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Fracking, Farmers, and Rural 
Electrification in India

Abstract
The shale gas revolution in the United States induced an unprecedented commodity boom across 
northwestern India. Leveraging population-based discontinuities in the contemporaneous roll-out of India’s 
national rural electrification scheme, we show that access to electricity increased total employment and non-
agricultural employment in villages affected by this exogenous economic shock, but had no impact on labor 
markets elsewhere. This combination of two natural experiments highlights how complementary economic 
conditions drive heterogeneity in the labor-market impacts of rural electrification. It also helps explain 
the large variation in the reported impacts of such resource-intensive infrastructure investments globally.
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1 Introduction

Over a billion people worldwide lack access to electricity, and many more are

served by unreliable systems capable of supporting little more than a light bulb.

The belief that access to reliable electricity catalyzes job creation and economic

growth—reflected in the inclusion of energy access targets as part of the United

Nations’ (2015) Sustainable Development Goals—has thrust energy to the fore of

development policy. Indeed, governments and donors are mobilizing considerable

resources to ensure access for all. According to the International Energy Agency

(2011), over $9 billion was spent in 2009 to extend energy services to underserved

populations, a figure that it estimates must rise to over $48 billion per year by

2030 to achieve universal access. Yet evidence on the impacts of such efforts

remains mixed. Dinkelman (2011) and Lipscomb et al. (2013), for instance, identify

large positive effects on employment from rural electrification in South Africa and

Brazil, respectively. Burlig and Preonas (2016), on the other hand, find far more

muted effects on labor-market outcomes in India. Others have uncovered similarly

lackluster impacts in the African context (Bernard and Torero, 2015; Lenz et al.,

2017).1

This lack of consensus surrounding the benefits of grid expansion highlights

both a significant knowledge gap and a critical policy challenge. The world’s

poor are constrained by far more than energy poverty (Banerjee and Duflo, 2007),

and large-scale investments in energy infrastructure in low- and middle-income

settings may entail profound opportunity costs. India alone is home to nearly 250

million people living without electricity (International Energy Agency, 2015). If

resource-intensive grid expansion is foundational in promoting better livelihoods for

unconnected populations, it represents a necessary first step for development policy.

But if the benefits are highly uncertain—or, worse, illusory—scarce public resources

are better targeted elsewhere, and cost-effective approaches that enhance access to

only rudimentary energy services such as basic lighting may be more appropriate

(Burgess et al., 2019; Grimm et al., 2017, 2020).

What drives this heterogeneity in the impacts of rural electrification, and under

what conditions does grid expansion deliver measurable economic benefits? We

1In a recent review, Bonan et al. (2017) note that the evidence on the impacts of electrification

on time allocation and labor activities suggests “mild increases in employment and labor supply,

particularly for women, non-agricultural activities and more formal activities” but that the magnitude

of such effects “varies significantly across studies and geographical areas.” Other syntheses of the

literature uncover similar heterogeneity (Bos et al., 2018).
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exploit two concurrent natural experiments to shed new light on this question. As the

hydraulic fracturing (“fracking”) boom began in the United States (US), it induced a

parallel commodity boom in India in the production of an otherwise obscure crop

called guar. Guar provides a key input into the fracking process, and over sixty

percent of the world’s supply is grown in the semi-arid tracts of northwestern India

by small and marginal farmers (Rai, 2015). Between 2007 and 2012, its price

increased by nearly 1,000 percent, resulting in a large exogenous shock to rural

villages in the region. Almost simultaneously, India began rolling out a massive

rural electrification scheme that aimed to electrify 400,000 villages across 27 states.

Villages were eligible on the basis of a strict population-based threshold, giving

rise to discontinuous changes in their probability of being electrified. We combine

these two natural experiments within a regression discontinuity (RD) design to

evaluate how the causal effect of electrification on labor-market outcomes varies

with exogenous changes in economic context.

Using data on the sectoral composition of the rural labor force from the 2001

and 2011 rounds of India’s Population Census, we first show that electrification led

to a six percentage-point (seventy percent) increase in non-agricultural employment

in the short term in villages exposed to the exogenous commodity boom. In these

same villages, agricultural employment fell by a corresponding amount, representing

a reduction of about twenty percent. Using data on total employment from four

consecutive rounds of the Economic Census of India, which covers all non-farm

establishments in the country, we next demonstrate that these effects persisted over

the longer term. Specifically, around eight years after the start of rural electrification,

total employment was over 1.5 times higher in electrified villages that experienced

the exogenous commodity shock. Importantly, we find no discernible evidence of

either short- or longer-term labor-market effects of electrification in villages located

in the rest of India, suggesting that complementary economic conditions play a

crucial role in driving the impacts of large-scale electrification infrastructure.

In so doing, we build on work by Burlig and Preonas (2016), who conduct the

first large-scale impact evaluation of India’s rural electrification scheme. They show

that the program increased electrification rates, but demonstrate that its impacts on a

wide range of socioeconomic outcomes (including those related to the rural labor

market) are precisely estimated null results.2 Our results from non-boom regions of

India—using an empirical strategy that follows their own—are consistent with these

earlier findings. Using the exogenous shock to economic activity generated by the

2Results from a randomized controlled trial in Kenya by Lee et al. (2020b) echo these findings.
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guar boom, however, allows us to address questions that stem from this prior body

of work, and respond to calls for research that rigorously sheds light on important

drivers of heterogeneity in the impacts of electrification globally (Lee et al., 2020a).

In particular, we highlight potential mechanisms for these heterogeneous effects

by documenting that electrification-related labor-market dynamics are driven by

the rise of complementary non-agricultural opportunities. Increased demand for

guar gum spurred a shift in the labor force toward industrial-scale guar processing,

which benefits from upgrades to local electricity infrastructure. Consistent with

this shift, we use a separate “quadruple-differences” empirical strategy to uncover

a large increase in both the number and size of non-farm establishments related to

the industrial (electricity-intensive) parts of the guar production chain, such as guar

processing, in regions where investments in electrification infrastructure happened

alongside the exogenous increase in economic opportunity.

Our study makes three key contributions. First, our results highlight how grid-

scale electrification can support potentially welfare-enhancing structural change

in the rural economy. Access to electricity alone may not deliver economic and

social benefits, as has been demonstrated a number of times in the literature. That

electrification significantly enhances non-agricultural employment in boom areas

suggests, however, that it can enable individuals, households and firms to better

exploit the opportunities presented by rapidly changing economic contexts.

Second, we show that the impacts of large-scale investments in grid electrifica-

tion are crucially tied to local economic conditions. For instance, grid electricity

may enable local industrial production of certain goods, yet this may make little

difference in the short run if complementary factors (such as demand for those

goods, a trained labor force to scale up production to meet that demand, and rural

roads that enable access to markets) are not also in place. If they are, however,

grid-scale electricity may considerably expand how local actors take advantage of

economic opportunities to generate income and enhance welfare. Prior research,

which typically estimates the average treatment effect of such investments as part

of national rural electrification programs, implicitly neglects these context-specific

factors.3 While the particular boom we study is clearly unique to our setting, it gives

us an opportunity to investigate how electrified villages in boom and non-boom

regions performed relative to unelectrified villages in the same areas. Insofar as

the economic potential of certain areas can be accurately assessed ex ante—or if

3This, we contend, is one reason we observe mixed evidence from settings as diverse as Bhutan,

Brazil and Vietnam (Khandker et al., 2013; Lipscomb et al., 2013; Litzow et al., 2019).
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governments can complement electrification initiatives with other investments—the

insights we generate can be used to inform spatial targeting of resource-intensive

infrastructure by allowing policymakers to better gauge cost-benefit trade-offs, and

choose appropriate grid-based and off-grid energy solutions for different contexts.

Finally, from a methodological perspective, our study is part of a growing body

of work that adopts a rigorous approach to understanding treatment-effect hetero-

geneity in the real world.4 That the same intervention can have different impacts

in superficially similar settings points to the importance of context-dependence;

learning about these contextual factors is crucial to learning from impact evaluations

(Usmani et al., 2018; Vivalt, 2015). Where many studies have been conducted,

rigorous meta-analyses can shed light on underlying drivers of effectiveness (e.g.,

Meager, 2019). In most other cases, however, such efforts are typically restricted

to relatively crude subgroup analyses involving interactions of endogenous binary

variables representing populations of interest with the main treatment-effect parame-

ter. Our setting—the combination of an exogenous shock to economic activity with

quasi-experimental variation in access to electricity within an RD design—provides

the first opportunity to study the heterogeneous effects of access to electricity over

large spatial scales in a real-world setting.

The rest of this paper is organized as follows. In Section 2, we provide back-

ground on our two natural experiments. Section 3 highlights our conceptual frame-

work and identification strategies. Section 4 describes our data. Section 5 reports

short-term impacts of electrification on the size and composition of the rural labor

force. Section 6 presents longer-term impacts on total employment. Section 7 doc-

uments additional analyses to uncover mechanisms related to the growth of firms.

Section 8 summarizes results, and discusses policy implications and avenues for

future research.

2 Background

In this section we describe India’s rural electrification scheme, provide a basic

overview of fracking, and discuss how guar production in India responded to the

fracking boom in the US.

4In its use of multiple sources of exogenous variation in real-world settings, for instance, our

empirical approach is related to Duque et al. (2018), who examine how early-life exposure to adverse

weather shocks (that reduce children’s initial skills) in Colombia interacts with the introduction of

conditional cash transfers to influence long-term outcomes.
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2.1 Rural electrification

Newly independent India had only 1,500 electrified villages in 1947, and progress

on rural electrification remained slow well into the late 1960s (Banerjee et al.,

2014, p. 35). Severe droughts and food shortages in the early 1960s brought rural

electrification into the spotlight, and since that time a number of schemes have

emerged.5 The Rajiv Gandhi Grameen Vidyutikaran Yojana (RGGVY), launched

in 2005, subsumed all existing grid-related rural electrification initiatives. RGGVY

was charged with enhancing access to electricity in over 100,000 unelectrified and

300,000 “partially electrified” villages across 27 states. It aimed to do so primarily

by installing and upgrading electricity infrastructure to support productive activities

in rural economies. These included electric irrigation pumps, education and health-

care facilities, and small and medium enterprises. RGGVY also extended free grid

connections to rural households below the poverty line; households above the poverty

line could purchase connections. Both groups remained responsible for their own

power use as RGGVY did not subsidize electricity consumption.

Although largely funded by the federal government, RGGVY was implemented

through district-level projects overseen by local implementing agencies, such as the

State Electricity Board. The scheme proceeded in two steps. First, to qualify for

RGGVY funds, the local implementing agency prepared a Detailed Project Report

(DPR) for the district in question. The DPR outlined in detail the electrification-

related infrastructure needs of the district, the number of households expected to be

connected to the grid, and expected project costs. It also identified the set of villages

eligible for electrification under RGGVY. These DPRs were reviewed and approved

by India’s Rural Electrification Corporation and its Ministry of Power before dis-

bursement of funds. Once approved, district-level implementation commenced in

line with the village-by-village plan outlined in the DPR.

