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Abstract

We study an intertemporal consumption and portfolio choice problem under Knightian un-
certainty in which agent’s preferences exhibit local intertemporal substitution. We also allow for
market frictions in the sense that the pricing functional is nonlinear. We prove existence and u-
niqueness of the optimal consumption plan, and we derive a set of sufficient first-order conditions
for optimality. With the help of a backward equation, we are able to determine the structure
of optimal consumption plans. We obtain explicit solutions in a stationary setting in which the
financial market has different risk premia for short and long positions.
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1 Introduction

In the seminal papers [15, 17], a fundamental critique to the standard time-additive framework for
optimal consumption problems was raised. A. Hindy, C.F. Huang and D. Kreps noticed that time-
additive utility functionals, and more generally all utility functionals directly depending on the rate
of consumption, are not robust with respect to slight shifts of consumption in time. To overcome such
an undesired feature, these authors proposed to measure utility arising from consumption through the
so-called level of satisfaction, a suitably weighted average of past consumption1 With such a preference
the agent measures her felicity by taking into account also the history of her consumption plan and
considers consumption at adjacent times as similar alternatives. As a consequence, the agent consumes
not necessarily in rates, but also in a singular manner or in gulps.

In [16] the authors consider an investment-consumption model for an agent who faces Hindy-
Huang-Kreps (HHK) preferences and invests in a financial market without transaction costs. When
the agent has an hyperbolic absolute risk aversion (HARA) instantaneous utility function and is active
in a Black-Scholes market, explicit consumption and allocation choices have been derived. The case
of general utility functions was then studied in [1], and later extended also to markets with jumps
(and possibly transaction costs) in [6, 7, 8] and [5]. While [6, 7, 8] employ a dynamic programming
approach to solve the considered optimal consumption problem, no Markovian structure is needed in
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†Center for Mathematical Economics, Bielefeld University, hanwu.li@uni-bielefeld.de.
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1This represents only one of many possible ways in which to capture effects of intertemporal substitution of preferences

and/or habit formation. We refer the reader to [12], [25], and [26] and references therein.
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[5]. The approach followed in [5] (see also [4] for the deterministic case and [3] for a general convex-
analytic treatment) indeed exploits the concave structure of the consumption problem and derives
suitable necessary and sufficient Kuhn-Tucker-like first-order conditions for optimality (FOCs). Via
such an alternative method, it shown that the optimal consumption plan is such to keep the level of
satisfaction always above an endogenously determined minimal level solving a backward stochastic
equation arising from the FOCs (see [2] for the study of such a class of equations).

In [5] (and actually also in all the other aforementioned references) there is the implicit assump-
tion that, when picking the consumption plan maximizing the expected utility, the agent has complete
knowledge about the probability distribution of all those random factors that affect her choice. Such
an assumption can be clearly debatable in situations in which the agent is exposed to new phenom-
ena affecting her preferences and for which there are not sufficient data available to conjecture the
probability distribution with good confidence. Moreover, the characterization and construction of the
optimal consumption plan is made in [5] under the assumption that the underlying financial market is
frictionless. In this paper we consider the optimal consumption problem of an agent with preferences
of HHK type, that faces Knightian uncertainty about the random factors affecting her utility from
consumption, and that evaluates the costs of her consumption under a nonlinear expectation. In
particular, such a nonlinear evaluation of the consumption’s costs can be motivated by thinking that
the agent finances her consumption plan in a financial market with frictions (see Section 6 for more
details). We show that such a setting can be well encompassed by considering nonlinear expectations
for the evaluation of utility/cost in the form of g-expectations. The theory of the latter was initiated
by S. Peng in [24] and they are shown to be naturally related to backward stochastic differential
equations (BSDEs) and to variational preferences. As a matter of fact, the g-expectation Eg[ · ] is
defined in terms of the first component of a solution to a BSDE with driver g, and can be represented
as a variational expectation when g is concave (in the second component of the BSDE’s solution).

Following the arguments already developed in [5] in the linear case, we also show that existence
of an optimal consumption plan can be obtained in our nonlinear setting by a suitable application of
Komlós’ theorem (see [20]) in the version of Y. Kabanov [19]. Moreover, if the felicity function u is
strictly concave in the level of satisfaction, also uniqueness of the optimal consumption plan can be
established by exploiting the fact that the g-expectation satisfies the strict comparison property.

With the aim of providing a characterization of the optimal consumption plan, we then derive
a set of sufficient FOCs for optimality. These are clearly different from those obtained in [5] where
it is assumed that the underlying financial market is complete, and in fact degenerate to those if
we take g = 0. In our framework, the FOCs involve the so-called worst-case-scenarios, probability
measure Pi with Girsanov kernel ξi (with respect to the given reference probability measure P0)
under which the lowest expected utility and the largest expected cost of consumption are realized.
The sufficient FOCs can be used as a verification tool in order to check the actual optimality of a
candidate optimal solution. In this sense our approach might then be seen a counterpart in our general
not necessarily Markovian and nonlinear setting of the verification theorem usually employed in the
study of Markovian optimal control problems addressed via the dynamic programming approach.
Inspired by [5], we then show that, for any given and fixed probability measures P1 and P2 under
which expected utility and consumption’s cost are evaluated, there exists a minimal level of satisfaction
LP1,P2 that solves a certain kind of backward equation studied in [2]. The consumption plan that tracks

LP1,P2 – denoted by CL
P1,P2

– prescribes to consume just enough in order to keep the satisfaction’s
level above LP1,P2 at all times. However, in order to find the optimal consumption a daunting fixed
point problem has to be solved; in fact, P1 and P2 should be chosen in such a way that they realize
the expected lowest utility largest expected cost of consumption.

In the generality of our framework, the complete study of such a fixed point problem would require
a separate detailed analysis. This is why in a final section of our paper we consider a specific, yet
relevant, setting in which a complete solution to the problem can be obtained by guessing, and then
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verifying, through the FOCs, the worst-case scenarios for utility and cost. We assume that the utility
is of power-type, the time horizon is infinite, and that the set of multiple priors are constituted by
measures that are equivalent to the given reference measure P0 and have Girsanov kernel belonging
to suitable bounded intervals. We show that such a choice of the set of priors corresponds to the
case in which the consumption plan is financed via investment in an underlying financial market in
which the risk premia for short and long positions are different. Within this setting we provide an
explicit form of the optimal consumption plan and we also determine the financing portfolio. Like
in the classical Merton’s problem, this prescribes to invest a fixed (in time) fraction of wealth in the
risky asset traded in the financial market. Moreover, we observe that an increase in the risk and risk
aversion leads the agent to invest less in the financial market. On the other hand, an increase of the
discrepancy between the agent’s beliefs about the evaluations of utility and cost from consumption
has a non definite effect on the portfolio strategy which can either increase or decrease depending on
the model’s parameters. Finally, we show that in the case in which the multiple priors for utility and
cost have a common element, then the optimal minimal level of satisfaction is deterministic and, as a
consequence, the agent will not invest in the risky asset at all.

In a series of remarks throughout the paper we also show how our results can be generalized to
the case in which the evaluations of utility and cost of consumption are not made via g-expectations
but through variational preferences induced by appropriate multiple priors and penalty functions. In
this framework, existence of an optimal consumption plan and the sufficient FOCs still hold.

The paper is organized as follows. In Section 2 we formulate the utility maximization problem
under Knightian uncertainty. We establish in Section 3 existence and uniqueness of the optimal
consumption plan, and we provide in Section 4 the sufficient FOCs for optimality. Section 5 shows
the time-consistency property of the optimal consumption plan and gives its general structure. The
explicit solution in a specific setting is obtained in Section 6 , while definition and properties of
g-expectation as well as technical results are presented in Appendix A and Appendix B, respectively.

2 The Knightian intertemporal utility maximization problem

Consider a filtered probability space (Ω,FT , (Ft)t∈[0,T ],P0) satisfying the usual conditions of right-
continuity and completeness and in which B = {Bt}t∈[0,T ] is a d-dimensional Brownian motion.
Throughout this paper, E[ · ] will denote the expectation taken under the probability P0, and mea-
surability properties (like progressive measurability or adaptedness) will be always with respect to
(Ft)t∈[0,T ], as otherwise stated.

We aim at studying the optimal consumption choice of an agent facing Knightian ambiguity and
whose preferences are of the Hindy-Huang-Kreps (HHK) type. We assume that the agent is ambiguity
adverse and also that her consumption is financed via investment in a financial market which possibly
exhibits frictions. As it will be clear in the sequel (see the setting of Section 6), those agent’s and
market’s characteristics can be well modeled through the use of nonlinear expectations; namely, via
the g-expectation Eg[ · ] initiated by S. Peng in [24]. As it is discussed in detail in Appendix A, this is
formally defined as the first component of the solution to a backward stochastic differential equation
(BSDE) with driver g : Ω× [0, T ]× Rd → R satisfying the following requirements:

(A1) For any z ∈ Rd, g(·, ·, z) is progressively measurable and

E

[ ∫ T

0

|g(t, z)|2dt
]
<∞;

(A2) There exists some constant κ > 0, such that for any (ω, t) ∈ Ω× [0, T ] and z, z′ ∈ Rd,

|g(ω, t, z)− g(ω, t, z′)| ≤ κ|z − z′|;
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(A3) g(ω, t, ·) is concave for any (ω, t) ∈ Ω× [0, T ];

(A4) g(ω, t, 0) = 0 for any (ω, t) ∈ Ω× [0, T ].

