. (2016).

Appendix A.2 contains multiple robustness checks covering the exclusion of the time trend, inclu-

sion of further variables, exclusion of the financial crises starting in 2008, different lag structures,

estimating a specification with all variables in levels rather than growth rates or using different

non-Gaussian estimators. Our main results remain unchanged: Stock prices and the nominal

7The inflation rate is defined as the quarter to quarter growth rate in the quarterly chain-type GDP price index
retrieved from the FRED. The GDP growth rate is given by the quarterly log-difference of real GDP retrieved from
the FRED. Real investment growth is given by the quarterly growth rate of real gross private domestic investment
obtained from the FRED. The nominal interest rate is defined as the Federal Funds Rate (FFR), where the effective
FFR (retrieved from FRED) is replaced by the shadow FFR provided by Wu and Xia (2016) for the Zero Lower
Bound observations during the Great Recession. Stock returns are defined as the quarterly log-difference in real
stock prices, where real stock prices are given by the S&P 500 index (retrieved from macrotrends.net) divided by
the chain-type GDP price index.
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interest rate both react immediately to monetary policy and stock market shocks, indicating

that these variables cannot be ordered recursively. However, across specifications we cannot fully

reject the long-run neutrality assumption, but also do not find much evidence for its validity.

4.1 Partly recursive estimation

We first assume that real investment growth, real output growth and inflation are ordered re-

cursively and behave sluggishly, meaning they cannot react to monetary policy or stock market

shocks within the same quarter. However, interest rates and stock returns are unrestricted and

can contemporaneously respond to all shocks. Therefore, the simultaneous relationship is given

by 

uyt

uIt

uπt

uit

ust


=



b11 b12 b13 0 0

b21 b22 b23 0 0

b31 b32 b33 0 0

b41 b42 b43 b44 b45

b51 b52 b53 b54 b55





εyt

εIt

επt

εst

εit


, (20)

The estimator proposed in Section 3 allows to identify the impact of the monetary policy shock

εit and the stock market shock εst without committing to any further restrictions if the monetary

policy and stock market shocks are independent and at least one of the two shocks is non-

Gaussian. Non-Gaussianity is a commonly found feature of financial variables, see e.g. Mittnik

et al. (2000) or Kim and White (2004). Table 2 shows the skewness, kurtosis and the Jarque-Bera

test for normality of the reduced form shocks. We find strong evidence that the reduced form

Table 2: Non-Gaussianity reduced form

uy uI uπ ui us

Skewness −0.73 0.10 −0.03 −0.58 −1.13
Kurtosis 5.13 3.75 2.84 4.33 14.09
JB-Test 0.00 0.11 0.50 0.00 0.00

Skewness, kurtosis and the p-value of the Jarque-Bera test for normality of the reduced form shocks.

shocks in the second block are non-Gaussian, while the result for the first block is mixed, since

for only one of three shocks the Gaussianity hypothesis can be rejected at the 10% level. This
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finding is consistent with our assumed partly recursive structure. If the structural monetary

policy and/or stock market shock are non-Gaussian, we would expect to find non-Gaussianity in

the second block containing the reduced form interest rate and stock return shocks. Furthermore,

if the assumption of a partly recursive order in equation (20) is correct, the non-Gaussianity of

the structural monetary policy and stock market shock does not affect the reduced form shocks

in the first block, which is consistent with the result reported in Table 2.

The simultaneous interaction of the non-recursive block containing the monetary policy and stock

market shock is then estimated by the fast SVAR-GMM estimator proposed in Keweloh (2020).

Figure 2 shows the corresponding impulse response functions (IRF) where the stock market shock

has been normalized to a one percent increase of the stock price and the monetary policy shock

has been normalized corresponding to a one percentage point increase of the interest rate. The

responses of stock returns and real GDP growth are integrated to show the associated level effects.