Districts were allocated to India’s Tenth (2002–2007) and Eleventh (2007–2012)

Five-Year Plans for funding based on the order in which DPRs were submitted

and approved. We refer to these as “RGGVY Phase I” and “RGGVY Phase II”

districts, respectively, and identify these districts using state-level five-year-plan

5For instance, the Kutir Jyoti Yojana was launched in the late 1980s to increase access to electric

lighting for households below the poverty line; the Pradhan Mantri Gramodaya Yojana, launched in

2001, extended financing to states to enhance access to public services, including electrification, in

rural areas; the Remote Village Electrification program, launched in 2002, aimed to provide lighting

to remote villages using solar photovoltaics and other off-grid energy technologies; and the country’s

Minimum Needs Program was updated in 2002 to extend financing for rural electrification to states

that were seen to be performing especially poorly (Banerjee et al., 2014, p. 37–38).
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progress reports. During Phase I, villages containing at least one habitation (a

geographically distinct sub-village cluster of households) with a population of 300

or more as reported in the 2001 Population Census were eligible to be electrified.

Approximately 178,000 villages across 235 Phase I districts in 25 states (as per

2011 administrative boundaries) fit this criterion. Funds associated with Phase I

districts were disbursed between 2005 and 2008, while funds for Phase II districts—

for which the RGGVY eligibility threshold was reduced to 100—were disbursed

between 2008 and 2011. Selection of districts into RGGVY Phase I and Phase II

is clearly endogenous. For this reason, in this paper, we restrict our analyses to

Phase I districts (shown in Figure 1). This approach also accounts for the fact that

village-level electrification in Phase I districts had largely been completed in advance

of the 2011 Population Census, one of our main data sources, whereas villages

electrified as part of RGGVY Phase II would have been captured inconsistently

during Census survey enumeration, which began in April 2010.

2.2 Fracking, guar, and guar gum

Hydraulic fracturing (“fracking”) involves injecting a slurry of water, sand and

chemicals underground at high pressure to create or widen small fractures in the

underlying rock formation. While not an entirely new approach, recent technological

refinements—in particular, fracking in combination with horizontal drilling—have

considerably increased the effectiveness of the process and transformed the global

energy landscape (Orr, 2016).

Figure 2 illustrates the production of natural gas (panel a) and oil (panel b) from

fracked and “conventional” wells in the US. In 2000, fracked wells produced less

than seven percent of natural gas in the US; that share grew to 67 percent by 2015.

Oil production from fracked sources underwent a similarly momentous shift from

two percent in 2000 to fifty percent in 2015.

While fracking fluid consists almost entirely of water and sand or similar mate-

rials, the remaining chemical ingredients serve many purposes and add substantial

value to the frac job (Fetter, 2019; Fetter et al., 2018). One of the most common ad-

ditives is guar gum, which is used as a gelling agent to increase fluid viscosity. This

reduces “leak-off” into the surrounding rock formation (thus reducing the amount

of fluid needed for a given job) and carries sand deeper into the wellbore (thus

increasing hydrocarbon return flow). Between 25–50 percent of fracking operations

rely on guar gum, making it “at least two to three times preferred over synthetic
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[alternatives]” (Elsner and Hoelzer, 2016).

Guar gum is derived from seeds of the guar plant through a combination of

heat and scouring to remove the hard outer shell, followed by milling into “splits”

that are ground to powder. Guar is a drought-resistant legume primarily cultivated

in the semi-arid northwestern tracts of the Indian subcontinent (Kuravadi et al.,

2013). The plant tolerates relatively high temperatures and requires only sparse but

regular rainfall, which makes the rain patterns associated with the monsoon in this

region ideal for cultivation (Mudgil et al., 2011). Guar—whose name means “cow

food”—has traditionally been cultivated as both fodder and a vegetable crop. It

grows well in many different types of soil, and its nitrogen-fixing potential combined

with its relatively short time to harvest make it an excellent soil-improving crop that

fits conveniently into crop-rotation cycles.

India accounts for approximately eighty percent of global production (National

Rainfed Area Authority, 2014).6 The country aso occupies a dominant role in the

global trade of guar gum, nearly all of which is processed domestically. Within India,

guar is produced almost exclusively in the northwest, chiefly in parts of Rajasthan,

as well as in Haryana and Gujarat (Figure 1). Cultivation is relatively decentralized,

and the crop is grown by thousands of small and marginal farmers. While precise

data on growing practices are unavailable, industry experts believe most guar is

rainfed, and farmers typically plant it as a secondary crop on small subsistence plots

(Beckwith, 2012).

Although guar gum has long been used in a variety of industries, the dramatic

growth of fracking in the US resulted in an unprecedented expansion of guar pro-

duction in India.7 Figure 3 shows the mean annual wholesale price of guar in India

between 2001 and 2016. Starting in 2009, the price of guar increased by nearly

1,000 percent relative to its level at the start of the decade. Figure 4 highlights trends

in India’s exports of guar gum over a similar period. Panel a of this figure shows

that India’s exports comprised about one-third of the global trade in guar gum at the

start of the decade; near the height of the US fracking boom in 2012, nearly ninety

percent of this trade originated in India. Panel b shows that the weight of India’s

guar gum exports more than tripled over the same period.

6Neighboring Pakistan is responsible for approximately fifteen percent of global production.
7As we show in Appendix A using village-level nighttime luminosity data, the start of the fracking

boom led to large increases in economic activity across guar-growing regions.
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3 Conceptual framework and empirical strategy

In this section, we highlight three main hypotheses that connect access to electricity

with household-level labor supply. We then describe our empirical strategies and

comment on the identifying assumptions implicit in each.

3.1 Electrification and labor supply

There are three main pathways through which electrification can affect households’

labor-supply decisions. One popular argument relates to the time burden imposed

by home production activities, such as collecting and preparing traditional fuels

for cooking and heating. If electricity can be used for these purposes instead, it

frees up household members’ time for engaging in market activities. In practice,

exclusive reliance on electricity for cooking is uncommon in low- and middle-income

countries, and use of traditional fuels such as firewood is widespread, including

among electrified households (e.g., Barron and Torero, 2017; Pattanayak et al., 2019).

In such settings, electricity access is unlikely to significantly influence households’

time allocation in this way.

A second prominent argument relates to the provision of lighting and its effect on

total working hours. If electric lighting can enable households to allocate domestic

activities that require good lighting to evening hours, daylight time can be allocated

to activities that generate income. Yet households in many rural areas have already

transitioned away from low-quality kerosene lighting to relatively high-quality

electric lamps powered by small-scale batteries (Bensch et al., 2017). The additional

benefits of electric lighting delivered by the grid in such settings are unlikely to be

large.

A third channel—and one that is the focus of our paper—relates to the productive

potential of income-generating activities that the household can conduct. Specifically,

electrification may increase the productivity of activities that do not necessarily

require electricity, such as water collection or sewing. It may also enable new

opportunities to engage in activities that were previously not possible, such as

soldering, metalworking or industrial production. Together, these can influence the

effective wage the household faces, which changes the opportunity cost of leisure.

Households already engaged in income generation may also reallocate hours to new

types of work.

However, if household productivity is determined jointly by access to electricity
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and complementary community- and household-level factors (such as local weather

conditions, access to markets, and households’ stock of education and health), any

improvement in electrification alone may have very little impact on households’ labor

allocation.8 Prior experimental and quasi-experimental evaluations of the impact of

electrification have typically ignored these context-specific complementarities. Our

setting allows a unique opportunity to shed new light on this question.

3.2 Regression discontinuity design

A before–after comparison of labor-market outcomes in electrified villages located

in booming guar-growing districts is unlikely to yield a causal estimate of the impact

of electrification in the presence of complementary economic conditions for three

reasons. First, this approach lacks a suitable “non-boom” control. Second, it neglects

heterogeneity within the set of electrified villages. Larger electrified villages, for

instance, are also likely to have better access to schools and health facilities, both

of which can directly influence labor-force productivity. Finally, this approach fails

to account for changes in other factors over the course of the decade that can act

as confounders. A cross-sectional comparison of electrified boom villages with

electrified non-boom villages would yield similarly unreliable estimates. Indeed,

most guar-growing districts are located in Rajasthan, which, despite the recent boom,

remains one of India’s poorest states. A simple ex post comparison would likely

provide an underestimate of the impact of electrification.

Our empirical strategy exploits a population-based threshold that guided the

roll-out of India’s rural electrification scheme as part of a village-level RD design.

Villages in districts approved under RGGVY Phase I were eligible for electrification

if they contained a habitation with at least 300 people. Indian villages, however, can

contain multiple habitations—typically between one and three—which complicates

identification. For instance, a village with a relatively large population may have been

ineligible under RGGVY if its population was spread out over multiple habitations; a

less populous (but more concentrated) village may have been electrified. A village’s

overall population can, thus, be a poor measure of its RGGVY eligibility. Without

additional information on sub-village habitation characteristics, comparing villages

with overall populations above the RGGVY threshold to villages with populations

just below it is unlikely to yield an accurate estimate of the impact of electrification.

8We illustrate this using a simple model of electrification and household time allocation in

Appendix B.
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To address this concern, we restrict our nationwide sample of villages to single-

habitation villages, following the empirical approach developed by Burlig and

Preonas (2016). This allows us to estimate the local average treatment effect (LATE)

of electrification on labor-market outcomes for villages with overall populations

close to RGGVY’s 300-person eligibility threshold. Specifically, we focus only on

single-habitation villages in RGGVY Phase I districts with a population within a

suitable bandwidth of 300. This allows us to account for endogeneity of district

selection into the two phases of RGGVY and ensure that electrified villages (with

populations just above the threshold) are comparable to unelectrified ones (with

populations just below it). To measure the importance of complementary economic

factors within this sample, we compare the impacts of rural electrification in villages

located in boom districts to the impacts of electrification in villages located in

non-boom districts.

More formally, we rely on an RD design to estimate

ypost
vd =β1Tv +β2TvGd (1)

+β3P̃2001
v +β4TvP̃2001

v +β5GdP̃2001
v +β6TvGdP̃2001

v

+β7ypre
vd + γd + εvd

for −b � P̃2001
v � b. ypost

vd represents a post-electrification outcome of interest for

village v located in district d; P̃2001
v ≡ P2001

v − 300 (where P2001
v is its population

in the 2001 Census round); and b denotes a suitable population bandwidth around

RGGVY’s 300-person eligibility threshold. Our preferred specification uses a

bandwidth of fifty people on either side of this cutoff. Tv is a binary variable that

equals one if P2001
v > 300, i.e., the population of village in v in 2001 is above

RGGVY’s eligibility threshold. Gd is a binary variable that equals one if village v is

located in a guar-growing boom district. ypre
vd is the pre-electrification value of the

outcome variable. γd represents a district fixed-effect, which allows us to control

for all time-invariant district-specific characteristics that can independently induce

variation in the level of the outcome of interest. εvd is a village-specific error term.

We cluster standard errors by district to allow for correlated unobservables between

villages that are located nearby and, in line with RGGVY’s implementation structure,

served by the same district-level electrification agency.

In Equation (1), β1 represents the LATE of electrification in villages in non-boom

regions. Our parameter of interest is β2, which represents the additional effect of

electrification in villages affected by the guar boom. If β̂2 is statistically different
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from zero, we conclude that the LATE for electrification in boom regions is different

from that in the rest of India. Conditional on the inclusion of district fixed-effects, this

highlights the degree to which complementary economic conditions—in this case,

generated by the exogenous guar boom—augmented the impact of electrification.