The Knightian intertemporal optimal consumption problem under study is defined as follows.
Introduce the set

X :=
{
C
∣∣C is the distribution function of a nonnegative optional random measure on [0, T ]

}
,

let r = {rt}t∈[0,T ] be a bounded, progressively measurable process, and g and h be two functions
satisfying (A1)-(A4). An agent with initial wealth w > 0 will pick a consumption plan from the
budget feasible set

Ah(w) :=
{
C ∈ X |Ψ(C) := Ẽh

[ ∫ T

0

γtdCt

]
≤ w

}
, (2.1)

where γt := exp (−
∫ t
0
rsds) and Ẽh[ · ] = −Eh[−· ] = E h̃[ · ] (we define h̃(t, z) := −h(t,−z)). It is easy

to check that Ah(w) is nonempty when h satisfies (A1)-(A4) since Ẽh[0] = 0. Moreover, Ψ(C) can be
seen as the minimal initial capital needed to finance a consumption plan C via investing in a financial
market.

For a fixed consumption plan C ∈ X , the agent’s level of satisfaction is given by

Y Ct = ηt +

∫ t

0

θt,sdCs, (2.2)

where η : [0, T ] → R+ and θ : [0, T ]2 → R+ are continuous. The quantity θt,s can be seen as
the weight assigned at time t to consumption made at time s ≤ t and ηt describes the exogenous
level of satisfaction that the agent has at time t. In (2.2), and in the following, we interpret the
integrals with respect to the optional random measure dC on [0, T ] in the Lebesgue-Stieltjes sense
as
∫ ·
0
( · )dCt =

∫
[0,·]( · )dCt. In such a way, a possible initial jump of the process C (i.e. an initial

consumption gulp) is taken into account in the integral.

Remark 2.1 Typical η and θ are ηt := ηe−βt and θt,s = βe−β(t−s) with constants η ≥ 0, β > 0.

We assume that the agent’s utility is of the HHK type and depends on the current level of
satisfaction (hence on the past consumption as well) via a certain instantaneous felicity function
u : Ω× [0, T ]× R+ → R. In particular, we have

U(C) =

∫ T

0

u(t, Y Ct )dt,

where u(ω, ·, ·) is continuous, u(ω, t, ·) is increasing and concave and such that, for any y ∈ R+,
(ω, t) 7→ u(ω, t, y) is progressively measurable. The goal of the ambiguity’s adverse agent is then that
of maximizing her expected utility over all budget feasible consumption plans; that is, of finding

vg,h(w) := sup
C∈Ah(w)

V (C) = sup
C∈Ah(w)

Eg[U(C)]. (2.3)

In order to simplify notation, in the following we shall omit the subscripts g, h in vg,h, as well as its
dependence on w.
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3 Existence and uniqueness of the optimal consumption plan

In this section, we prove existence and uniqueness of a consumption plan solving problem (2.3). For
this purpose, we need the following assumption on the budget feasible set.

(H1) The family of budget feasible utilities {U(C), C ∈ Ah(w)} is uniformly P0-square-integrable.

Notice that thanks to Assumption (H1) and a priori estimates for BSDEs (cf. Proposition 2.1 in
[13]), one has

v = sup
C∈Ah(w)

V (C) <∞.

Before moving on with the existence and uniqueness result, we recall the following technical lemma
from [5].

Lemma 3.1 ([5], Lemma 2.5) (i) There exists some constant K > 0, such that for any C ∈ X
and t ∈ [0, T ],

Y Ct ≤ K(1 + Ct);

(ii) If {Cn}∞n=1 ⊂ X converges almost surely to C ∈ X in the weak topology of measures on [0, T ],
then we have almost surely Y C

n

t → Y Ct for t = T and for every point of continuity t of C.

A sufficient condition for Assumption (H1) to hold is given by the next result, whose proof can be
found in Appendix B.

Lemma 3.2 Suppose that the function h satisfies (A1)-(A4). The family of budget feasible utilities
{U(C), C ∈ Ah(w)} is uniformly P0-square-integrable if there exists α ∈ (0, 12 ) and K > 0 such that
the felicity function u satisfies the power growth condition

sup
t∈[0,T ]

|u(t, y)| ≤ K(1 + yα) for all y ≥ 0.

Theorem 3.3 Suppose that the functions g, h satisfy (A1)-(A4). Under Assumption (H1), the utility
maximization problem (2.3) has a solution. Moreover, if u(ω, t, ·) is strictly concave for every t ∈ [0, T ]
and C → Y C is injective up to P0-indistinguishability, such a solution is unique.

Proof. Let {Cn}∞n=1 ⊂ Ah(w) such that supC∈A(w) V (C) = limn→∞ V (Cn). Denote by ` the convex
dual of h and bear in mind Proposition A.1 in Appendix Appendix A. Since the interest rate is
bounded, there exists a constant K > 0 such that for any ξ ∈ Dh we have

sup
C∈A(w)

EPξ [CT ] ≤ K sup
C∈A(w)

EPξ
[ ∫ T

0

γtdCt

]
≤ K

{
sup

C∈A(w)

Ẽh
[ ∫ T

0

γtd Ct

]
+ EPξ

[ ∫ T

0

`(s, ξs)ds

]}
<∞,

where we have employed (B.3) in the last inequality. Then, by version of Komlós’ theorem due to Y.
Kabanov (Lemma 3.5 in [19]), there exists a subsequence, for simplicity still denoted by {Cn}, such
that Pξ-a.s.

C̃nt :=
1

n

n∑
k=1

Ckt → C∗t , as n→∞

for t = T and for every point of continuity t of C∗. Since Pξ is equivalent to P0, the above convergence
holds P0-a.s. We claim that {C̃n} is also a maximizing sequence for problem (2.3). Indeed, the convex-

ity of Ẽh[ · ] implies that C̃n ∈ Ah(w), for any n ∈ N. Therefore, we have V (C̃n) ≤ supC∈Ah(w) V (C).
On the other hand, it is easy to check that

Y C̃
n

t =
1

n

n∑
k=1

Y C
k

t ,
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and since u(ω, t, ·) and Eg[·] are both concave, we then obtain that

V (C̃n) = Eg[U(C̃n)] ≥ 1

n

n∑
k=1

Eg[U(Ck)] =
1

n

n∑
k=1

V (Ck).

Noting that {Cn} is a maximizing sequence, it follows that lim infn→∞ V (C̃n) ≥ supC∈Ah(w) V (C),
and the claim thus holds.

We then show that C∗ is optimal for problem (2.3). Since γ is continuous, we have by Portman-
teau’s theorem

lim
n→∞

∫ T

0

γtdC̃
n
t =

∫ T

0

γtdC
∗
t , P0-a.s.,

and by Fatou’s lemma and the convexity of Ẽh[ · ] it follows that

Ẽh
[ ∫ T

0

γtdC
∗
t

]
≤ lim inf

n→∞
Ẽh
[ ∫ T

0

γtdC̃
n
t

]
≤ lim inf

n→∞

1

n

n∑
k=1

Ẽh
[ ∫ T

0

γtdC
n
t

]
≤ w,

which implies that C∗ ∈ Ah(w). Besides, by Lemma 3.1, we have U(C̃n) → U(C∗), P0-a.s. Invok-

ing now Assumption (H1) yields that E[|U(C̃n) − U(C∗)|2] → 0, and by estimates for BSDEs (cf.
Proposition 2.1 in [13]), we obtain that

V (C̃n) = Eg[U(C̃n)]→ Eg[U(C∗)] = V (C∗).

Recalling that {C̃n} is a maximizing sequence of problem (2.3), it follows that C∗ is optimal.
It remains to prove uniqueness. If C1 and C2 are both optimal and they are not indistinguishable,

then their associated levels of satisfaction Y 1 = Y C
1

and Y 2 = Y C
2

are not indistinguishable neither.
By arguments similar to those employed in the proof of Theorem 2.3 in [5], on a set with positive
probability, Y 1 and Y 2 differ on an open time interval. By the strict concavity of u(ω, t, ·) and the
strict comparison theorem for solutions to BSDEs (cf. Therorem 2.2 in [13]), this gives

V (
1

2
(C1 + C2)) = Eg

[ ∫ T

0

u
(
t,

1

2
(Y 1
t + Y 2

t )
)
dt

]
> Eg

[ ∫ T

0

1

2

(
u(t, Y 1

t ) + u(t, Y 2
t )
)
dt

]
≥ 1

2

(
Eg
[ ∫ T

0

u(t, Y 1
t )dt

]
+ Eg

[ ∫ T

0

u(t, Y 2
t )dt

])
=

1

2

(
V (C1) + V (C2)

)
= sup
C∈Ah(w)

V (C),

which gives the desired contradiction.

Remark 3.4 We may check that if θt,s = θ1t θ
2
s for some strictly positive, continuous functions θ1, θ2 :

[0, T ] → R+, then the mapping C 7→ Y C is injective. In particular, if θ is of the form presented in
Remark 2.1, the injectivity follows. Besides, Theorem 3.3 holds true even if g does not satisfy (A4).

Remark 3.5 We could also consider the utility maximization problem under the general nonlinear
expectations

E [X] := inf
P∈P1

(
EP[X] + c1(P)

)
, and Ẽ [Y ] := sup

P∈P2

(
EP[Y ]− c2(P)

)
.

For this purpose, for any fixed constant p > 1, we assume that the multiple priors and penalty functions
satisfy the following assumptions:

(i) supP∈P1
E
[∣∣ dP

dP0

∣∣p] <∞, where p > 1;
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(ii) 0 ≤ infP∈P2
c2(P) ≤ supP∈P2

c2(P) <∞,

and we define the budget feasible set as

Â(w) :=
{
C ∈ X

∣∣ Ẽ[ ∫ T

0

γtdCt

]
≤ w

}
.