Exploiting the partly recursive order makes labeling trivial. There is only one shock which leads

Figure 2: Impulse Responses to normalized shocks in stock returns (s) and monetary policy (i). I
denotes investment growth, y output growth and π the inflation rate. Confidence bands are 68%
and 80% bootstrap bands. 5000 replications are used in the bootstrap algorithm. The columns
y, I and s show the cumulative responses.

to an increase of the interest rate together with a decrease of output and a medium-run decrease

of inflation, which is what we would expect from a monetary policy shock. The remaining shock
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is then labeled as the stock market shock.

We find a simultaneous interaction between the stock market and monetary policy. In particular,

a stock market shock increasing stock prices by 1% leads to an interest rate increase of about

nearly 0.03 percentage points within the first five quarters and a monetary policy shock increasing

interest rates by 1 percentage point leads to an immediate decrease of stock prices by over 5%

on impact. The estimated simultaneous interaction is qualitatively comparable to the results

in Bjørnland and Leitemo (2009), although our impulse responses show weaker shock responses

compared to them.

Consistent with the news literature around Beaudry and Portier (2006) we find that a positive

stock market shock is followed by a future business cycle expansion with an increase in the real

output growth rate and a positive inflation rate. Therefore, even if the central bank is not

interested in stock prices in the first place, a stock market shock can indicate a future business

cycle expansion with inflationary pressure, which explains the estimated positive response of the

interest rate to the stock market shock. Additionally, we find that a contractionary monetary

policy shock induces a recession with a decrease in output and and prices. The future recession

and an efficient stock market, which immediately incorporates all available information, then

explains the initial negative response of stock prices to the monetary policy shock.

Unlike Bjørnland and Leitemo (2009) we do not impose long-run neutrality of monetary policy

w.r.t. stock prices. Based on the IRF we even reject the null hypothesis that monetary policy is

neutral w.r.t stock prices in the long-run. Instead, we find that a contractionary monetary policy

shock leads to a permanently lower output, investment and stock prices level. Thus, remembering

our simple model from section 2, our data driven approach would actually favor the endogenous

growth and not the neoclassical model.

4.2 Unrestricted estimation

We now check the recursiveness assumption of the variables in the first block. Therefore, we use

no restrictions on the simultaneous interaction and allow all variables to interact simultaneously.

The estimation of the simultaneous interaction is purely data driven and based on the fast SVAR-

GMM estimator proposed in Keweloh (2020).
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We focus on the interaction of monetary policy and the stock market and therefore only label a

monetary policy and a stock market shock. The shocks have been labeled such that the monetary

policy shock εi is the shock with the highest correlation with the reduced form shock ui, and the

stock market shock εs is the shock with the highest correlation with the reduced form shock us
8.

Figure 3 shows the normalized IRF. The unrestricted estimation confirms our finding on the

Figure 3: Impulse Responses to normalized shocks in stock returns and monetary policy. Con-
fidence bands are 68% and 80% bootstrap bands. 5000 replications are used in the bootstrap
algorithm. The columns I, y and s show the cumulative responses.

interaction of monetary policy and the stock market; I) a tightening of monetary policy induces

a recession with a decrease in output, investment, inflation, and stock prices, and II) a positive

stock market shock is accompanied by an immediate increase in interest rates. Turning to the

validity of the recursivness assumptions used in the partly recursive estimation, we find that

investment, GDP and inflation do not significantly respond simultaneously to monetary policy

and stock market shock (only the response of investments to stock market shocks is significant,

but close to insignificant, at the 20% level).

Consistent with the finding in the Monte Carlo simulation in Section 3.2, we find that the confi-

8The IRF of all variables and shocks can be found in the Appendix. The IRF shows that the shock labeled
as the monetary policy shock is the only shock which leads to an increase in the interest rate accompanied by a
decrease in GDP, investment and a long-run decrease in inflation, which reinforces our labeling.
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dence intervals are larger compared to the partly recursive estimation in Section 4.1. In particular,

a stock market shock appears to have almost no significant impact on investment, GDP or in-

flation, thus making it difficult to explain the response of the interest rate. The application

illustrates how a data driven approach can be combined with traditional zero restrictions to im-

pose more structure on the SVAR and thereby decrease the variance of the estimator and gain

deeper insights into the transmission of stock market and monetary policy shocks.