Identification relies on continuity of potential outcomes in village population

(our running variable) at the RGGVY eligibility threshold. This assumption is

plausible if (i) villages are not able to manipulate their population levels—either in

actuality or in administrative reporting—to influence RGGVY eligibility; and (ii) all

observable and unobservable village-level covariates that may be correlated with our

outcomes of interest change smoothly at the threshold. The former is unlikely to be

a concern as RGGVY used figures from the 2001 round of the Population Census—

which predated the announcement of RGGVY by at least four years—to gauge

eligibility (Burlig and Preonas, 2016). Nevertheless, we use the RD manipulation

testing procedure developed by Cattaneo et al. (2018, 2019) to empirically check for

bunching at the cutoff and find no evidence to suggest that this is the case (Figure 5).

The latter component of this assumption, that all village-level covariates change

smoothly at the threshold, is fundamentally untestable. That said, we provide

evidence in support of it by examining the pre-RGGVY distribution of key village-

level characteristics around the cutoff. We find no evidence of discontinuous changes

at the 300-person mark prior to RGGVY implementation (Table E2). We are also

aware of no other social program in India that uses RGGVY’s 300-person habitation-

level eligibility criterion.9

3.3 “Quadruple-differences” estimator

To highlight potential mechanisms, we use repeated cross-sectional data covering all

non-farm establishments across India. Specifically, we exploit variation between es-

tablishments in (i) boom and non-boom districts; (ii) districts selected and bypassed

for electrification under RGGVY Phase I; (iii) boom and non-boom industries (as in-

dicated by an industrial classification code); and (iv) the pre- and post-electrification

periods to estimate a quadruple difference-in-differences (“quadruple-differences”)

specification.

9To the best of our knowledge, the only other program that uses habitation-level population data

to decide eligibility is the Pradhan Mantri Gram Sadak Yojana (PMGSY), a rural roads program that

connected villages containing a habitation with at least 500 people to India’s road network. Given

our fifty-person bandwidth around RGGVY’s 300-person threshold, all villages in our sample would

have been ineligible for PMGSY.
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Consider the following regression:

yi jdt =β1

(
Boomd × Ind j

)
+β2

(
RGGVY d × Ind j

)
(2)

+β3

(
Boomd ×RGGVY d × Ind j

)
+β4

(
Ind j ×Postt

)
+β5

(
Boomd × Ind j ×Postt

)
+β6

(
RGGVY d × Ind j ×Postt

)
+β7

(
Boomd ×RGGVY d × Ind j ×Postt

)
+ γ j + γdt + εi jdt ,

where yi jdt represents an outcome of interest for establishment i in industry j in

district d in year t. Boomd is a binary variable that equals one if district d is a guar-

growing boom district; RGGVY d is a binary variable that equals one if district d

was selected for electrification under RGGVY Phase I; Ind j is a binary variable that

equals one if establishment i operates in an industry related to the boom; and Postt is

a binary variable that equals one if year t is in the post-electrification period, and zero

otherwise. γ j is an industry fixed-effect that controls for time-invariant differences

between establishments in different industries, γdt is a district–year fixed-effect

that controls for district-specific time trends, and εi jdt is an establishment–year-

specific error term. We cluster standard errors at the industry level to account for

intra-industry correlation in establishment-level characteristics nationally.

Our parameter of interest is β7, the quadruple-differences estimand that indicates

the impact on boom-industry establishments located in boom districts selected for

electrification under RGGVY Phase I. One might be concerned that changes in

these industries or districts occur at the expense of establishments in other areas.

To evaluate this possibility, we formally compare estimates for our key parameter

with other estimated coefficients, which highlight changes in other industry–district

groups over time.

It is worth noting that the quadruple-differences specification in Equation (2)

entails considerably weaker identifying assumptions than the conventional difference-

in-differences design. Identification would be threatened only by a district–industry-

specific time effect (i.e., a shock that alters establishment-level outcomes over

time only for boom-industry establishments located in boom districts that were

selected for RGGVY Phase I). While this is possible, we contend that it is unlikely in

practice. We are aware of no change in industrial policy over this period, for instance,

that specifically targeted establishments on the basis of their respective industrial

classification codes, which we use to identify and delineate boom industries, much

less one that did so for establishments only in guar-growing boom districts included

in RGGVY Phase I.
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4 Data

We rely on four main sources of data. First, we use technical reports published by

the governments of India and the US to identify India’s main guar-growing districts.

We complement these with information on the roll-out of rural electrification in India

to identify districts approved for electrification under RGGVY Phase I. Next, we

obtain data on the composition of the village-level labor force from multiple rounds

of India’s Population Census. Finally, we use multiple rounds of the Economic

Census to obtain establishment-level data on size, sectoral composition and total

employment.

4.1 Guar production

We review three separate technical reports on guar production to identify guar-

producing districts that were affected by the start of the US fracking boom. Two of

these—prepared by the Agricultural and Processed Food Products Export Develop-

ment Authority (2011) and the National Rainfed Area Authority (2014)—represent

efforts by the Indian government to systematically quantify and summarize the na-

tionwide production and trade of guar.10 The third—prepared by the US Department

of Agriculture—signals the growing interest the agency took in guar production as

the crop grew to become India’s main agricultural export to the US (Singh, 2014).

For each of these technical reports, we create a list of districts that are charac-

terized as key producers of guar on the basis of overall production and area under

cultivation (Table E1). We designate a district as a guar-growing district for the

purposes of our analyses if it appears on at least two of these lists. Based on district

boundaries at the time of the 2011 Population Census, we identify 23 districts in this

way: thirteen in Rajasthan, six in Gujarat, and four in Haryana (Figure 1). We refer

to these districts as India’s “boom districts” or “boom regions.” In 2011, these 23

districts were home to nearly sixty million people living over an estimated area of

300,000 km2—roughly equal to Italy in terms of population and size.

To validate our selection of these districts, we also estimate their share in total

reported guar production and area under cultivation using national data from the

10The Agricultural and Processed Food Products Export Development Authority (APEDA), housed

within the Ministry of Commerce and Industry, supports the development of industries related to

products with export potential. The National Rainfed Area Authority (NRAA) is housed within the

Ministry of Agriculture and Farmers’ Welfare, and provides technical advice and monitoring for

government schemes in rural areas with significant levels of rainfed agriculture.
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Ministry of Agriculture on annual district-wise production of the crop.11 While

these district-level production statistics provide a useful check, their quality is

insufficient to serve as a principal data source. For instance, districts in the state of

Haryana—consistently referred to in technical reports as one of the most important

guar-producing states in India after Rajasthan—have non-missing data on guar

production only for 2012. At the same time, other districts in regions of India not

known for guar production consistently report trivial amounts of production for

multiple years in the sample. Nevertheless, we find that the guar-growing districts

we identify accounted for 84 percent of guar production and 91 percent of area under

guar cultivation in 2005 (the year RGGVY was launched).

4.2 Rural electrification

As mentioned previously, we identify Phase I districts for which DPRs were success-

fully submitted and approved using state-level five-year-plan progress reports for

RGGVY.12 To identify villages within these districts that met RGGVY’s habitation-

level eligibility threshold, we obtain habitation-level population data from the census

of habitations conducted by the National Rural Drinking Water Program (NRDWP)

in 2009.13 Because the NRDWP data indicate only the name—and not the unique

Census code—for each habitation’s corresponding village, we use a name-based

matching algorithm to match it with a list of Census-designated villages. We suc-

cessfully match 94 percent of the approximately 560,000 villages listed in the 2001

Population Census to their constituent habitations using a combination of exact (75

percent of matched names) and fuzzy matches that incorporate a fuzzy-matching

algorithm originally developed by Asher and Novosad (2020).14

To further validate the quality of these matches, we calculate the discrepancy

between the Census 2011 population for each village and the NRDWP 2009 popu-

lation estimate that we obtain from summing the population over all habitations in

a village. We drop all villages with a Census–NRDWP population discrepancy of

11These data are available via the Ministry of Agriculture’s Crop Production Statistics Information

System at https://aps.dac.gov.in/APY/Index.htm.
12For each state, these reports—entitled “Report C-Physical & Financial Progress of RGGVY

Projects Under Implementation (Plan-wise)”—list the district name and DPR code, the name of the

district-level local implementing agency, and details about the financial scope of the project and

progress towards meeting village- and household-level electrification targets. They are available via

the website of the Deendayal Updhayaya Gram Jyoti Yojana (DDUGJY)—into which RGGVY was

ultimately subsumed—at http://www.ddugjy.gov.in/.
13The NRDWP census of habitations was first conducted in 2003 and again in 2009. The 2003

data are no longer publicly available; the 2009 data are available at https://ejalshakti.gov.in/.
14We describe our habitation–village matching procedure in detail in Appendix C.
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greater than twenty percent; these, we assume, are incorrect matches. This leaves us

with approximately 370,000 villages.

Our name-matched dataset consists of village-level identifiers (i.e., state, district,

subdistrict and village names, and their corresponding Census codes), village-level

count of habitations, village population, and population of the largest habitation.

The average village in this sample contains three habitations; about 47 percent of

villages contain exactly one habitation.

To obtain the analytical sample with which to estimate Equation (1), we impose

three key restrictions. First, we restrict our sample to villages in only RGGVY Phase

I districts. Recall that village-level electrification in these districts had largely been

completed in advance of the 2011 Population Census, which serves as one of our

main data sources. Because district selection into the two phases of RGGVY is

endogenous, villages in Phase II districts would not serve as suitable controls for

those in Phase I districts. Second, we omit all villages with more than one habitation,

which allows us to more precisely gauge village-level electrification under RGGVY’s

300-person population-based eligibility criterion. Finally, we look only at villages

with a Census 2001 population within a fifty-person bandwidth of the RGGVY Phase

I threshold, which ensures that electrified villages (with populations just above the

threshold) are comparable to unelectrified ones (with populations just below it). This

yields 7,655 villages located across 22 Indian states; 148 of these villages are located

in boom districts.

4.3 Rural labor-market outcomes

Our data on the make-up of the rural labor force come from two sources. First, we use

the 2001 and 2011 rounds of the Population Census. Specifically, the Primary Census

Abstract (PCA) data tables in the Census report information by gender on three

distinct village-level subgroups: (i) “main workers,” who engage in any economically

productive activity for at least six months per year; (ii) “marginal workers,” who do

so for less than six months per year; and (iii) “non-workers,” who do not engage in

any economically productive activity. Within the first two subgroups, workers are

further categorized as cultivators, agricultural laborers, household-industry workers,

or “other.” A person is classified as a cultivator if they are engaged in cultivation

of land that they own or lease, implying that they bear the risks associated with

cultivation. In contrast, a person is classified as an agricultural laborer if they work

on another person’s land for payment. In rural areas, a household industry is defined
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as “production, processing, servicing, repairing, or making and selling (but not

merely selling) of goods” that is done by one or more members of a household

within the confines of the village. Finally, “other” workers include professions such

as government employees, teachers and traders.15

For each village–year in our Census panel, we combine cultivators and agricul-

tural laborers (both main and marginal) to calculate the population of agricultural

workers, overall and by gender. We similarly combine household-industry and other

workers to obtain corresponding figures for the village-level population of non-

agricultural workers. These data—together with information on village population

as well as the breakdown of that population into workers and non-workers—allow

us to evaluate impacts along two dimensions: (i) the extensive margin, i.e., the net

change in the overall labor force as a percentage of the village population; and (ii) the

sectoral composition of the labor force, i.e., the relative shares of agricultural and

non-agricultural workers.