Here, γ is the discount factor associated with a bounded, progressively measurable interest rate r and
X is the collection of all distribution functions of nonnegative optional random measures as in Section
2. By Assumption (ii), A(w) is non-empty for any given initial wealth w > 0. The level of satisfaction
Y C and the agent’s utility U(C) are as in Section 2. The agent aims to maximize her expected utility
over all budget feasible consumption plans and the value function is now defined as

v̂ := sup
C∈Â(w)

E [U(C)]. (3.1)

Supposing that the family of budget feasible utilities {U(C), C ∈ Â(w)} is uniformly p∗-integrable
under P0, where p∗ = p/(p − 1), we can still show that the utility maximization problem (3.1) has a
solution. However, due to the lack of the strict comparison property for E [ · ], we loose uniqueness.

4 Sufficient first-order conditions for optimality

This section is devoted to the proof of first-order conditions for optimality. For any two functions
g, h satisfying (A1)-(A3), let f, ` denote their respective convex duals. Now, for any budget feasible
consumption plan C of problem (2.3) set

P1(C) :=
{
Pξ
∣∣ ξ ∈ Dg, Eg[U(C)] = EPξ

[
U(C) +

∫ T

0

f(s, ξs)ds

]}
,

P2(C) :=
{
Pξ
∣∣ ξ ∈ Dh, Ẽh

[ ∫ T

0

γtdCt

]
= EPξ

[ ∫ T

0

γtdCt −
∫ T

0

`(s, ξs)ds

]}
.

In fact, in light of Proposition A.1 in Appendix Appendix A, P1(C) can be regarded as the collection
of lowest-utility probabilities and P2(C) the collection of largest-cost probabilities for the consumption
plan C. In order to obtain the first-order condition, we need the following additional assumption on
the felicity function.

(H2) The felicity function u is such that u(ω, t, ·) is strictly concave and differentiable for any (ω, t) ∈
Ω× [0, T ].

Theorem 4.1 Suppose that the functions g, h satisfies Assumptions (A1)-(A4). Under Assumptions
(H1)-(H2), a consumption plan C∗ solves the utility maximization problem (2.3) if there exist some

Pi := Pξ
i ∈ Pi(C∗), i = 1, 2, such that

(1) Ẽh
[ ∫ T

0

γtdC
∗
t

]
= w;

(2) EP2
t

[
dP1

dP2

∫ T

t

∂yu(s, Y ∗s )θs,tds

]
≤Mγt for any t ∈ [0, T ] a.s.;

(3) EP1

[ ∫ T

0

(∫ T

t

∂yu(s, Y ∗s )θs,tds
)

dC∗t

]
= MEP2

[ ∫ T

0

γtdC
∗
t

]
,
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where M > 0 is a finite Lagrange multiplier and Y ∗ = Y C
∗
.

Proof. Assume that C∗ satisfies conditions (1)-(3) and consider another budget feasible consumption
plan C ∈ Ah(w). For simplicity, set Y := Y C , Y ∗ := Y C

∗
, and let

I := EP1

[ ∫ T

0

(∫ s

0

∂yu(s, Y ∗s )θs,tdC
∗
t

)
ds

]
= EP1

[ ∫ T

0

(∫ T

t

∂yu(s, Y ∗s )θs,tds
)

dC∗t

]
,

II := EP1

[ ∫ T

0

(∫ s

0

∂yu(s, Y ∗s )θs,tdCt

)
ds

]
= EP1

[ ∫ T

0

(∫ T

t

∂yu(s, Y ∗s )θs,tds
)

dCt

]
,

where we have used Fubini theorem. Noting that P2 ∈ P2(C∗), it is easy to check that

I = MEP2

[ ∫ T

0

γtdC
∗
t

]
= MEP2

[ ∫ T

0

γtdC
∗
t +

∫ T

0

`(s, ξ2s )ds−
∫ T

0

`(s, ξ2s )ds

]
= M Ẽh

[ ∫ T

0

γtdC
∗
t

]
+MEP2

[ ∫ T

0

`(s, ξ2s )ds

]
= Mw +MEP2

[ ∫ T

0

`(s, ξ2s )ds

]
,

and

II =EP2

[ ∫ T

0

dP1

dP2

(∫ T

t

∂yu(s, Y ∗s )θs,tds
)

dCt

]
= EP2

[ ∫ T

0

EP2
t

[
dP1

dP2

∫ T

t

∂yu(s, Y ∗s )θs,tds

]
dCt

]
≤MEP2

[ ∫ T

0

γtdCt +

∫ T

0

`(s, ξ2s )ds−
∫ T

0

`(s, ξ2s )ds

]
= M Ẽh

[ ∫ T

0

γtdCt

]
+MEP2

[ ∫ T

0

`(s, ξ2s )ds

]
≤Mw +MEP2

[ ∫ T

0

`(s, ξ2s )ds

]
,

where Theorem 1.33 in [18] has been used in order to obtain the second equality above. Noting that
u(ω, t, ·) is strictly concave, we finally have

V (C∗)− V (C) ≥EP1

[
U(C∗) +

∫ T

0

f(s, ξ1s )ds

]
− EP1

[
U(C) +

∫ T

0

f(s, ξ1s )ds

]
=EP1

[ ∫ T

0

(u(s, Y ∗s )− u(s, Ys))ds

]
≥ EP1

[ ∫ T

0

∂yu(s, Y ∗s )(Y ∗s − Ys)ds
]

=EP1

[ ∫ T

0

(∫ s

0

∂yu(s, Y ∗s )θs,t(dC
∗
t − dCt)

)
ds

]
= I − II ≥ 0,

which clearly completes the proof.

4.1 Some remarks

We conclude this section with some comments.

Remark 4.2 (i) A careful inspection of the previous proof actually reveals that if g does not satisfy
requirement (A4), Theorem 4.1 still holds.

(ii) Let φt := EP1
t

[ ∫ T
t
∂yu(s, Y ∗s )θs,tds

]
. Applying the continuous-time Bayes’ rule, condition (2) of

Theorem 4.1 is equivalent to

φt ≤MγtE
P1
t

[
dP2

dP1

]
, t ∈ [0, T ],

where the state-price density γtE
P1
t

[
dP2

dP1

]
appears on the right-hand side.
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(iii) As a matter of fact, if C∗, P1 and P2 satisfy conditions (2) and (3) of Theorem 4.1, then for
any stopping time S ≤ T , we have

EP2

S

[ ∫ T

S

φ̃tdC
∗
t

]
= MEP2

S

[ ∫ T

S

γtdC
∗
t

]
, (4.1)

where

φ̃t := EP2
t

[
dP1

dP2

∫ T

t

∂yu(s, Y ∗s )θs,tds

]
, t ∈ [0, T ].

This fact can be indeed proved as follows. Notice that conditions (2) and (3) yield that for any
stopping time S ≤ T ,

0 = EP2

[ ∫ T

0

(φ̃t −Mγt)dC
∗
t

]
≤ EP2

[ ∫ T

S

(φ̃t −Mγt)dC
∗
t

]
≤ 0,

which clearly implies that EP2
[ ∫ T
S

(φ̃t −Mγt)dC
∗
t

]
= 0. It is then easy to check that

EP2

S

[ ∫ T

S

φ̃tdC
∗
t

]
≤MEP2

S

[ ∫ T

S

γtdC
∗
t

]
.

If now (4.1) does not hold, defining

A :=
{
EP2

S

[ ∫ T

S

φ̃tdC
∗
t

]
< MEP2

S

[ ∫ T

S

γtdC
∗
t

]}
,

we have P2(A) > 0 and by the strict comparison property for BSDEs (cf. Theorem 2.2 in [13])
this leads to the contradiction

EP2

[ ∫ T

S

(φ̃t −Mγt)dC
∗
t

]
< 0.

Remark 4.3 Consider the general utility maximization problem introduced in Remark 3.5. Also for
this problem we can establish a set of sufficient conditions for optimality. For any budget feasible
consumption plan C ∈ Â(w), we define

P1(C) :=
{
P ∈ P1

∣∣ E [U(C)] = EP[U(C)] + c1(P)
}
,

P2(C) :=
{
P ∈ P2

∣∣ Ẽ[ ∫ T

0

γtdCt

]
= EP

[ ∫ T

0

γtdCt

]
− c2(P)

}
,

and let Assumption (H2) hold. Suppose also that the family of budget feasible utilities {U(C), C ∈
Â(w)} is uniformly p∗-integrable under P0 (where p∗ = p/(p−1), for any p > 1). Then, a consumption
plan C∗ solves the utility maximization problem (3.1) if there exist some Pi ∈ Pi(C∗), i = 1, 2 such
that

(1) Ẽ
[ ∫ T

0

γtdC
∗
t

]
= w;

(2) EP2
t

[
dP1

dP2

(∫ T

t

∂yu(s, Y ∗s )θs,tds
)]
≤Mγt for any t ∈ [0, T ] a.s.;

(3) EP1

[ ∫ T

0

(∫ T

t

∂yu(s, Y ∗s )θs,tds
)

dC∗t

]
= MEP2

[ ∫ T

0

γtdC
∗
t

]
,
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where M > 0 is a finite Lagrange multiplier and Y ∗ = Y C
∗
.

Remark 4.4 Recall that in the linear case treated in [5], the FOCs are also shown to be necessary
for optimality (cf. Theorem 3.2 in [5]). In [5] the proof of this is organized as follows. First, it is
shown that the optimal consumption plan C∗ solves an auxiliary problem linearized around C∗. Then,
a characterization of any solution to such a linearized problem is provided.