5 Conclusion

The present paper proposes a partly recursive, partly non-Gaussian SVAR estimator, which gen-

eralizes between the traditional restriction based and the more recent data driven identification

approach based on non-Gaussianity. We show that purely data driven estimators based on non-

Gaussianity suffer from a curse of dimensionality in small samples and large models. Exploiting

the partly recursive order can break the curse of dimensionality and increase the finite sample

performance. The estimator is applied to analyze the interaction of monetary policy and stock

markets. We find that contractionary monetary policy shocks have a contemporaneous negative

impact on stock prices, while stock market shocks have an on impact positive effect on the nom-

inal interest rate. Additionally, we provide evidence that cast doubt on the long-run neutrality

of monetary policy w.r.t stock prices used for identification by the literature in the past. In

this setup where both short- and long-run restrictions are questionable, the proposed estimator

allows to estimate the interaction of the stock market and monetary policy without imposing any

restrictions on the interaction of both variables.
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A Appendix

A.1 Appendix - White SVAR estimators with partly recursive con-

straints

Let Q(B, u) be the objective function of a non-Gaussian SVAR estimator. Moreover, de-

fine the unmixed innovation e(B) = B−1u. A whitened SVAR estimator then requires that
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1
T

∑T
t=1 et(B)e′t(B) = I, such that in a given sample the unmixed innovations are mutually

uncorrelated with unit variance.

Estimating a n dimensional SVAR with m partly recursive constraints and T observations yields

the following optimization problem

B̂ := arg min
B∈Rn×n

Q(B, u) (21)

s.t. bi,j = 0, for i < j and i ≤ m.

A whitened SVAR estimator has an additional constraint

B̂ := arg min
B∈Rn×n

Q(B, u) (22)

s.t. bi,j = 0, for i < j and i ≤ m (23)

1

T

T∑
t=1

et(B)e′t(B) = I. (24)

However, due to the whitening constraint (24) the optimization problem (22) is difficult to solve

numerically.

First, we ignore the partly recursive constraint (23) and consider a white SVAR estimator with

the corresponding optimization problem

B̂ := arg min
B∈Rn×n

Q(B, u) (25)

s.t.
1

T

T∑
t=1

et(B)e′t(B) = I

The constrained optimization problem (25) can be transformed into an unconstrained optimiza-

tion problem over orthogonal matrices. Let V V ′ = 1
T

∑T
t=1 utu

′
t be the Cholesky decomposition

of the sample variance-covariance matrix of the reduced form shocks. For simplicity, we ignore

the indeterminacy of sign and permutation. It holds that B̂ = V Ô with

Ô := arg min
O∈On×n

Q(V O, u), (26)

26



where On×n denotes the set of n×n dimensional orthogonal matrices. The optimization problem

over orthogonal matrices in equation (26) has no constraints and can be pulled back to an

optimization problem over the euclidean space, see Lezcano-Casado and Mart́ınez-Rubio (2019).

Therefore, let exp(·) denote the matrix exponential function, let s(·) be the function which maps

a vector into a lower skew-symmetric matrix. It then holds that

Ô := arg min

θ∈R
n(n−1)

2

Q(VO(θ), u), (27)

where O(θ) = exp(s(θ)) maps the n(n−1)
2 dimensional vector θ into an orthogonal matrix.