We complement these data with figures on total village-level employment derived

by Asher et al. (2019) from multiple rounds of the Economic Census (EC) of India.16

The EC is an enumeration of all non-farm establishments (including informal firms,

service-sector firms, and publicly-owned firms) conducted in 1990, 1998, 2005 and

2013. While not perfectly analogous to the employment statistics that we derive

from the Population Census, these figures allow us to evaluate labor-market impacts

and trends over a longer time period.

4.4 Establishment-level data

We turn to the EC again for establishment-level data. Specifically, we use the 2005

(fifth) and 2013–14 (sixth) rounds of the EC to obtain information on total number

of employees and industrial classification—as indicated by a National Industrial

Classification (NIC) code—for all establishments in India.17 Together, the two

EC rounds list approximately 100 million establishments nationwide. We first use

geographic concordance tables developed by Asher et al. (2019) to match around 96

percent of these establishments to 2011 district boundaries. As the 2005 EC used a

prior version of the NIC system, we then use concordance tables developed by India’s

Central Statistical Organization (2008, p. 129) to link the industrial classification

15Additional information about these definitions is available at http://www.censusindia.gov.in/

2011census/HLO/Metadata_Census_2011.pdf.
16These are available at http://devdatalab.org.
17These data are available from the Ministry of Statistics and Program Implementation at http:

//www.mospi.gov.in/economic-census-3.
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systems used in the two EC rounds. These steps yield a repeated cross-section of

over 96 million establishments (operating in 196 different industries) with which to

study changes in the nature and composition of establishments in response to the

roll-out of rural electrification and the start of the guar boom. The mean (median)

establishment in this sample had 2.7 (2) employees.

To delineate industries that are likely to have been directly affected by the guar

boom, we use the 2013 EC “Directory of Establishments” for Rajasthan, which lists

the names of all establishments in the state with ten or more employees. We first

identify the NIC codes corresponding to establishments that are easily recognized

as guar-processing units because their names contain variants of the word “guar.”

We then conduct a detailed review of the breakdown of NIC codes prepared by

the Central Statistical Organization (2008) to identify additional codes that can

contain guar-processing units. Ultimately, we identify five three-digit NIC codes

that can contain industrial units most directly related to guar processing.18 Together,

these represent approximately four percent of all establishments—and six percent of

establishments with ten or more employees—in India.

5 Short-term impacts of electrification

In this section, we estimate how rural electrification affected the size and composition

of the labor force across boom and non-boom regions of India in the short run. We

measure these effects using data on population and employment at the village level

from the Population Census. We find no evidence to suggest that electrification

had a net effect on total employment in villages located within India’s booming

guar-growing regions. At the same time, electrification led to a large shift from

agricultural to non-agricultural employment in these villages. In contrast, we find no

evidence that electrification had any discernible short-run impact on labor-market

outcomes in villages located in the rest of the country.

18As per the 2008 NIC system, these are: (i) Support activities to agriculture and post-harvest

crop activities (016); (ii) Manufacture of basic chemicals, fertilizer and nitrogen compounds, plastics

and synthetic rubber in primary forms (201); (iii) Manufacture of prepared animal feeds (108);

(iv) Manufacture of non-metallic mineral products (239); and (v) Wholesale of agricultural raw

materials and live animals (462).
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5.1 Total employment

We begin by studying the short-run impacts of electrification on the total number

of workers (agricultural and non-agricultural workers together) as a share of vil-

lage population. Panel (a) of Figure 6 plots the predicted share of total workers

from the 2011 round of the Population Census just above and below the RGGVY

threshold separately for villages located in boom and non-boom regions. This figure

graphically depicts the results from the RD specification outlined in Equation (1).

It suggests that electrification had no discernible short-run effect on the size of the

labor force in villages in either boom or non-boom regions.

The regression results presented in Table 1 support these findings and attach a

magnitude to the effects. The estimate in the first row of this table represents the

effect of electrification in non-boom districts; as the indicator variable suggests,

these villages are located just above RGGVY’s eligibility threshold. The estimate in

the second row, the interaction of the preceding parameter with the indicator variable

for being located in a boom district, represents the degree to which the impact of

electrification is augmented by complementary economic factors in India’s booming

guar regions. Column (1) reports the main RD estimates for these two parameters

for the overall working population in 2011. The magnitude of the estimates is small.

In non-boom villages, for instance, the results point to a reduction in the overall

size of the workforce by 0.8 percentage points (s.e. 0.6), an imprecisely estimated

decrease of less than two percent. The estimated coefficient for the additional effect

in electrified boom villages in the second row is similarly small. Importantly, neither

of these results is statistically significant at conventional levels, and we are unable

to reject the hypothesis that access to electricity had no short-run effect on total

employment. Columns (2) and (3) of Table 1 report the same specification estimated

separately for the share of male and female workers in 2011, respectively. The

estimates are similar: electrification had no discernible short-run effect on male or

female employment in both boom and non-boom villages.

Taken together, these results suggest that, on net, households did not respond

to electrification by adjusting their labor choices along the extensive margin in the

short run.19 Although we cannot rule out that large-scale entry and exit of workers

19We also examine the extent to which electrified villages experience large-scale in-migration. We

do this by testing for discontinuous changes in the 2011 population of these villages. We find that

at the RGGVY threshold, electrified villages exhibit a discontinuous increase in population, driven

entirely by an increase in the male population (Table E3). However, the magnitude of this change

is small (an average increase of approximately three people, or less than one percent relative to the

sample mean). Thus, we rule out that electrified villages are on the receiving end of large-scale
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in response to electrification may have taken place, these findings stand in contrast

to those from earlier work (e.g., Dinkelman, 2011) that suggests that access to

electricity can increase net labor-force participation (especially for women).

5.2 Sectoral composition of employment

We next study the short-run impacts of electrification on the sectoral composition of

the rural labor force (agricultural and non-agricultural workers separately). Specifi-

cally, we use data on the village-level population of agricultural and non-agricultural

workers from the 2011 Population Census to study how the relative sizes of these

two sectors changed in response to rural electrification.20

We find that electrification substantially reduced the share of the agricultural

labor force and increased the share of the non-agricultural labor force in boom vil-

lages in the short run. Table 2 provides numerical results from estimating Equation

(1) separately for these subgroups. Electrification reduced the share of agricultural

workers in the population of non-boom villages by 1.2 percentage points (s.e. 0.6)

relative to a sample mean of approximately 36 percent (column 1). Boom villages,

in contrast, experienced an additional reduction in this share of over six percentage

points (s.e. 1.7). In other words, complementary economic factors led to an approx-

imately fivefold augmentation in the impact of electrification on the share of the

agricultural labor force. Comparing the estimates in the third row for male (column

2) and female (column 3) agricultural workers suggests that the magnitude of this

effect was especially large for women. The economic boom augmented the reduction

in the share of male agricultural workers due to electrification by 2.9 percentage

points (thirteen percent) and that of female agricultural workers by 3.3 percentage

points (24 percent).

Columns (4)–(6) of Table 2 report corresponding estimates for the non-agricultural

labor force. The first row shows that electrification appears to have had no discernible

short-run impact on the share of the non-agricultural workforce in villages in non-

boom districts. In contrast, column (4) shows that electrification in boom villages

increased the size of the non-agricultural labor force by an additional 5.5 percentage

points (s.e. 1.2), representing a seventy percent increase relative to the sample

mean. This increase is nearly identical to the reduction in the share of agricultural

workers in column (1). The second row of columns (5) and (6) shows that this effect

is, once again, driven especially by the female workforce. As shown in column

in-migration due to electrification.
20We describe how we derive these figures from the Population Census in Section 4.3.

19



(6), electrification in boom villages increased the share of female non-agricultural

workers by over three percentage points (s.e. 1.2), more than doubling the share

relative to the sample mean. For male agricultural workers, the 2.3 percentage point

(s.e. 1.1) additional increase represents an increase of just under 45 percent.

More broadly, comparing the results for electrified boom and non-boom villages

in Table 2 shows that while the estimated coefficients for the impact of electrification

in non-boom villages generally have the same signs as those for boom villages, the

former are considerably smaller in magnitude and largely indistinguishable from

zero. In contrast, electrification appears to have resulted in a large structural shift

away from agricultural work and into non-agricultural employment in boom villages,

where complementary economic conditions were present. Panels (b) and (c) of Figure

6 graphically represent the results from our RD specification for agricultural and

non-agricultural workers, respectively, and visually highlight the large differences in

impact across the two settings for these subgroups.21

5.3 Complementary economic conditions or regional effects?

Boom districts, which are home to guar production, could differ from the rest of

India along a variety of metrics that induce variation in labor-market outcomes

independent of rural electrification (e.g., literacy rates). The inclusion of district

fixed-effects in the RD specification outlined in Equation (1) controls for all such

unobserved spatial differences. We also find that villages in boom and non-boom

districts were statistically indistinguishable in 2001—before the guar boom or rural

electrification—along a host of key socioeconomic indicators (Table E4).

However, these district-specific characteristics might also have interacted with

rural electrification in regionally distinct ways. In particular, recall that all of the

booming guar-growing districts are located in either Rajasthan, Haryana or Gujarat

(as shown in Figure 1). Among other things, these three neighboring states share

a distinct hot, semi-arid climate, which could have differentially affected the roll-

out of RGGVY Phase I in the region and driven the results reported in Table 2.22

Additionally, institutional capacity in these states, which can also influence how

effectively RGGVY was implemented, may have been regionally distinct as well. If

this is the case, our analyses might simply reflect a “northwestern-India effect.”

21Figure D1 shows results from regressions employing an alternative, non-linear functional form.
22Specifically, Rajasthan, Gujarat and Haryana lie nearly entirely within the hot desert (BWh) and

hot semi-arid (BSh) climatic zones, as per the Köppen–Geiger climate classification system (Beck et

al., 2018).
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To test this, we turn to a randomization-based inference procedure (Athey and

Imbens, 2017). We randomly select “placebo” boom districts from all (boom and

non-boom) RGGVY Phase I districts in Rajasthan, Haryana and Gujarat, then re-

estimate Equation (1) and collect the placebo estimate for β̂2, our coefficient of

interest. We repeat this process 1,000 times for each of the main outcomes reported

in Table 2 to obtain a distribution of placebo estimates for β̂2 for each dependent

variable.