In our setting, assuming that

(A5) For each ω ∈ Ω, t ∈ [0, T ] and z ∈ R, the equation g(ω, t, z) − xz = f(ω, t, x) admits a unique
solution x ∈ [−κ, κ], denoted by x(ω, t, z). Furthermore, z 7→ x(ω, t, z) is continuous, for any
(ω, t) ∈ Ω× [0, T ],

and arguing as in the proof of Lemma B3 in [14], we can show that there exists some P1 ∈ P1(C?)
such that the optimal C∗ for (2.3) also solves

sup
C∈Ah(w)

EP1

[∫ T

0

EP1
t

[∫ T

t

∂yu(s, Y ?s )θs,tds

]
dCt

]
, (4.2)

where Y ∗ := Y C
∗
. However, the fact that the expectation arising in the set Ah(w) is nonlinear

gives rise to technical difficulties when trying to characterize conditions for the above problem (4.2).
Fortunately, we shall see in the next sections that the sufficiency of the FOCs does actually suffice as
a verification tool for checking the optimality of a given candidate consumption plan.

5 Time-consistency and structure of the optimal consumption
plan

In this section, we first first study the optimal consumption problem dynamically and prove a version
of the dynamic programming principle, which indicates that if a consumption plan is optimal at time
zero, then it is also optimal at any later time. Then, we will show how to construct the optimal
consumption plan through an auxiliary backward equation.

Proposition 5.1 Suppose that the functions g, h satisfy (A1)-(A4). Let S ≤ T be a stopping time,
C∗ be the optimal consumption plan for the utility maximization problem (2.3), and set

AS(C∗) :=
{
C ∈ X

∣∣C|[0,S) ≡ C∗|[0,S),ΨS(C) ≤ ΨS(C∗)
}
,

where

ΨS(C) :=
1

γS
ẼgS
[ ∫ T

S

γtdCt

]
.

Consider then the optimal consumption problem starting at time S

vS := ess sup
C∈AS(C∗)

EhS [U(C)], (5.1)

and assume that the felicity function u satisfies u(ω, t, 0) = 0 for any (ω, t) ∈ Ω × [0, T ]. Then the
value function v is an Eg-supermartingale in the strong sense2. Besides, C∗ is optimal for (5.1).

2A process X is called an Eg-supermartingale in the strong sense if Xτ ∈ L2(Fτ ) for any stopping time τ and for
any stopping times τ and σ taking values in [0, T ] with τ ≤ σ, we have Egτ [Xσ ] ≤ Xτ .
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Proof. Step 1. Let S ≤ T be a stopping time. We first show that the family {EgS [U(C)], C ∈ AS(C∗)}
is upward directed, where S is a stopping time. For any Ci ∈ AS(C∗), i = 1, 2, set C = C11A+C21Ac ,
where A := {EgS [U(C1)] ≥ EgS [U(C2)]} is FS-measurable. Note that

ΨS(C) =
1

γS
ẼhS
[ ∫ T

S

γrdC
1
r

]
1A +

1

γS
ẼhS
[ ∫ T

S

γrdC
2
r

]
1Ac ≤ ΨS(C∗),

which implies that C ∈ AS(C∗). It is also easy to check that for any s ∈ [0, T ], Y Cs = Y C
1

s 1A+Y C
2

s 1Ac .

Since u(s, 0) = 0, it follows that u(s, Y cs ) = u(s, Y C
1

s )1A + u(s, Y C
2

s )1Ac . Therefore, we have

EgS [U(C)] =EgS [U(C1)1A + U(C2)1Ac ] = EgS [U(C1)]1A + EgS [U(C2)]1Ac

=EgS [U(C1)] ∨ EgS [U(C2)];

that is, the family {EgS [U(C)], C ∈ AS(C∗)} is upward directed. As a consequence, there exists an
increasing sequence {EgS [U(Cn)]}∞n=1 such that

vS = lim
n→∞

EgS [U(Cn)], (5.2)

where {Cn}∞n=1 ⊂ AS(C∗).

Step 2. For any stopping times τ, σ, with τ ≤ σ, we have Aσ(C∗) ⊂ Aτ (C∗). Indeed, for any
C ∈ Aσ(C∗), a simple calculation yields that

Ψτ (C) =
1

γτ
Ẽhτ
[ ∫ T

τ

γrdCr

]
=

1

γτ
Ẽhτ
[ ∫ σ

τ

γrdC
∗
r + γσΨσ(C)

]
≤ 1

γτ
Ẽhτ
[ ∫ σ

τ

γrdC
∗
r + γσΨσ(C∗)

]
= Ψτ (C∗).

Now, recalling (5.2) from Step 1 above, for any τ ≤ S, it is easy to check that

Egτ [vS ] = Egτ
[

lim
n→∞

EgS [U(Cn)]
]

= lim
n→∞

Egτ
[
EgS [U(Cn)]

]
= lim
n→∞

Egτ [U(Cn)] ≤ ess sup
C∈Aτ (C∗)

Egτ [U(C)] = vτ .

Step 3. It remains to show that C∗ is optimal for problem (5.1). Proceeding as in the proof of

Theorem 3.3, there exists a unique consumption plan ĈS which is optimal for problem (5.1). Suppose

that ĈS and C∗ are distinguishable on [S, T ], so that

EgS [U(ĈS)] > EgS [U(C∗)].

By invoking the strict comparison theorem for g-expectation (cf. Theorem 2.2 in [13]) we find

Eg[U(ĈS)] = Eg[EgS [U(ĈS)]] > Eg[EgS [U(C∗)]] = Eg[U(C∗)],

which leads to a contradiction.
We now move on by studying the structure of the optimal consumption plan. As a matter of fact,

Theorem 3.3 indicates that the optimal consumption plan C∗ exists, while it does not give an explicit
form of C∗. Inspired by [5] and the sufficiency of the first-order conditions for optimality, we now
construct C∗ through a progressively measurable process L, called the minimal level of satisfaction,
which is the solution to a backward equation (see (5.3) below).

In the rest of this section we assume the following dynamics for the level of satisfaction.
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(H3) The function η : [0, T ]→ R and θ : [0, T ]2 → R are of following forms:

ηt = η exp

(
−
∫ t

0

βsds

)
, θt,s = βs exp

(
−
∫ t

s

βrdr

)
, 0 ≤ s ≤ t ≤ T,

where β = {βs}s∈[0,T ] is a strictly positive, continuous function and η ≥ 0.

For each fixed ξ1 ∈ Dg, ξ
2 ∈ Dh, M > 0 and stopping time τ < T , consider then the backward

equation

Eτ

[ ∫ T

τ

dP1

dP0

∣∣∣∣
Ft
∂yu

(
t, sup
τ≤v≤t

{
Lv exp

(
−
∫ t

v

βsds

)})
θt,τdt

]
= Mγτ

dP2

dP0

∣∣∣∣
Fτ
, (5.3)

where Pi is the probability measure whose Girsanov kernel (with respect to P0) is given by ξi, i = 1, 2.
By employing Theorem 3 in [2], it can be shown that for any τ < T the above equation admits a

unique progressively measurable process L = LM,P1,P2

with upper right-continuous paths and such
that with LT = 0. Starting from this we can then construct two processes by setting

Y L
M,P1,P2

t := exp

(
−
∫ t

0

βsds

)(
η ∨ sup

0≤v≤t

{
LM,P1,P2

v exp

(∫ v

0

βsds

)})
, t ∈ [0, T ],

CL
M,P1,P2

t :=

∫ t

0

Y L
M,P1,P2

s ds+

∫ t

0

β−1s dY L
M,P1,P2

s , t ∈ [0, T ], CL
M,P1,P2

0− = 0.

According to Lemma 3.9 in [5], one has that

(i) Y L
M,P1,P2

is an adapted RCLL process of bounded variation with Y L
M,P1,P2 ≥ LM,P1,P2

;

(ii) CL
M,P1,P2

is right-continuous, nondecreasing and adapted. In other words, CL
M,P1,P2 ∈ X ;

(iii) The level of satisfaction induced by CL
M,P1,P2

, denoted by Y C
LM,P

1,P2

, coincides with Y L
M,P1,P2

and is minimal in the following sense:

Y C
LM,P

1,P2

t = Y L
M,P1,P2

t = inf
C∈X ,Y C≥L

Y Ct , t ∈ [0, T ].

Following the terminology of [5], in the sequel we shall say that the process CL constructed above
is the consumption plan that tracks the level process L.

Theorem 5.2 Recall that f, ` denote the convex dual of the drivers g and h, respectively. Suppose
that the functions g, h satisfy (A1)-(A4) and let Assumptions (H1)-(H3) hold. Let also LM,P1,P2

be
the solution to (5.3). If we can find some Pi with Girsanov kernel (with respect to P0) ξi, i = 1, 2,
such that

Eg
[ ∫ T

0

u
(
t, Y L

M,P1,P2

t

)
dt

]
= EP1

[ ∫ T

0

u
(
t, Y L

M,P1,P2

t

)
dt+

∫ T

0

f(r, ξ1r )dr

]
,

Ẽh
[ ∫ T

0

γtdC
LM,P

1,P2

t

]
= EP2

[ ∫ T

0

γtdC
LM,P

1,P2

t −
∫ T

0

`(r, ξ2r )dr

]
,

then the consumption plan CL
M,P1,P2

is optimal for the utility maximization problem (2.3) with given

initial capital w = Ψ(CL
M,P1,P2

).
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Proof. As the proof follows closely the arguments developed in Theorem 3.13 of [5], we omit it in the
interest of brevity.

Remark 5.3 Consider the general utility maximization problem introduced in Remark 3.5. Since the
sufficiency for optimality still holds as discussed in Remark 4.3, we can then provide the construction
for the optimal consumption plan also within such a more general setting. For this purpose, we assume
that the dynamics η and β for the level of satisfaction satisfy (H3). For any constant M > 0 and any

Pi ∈ Pi, i = 1, 2, let LM,P1,P2

be the solution to Equation (5.3) and let CM,P1,P2

be the consumption

plan which tracks LM,P1,P2

. If Pi ∈ Pi(CM,P1,P2

), i = 1, 2, then CM,P1,P2

is optimal for problem (3.1)

with initial wealth given by w = Ẽ
[ ∫ T

0
γtdC

M,P1,P2

t

]
.