Similar to the case without the partly recursive constraints, the optimization problem (22) with

the partly recursive constraints (23) can be transformed into an optimization problem over or-

thogonal matrices such that B̂ = V Ô with

Ô := arg min
O∈On×n

Q(V O, u), (28)

s.t. (V O)i,j = 0, , for i < j and i ≤ m (29)

Let d = (n−m)(n−m−1)
2 and define the mapping between a d dimensional vector into an orthogonal

matrix which preserves the partly recursive constraint (29)

Om : Rd → On×n, θ 7−→

Im 0

0 exp(s(θ))

 , (30)

where Im denotes and m dimensional identity matrix. The optimization problem (28) can now

be pulled back to an unconstrained optimization problem over the euclidean space

Ô := arg min
θ∈Rd

Q(VOm(θ), u), (31)

which simplifies the numerical optimization problem.

We now show that in a SVAR with a whitening constraint, the first m columns of the B matrix

and therefore the first m recursively ordered shocks are determined by second moments due to the

whitening constraint. Put differently, no information in moments beyond the variance can affect
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the estimated impact of the first m recursively ordered shocks since it is entirely determined by

the whitening constraint. For simplicity, consider the four dimensional example with m = 2
u1

u2

u3

u4

 =


b11 0 0 0

b21 b22 0 0

b31 b32 b33 b34

b41 b42 b43 b44




ε1

ε2

ε3

ε4

 (32)

which can be written as u1
u2

 =

b11 0

b21 b22

ε1
ε2

 (33)

u3
u4

 =

b31 b32

b41 b42

ε1
ε2

+

ν3
ν4

 (34)

ν3
ν4

 =

b33 b34

b43 b44

ε3
ε4

 . (35)

In a whitened SVAR, the unmixed innovations have to satisfy the condition 1
T

∑T
t=1 et(B)e′t(B) =

I. In particular, the matrix B has to satisfy

1

T

T∑
t=1

e1,t(B)e1,t(B) = 1 (36)

1

T

T∑
t=1

e2,t(B)e2,t(B) = 1 (37)

1

T

T∑
t=1

e1,t(B)e2,t(B) = 0. (38)

However, equation (33) is a recursive SVAR which is uniquely determined by the variance and

covariance conditions (36)-(38). Therefore, in a whitened SVAR the parameters b11, b21, and

b22 and hence the first m estimated structural shocks, here ê1 and ê2, are uniquely determined

by second moments. Note that this solution is equal to the solution obtained by applying the

Cholesky decomposition to the variance covariance matrix of the reduced form shocks. Moreover,
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the whitening constraint implies

1

T

T∑
t=1

ê1,tv3,t(B) = 0 (39)

1

T

T∑
t=1

ê2,tv3,t(B) = 0 (40)

1

T

T∑
t=1

ê1,tv4,t(B) = 0 (41)

1

T

T∑
t=1

ê2,tv4,t(B) = 0. (42)

Replacing ε1 and ε2 with ê1 and ê2 in equation (34) and exploiting the four conditions (39)-

(42) implies that the parameters b31, b32, b41, and b42 are again uniquely determined by second

moments. Therefore, the estimated impact of the first m recursively ordered shocks is uniquely

determined by second-order moment conditions derived from the whitening constraint.

A.2 Appendix - Application

This section contains supplementary material and robustness checks for the application presented

in Section 4. The estimated interaction of stock markets and monetary policy is found to be robust

to all applied robustness checks.

Table 3 shows some descriptive statistics of the variables used in the SVAR.

Table 3: Descriptive statistics

Mean Median Mode Std. deviation Variance Skewness Kurtosis Range
y 0.71 0.74 −2.19 0.61 0.37 −0.83 6.46 4.44
I 1.1 0.96 −11.56 3.16 9.97 −0.28 5.3 21.28
π 2.28 2.09 0.27 0.87 0.76 0.36 2.72 4.33
i 1.56 2.11 −26.45 6.5 42.25 −1.08 5.88 43.95
s 3.69 4.02 5.25 3.44 11.84 −0.03 2.07 14.31

Table 4 shows the skewness, kurtosis and p-value of the Jarque-Bera test of the estimated mon-

etary policy and stock market shock in the partly recursive SVAR in Section 4.1.