Figure 7 shows these distributions and highlights their 90 and 95 percent confi-

dence intervals. If the differential effect of electrification on the share of agricultural

and non-agricultural workers that we observe in boom districts was due to a regional

effect common to all RGGVY Phase I districts in Rajasthan, Haryana and Gujarat,

we would expect to find our actual estimated values for this parameter from Table

2—indicated by the dashed vertical lines in Figure 7—near the middle of these

distributions. Instead, the actual estimates of β̂2 are extreme values outside the 95

percent confidence intervals of these distributions in all cases. That is, any other

configuration of RGGVY Phase I districts in these three northwestern states is highly

unlikely to yield estimates that are as large in magnitude. This strongly suggests that

it is indeed the advent of the guar boom and its interaction with the roll-out of rural

electrification as part of RGGVY Phase I that drives the results we observe.23

5.4 Robustness checks

We check the robustness of our main results in four ways. Note that in constructing

the sample of single-habitation villages for our main RD analyses, we made two key

choices: (i) during our village–habitation name-matching procedure, we discarded

any village with a discrepancy of greater than twenty percent between its total Census

2011 population and its total NRDWP 2009 population (calculated by combining

the population in each of its matched habitations); and (ii) we restricted our sample

to villages within a fifty-person bandwidth of RGGVY’s 300-person eligibility

threshold. We thus start by testing the sensitivity of our main results to each of these

choices.

23If there was considerable national-level heterogeneity in the impacts of rural electrification, it is

also possible that any random subset of RGGVY Phase I districts from across India could potentially

exhibit the differential impacts that we identify in Table 2. In other words, it could be the case that

we observe the results that we do simply by chance. To test this, we run a similar randomization

inference test in which we draw placebo boom districts from all RGGVY Phase I districts across the

entire country. Figure D2, shows that our actual estimates of β̂2 are extreme values outside the 90 or

95 percent confidence intervals of these distributions in all cases, reinforcing our conclusion that the

results in Table 2 are indeed driven by the interaction of the economic boom and rural electrification.
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First, we estimate Equation (1) allowing for increasingly greater levels of pop-

ulation discrepancy in our sample but keeping fixed our preferred fifty-person RD

bandwidth. Figure D3 shows how β̂2, our coefficient of interest, evolves as we relax

our definition of what we consider a successful match, thereby increasing the size of

the underlying analytical sample. As the sample expands to contain an increasing

number of villages that are unlikely to have been good matches, the magnitude of β̂2

generally attenuates gradually as expected. In particular, we do not observe erratic

changes in the magnitude of this coefficient.

We then fix the sample population discrepancy rate at our preferred level of

twenty percent and vary the size of the RD bandwidth around RGVVY’s 300-person

eligibility threshold. Figure D4 shows how β̂2 evolves as the RD bandwidth widens.

Once again, as the analytical sample expands to contain an increasingly dissimilar

number of villages on either side of the RGGVY eligibility threshold, the magnitude

of β̂2 attenuates smoothly.

Next, we use RGGVY Phase II districts in India to conduct a placebo test.

Specifically, using only those districts of India that were not approved for rural

electrification as part of RGGVY Phase I, we estimate Equation (1) for the overall

share of all workers, agricultural workers and non-agricultural workers in the village

population.24 As large-scale roll out of rural electrification did not occur in these

districts over the period covered by our data, we should not expect to see an impact

of a village’s 2001 population being above RGGVY’s eligibility threshold in either

boom or non-boom districts. Table E5 confirms this intuition.

Finally, we adjust our inference to account for multiple hypothesis testing using

the free step-down resampling methodology of Westfall and Young (1993). This

bootstrap-based procedure controls the family-wise error rate (the probability of a

type I error when testing a “family” of hypotheses).25 We combine all regressions

reported in Tables 1 and 2 into a family of hypotheses and use this approach to

control the family-wise error rate associated with β̂2. Table E6 reports that our

main result—that electrified villages in guar-growing districts see a large reduction

in the share of agricultural workers and a corresponding increase in the share of

non-agricultural workers relative to electrified villages in non-guar districts—is

robust to this adjustment.

24As shown in Figure 1, twelve non-RGGVY Phase I districts are also guar-growing districts.
25See Jones et al. (2019) for a detailed description of how this is implemented.
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6 Longer-term impacts of electrification

We turn next to data on total village-level employment derived by Asher et al. (2019)

from the 1990, 1998, 2005 and 2013 rounds of the Economic Census (EC) of India.

The EC is an enumeration of all non-farm establishments (including informal firms,

service-sector firms, and publicly-owned firms) in the country. While not perfectly

analogous to the total employment figures that we derive from the Population Census,

these data allow us to evaluate the labor-market impacts of electrification beyond the

time period covered by the 2011 Population Census.

Using a compound annual growth rate approach applied to data from the 2001

and 2011 rounds of the Population Census, we first impute village-level population

in 1990, 1998, 2005 and 2013 for each village in our sample. We then calculate the

share of workers in each village’s population in each year, which we use to estimate

a modified version of the RD specification outlined in Equation (1) separately for

each EC round.26

Table 3 presents our results. As shown in the first row of column (1), we find

that the impact of electrification on employment in non-boom villages in 2013 (ap-

proximately eight years after the launch of RGGVY) is statistically indistinguishable

from zero, consistent with the results presented in Table 1. In contrast, the second

row of this column shows that electrification had increased the share of workers in

villages in boom districts by an additional nine percentage points (s.e. 4.3) during

the same period, over 1.5 times the sample mean.

We next estimate the same specification separately using data from the 1990,

1998 and 2005 rounds of the EC as part of a series of falsification tests. As these

EC rounds cover the pre-boom/pre-electrification period, we should not expect to

observe discontinuous changes in the share of workers in either boom or non-boom

villages located above and below RGGVY’s 300-person eligibility threshold in these

years. The results presented in columns (2)–(4) of Table 3—covering the 1990, 1998

and 2005 EC rounds, respectively—confirm this intuition.

26Village-level matches between the Population and Economic Censuses are imperfect (Asher et

al., 2019). We are able to obtain information on employment for seventy to ninety percent of the

7,655 villages in our main sample, depending on the EC round. For this reason, we omit controls for

the pre-period level of the outcome variable in these regressions since missing observations across

one or more EC rounds considerably reduce the size of our analytical sample.
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7 Mechanism: Growth of complementary firms

Spatial heterogeneity in the availability of infrastructure (such as electricity from

the grid) can give rise to differences in comparative advantage and guide firm-level

investment and location decisions (e.g., Martin and Rogers, 1995). Variation in

the intensity of an unforeseen demand shock (such as the one generated by the

guar boom) can have similar effects (Adhvaryu et al., 2013). These differences

can interact and drive firm-level decisions along both the extensive and intensive

margins: firm entry/exit and firm shrinkage/growth, respectively. In this section,

we focus on how the number and size of non-farm establishments in India evolved

across boom and non-boom districts, across districts selected and excluded for

electrification as part of RGGVY Phase I, and across boom and non-boom industries

within these districts. We demonstrate that the agricultural boom led to increased

entry of small establishments—and growth in the size of large establishments—in

the guar-processing industry in electrified boom districts. This expansion in the

industrial (electricity-intensive) parts of the guar production chains helps uncover

potential mechanisms for the labor-market effects reported previously.

7.1 Proliferation of establishments

We look first at effects along the extensive margin by investigating differential trends

in the proliferation of establishments. Using data from two consecutive rounds

of the EC, we construct an industry–district-level panel by calculating the total

number of establishments in each industry in each district as a percentage of all

establishments in each district–year. We use this to estimate the specification outlined

in Equation (2) at the industry–district level. Column (1) of Table 4 reports our

results. The coefficient for the quadruple-interaction term in the last row points to a

0.2 percentage-point (s.e. 0.13) increase in the share of boom-industry establishments

in electrified boom districts, a statistically significant increase of around 45 percent

relative to the share of establishments in the average industry–district pair. We find

no evidence of such an increase in the share of establishments in any other type of

industry or in any other type of district, as shown by the coefficients reported in the

fourth, fifth and sixth rows of column (1).

Separately estimating Equation (2) for the share of small (fewer than ten em-

ployees) and large (ten or more employees) establishments in each industry–district
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reveals that this effect was entirely driven by high rates of entry of the former.27

Specifically, as shown in the last row of column (2), we find that the share of small

boom-industry establishments increased by approximately 0.2 percentage points

(s.e. 0.13) in electrified boom districts. In contrast, we find no evidence to sug-

gest a similar change in the share of large boom-industry establishments in these

districts, as shown in the last row of column (3). Once again, in both cases, we

find no evidence of an impact—of either rural electrification or of the boom—on

establishments elsewhere.

7.2 Size of establishments

We turn next to the relative sizes of establishments to shed light on establishment-

level responses along the intensive margin. Using the total number of employees

listed for each establishment in the EC as the outcome variable, we estimate the

quadruple-differences specification outlined in Equation (2) on our establishment-

level repeated cross-section. Columns (4)–(6) of Table 4 report our findings. Column

(4) shows results from estimating Equation (2) on the full sample of establishments.

We find no evidence to suggest that the size of the average establishment—either

within or outside of the boom industry—changed between 2005 and 2013.

However, columns (5) and (6), which report results from separately estimating

Equation (2) on the sample of small and large establishments, respectively, reveal

considerable underlying heterogeneity. As shown in the the last row of column (5),

we find that the size of the average small establishment in electrified boom districts

fell about approximately 0.3 employees (s.e. 0.15) between 2005 and 2013. This

is consistent with the high rates of entry of small establishments into this industry

in these districts shown in column (2), and further suggests that this prior effect is

driven by the entry of very small establishments. In contrast, the last row of column

(6) shows that large boom-industry establishments in electrified boom districts grew

on average by 19 employees (s.e. 6.5). This represents a 61 percent increase in the

size of such establishments relative to the sample mean.

Examining the other coefficients in column (6) of Table 4 provides additional

suggestive evidence of the presence of complementarities between rural electrifica-

tion and the boom. As shown in the fifth row of column (6), for instance, we find

that the size of the average large boom-industry establishment in an unelectrified

27Our definition of “small” and “large” establishments follows the convention established by

the 2013 EC “Directory of Establishments,” which is available at http://www.mospi.gov.in/sites/

default/files/6ec_dirEst/ec6_contant_page.html.
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boom district fell by approximately 9 employees (s.e. 4.7). At the same time, rural

electrification alone appears to have had no discernible impact on the size of large

boom-industry establishments located in districts unaffected by the boom, as shown

in the sixth row of this column.

Taken together, our results point to establishment-level responses to the exoge-

nous shock along both the extensive and intensive margins. Increased demand for

guar gum spurred a shift in the labor force toward industrial-scale guar processing,

which benefits from upgrades to local electricity infrastructure. Consistent with

this, we find a large increase in both the number and size of non-farm establish-

ments related to the industrial (electricity-intensive) parts of the guar production

chain, such as guar processing, in electrified boom regions. Specifically, we un-

cover evidence of entry of small establishments into boom industries. At the same

time, larger industrial units responded by increasing the scale of their operation

in regions where economic opportunity complemented the wider availability of

electricity. These trends help shed more light on the heterogeneous impacts of

electrification on employment that we present in Sections 5 and 6 by demonstrating

how interactions between infrastructure and economic contexts also guide firm- and

establishment-level decisions.