Remark 5.4 Existence of the desired minimal level of satisfaction leads to a challenging fixed point
problem that we discuss in the following and whose study is left for future research.

Fix the Lagrange multiplier M in Equation (5.3). Choose ξ1,1 ∈ Dg, ξ2,1 ∈ Dh and let Pi,1 be
the probability measure whose Girsanov kernel is given by ξi,1, i = 1, 2. Then, there exists a unique
solution L1 to Equation (5.3) with Pi = Pi,1, i = 1, 2. Let C1 be the consumption plan which tracks

L1 and Γ(C1) :=
∫ T
0
γtdC

1
t . Consider then the BSDEs

Y 1,1
t = U(C1) +

∫ T

t

g(s, Z1,1
s )ds−

∫ T

t

Z1,1
s dBs,

Y 2,1
t = Γ(C1)−

∫ T

t

h(s,−Z2,1
s )ds−

∫ T

t

Z2,1
s dBs,

and let ξ1,2 and ξ2,2 be the solutions to

g(s, Z1,1
s )− Z1,1

s ξ1,2s = f(s, ξ1,2s ) and − h(s,−Z2,1
s )− Z2,1

s ξ2,2s = −`(s, ξ2,2s ),

respectively. Then, by Girsanov theorem it is easy to check that

Eg[U(C1)] = EP1,2

[
U(C1) +

∫ T

0

f(s, ξ1,2s )ds

]
and Ẽh[Γ(C1)] = EP2,2

[
Γ(C1)−

∫ T

0

`(s, ξ2,2s )ds

]
,

where Pi,2 is the probability measure with Girsanov kernel ξi,2, i = 1, 2, with respect to P0.
Defining the mapping T : Dg ×Dh → Dg ×Dh as

T (ξ1,1, ξ2,1) = (ξ1,2, ξ2,2),

we see that if T has a fixed point (ξ1, ξ2), then Cξ
1,ξ2 tracking Lξ

1,ξ2 is optimal for (2.3), where Lξ
1,ξ2

is the solution to (5.3) with Pi = Pξ
i

, i = 1, 2.

6 Explicit solution in a stationary homogeneous setting

6.1 Setting and main result

One can be easily convinced that the sufficient first-order conditions for optimality previously deter-
mined still hold when T = +∞. Their proof indeed employs the linear structure of C 7→ Y C and the
concavity of the instantaneous felicity function, which are clearly not affected by the length of the
considered time interval. In this section, we shall use the sufficient optimality conditions in order to
provide the explicit solution in an homogeneous setting.
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Consider a financial market with two assets. One of them is a risk-free bond, whose price S0

evolves according to the following equation

dS0
t = rS0

t dt, (6.1)

where r > 0 is the interest rate. The price for the stock is denoted by S and it satisfies the stochastic
differential equation

dSt = S1
t

[
µdt+ σdBt

]
, (6.2)

where µ represents the stock appreciation rates, σ > 0 is the volatility and Bt is a one-dimensional
(Ft)t-Brownian motion. Clearly, there exists a constant ϑ ∈ R such that

µ− r = σϑ.

The constant ϑ is usually referred to as the risk premium.
Imagine now that our agent invests in the financial market and thus selects a portfolio πt at time

t, where πt is the proportion of her wealth Vt invested in the stock and π0
t = 1− πt is the proportion

of the wealth invested in the bond. We assume that π is predictable, since the agent can only make
decisions on the basis of the current amount of available information Ft. The agent can also choose
a consumption plan C ∈ X∞, where Ct represents the total amount of consumption made up to time
t and

X∞ :=
{
C
∣∣C is the distribution function of a nonnegative optional random measure on [0,∞)

}
.

Also, set V̄t := e−rtVt, and suppose that lim supt→∞ V̄t = 0 a.s.
Let a, b, a′, b′ be four constants such that a′ < a < b < b′. Assume that the risk premia for long and

short positions are different and the difference between long and short positions is a′−a (see Example
1.1 in [13]). Then the wealth V associated to the portfolio π and consumption plan C evolves as

dVt = rVtdt+ σa′πtVtdt+ σ(a′ − a)π−t Vtdt+ σπtVtdBt − dCt, (6.3)

which is clearly equivalent to

V̄t =

∫ ∞
t

σ(aπ−s − a′π+
s )V̄sds−

∫ ∞
t

σπsV̄sdBs +

∫ ∞
t

e−rsdCs.

For any bounded, adapted process ξ, set εξt := ε1,ξt , where εx0,ξ
t := x0 exp

( ∫ t
0
ξsdBs − 1

2

∫ t
0
ξ2sds

)
for

x0 > 0. Consequently, we have

V̄0 = sup
P∈P2

EP

[∫ ∞
0

e−rsdCs

]
,

where

P2 =
{
Pξ
∣∣ ξ adapted with values in [a′, a],

dPξ

dP0

∣∣∣∣
Ft

= εξt , 0 < t <∞
}
, (6.4)

which can be interpreted as the set of priors for the cost induced by a consumption plan.
We assume that the felicity function is deterministic and given by

u(t, y) = e−δt
1

α
yα,

where δ > 0 and α ∈ (0, 1), and γt = e−rt. Moreover, we take a constant interest rate r > 0 and
suppose that the level of satisfaction has dynamics:

Y Ct = ηe−βt +

∫ t

0

βe−β(t−s)dCs, (6.5)
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where η, β > 0.
Considering now the set of priors for the utility

P1 :=
{
Pξ
∣∣ ξ adapted with values in [b, b′],

dPξ

dP0

∣∣∣∣
Ft

= εξt , 0 < t <∞
}
, (6.6)

and defining then the nonlinear expectations

E1[X] := inf
P∈P1

EP[X], E2[X] := sup
P∈P2

EP[X],

the aim is to solve

sup
C∈A(w)

E1
[ ∫ ∞

0

u(t, Y Ct )dt

]
, (6.7)

where

A(w) :=
{
C ∈ X∞

∣∣ E2[ ∫ ∞
0

e−rtdCt

]
≤ w

}
.

As a matter of fact, we can see from Appendix A that, by taking g(z) = bz+ − b′z− and h(z) =
a′z+ − az−, the representation of g-expectation yields

E1[X] = Eg[X], and E2[X] = Ẽh[X].

In our analysis a crucial role will be played by the backward equation

Eτ

[ ∫ ∞
τ

β exp(−β(t− τ))εξ
1

t ∂yu

(
t, sup
τ≤v≤t

{
Lv exp(−β(t− v))

})
dt

]
= Me−rτεξ

2

τ , (6.8)

where τ is any finite stopping time, M > 0 is a given constant, and ξi are the Girsanov kernels (with

respect to P0) such that Pi := Pξ
i ∈ Pi, i = 1, 2. The solution to (6.8) (if it does exist) is denoted

by LM,P1,P2 . Moreover, we denote by CM,P1,P2 the consumption plan which tracks the level process
LM,P1,P2 and by YM,P1,P2 the corresponding level of satisfaction. Similarly to Theorem 5.2, we have
the following result.

Theorem 6.1 Suppose that Pi ∈ Pi(CM,P1,P2), i = 1, 2, where for any admissible consumption plan

P1(C) :=
{
P ∈ P1

∣∣ E1[ ∫ ∞
0

u(t, Y Ct )dt

]
= EP

[ ∫ ∞
0

u(t, Y Ct )dt

]}
,

P2(C) :=
{
P ∈ P2

∣∣ E2[ ∫ ∞
0

e−rtdCt

]
= EP

[ ∫ ∞
0

e−rtdCt

]}
.

Then, CM,P1,P2 is an optimal consumption plan for (6.7) with w = E2
[ ∫∞

0
e−rtdCM,P1,P2

t

]
. Conse-

quently, LM,P1,P2 is the optimal minimal level of satisfaction.

We can now provide the main result of this section.

Theorem 6.2 Suppose that δ > αr+α(a−b)2
2(1−α) . The measures Pb and Pa realize the worst-case scenarios

for utility and cost of consumption, respectively. Moreover, the optimal minimal level of satisfaction
LK is given by

LKt =

(
Ke(δ−r)t

εat
εbt

) 1
α−1

= K
1

α−1 exp

{
a− b
α− 1

Bt −
1

2(α− 1)
[(a2 − b2)− 2(δ − r)]t

}
,

15



where K is a suitable constant determined by the initial wealth w. Then, the optimal consumption
plan is such that

C∗t := CKt =

∫ t

0

e−βsdC
∗
s,

where

C
∗
t := sup

0≤s≤t

(LKs − ηe−βs
e−βs

)
∨ 0, C

∗
0− = 0.

Consequently, the optimal level of satisfaction is

Y ∗t := Y Kt = e−βt
(
η ∨ sup

0≤s≤t
(LKs e

βs)
)
.

Remark 6.3 We observe that our condition δ > αr+ α(a−b)2
2(1−α) is consistent with that posed in Theorem

4.7 of [5], where

δ > αr + (1− α)π

(
αθ′

1− α

)
+ απ(−θ′), (6.9)

with π(·) being the Laplace exponent of a Lévy process X and θ′ the market price of risk. In order to
see this, notice that, under a measure Pξ1 ∈ P1, (6.8) rewrites as

Eξ1τ

[ ∫ ∞
τ

β exp(−β(t− τ))∂yu

(
t, sup
τ≤v≤t

{
Lv exp(−β(t− v))

})
dt

]
= Me−rτ

εξ
2

τ

εξ
1

τ

. (6.10)

Then, taking ξ1 ≡ b and ξ2 ≡ a, the latter is exactly of the form of Equation (17) in [5], upon setting
(now under Pb)

ψt = e−rt+(a−b)Bbt− 1
2 (a−b)

2t, t ≥ 0.