Table 5 shows the skewness, kurtosis and p-value of the Jarque-Bera test of all estimated struc-
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Table 4: Moments of estimated structural shocks (partly recursive SVAR)

εi εs

Skewness −0.5809 −1.1274
Kurtosis 4.3264 11.0881
JB-Test 0.00 0.00

Skewness, Kurtosis and p-value of the Jarque-Bera test of the estimated monetary policy shock (εi) and stock
market shocks (εs) from our partly recursive SVAR estimator in Section 4.1.

tural shocks in the non-recursive SVAR in Section 4.2.

Table 5: Moments of estimated structural shocks (non-recursive SVAR)

εy εI επ εi εs

Skewness −1.0395 0.6256 −0.0878 −0.7813 −0.3616
Kurtosis 7.1174 4.0654 3.0879 5.2690 15.0522
JB-Test 0.00 0.01 0.50 0.00 0.00

Skewness, Kurtosis and p-value of the Jarque-Bera test of all estimated structural shocks in the non-recursive
SVAR estimation in Section4.2.

Table 6 shows the correlation between the estimated structural shocks from the non-recursive

SVAR in Section 4.2 and the reduced form shocks.

Table 6: Correlation of reduced form and estimated structural shocks

uy uI uπ us ui

εy 0.9 0.52 0.25 0.41 0.42
εI 0.39 0.73 −0.32 −0.35 −0.02
επ −0.16 0.21 0.9 −0.23 0.15
εs −0.09 0.37 −0.12 0.72 0.18
εi −0.09 −0.13 −0.07 −0.37 0.88

Correlation of estimated structural shocks and reduced form shocks from Section 4.2 .

Figure 4 shows the full set of impulse responses estimated by the non-recursive SVAR in Section

4.2. As it becomes evident the qualitative results of the point estimates are similar to the ones

regularly found in the literature. However, the confidence bands are generally very broad and

thus it is generally difficult to get any further conclusive answers about the real behavior of the

variables following a certain structural shock.

We proceed by further checking on the robustness of the results presented in Section 4. All

robustness checks exploit the partly recursive order described in equation (20).

First we replace output growth, inflation growth and stock returns by the respective log-levels to
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Figure 4: Impulse responses estimated by the full moment based SVAR estimator. Responses are
to normalized structural shocks in output growth, investment growth, inflation, stock returns and
the monetary policy rate. Confidence bands are 68% and 80% bootstrap bands. 5000 replications
are used in the bootstrap algorithm. The columns y, I and s show the cumulative responses.

see if the levels contain more information compared to the growth rates that influence our results.

As can be seen from Figure 5 the qualitative results from our main paper are robust to this change

of specification. However, now the long-run negative impact of monetary policy shocks on stock

prices becomes insignificant and is less pronounced. Nevertheless, the long-run response of stock

prices to a monetary policy shock is associated with a high uncertainty. Therefore, even if the

long-run neutrality of monetary policy w.r.t. stock prices holds, estimates based on long-run

restrictions might be unreliable due to the volatile long-run response.

We now check if our results are dependent on our estimation technique for the non-recursive

block. Thus we employ the PML estimator proposed by Gouriéroux et al. (2017) to estimate

the non-recursive block. Figure 6 shows the results. As it becomes evident the change of the

estimation technique does not change our results from section 4: The interest rate increases in

response to a stock market shock, stock prices immediately decrease after a monetary policy

shock and stay permanently below the level without the shock.

Third, we increase the number of lags to p = 8. As becomes evident from Figure 7, the estimated
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Figure 5: Impulse Responses to normalized shocks in stock returns and monetary policy with
log-levels for output, investment and stock prices. Confidence bands are 68% and 90% bootstrap
bands.