8 Conclusion

In this paper, we combine two natural experiments—an exogenous fracking-induced

commodity boom in northwestern India, and population-based discontinuities in

the contemporaneous roll-out of a massive rural electrification scheme—within a

regression discontinuity design to evaluate how the causal effect of rural electrifica-

tion on labor-market outcomes changes with exogenous variation in complementary

economic conditions. We assemble a variety of evidence from multiple large admin-

istrative datasets to reach three main conclusions. Our first finding is that, in villages

within India’s boom-affected regions, access to electricity led to a large short-run

increase in non-agricultural employment relative to agricultural employment. We

also show that this structural shift translated into an increase in total employment

over the longer term. Second, we find that these labor-market dynamics appear to

have been driven by an increase in employment by electricity-intensive industrial

units that complement guar production (such as guar-processing establishments)

near these communities. Third, we demonstrate that, on average, access to electricity

appears to have had no discernible impact on labor-market outcomes in villages
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located in the rest of India.

The main implication of these findings is that complementary economic condi-

tions and contexts are crucial for the ultimate impacts of large-scale electrification.

Proponents have long claimed that reliable electricity delivered by the grid is funda-

mental for the structural transformation of rural economies. Its potential to drive job

creation and employment growth is often central to this argument, yet the evidence

base on this point remains thin. In particular, impact evaluations are typically unable

to rigorously shed light on drivers of spatial and temporal heterogeneity. We show

that access to electricity from the grid led to large-scale structural transformation

of the rural economy in large swathes of northwestern India, which saw the simul-

taneous rise of exogenous but complementary economic opportunities. In the rest

of India, where these complementary conditions were generally lacking, grid-scale

electrification had largely negligible impacts on rural labor-market outcomes.

These results highlight the role electrification—and large-scale infrastructure,

more broadly—can play in low- and middle-income countries. Alone, such invest-

ments may be insufficient, yet built in anticipation of (and to support) other policies

and changes, large-scale infrastructure can provide a foundation for sustained eco-

nomic growth and development. In our setting, access to grid-scale electricity

allowed individuals, households, and firms to respond to rapidly changing economic

contexts in ways that potentially deliver economic benefits and improve welfare. We

believe that rigorously identifying other potential drivers of the success of large-scale

infrastructure is a promising avenue for future research.

27



References
Adhvaryu, Achyuta, A. V. Chari, and Siddharth Sharma, “Firing Costs and

Flexibility: Evidence from Firms' Employment Responses to Shocks in India,”

Review of Economics and Statistics, July 2013, 95 (3), 725–740.

Agricultural and Processed Food Products Export Development Authority,

“APEDA Agri Exchange Ready Reckoner Series: Guargum,” Technical Re-

port, Ministry of Commerce & Industry 2011. Retrieved from http://apeda.

gov.in/apedawebsite/six_head_product/Guargum_final_Profile.pdf on April

16, 2017.

Asher, Sam and Paul Novosad, “Rural Roads and Local Economic Development,”

American Economic Review, March 2020, 110 (3), 797–823.

, Tobias Lunt, Ryu Matsuura, and Paul Novosad, “The Socioeconomic High-

resolution Rural-Urban Geographic Dataset on India (SHRUG),” 2019. Working

paper.

Athey, S. and G.W. Imbens, “The Econometrics of Randomized Experiments,” in

“Handbook of Field Experiments,” Elsevier, 2017, pp. 73–140.

Banerjee, Abhijit V and Esther Duflo, “The Economic Lives of the Poor,” Journal
of Economic Perspectives, January 2007, 21 (1), 141–167.

Banerjee, Sudeshna Ghosh, Douglas Barnes, Kristy Singh Bipuland Mayer,
and Hussain Samad, Power for All: Electricity Access Challenge in India, World

Bank, 2014.

Barron, Manuel and Maximo Torero, “Household electrification and indoor air

pollution,” Journal of Environmental Economics and Management, November

2017, 86, 81–92.

Beck, Hylke E., Niklaus E. Zimmermann, Tim R. McVicar, Noemi Vergopolan,
Alexis Berg, and Eric F. Wood, “Present and future Köppen-Geiger climate

classification maps at 1-km resolution,” Scientific Data, October 2018, 5 (1).

Beckwith, Robin, “Depending On Guar For Shale Oil And Gas Development,”

Journal of Petroleum Technology, December 2012, 64 (12), 44–55.

Bensch, Gunther, Jörg Peters, and Maximiliane Sievert, “The lighting transition

in rural Africa — From kerosene to battery-powered LED and the emerging

disposal problem,” Energy for Sustainable Development, August 2017, 39, 13–20.

Bernard, Tanguy and Maximo Torero, “Social Interaction Effects and Connection

to Electricity: Experimental Evidence from Rural Ethiopia,” Economic Develop-
ment and Cultural Change, April 2015, 63 (3), 459–484.

28



Bonan, Jacopo, Stefano Pareglio, and Massimo Tavoni, “Access to modern en-

ergy: a review of barriers, drivers and impacts,” Environment and Development
Economics, July 2017, 22 (05), 491–516.

Bos, Kristine, Duncan Chaplin, and Arif Mamun, “Benefits and challenges of

expanding grid electricity in Africa: A review of rigorous evidence on household

impacts in developing countries,” Energy for Sustainable Development, June 2018,

44, 64–77.

Burgess, Robin, Michael Greenstone, Nicholas Ryan, and Anant Sudarshan,

“Demand for Electricity in a Poor Economy,” 2019. Working paper.

Burlig, Fiona and Louis Preonas, “Out of the Darkness and Into the Light? Devel-

opment Effects of Rural Electrification in India,” 2016. Energy Institute at Haas

Working Paper № WP-268R.

Cattaneo, Matias D., Michael Jansson, and Xinwei Ma, “Manipulation Testing

Based on Density Discontinuity,” The Stata Journal: Promoting communications
on statistics and Stata, March 2018, 18 (1), 234–261.

, , and , “Simple Local Polynomial Density Estimators,” Journal of the
American Statistical Association, July 2019, pp. 1–7.

Central Statistical Organization, “National Industrial Classification (All Eco-

nomic Activities),” Technical Report, Ministry of Statistics and Program Im-

plementation 2008.

Correia, Sergio, “Singletons, cluster-robust standard errors and fixed effects: A bad

mix,” 2015. Technical note.

Dinkelman, Taryn, “The Effects of Rural Electrification on Employment: New

Evidence from South Africa,” American Economic Review, December 2011, 101
(7), 3078–3108.

Duque, Valentina, Maria Rosales-Rueda, and Fabio Sanchez, “How do early-

life shocks interact with subsequent human-capital investments? Evidence from

administrative data,” 2018. Working paper.

Elsner, Martin and Kathrin Hoelzer, “Quantitative Survey and Structural Clas-

sification of Hydraulic Fracturing Chemicals Reported in Unconventional Gas

Production,” Environmental Science & Technology, March 2016, 50 (7), 3290–

3314.

Fetter, T Robert, “Fracking, Toxics, and Disclosure,” 2019. Working paper.

, Andrew L Steck, Christopher Timmins, and Douglas H Wrenn, “Learning

by Viewing? Social Learning, Regulatory Disclosure and Firm Productivity in

Shale Gas,” 2018. National Bureau of Economic Research (NBER) Working

Paper № 25401.

29



Grimm, Michael, Anicet Munyehirwe, Jörg Peters, and Maximiliane Sievert,
“A First Step up the Energy Ladder? Low Cost Solar Kits and Household’s Welfare

in Rural Rwanda,” The World Bank Economic Review, October 2017, 31, 631649.

, Luciane Lenz, Jörg Peters, and Maximiliane Sievert, “Demand for Off-Grid

Solar Electricity: Experimental Evidence from Rwanda,” Journal of the Associa-
tion of Environmental and Resource Economists, May 2020, 7 (3), 417–454.

International Energy Agency, “World Energy Outlook 2011: Energy for All,”

Technical Report, OECD/IEA 2011.

, “WEO-2015 Special Report: India Energy Outlook,” Technical Report,

OECD/IEA 2015.

Jones, Damon, David Molitor, and Julian Reif, “What do Workplace Wellness

Programs do? Evidence from the Illinois Workplace Wellness Study,” The Quar-
terly Journal of Economics, August 2019, 134 (4), 1747–1791.

Khandker, Shahidur R., Douglas F. Barnes, and Hussain A. Samad, “Welfare

Impacts of Rural Electrification: A Panel Data Analysis from Vietnam,” Economic
Development and Cultural Change, April 2013, 61 (3), 659–692.

Kuravadi, N A, S Verma, S Pareek, P Gahlot, S Kumari, U K Tanwar,
P Bhatele, M Choudhary, K S Gill, V Pruthi, S K Tripathi, K S Dhugga, and
G S Randhawa, “Guar,” in “Agricultural Sustainability: Progress and Prospects

in Crop Research,” Elsevier, 2013, pp. 47–60.

Lee, Kenneth, Edward Miguel, and Catherine Wolfram, “Does Household Elec-

trification Supercharge Economic Development?,” Journal of Economic Perspec-
tives, February 2020, 34 (1), 122–144.

, , and , “Experimental Evidence on the Economics of Rural Electrification,”

Journal of Political Economy, April 2020, 128 (4), 1523–1565.

Lenz, Luciane, Anicet Munyehirwe, Jörg Peters, and Maximiliane Sievert,
“Does Large-Scale Infrastructure Investment Alleviate Poverty? Impacts of

Rwanda’s Electricity Access Roll-Out Program,” World Development, January

2017, 89, 88–110.

Lipscomb, Molly, A. Mushfiq Mobarak, and Tania Barham, “Development Ef-

fects of Electrification: Evidence from the Topographic Placement of Hydropower

Plants in Brazil,” American Economic Journal: Applied Economics, January 2013,

5 (2), 200–231.

Litzow, Erin L., Subhrendu K. Pattanayak, and Tshering Thinley, “Returns to

rural electrification: Evidence from Bhutan,” World Development, September

2019, 121, 75–96.

30



Martin, Philippe and Carol Ann Rogers, “Industrial location and public infrastruc-

ture,” Journal of International Economics, November 1995, 39 (3-4), 335–351.

Meager, Rachael, “Understanding the Average Impact of Microcredit Expansions:

A Bayesian Hierarchical Analysis of Seven Randomized Experiments,” American
Economic Journal: Applied Economics, January 2019, 11 (1), 57–91.

Mudgil, Deepak, Sheweta Barak, and Bhupendar Singh Khatkar, “Guar gum:

processing, properties and food applications—A Review,” Journal of Food Science
and Technology, October 2011, 51 (3), 409–418.

National Rainfed Area Authority, “Potential of Rainfed Guar (Cluster beans)

Cultivation, Processing and Export in India,” Technical Report, Ministry of

Agriculture & Farmers Welfare 2014. Retrieved from http://nraa.gov.in/pdf/

Rainfed-guar-final-pdf.pdf on April 16, 2017.

Orr, Isaac, “Hydraulic Fracturing: A Game-Changer for Energy and Economies,”

in “Alternative Energy and Shale Gas Encyclopedia,” John Wiley & Sons, Inc.,

April 2016, pp. 700–719.

Pattanayak, S. K., M. Jeuland, J. J. Lewis, F. Usmani, N. Brooks, V. Bhojvaid,
A. Kar, L. Lipinski, L. Morrison, O. Patange, N. Ramanathan, I. H. Rehman,
R. Thadani, M. Vora, and V. Ramanathan, “Experimental evidence on promo-

tion of electric and improved biomass cookstoves,” Proceedings of the National
Academy of Sciences, May 2019, 116 (27), 13282–13287.