Here, Bb is a standard Brownian motion under Pb. In particular, it follows that in our case θ′ of
(6.9) is such that θ′ = a− b, and simple algebra shows that the right-hand side of (6.9) indeed becomes

ours αr + α(a−b)2
2(1−α) .

As a further consequence, we can argue as in the proof of Theorem 4.7 of [5] and prove that the

condition δ > αr+ α(a−b)2
2(1−α) is in fact also necessary to have a well-posed optimal consumption problem

(in the sense that, without that condition one can construct a consumption plan that has finite cost
but induces infinite utility).

6.2 On the proof of Theorem 6.2

The proof of Theorem 6.2 will be organized as follows. First, for any fixed Pξ
i ∈ Pi with ξi being a

constant, i = 1, 2, under the considered parameters’ constellation we solve backward equation (6.8)
explicitly. Then, we verify that Pa is the largest-cost probability and P b is the lowest-utility probability
for the consumption CK that tracks LK defined in Theorem 6.2.

The proof of the next result exploits the time-homogeneity of our setting. It can be found in
Appendix B for the sake of completeness.

Lemma 6.4 For any fixed constants M , ξi and probability measures Pi := Pξ
i

, i = 1, 2, the solution
to Equation (6.8) is

Lt := LM,ξ1,ξ2

t =

(
Ke(δ−r)t

εξ
2

t

εξ
1

t

) 1
α−1

,

16



where K = K(M) is the constant satisfying

KβE

[ ∫ ∞
0

e−(δ+αβ)t inf
0≤v≤t

{
e(δ+β(α−1)−r)vεξ

2

v

εξ
1

t

εξ
1

v

}
dt

]
= M.

In order to simplify the notation, set

θ :=
b− a
1− α

, λ :=
1

2(α− 1)
[(a2 − b2)− 2(δ − r)],

and notice that θ > 0.
For any constant ξ, let xα+(ξ) and x+(ξ) be the largest solutions to the equations hα,ξ(x) = 0 and

hξ(x) = 0, respectively, where

hα,ξ(x) :=
1

2
α2θ2x2 − α(λ− β − θξ)x− (δ + αβ), x ∈ R, (6.11)

and

hξ(x) =
1

2
θ2x2 − (λ− β − θξ)x− (r + β), x ∈ R. (6.12)

Let CK be the consumption plan which tracks LK defined in Theorem 6.2 and Y K be the corresponding
level of satisfaction. By the necessary characterization of the optimal consumption plan under a single
prior (cf. [5]), the plan CK is optimal for the linear problem

va,b := sup
C∈Aa(w)

Eb
[∫ ∞

0

u(t, Y Ct )dt

]
, (6.13)

where

Aa(w) :=
{
C ∈ X

∣∣Ea[ ∫ ∞
0

e−rtdCt

]
≤ w

}
, (6.14)

and Ea and Eb are the expectations taken under Pa, Pb, respectively. Besides, proceeding similarly
to [5] (see Equation (38) therein and the following equation for V (CK)) , the expected utility and
expected cost associated with consumption plan CK can be explicitly given by

φb(η) := Eb
[∫ ∞

0

u(t, Y Kt )dt

]
=

1

α(δ + αβ)

ηα + 1
xα+(b)−1K

αxα+(b)

α−1 ηα(1−x
α
+(b)), η > K

1
α−1 ;

xα+(b)

xα+(b)−1K
α
α−1 , η ≤ K

1
α−1 ,

(6.15)

and

ψa(η) := Ea
[∫ ∞

0

e−rtdCKt

]
=

1

β

 1
x+(a)−1K

x+(a)

α−1 η1−x+(a), η > K
1

α−1 ;
x+(a)
x+(a)−1K

1
α−1 − η, η ≤ K

1
α−1 .

(6.16)

For any η > 0, set

φξ
1

(η) := E

[ ∫ ∞
0

εξ
1

t u(t, Y Kt )dt

]
and ψξ

2

(η) := E

[ ∫ ∞
0

e−rtεξ
2

t dCKt

]
.

Lemma 6.5 Under the same assumptions of Theorem 6.2, we have

φb(η) = inf
ξ1∈[b′,b],adapted

φξ
1

(η), ψa(η) = sup
ξ2∈[a,a′],adapted

ψξ
2

(η).

Besides, the values are finite.
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Proof. Notice that Y Kt = e−βt{η∨sup0≤v≤t(L
K
v e

βv)} = e−βt{η∨sup0≤v≤tK
1

α−1 exp(θBv−(λ−β)v)}.
Applying the Girsanov and Tonelli Theorems, it is easy to check that

φξ
1

(η) =

∫ ∞
0

1

α
e−(δ+αβ)tE

[
εξ

1

t

{
ηα ∨ sup

0≤v≤t
K

α
α−1 exp(αθBv − α(λ− β)v)

}]
dt

=

∫ ∞
0

1

α
e−(δ+αβ)tE

[{
ηα ∨ sup

0≤v≤t
K

α
α−1 exp(αθBv − α(λ− β)v + αθ

∫ v

0

ξ1sds)
}]

dt.

Clearly, for any adapted ξ1 taking values between b′ and b, we have φb(η) ≤ φξ
1

(η) ≤ φb
′
(η). The

assumption δ > αr + α(a−b)2
2(1−α) implies that hα,b(1) < 0. Hence, xα+(b) > 1. Recalling Equation (6.15),

φb(η) is finite.

Then, we calculate ψξ
2

(η). Noting that dCKt = Y Kt dt + 1
βdY Kt = 1

β e
−βtd(eβtY Kt ), a simple

calculation yields that∫ T

0

e−rtεξ
2

t dCKt =

∫ T

0

1

β
e−(r+β)tεξ

2

t d(eβtY Kt )

=
1

β
e−rT εξ

2

T Y
K
T −

η

β
− 1

β

∫ T

0

eβtY Kt d(e−(r+β)tεξ
2

t )

=
1

β
e−rT εξ

2

T Y
K
T −

η

β
+ (1 +

r

β
)

∫ T

0

e−rtεξ
2

t Y
K
t dt− 1

β

∫ T

0

e−rtξ2t ε
ξ2

t Y
K
t dBt.

(6.17)

Set now ψ̃ξ
2

(η) := E
[ ∫∞

0
e−rtεξ

2

t Y
K
t dt

]
. Proceeding similarly to the evaluation of φξ

1

(η), for any
adapted process ξ2 taking values in [a, a′] we have

ψ̃ξ
2

(η) =

∫ ∞
0

e−(r+β)tE

[
η ∨ sup

0≤v≤t
K

1
α−1 exp(θBv − (λ− β)v + θ

∫ v

0

ξ2sds)

]
dt,

and therefore ψ̃a
′
(η) ≤ ψ̃ξ2(η) ≤ ψ̃a(η). Calculations analogous to those performed in the proof of

Proposition 5.8 in [14] imply that, for ξ2 ∈ {a, a′},

ψ̃ξ
2

(η) =
1

β + r

 1
x+(ξ2)−1K

x+(ξ2)

α−1 η1−x+(ξ2) + η, η > K
1

α−1 ;
x+(ξ2)
x+(ξ2)−1K

1
α−1 , η ≤ K

1
α−1 .

The assumption δ > αr+ α(a−b)2
2(1−α) yields that ha(1) < 0 and ha

′
(1) < 0. Therefore, we have x+(a) > 1

and x+(a′) > 1. Hence, the quantity ψ̃ξ
2

(η) is positive and finite for any adapted ξ2 ∈ [a, a′]. Since
by following the steps of the proof of Lemma 4.9 in [5] we can show that

lim
T→∞

e−rT εξ
2

T Y
K
T = 0,

taking expectation on both sides of (6.17), and letting T to infinity, we obtain

ψξ
2

(η) = (1 +
r

β
)ψ̃ξ

2

(η)− η

β
.

It is now straightforward to see that ψa
′
(η) ≤ ψξ2(η) ≤ ψa(η), which then completes the proof.

The results collected so far finally allow us to prove Theorem 6.2.

Proof of Theorem 6.2. By Lemma 6.4 and 6.5, we know that LK is the solution to (6.8) with
P1 = Pb, P2 = Pa and Pb ∈ P1(CK), Pa ∈ P2(CK). By Theorem 6.1, it remains to find an appropriate
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constant K, such that w = ψa(η), where ψa(η) is given by (6.16). By simple calculations it can be
shown that the needed K is given by

K =


(
x+(a)−1
x+(a) (βw + η)

)α−1
, w ≥ η

β(x+(a)−1) ;

(β(x+(a)− 1)ηx+(a)−1w)
α−1
x+(a) , otherwise.

6.3 On the portfolio financing the optimal consumption plan

In this section, we will find the portfolio process π needed in order to finance the optimal consumption
plan derived in the previous section. For this purpose, let V at , Vt be the present values of the future
consumption CK taken under the probability Pa and the set of multiple priors P2, respectively; i.e.,

V at := Eat

[∫ ∞
t

e−r(s−t)dCKs

]
= Et

[∫ ∞
t

εas
εat
e−r(s−t)dCKs

]
,

Vt := ess sup
Pξ∈P2

Eξt

[∫ ∞
t

e−r(s−t)dCKs

]
= ess sup

Pξ∈P2

Et

[∫ ∞
t

εξs

εξt
e−r(s−t)dCKs

]
.

Lemma 6.6 Recall ψa as in (6.16). One has

Vt = V at = eθBt−λtψa(e−θBt+λtY Kt ).