Figure 6: Impulse Responses to normalized shocks in stock returns and monetary policy using
the PML estimator (see Gouriéroux et al. (2017)) for the non-recursive part. Confidence bands
are 68% and 80% bootstrap bands. The column s shows the cumulative response of stock returns
to show the effect on aggregate stock prices.
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simultaneous interaction is again similar to our baseline specification. However, the confidence

Figure 7: Impulse Responses to normalized shocks in stock returns and monetary policy with a
lag order of p = 8. Confidence bands are 68% and 80% bootstrap bands. In contrast to Section
4 the observation period is restricted to 1983Q1-2019Q1. The column s shows the cumulative
response of stock returns to show the effect on aggregate stock prices.

band in this case is quite broad and there is not much to conclude from the impulse response

of stock prices to a monetary policy shock regarding the long-run behavior. Consequently, we

cannot reject the long-run neutrality of monetary policy with respect to stock prices, but on the

other side there is not much evidence for it either as due to the broad confidence bands many

other long-run outcomes are possible.

Fourth, we consider the inclusion of commodity price inflation (named dcomm), defined as the

logarithmic difference in the producer price index (also taken from the FRED). For instance,

Bjørnland and Leitemo (2009) argue that the inclusion of commodity price inflation helps to

reduce the price puzzle and thus should be included into the SVAR specification. We assume

that commodity price inflation shocks can be identified recursively and are ordered third in

the recursive block, so commodity price inflation can react immediately to real output growth

and inflation shocks, but not to stock market and monetary policy shocks. Figure 8 shows the

resulting IRFs. As it can be seen, the inclusion of commodity price inflation has no impact on

the estimated interaction of monetary policy and stock markets compared to Section 4 and thus
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Figure 8: Impulse Responses to normalized shocks in stock returns and monetary policy. Con-
fidence bands are 68% and 80% bootstrap bands. In addition to the price level, real output
growth rate, stock returns and nominal interest rate, the commodity price inflation is included.
Commodity price inflation shocks are identified recursively, where commodity price inflation is
ordered third in the recursive block. The column s shows the cumulative response of stock returns
to show the effect on aggregate stock prices.

we omit commodity price inflation from the main paper’s specification. The long-run neutrality

cannot be rejected based on the 80% confidence band, but can based on the 68% confidence band.

So we again conclude that we cannot for sure reject it, but the evidence in favor of it is quite

weak.

Fifth, we exclude all observation from 2007Q4 onward from the sample. For instance Kontonikas

and Zekaite (2018) and Chatziantoniou et al. (2013) argue that the financial crisis starting in

2008 might have led to major disruptions in the relationship between monetary policy and stock

prices. Figure 9 shows the resulting IRFs. As it can be seen from Figure 9 our main results remain

unchanged. The only difference is that now the response of stock prices to a monetary policy shock

is not negative in the long-run, but turns out to be positive after about 10 quarters. However,

this finding again is associated with a large confidence band making the response insignificant

in total judging by the 80% confidence band and soon after the shock hits the economy judging

by the 68% confidence band. Long-run neutrality is part of the confidence band, but only one of

several outcomes, so its validity remains unclear.
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Figure 9: Impulse Responses to normalized shocks in stock returns and monetary policy. Confi-
dence bands are 68% and 80% bootstrap bands. In contrast to Section 4 the observation period
is restricted to 1983Q1-2007Q3. The column s shows the cumulative response of stock returns to
show the effect on aggregate stock prices.

At last, we check on the relevance of the time trend included in our specification. Figure 10

shows the impulse responses of the stock price and FFR to a stock market and monetary policy

shock under the specification without a linear time trend. As it turns out, the main qualitative

and quantitative insights remain unchanged. However, the confidence band of the stock price

response to a monetary policy shock is a bit broader, thus the response becomes insignificant

earlier and there is no conclusive answer about the long-run behavior. As the time trend seems

to contribute to a more precise estimate, we choose to leave it in our base specification.
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Figure 10: Impulse Responses to normalized shocks in stock returns and monetary policy. Con-
fidence bands are 68% and 80% bootstrap bands. In contrast to Section 4 the linear time trend
is omitted from the specification. The column s shows the cumulative response of stock returns
to show the effect on aggregate stock prices.
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