Rai, Durgesh K, “Trends and Economic Dynamics of Guar in India,” 2015. Indian

Council for Research on International Economic Relations Working Paper № 311.

Singh, Santosh K., “An Analysis of Guar Crop in India,” Technical Report, United

States Department of Agriculture 2014.

United Nations, “Transforming our world: the 2030 Agenda for Sustainable De-

velopment,” Technical Report A/RES/70/1, United Nations General Assembly

2015.

Usmani, Faraz, Marc Jeuland, and Subhrendu K. Pattanayak, “NGOs and

the effectiveness of interventions,” May 2018. UNU-WIDER Working Paper

№ 59/2018.

Vivalt, Eva, “Heterogeneous Treatment Effects in Impact Evaluation,” American
Economic Review, May 2015, 105 (5), 467–470.

Westfall, Peter H. and S. Stanley Young, Resampling-Based Multiple Testing:
Examples and Methods for p-Value Adjustment, Wiley-Interscience, 1993.

31



Figure 1: Districts of India, by guar-production and electrification status

Notes. This map shows India’s 2011 state (thick lines) and district (thin lines) boundaries. Districts are shaded by their

electrification and guar-production status. Unshaded districts were neither approved for the roll-out of electrifcation as

part of RGGVY Phase I nor contribute appreciably to guar production in India.
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Figure 2: Natural gas and oil production in the United States, by source

Notes. This figure shows marketed natural gas (panel a) and crude oil (panel b) produced from fracked and “conventional”

wells in the United States between 2000 and 2015. Marketed natural gas production excludes natural gas used for

repressuring the well, vented and flared gas, and any nonhydrocarbon gases. Source: United States Energy Information

Administration, IHS Global Insight, and DrillingInfo, Inc, as outlined at https://www.eia.gov/todayinenergy/detail.

php?id=26112 and https://www.eia.gov/todayinenergy/detail.php?id=25372.
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Figure 3: Mean annual wholesale price of guar in India

Notes. This figure plots weighted annual means of the modal wholesale trade price per 100 kg of guar using price

and quantity data from daily guar trades occurring at agricultural wholesale markets across India. These data are

available from the Indian Ministry of Agriculture’s Agricultural Marketing Information Network (AGMARKNET)

portal (https://agmarknet.gov.in), which covers around 3,000 agricultural wholesale markets in total. Dashed lines

indicate timelines for electrification under RGGVY Phase I and for data collection for the 2011 round of the Population

Census of India.
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Figure 4: Value and net weight of India’s guar gum exports

Notes. This figure shows the share of total global trade value (panel a) and net weight (panel b) of India’s exports of

guar gum between 2001 and 2015 based on data for guar gum (product code HS 130232) from the United Nations

Comtrade Database (https://comtrade.un.org). Guar cultivation in India exhibited a reduction in 2009–10 on account

of drought conditions, resulting in a reduction in the weight of its guar gum exports (Rai, 2015).
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Figure 5: Village population changes smoothly at RGGVY Phase I eligibility threshold

Notes. This figure shows the local polynomial density estimate (solid line) along with robust bias-corrected 95 percent

confidence intervals (shaded area) for our RD running variable (2001 village population) following the RD manipulation

testing procedure developed by Cattaneo et al. (2018, 2019). Panel a shows these results for all fuzzy-matched single-

habitation villages within a fifty-person bandwidth of RGGVY’s 300-person eligibility cutoff (N = 14,668); panel b
is restricted to single-habitation villages located within districts approved for the roll-out of electrification as part of

RGGVY Phase I (N = 7,655).
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Figure 6: RD results of impact of electrification on short-term labor-market outcomes

Notes. This figure shows the results from estimating the regression discontinuity specification outlined in Equation (1).

The outcome variables presented in this figure come from the Primary Census Abstract tables of the 2011 round of the

Population Census. Column (1) of Table 1 reports corresponding numerical estimates for the sub-figures shown in panel

(a); columns (1) and (4) of Table 2 report corresponding numerical estimates for the sub-figures shown in panels (b)

and (c), respectively. Best-fit lines are constructed using predicted values from the regressions. Each solid (hollow) dot

represents the mean value of the relevant outcome variable for approximately 10 (500) villages in fifteen-person bins.
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Table 1: RD estimates of short-term impact of electrification on total employment

(1) (2) (3)

All workers

(% of 2011 population)

All Male Female

β̂1 �(Village pop. (2001) > 300) −0.78 −0.13 −0.62

(0.55) (0.20) (0.46)

β̂2 �(Village pop. (2001) > 300)× 0.14 −0.13 0.07

�(Village in boom district) (2.57) (1.37) (1.43)

District FEs Yes Yes Yes

Census (2001) controls Yes Yes Yes

N 7649 7649 7649

Adjusted R2 0.39 0.38 0.39

Mean of outcome 43.98 27.51 16.47

Notes. This table shows results from estimating Equation (1). The results in

column (1) correspond to those presented graphically in panel (a) of Figure (6).

The outcome variable for each regression comes from the Primary Census Abstract

tables of the 2011 round of the Indian Census. Each regression includes all single-

habitation villages in RGGVY Phase I districts with a 2001 population within a

fifty-person bandwidth of RGGVY’s 300-person eligibility threshold. Estimates

associated with the population running variable
(
P̃2001

vds

)
are omitted. Following

Correia (2015), six singleton observations are excluded. Standard errors—in

parentheses—are clustered at the district level. *** p < 0.01, ** p < 0.05, *

p < 0.1.
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Appendix A Using nighttime luminosity to evaluate the impact
of the fracking-induced guar boom on economic
activity

Did the fracking-induced guar boom in northwestern India have a meaningful impact on economic

activity? To answer this question, we rely on the synthetic control methodology (SCM) applied

to two decades of nighttime luminosity data covering nearly all of India’s approximately 600,000

villages. We find that guar-growing districts shine brighter at night as a result of the start of the guar

boom than a synthetic “counterfactual.” As nighttime luminosity is a widely accepted proxy for

regional economic activity, these results point to a large increase in economic activity in India’s

guar-growing regions due to the start of the United States’ fracking boom.

A.1 Synthetic control methodology
Like the conventional difference-in-differences estimator, the SCM relies on differences between

“treated” and “untreated” units before and after an event of interest (Abadie and Gardeazabal, 2003;

Abadie et al., 2010). However, SCM does not give equal weight to all untreated units. Instead,

it hinges on using a linear combination of untreated units to generate a weighted average whose

pre-treatment outcome trends closely match those of the treated unit. This synthetic “counterfactual”

unit is then projected into the post-treatment period and compared with the treated unit to gauge the

direction and magnitude of impacts.

This feature makes it particularly attractive for estimating treatment effects in small-sample

settings such as our own, in which only 23 mostly contiguous districts in nothwestern India are

assumed to be “treated” by the fracking boom. Indeed, many applications have featured only one

treated unit that is compared with multiple untreated units over time (e.g., Coffman and Noy, 2011;

Singhal and Nilakantan, 2016).

Formally, let T0 represent the number of pre-treatment periods (out of T total periods) and J
represent the number of untreated units. Let W = (w1, . . . ,wJ) be a (J×1) vector of non-negative

weights such that ∑J
j=1 w j = 1. Each w j ∈ W represents the weight of the jth untreated unit. Let

Y1 be a (T0 ×1) vector of outcome measures in the treated unit for each pre-treatment period t.
Similarly, let Y0 be a (T0 × J) matrix that contains the same outcome measures for each untreated

unit j in pre-treatment period t. Broadly, the aim of the SCM is to pick W∗ such that:

Y1 = Y0W∗. (A.1)

Applications of the SCM typically specify a set of k pre-treatment characteristics X as predictors,

where X includes observed covariates Z that are unaffected by the treatment as well as linear

combinations of the pre-treatment outcomes Y. Given Y and X, W is picked so as to minimize the

root-mean-squared prediction error (RMSPE) of the predictors:

W∗ = argmin
W

{√
(X1 −X0W)′V(X1 −X0W)

}
, (A.2)

where the subscripts denote treated and untreated units as in Equation (A.1), and V represents a
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(k× k) matrix that specifies the relative importance of the predictors.28 Placebo tests determine

the statistical significance of the effects observed in the post-treatment period. Specifically, the

treated unit is excluded from the sample, and the analysis is repeated for each untreated unit, which

is now assumed to have been treated instead. The presence of many large effects in the resulting

distribution of post-treatment placebo effects suggests that the original estimated effect may have

been the result of chance.29

A.2 Nighttime luminosity
Nighttime luminosity measures are increasingly used by economists to investigate changes in

regional economic activity over time (Doll et al., 2006; Henderson et al., 2012). Recent applications

also demonstrate that they serve as useful proxies for information on socioeconomic outcomes in

low-income settings, where high-quality statistical data are often missing (Chen and Nordhaus,

2011; Pinkovskiy and Sala-i-Martin, 2016). This work typically uses data generated as part of the

Defense Meteorological Satellite Program (DMSP) led by the National Oceanic and Atmospheric

Administration (NOAA). DMSP satellites take pictures of the Earth every night. NOAA processes

and cleans these nightly images to remove irregularities (such as cloud cover or solar glare), averages

them across years, and makes the annual composite images publicly available.30 Each pixel of these

annual images—representing 30 arc seconds or approximately 1 km2 at the equator—is assigned a

number on a relative brightness scale ranging from 0 to 63.

Most prior research has relied on these annual composites. While annual averages certainly

provide useful information, they smooth away substantial variation in brightness over the calendar

year and are, therefore, less precise (Min et al., 2017). We use a considerably richer dataset

of monthly village-level nighttime luminosity measures developed by Gaba et al. (2016), who

revisit the complete archive of raw visible band (VIS) imagery captured during every night in

India between 1993 and 2013 to generate each observation. Because the DMSP includes multiple

satellites, this archive consists of approximately 30,000 high-resolution image strips. Brightness

values are extracted from these images for each date from each pixel corresponding to the latitude

and longitude of each of India’s approximately 600,000 villages. These values are processed in line

with NOAA recommendations to remove irregularities, and the resulting 4.4 billion observations

are aggregated to the village-month level by taking the median measurement for each village over

the course of a month. In addition, because the 0–63 relative brightness levels in the raw data are

not directly comparable over time, additional image processing and background noise reduction

procedures are applied to generate statistically recalibrated visible band (SR-VIS) measures, which

enable more reliable comparisons both cross-sectionally and across time.31

We use these data to evaluate differential impacts of the fracking-induced guar boom on

nighttime luminosity—and, by proxy, economic activity—across boom and non-boom regions of

28Abadie and Gardeazabal (2003) choose V so as to minimize the RMSPE of the outcome variable in the pre-treatment

period.
29Given the geographical spread of the guar shock across many districts in northwestern India, our analysis relies

on an extension to this basic approach developed by Cavallo et al. (2013), who generalize the application of SCM to

multiple treated units possibly at different time periods.
30NOAA’s annual composite images are available at https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.

html.
31Min et al. (2017)—who use SR-VIS data to study power-supply irregularity across rural India—describe these

image-processing procedures in more detail. The data are available at http://api.nightlights.io/.
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Figure A1: Pre-/post-guar-boom trends in nighttime luminosity in guar-growing districts

Notes. This figure presents results from a synthetic control approach to evaluate the impact of the start of the fracking-

induced guar boom in India on nighttime luminosity in India’s guar-growing districts (as shown in Figure 1). The

outcome variable is an index of nighttime luminosity, aggregated to the district-year level from the village-month level.