Proof. By Equation (6.17), we have

V at =
(β + r)ert

βεat
Et

[∫ ∞
t

e−rsεasY
K
s ds

]
− Y Kt

β
:= Ṽ at −

Y Kt
β
.

On the other hand, the Markov property implies that

Ṽ at =
(β + r)ert

βεat
Et

[∫ ∞
t

e−(r+β)sεas

{
η ∨ sup

0≤v≤s
K

1
α−1 exp(θBv − (λ− β)v)

}
ds

]
=

(β + r)

β
Et

[∫ ∞
0

e−(r+β)s
εas+t
εat

{
Y Kt ∨ e−βt sup

t≤v≤s+t
K

1
α−1 exp(θBv − (λ− β)v)

}
ds

]
=

(β + r)

β
Et

[∫ ∞
0

e−(r+β)s
εas+t
εat

{
Y Kt ∨ e−λt sup

0≤v≤s
K

1
α−1 exp(θBv+t − (λ− β)v)

}
ds

]
=

(β + r)

β
eθBt−λtEt

[∫ ∞
0

e−(r+β)s
εas+t
εat

{
η ∨ sup

0≤v≤s
K

1
α−1 exp(θ(Bv+t −Bt)− (λ− β)v)

}
ds

] ∣∣∣∣
η=Ỹ Kt

=
(β + r)

β
eθBt−λtE

[∫ ∞
0

e−(r+β)sεas

{
η ∨ sup

0≤v≤s
K

1
α−1 exp(θBv − (λ− β)v)

}
ds

] ∣∣∣∣
η=Ỹ Kt

=eθBt−λt
(
ψa(e−θBt+λtY Kt ) +

1

β
e−θBt+λtY Kt

)
,

where Ỹ Kt = e−θBt+λtY Kt . All the above analysis yields that V at = eθBt−λtψa(e−θBt+λtY Kt ). Then,
following the arguments developed in the proof of Theorem 5.11 in [14] we conclude that Vt = V at .

Proposition 6.7 Under the same assumptions of Theorem 6.2, we have

πt =
θx+(a)

σ
=: π for all t ≥ 0. (6.18)
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Proof. It is easy to check that for any t ≥ 0, e−θBt+λtY Kt ≥ K
1

α−1 . By Lemma 6.6 and (6.16),
applying Itô’s formula, we find

dVt = θx+(a)VtdBt + terms of bounded variation.

Compared with (6.3), the latter gives that the portfolio is actually constant and such that πt =
θx+(a)/σ for all t ≥ 0.

Remark 6.8 By Theorem 6.2 and the analysis in Section 4 of [5], the optimal policy CK for the
utility maximization problem (6.7) is also optimal for the linear problem (6.13). Hence, the portfolio
process (6.18) is also such to finance the consumption plan appearing in (6.14) and thus is consistent
with that found in Theorem 4.14 of [5].

Recall that x+(a) is the largest solution to the equation ha(x) = 0, where ha is defined in (6.12).
We now study the dependence of the portfolio (6.18) with respect to b − a (measuring somehow the
discrepancy between the beliefs of the agents related to the utility and cost from consumption), the
volatility σ, and the parameter of relative risk-aversion 1− α.

Proposition 6.9 Recall π from (6.18). On has that:

1. π is decreasing with respect to σ;

2. π is decreasing with respect to 1− α;

3. Let δ̂ := β + δ−r
α−1 . Then:

(i) If δ̂ ≥ 0, then π is increasing with respect to b− a.

(ii) If δ̂ < 0 and δ− 2αδ+α2r+βα(1−α) ≤ 0, then then π is decreasing with respect to b− a.

(iii) If δ̂ < 0 and δ− 2αδ+α2r+βα(1−α) > 0, then π is decreasing with respect to b− a when

(b− a)2 ∈ (0,−2(1− α)δ̂) and increasing when (b− a)2 ∈ (−2(1− α)δ̂, (1− α) 2(δ−αr)
α ).

Proof. Since it readily follows that π is decreasing with respect to σ, we move directly on by proving
the second claim of the proposition.

Setting

δ̃ := (a− b)2 + 2(δ − r), I(α) :=
β

(a− b)
(1− α) +

δ̃

2(b− a)
,

it is easy to check that
θx+(a) = I(α) +

√
I2(α) + 2(r + β) =: H(α),

and

H ′(α) =

(
1 +

I(α)√
I2(α) + 2(r + β)

)
I ′(α) ≥ 0.

From the latter, it follows that π is increasing in α, and this proves the second claim.
As for the third claim, recall that θ = (b− a)/(1− α) and notice that

θx+(a) =
1− α

2
θ − δ̂

θ
+

√
(
1− α

2
θ − δ̂

θ
)2 + 2(r + β) := F (θ).

Defining G(θ) := 1−α
2 θ − δ̂

θ , simple calculations imply that

F ′(θ) =

√
G2(θ) + 2(r + β) +G(θ)√

G2(θ) + 2(r + β)
G′(θ),
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and G′(θ) = (1− α)/2 + δ̂θ−2. Since F ′ ≥ 0 if and only if G′ ≥ 0, it follows that the monotonicity of
π with respect to b− a is the same as the monotonicity of G with respect to θ. Now, the requirement

δ > αr + α(a−b)2
2(1−α) implies that 0 < θ2 < 2(δ−αr)

α(1−α) . We then have the following three cases, completing

the proof.

Case (i). Suppose that δ̂ ≥ 0. Then, we have G′(θ) ≥ 0 for any θ2 ∈ (0, 2(δ−αr)α(1−α) ).

Case (ii). Suppose that δ̂ < 0 and δ − 2αδ + α2r + βα(1 − α) ≤ 0. It is easy to check that for

any θ2 ∈ (0, 2(δ−αr)α(1−α) ), G′(θ) ≤ 0.

Case (iii). Suppose that δ̂ < 0 and δ − 2αδ + α2r + βα(1 − α) > 0. By simple calculation, we

have G′(θ) < 0 when θ2 ∈ (0, 2δ̂
α−1 ) and G′(θ) > 0 when θ2 ∈ ( 2δ̂

α−1 ,
2(δ−αr)
α(1−α) ).

Let us comment on the comparative statics of the optimal portfolio. First, we obtain the intuitive
result that an increase in volatility σ reduces investment in the risky asset. More risk averse agents
also invest less in the risky assets than their less risk-averse counterparts. These results are well in
line with the usual comparative statics in asset pricing models.

Knightian uncertainty and market friction are well described by the difference of the parameters
b− a in our model because these parameters describe the respective worst case models for the agent’s
minimal expected utility and maximal expected cost. Interestingly, it is not always the case that
an increase of this term, i.e. a better expected return for investing in the risky asset, leads to more
exposure in the risky asset. We have to distinguish two cases here. When δ̂ = β + δ−r

α−1 ≥ 0, the
optimal level of satisfaction diverges to infinity (compare also the discussion in [4] in the frictionless
case). In this case, the optimal portfolio is indeed decreasing in market friction. In the opposite
case, we have (1 − α)β < δ − r. When interest rates r are quite low, impatience δ is high, and the
depreciation rate β is low, i.e. the agent enjoys past consumption for a long time, the agent optimally
consumes a lot in early years and thus does not invest for higher future consumption as he enjoys his
past consumption for a long time and as he is relatively impatient. He is thus not interested in the
long-run prospective of higher returns and thus even decreases his investment in the risky asset if the
returns increase.

6.4 Abstention from the asset marekt

We have already seen in Remark 6.3 that the requirement on δ imposed in the statement of Theorem
6.2 is necessary in order to have a well-posed optimization problem. We now want to better understand
the role of the other assumption made within this section; namely, our requirement −κ ≤ a′ < a <
b < b′ ≤ κ imposed on the parameters defining the sets of priors P1 and P2 (cf. (6.6) and (6.4)).

Proposition 6.10 Suppose that there exists some probability P such that P ∈ P1∩P2 and let δ > αr3.
Then, the optimal consumption plan for the utility maximization problem (6.7) is deterministic.

Proof. It is easy to check that LKv = (Ke(δ−r)v)
1

α−1 is the solution to (6.8) with ξ1 = ξ2 such that

Pξ
1

= Pξ
2

= P and Lagrange multiplier M = Kβ
r+β . Clearly, the consumption plan that tracks such

LK is a deterministic function and hence, the utility and the cost induced by this consumption plan
are deterministic as well. Therefore, we have

inf
P∈P1

EP

[ ∫ ∞
0

u(t, Y Kt )dt

]
=

∫ ∞
0

u(t, Y Kt )dt = EP

[ ∫ ∞
0

u(t, Y Kt )dt

]
,

sup
P∈P2

EP

[ ∫ ∞
0

e−rtdCKt

]
=

∫ ∞
0

e−rtdCKt = EP

[ ∫ ∞
0

e−rtdCKt

]
,

3This condition arise from ours δ > αr +
α(a−b)2
2(1−α) needed to avoid an ill-posed problem. Indeed, in the case

P1 ∩ P2 6= ∅, we can simply take a = b, thus leading to δ > αr.
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which implies that P ∈ P1(CK) ∩ P2(CK). Hence, P is indeed the worst-case scenario for the utility
and cost associated to the deterministic plan CK .

In the following, we complete the proof by determining the appropriate constant K such that the
induced cost equals to the initial wealth w.

Case 1. Suppose that δ < r+(1−α)β. In this case, Y Kt = (e−βtη)∨(K
1

α−1 e
δ−r
α−1 t) = (e−βtη)∨LKt .

It remains to find K such that the cost
∫∞
0
e−rtdCKt equals to w, where∫ ∞

0

e−rtdCKt =

{
K

1
α−1

(1−α)(β+r)
β(δ−αr) −

η
β , η ≤ K

1
α−1 ;

(1−α)β+r−δ
β(δ−αr) η

αr−δ
(1−α)β+r−δK−

r+β
(1−α)β+r−δ , η > K

1
α−1 .

Simple calculations imply that

K =


[

(η+βw)
(1−α)(β+r)

]α−1
, w ≥ βη(1−α)+η(r−δ)

β(δ−αr) ;[
βw(δ−αr)

(1−α)β+r−δ

]− (1−α)β+r−δ
r+β

η
δ−αr
δ+r , otherwise.

Case 2. Suppose that δ ≥ r + (1 − α)β. In this case, Y Kt = e−βt(η ∨ LK0 ) = e−βt(η ∨ K
1

α−1 ).
Recalling the dynamics of level of satisfaction (6.5), it is easy to check that K = (η+βw)α−1 and the
optimal consumption C∗ should be such that C∗t = C∗0 = w. That is, the agent will consume all his
initial wealth at the original time.
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Appendix A

In this appendix we introduce the g-expectation and we provide its important properties.
Consider a filtered probability space (Ω,FT , (Ft)t∈[0,T ],P0) satisfying the usual conditions of right-

continuity and completeness and on which it is defined a d-dimensional Brownian motion B =
{Bt}t∈[0,T ]. For any terminal value X ∈ L2(FT ), the collection of all FT -measurable and square-
integrable random variables, consider the following BSDE

Y Xt = X +

∫ T

t

g(s, ZXs )ds−
∫ T

t

ZXs dBs, t ≤ T.

By the results in [23], under Assumptions (A1)-(A2) there exists a unique pair of solution (Y X , ZX).
We define the g-conditional expectation for X as

Egt,T [X] := Y Xt .

For simplicity, we denote Eg0,T [X] by Eg[X]. The g-expectation coincides with a variational preference
in the following sense (cf. [13]).

Proposition A.1 Suppose that g satisfies (A1)-(A3). For each ω ∈ Ω, t ∈ [0, T ] and θ ∈ Rd, let

f(ω, t, θ) := sup
z∈Rd

(g(ω, t, z)− z · θ)
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be the convex dual of g. Denote by Dg be the collection of all progressively measurable processes
{ξt}t∈[0,T ] such that

E

[ ∫ T

0

|f(s, ξs)|2ds
]
<∞.

Let τ be a stopping time satisfying 0 ≤ t ≤ τ ≤ T . For each Fτ -measurable and square integrable
random variable X, we have the following representation

Egt,τ [X] = ess inf
ξ∈Dg

{EPξ

t [X] + αt,τ (ξ)},

where the probability measure Pξ is defined on (Ω,FT ) through

dPξ

dP0
:= exp

(∫ T

0

ξsdBs −
1

2

∫ T

0

ξ2sds
)
,

EPξ

t [ · ] is the expectation under Pξ conditioned on Ft, and the penalty function is defined as

αt,τ (ξ) := EPξ

t

[ ∫ τ

t

f(s, ξs)ds

]
.

One of the most important properties of the classical conditional expectation is time-consistency,
i.e. the so-called tower property. In fact, this property still holds for the g-conditional expectations.
More precisely, we have the following proposition, whose details can be found in [24] and [10].

Proposition A.2 Suppose that g satisfies (A1)-(A3). The conditional g-expectation satisfies the
following properties:

(1) Strict comparison: if X ≤ Y , then Egt,T [X] ≤ Egt,T [Y ]. Furthermore, if P0(X < Y ) > 0, then

Egt,T [X] < Egt,T [Y ];

(2) Time consistency: for any 0 ≤ s ≤ t ≤ T , Egs,T [Egt,T [X]] = Egs,T [X];

(3) Concavity: Egt,T [ · ] is concave; i.e., for any X,Y ∈ L2(FT ) and λ ∈ [0, 1], we have Egt,T [λX +

(1− λ)Y ] ≥ λEgt,T [X] + (1− λ)Egt,T [Y ];

(4) Fatou’s lemma: Suppose that for any n ∈ N, Eg[Xn] exists and Xn ≥ X (respectively, Xn ≤ X),
where X ∈ L2(FT ). Then, we have

lim inf
n→∞

Eg[Xn] ≥ Eg[lim inf
n→∞

Xn] (respectively, lim sup
n→∞

Eg[Xn] ≤ Eg[lim sup
n→∞

Xn]).

If we assume, additionally, that the function g satisfies (A4), it is easy to check that for any
X ∈ L2(FT1

) ⊂ L2(FT2
), where T1 ≤ T2, we also have

Egt,T1
[X] = Egt,T2

[X].

In this case, we denote Egt,T [X] by Egt [X]. The advantage of using g which satisfies also condition (A4)
lies in the fact that it preserves almost all properties as the classical expectation, with the exception
of linearity.

Proposition A.3 Suppose that g satisfies (A1), (A2) and (A4). The conditional g-expectation sat-
isfies the following:

(1) Translation invariance: if Z ∈ L2(Ft), then for all X ∈ L2(FT ), Egt [X + Z] = Egt [X] + Z;

(2) Local property: for an event A ∈ Ft, we have Egt [X1A + Y 1Ac ] = Egt [X]1A + Egt [Y ]1Ac ;

(3) Constant preserving: if X ∈ L2(Ft), we have Egt [X] = X.
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Appendix B

In this appendix we provide the proof of some technical result needed in the paper.

Lemma B.1 For any bounded progressively measurable processes ξ and σ, and for any constant p > 0,

the random variable exp
(
p(
∫ T
0
ξsds+

∫ T
0
σsdBs)

)
is P0-integrable.

Proof. It is easy to check that

E

[
exp

(
p
( ∫ T

0

σtdBt +

∫ T

0

ξtdt
))]

=E

[
exp

(∫ T

0

pσtdBt −
∫ T

0

p2σ2
t dt

)
exp

(∫ T

0

p2σ2
t dt+

∫ T

0

pξtdt

)]
≤
(
E

[
exp

( ∫ T

0

2pσtdBt −
1

2

∫ T

0

(2pσt)
2dt
)])1/2(

E

[
exp

( ∫ T

0

2p2σ2
t dt+

∫ T

0

2pξtdt
)])1/2

=

(
E

[
exp

( ∫ T

0

2p2σ2
t dt+

∫ T

0

2pξtdt
)])1/2

≤ const.,

where we use the fact that {exp
( ∫ t

0
2pσsdBs − 1

2

∫ t
0
(2pσs)

2ds
)
}t∈[0,T ] is a martingale by Novikov’s

condition. The proof is then complete.

Proof of Lemma 3.2

By the power growth condition and Lemma 3.1, it is easy to check that

U(0) ≤ U(C) ≤ K
∫ T

0

(1 + |Y Ct |α)dt ≤ K(1 + CαT ).

Therefore, it suffices to show that the family {CαT , C ∈ Ah(w)} is uniformly P0-square-integrable. To
accomplish that recall Proposition A.1 in Appendix A (in particular see the definition of the set Dh),
and for any p > 2 with αp < 1, by the Hölder inequality, we have

E[CαpT ] ≤ E

[
CT

dPξ

dP0

]αp
E

[(
dPξ

dP0

) −αp
1−αp

]1−αp
, (B.1)

where ξ ∈ Dh and |ξ| ≤ κ. By Lemma B.1, E

[(
dPξ

dP0

) −αp
1−αp

]
≤ const., and letting ` be the convex dual

of h, by Proposition A.1 for some K > 0 we have

E

[
CT

dPξ

dP0

]
= EPξ [CT ] ≤ KEPξ

[ ∫ T

0

γtdCt

]
≤ K

(
Ẽh
[ ∫ T

0

γtdCt

]
+ EPξ

[ ∫ T

0

`(s, ξs)ds

])
, (B.2)

where, in order to obtain the first inequality, we have used that the interest rate is bounded.
Also, noticing that ξ ∈ Dh, by Lemma B.1, it follows that

EPξ
[ ∫ T

0

`(s, ξs)ds

]
= E

[
dPξ

dP0

∫ T

0

`(s, ξs)ds

]
≤
(
E

[(
dPξ

dP0

)2])1/2(
TE

[ ∫ T

0

`2(s, ξs)ds

])1/2

<∞.

(B.3)
Feeding the latter back into (B.2) and using (B.1) we conclude that the family {CαT , C ∈ Ah(w)} is
p-integrable under P0, thus leading to the desired result.
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Proof of Lemma 6.4

By the strong Markov property and a change of variable, we have

Eτ

[ ∫ ∞
τ

εξ
1

t ∂yu

(
t, sup
τ≤v≤t

{
Lv exp

(
−
∫ t

v

βsds
)})

θt,τdt

]
=Eτ

[ ∫ ∞
τ

εξ
1

t e
−δtβe−β(t−τ) inf

τ≤v≤t

{
Ke(δ−r)ve−β(α−1)(t−v)

εξ
2

v

εξ
1

v

}
dt

]
=Kβe−rτEτ

[ ∫ ∞
0

e−(δ+αβ)t inf
0≤v≤t

{
e(δ+β(α−1)−r)vεξ

2

v+τ

εξ
1

t+τ

εξ
1

v+τ

}
dt

]

=Kβe−rτE

[ ∫ ∞
0

e−(δ+αβ)t inf
0≤v≤t

{
e(δ+β(α−1)−r)vεx2,ξ

2

v

εx1,ξ
1

t

εx1,ξ1
v

}
dt

]∣∣∣∣
x1=ε

ξ1
τ ,x2=ε

ξ2
τ

=Kβe−rτE

[ ∫ ∞
0

e−(δ+αβ)t inf
0≤v≤t

{
e(δ+β(α−1)−r)vεξ

2

v

εξ
1

t

εξ
1

v

}
dt

]
εξ

2

τ .

Hence, the result follows.
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