The fracking-induced guar boom is assumed to begin in 2006, indicated by the vertical line. Other years (covering the

period 1993-2013) are presented as leads and lags relative to 2006.

India. Because we identify guar-growing regions of India at the district level, in our analysis we

rely on district-month measures of nighttime brightness.32

A.3 Results
We specify a parsimonious predictive model of nighttime luminosity, namely, one in which nighttime

luminosity in district d in year t is a function of nighttime luminosity in year t −1.33 Figure A1

presents our main results. The solid line highlights the trend in mean monthly nighttime brightness

for India’s guar-growing districts. The vertical line represents the start of the fracking boom in the

United States (assumed to be 2006). The dashed line represents mean monthly nighttime brightness

32Gaba et al. (2016) determine these by identifying the median village light output within each district boundary for

each month.
33Prior applications of the SCM have often used contemporaneous or lagged values of the outcome variable for all

units j′ as the sole predictor in estimation of treatment effects for unit j (e.g., Acemoglu et al., 2016). The justification

for this approach is that the outcome variable fully characterizes all observed and unobserved determinants.
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for a “counterfactual” set of guar-growing districts (unaffected by the fracking-induced guar boom).

As described earlier, this is generated by estimating a set of weights for monthly nighttime brightness

data for all other Indian districts over the pre-fracking-boom period (1993-2005) that are used to

most closely track pre-boom—and predict post-boom—nighttime brightness trends in the guar-

growing areas. The divergence in the two lines in the post-boom period is stark, and suggests that

the start of fracking-induced boom resulted in sizable increases in nighttime brightness—and, by

extension, economic activity in India’s guar-growing regions. Indeed, p-values estimated year-

by-year using placebo tests for each post-boom year indicate that by 2011, the probability of this

increased economic activity being detectable from space in this way by chance is extremely low

(Table A1).

Table A1: Impact of fracking-induced guar boom on nighttime luminosity in Rajasthan

(1) (2) (3)

Year Estimated coefficient p-value

2007 -0.24*** 0.0006

2008 0.15 0.58

2009 0.39** 0.04

2010 0.33** 0.01

2011 0.89 0.14

2012 0.90** 0.03

2013 1.19*** 0.004

Notes. This table presents the estimate effect of

the fracking-induced guar boom on nighttime lu-

minosity in India’s guar-growing districts (relative

to a synthetically generated set of guar-growing

districts) for each post-boom year (column 2). Col-

umn (3) presents p-values associated with each

estimated coefficient, obtained by adjusting the

observed effect sized by the pre-treatment match

quality as outlined by Cavallo et al. (2013). ***

p < 0.01, ** p < 0.05, * p < 0.1.
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Appendix B Electrification and household time allocation
More formally, changes in individuals’ productive potential can be captured in an application of the

basic home-production and household time-allocation model (Gronau, 1977). In this framework,

the representative individual in household i obtains utility from consumption (ci) and leisure
(
tl
i
)
.

Consumption is generated through a home-production function:

ci = c
(

th
i ,xi,vi;ψi

)
, (B.1)

where th
i is the time allocated to home-based work; xi is a numeraire input to home production that

is purchased in the market; and vi is non-labor income. The production productivity parameter ψi is

determined by

ψi = f (ηi,εi,γ) , (B.2)

where ηi represents the household’s electrification status on a continuous scale, thus capturing both

access and quality. Productivity is also determined by household- and community-level factors

represented by εi and γ , respectively. For instance, households’ stock of education and health can

drive the labor productivity of its members. Community-level characteristics—such as weather,

institutions, and differences in local or regional economic conditions—can play a similar role.

The problem of the household’s representative individual is then given by

max
ci,tl

i

ui = u
(

ci, tl
i ;ψi

)
, (B.3)

subject to time and budget constraints, given by

tm
i + th

i + tl
i � T (B.4)

xi � witm
i + vi, (B.5)

where tm
i is the time allocated to market-based work; T is the total time endowment; and wi is the

market wage. Equations (B.4) and (B.5) together yield the household’s full-income constraint:

wiT + vi = xi +wi

(
th
i + tl

i

)
. (B.6)

The Lagrangian associated with the household’s problem described in Section 3.1 is as follows:

max
ci,tl

i

L = u
(

c
(

th
i ,xi,vi;ψi

)
, tl

i

)
+λ

(
wiT + vi − xi −wi

(
th
i + tl

i

))
. (B.7)

Ignoring the i subscripts, this yields the following first-order conditions for an interior solution:

Ltl = utl −λw = 0 (B.8)

Lth = uccth −λw = 0 (B.9)

Lx = uccx −λ = 0 (B.10)

Lλ = wT + v− x−w
(

th + tl
)
= 0. (B.11)
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These first-order conditions indicate that household’s time allocations are chosen to equate the

marginal rate of substitution between leisure and consumption with (i) the shadow value of home

production; and (ii) the shadow value of market-based activities. Specifically, from Equations (B.8),

(B.9) and (B.10):
utl

uc
= cth = cxw. (B.12)

From this, the general form of the household’s optimal time allocation to home production is

obtained:

th∗ = fth (w,v;ψ) . (B.13)

Equations (B.8), (B.10) and (B.11) can be solved jointly to obtain the household’s optimal time

allocation to leisure and its demand for the market-purchased home-production input:

tl∗ = fth (w,v;ψ) (B.14)

x∗ = fx (w,v;ψ) . (B.15)

Equation (B.15) and Equation (B.13) combined with the household’s consumption production

function yield the household’s optimal consumption:

c∗ = c
(

th∗,x∗,v;ψi

)
. (B.16)

Finally, combining the household’s time constraint with Equations (B.13) and (B.14) yields the

household’s time allocation to market-based activities:

tm∗ = T − th∗ − tl∗ = ftm (w,v;ψ) . (B.17)

We look to investigate how changes in the household’s access to electricity (ηi) interact with

community-level factors (γ) to influence the household’s productive potential (ψi) and determine

the time it allocates to home production, leisure, and market-based activities. Specifically, we

exploit exogenous variation in levels of economic activity across boom and non-boom regions to

shed light on how and why differences in the impacts of electricity access can emerge.

There are at least two reasons our model does not offer a clear answer to this question. First,

even if we assume that an improvement in the household’s access to electricity increases its

productive potential, additional assumptions are necessary about the shape of the home-production

function in Equation (B.1) to predict how changes in productivity due to simultaneous changes in

electrification and community-level characteristics influence time allocation. Second, even with

such assumptions in place, variation in household-level preferences over labor and leisure—the

shape of the household utility function—may give rise to counteracting income and substitution

effects. Indeed, an increase in its productive potential may ultimately induce a household to allocate

less time to income-generating activities.

This ambiguity is compounded by the role of household-level characteristics (εi). The house-

hold’s opportunity cost of leisure is determined by factors such as its stock of education and health,

liquidity or credit constraints, or its “entrepreneurial spirit.” Thus, how the impacts of electrification

on labor-market outcomes vary with economic conditions is ultimately a question best answered

with data. Our setting allows a unique opportunity to address this question.
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Appendix C Habitation–village matching procedure
We use a multi-step matching procedure to identify villages eligible for electrification under RGGVY

Phase I based on the populations of their constituent habitations, and identify corresponding village

names from the 2001 and 2011 Census to those in the 2009 census of habitations conducted by the

National Rural Drinking Water Program (NRDWP). The NRDWP habitation census covers 1.65

million habitations in 574,259 villages.34 Because the NRDWP survey indicates only the name of

each village (and not its unique Census code), matching on names is necessary; however, not all

village names match exactly between the names used in NRDWP and those used in the Census, even

conditional on an exact match for state and district. Accordingly, our matching process incorporates

a combination of exact and fuzzy name matches, prioritizing exact matches where possible.

We treat the 2001 Primary Census Abstract (PCA) villages as the master dataset. As a first step

for matching village names with the 2009 NRDWP habitations data, we standardize state, district,

block, and village names to correct minor differences in spelling between the names in use by the

NRDWP and the Census. We also account for districts that were renamed between 2001 and 2009.

Our procedure for standardizing state and district names is sufficiently comprehensive to achieve a

100 percent match among state and district names between the NRDWP and Census, except for a

handful of cases where districts are split or combined (not just renamed) between 2001 and 2009.35

We use information from the state, district, block, and village level, and prioritize exact matches.

Where exact name matches are not possible, we employ a fuzzy match, using the “masalafied

Levenshtein” distance and “Masala merge” code in Stata and Python (Asher and Novosad, 2020).

This is a modification of the standard Levenshtein string distance metric, one that lowers the cost of

certain substitutions that are common in Indian languages.36 We thus create a five-tier matching

hierarchy:

1. Exact match on state, district, block, and village name;

2. Exact match on state, district, and village name, with a fuzzy match on block name;

3. Exact match on state and district name, with a fuzzy match on block and village name;

4. Exact match on state, district, and village name (without regard to block name); and

5. Exact match on state and district name, with a fuzzy match on village name (without regard

to block name).

34This includes five of the seven Union Territories—Chandigarh, Dadra and Nagar Haveli, Daman and Diu, Lakshad-

weep, and Puducherry—and Goa. However, we exclude these from the merge process because Goa and all seven Union

Territories were fully electrified prior to 2005, so were excluded in RGGVY (Ministry of Power, 2012). Excluding the

seven Union Territories and Goa, the 2009 survey covers 1.65 million habitations in 573,702 villages.
35One approach to match villages in split or combined districts would be to geolocate all villages from the old

district(s) into the new district(s). We take a somewhat less intensive approach and look for name-based village matches

in a proper subset of the old or new district area—specifically, an area of known overlap between old and new. For

instance, Tiruppur district in Tamil Nadu was formed in 2009 from parts of Coimbatore and Erode. Among villages

in the NRDWP belonging to Tiruppur district, we look for matching Census village names within Erode district, but

not within Coimbatore district. We also flag any matches associated with split or combined districts. We have run our

matching algorithm excluding these flagged matches and, after completing all five steps of the multi-step procedure,

achieved virtually identical results.
36Additional information about Masala merge (including its underlying code) is available at https://github.com/

paulnov/masala-merge.
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Of the 563,338 villages in the 2001 Census, we match 531,325 to villages in the NRDWP

habitation census (94.3 percent). Of these village matches, about 75 percent (400,457) are exact

matches (i.e., the first and fourth tiers of our five-tier matching hierarchy), and 48 percent (271,774)

are exact matches on state, district, block, and village name.37 Further, our algorithm achieves

a 90 percent or greater match rate across every state with the exception of Tripura (36 percent),

Tamil Nadu (76 percent), Jammu and Kashmir (78 percent), Nagaland (82 percent), and Assam

(83 percent). We also match at least 96 percent of villages in each of the three northwestern states

where guar is produced (98 percent in Rajasthan and Gujarat, and 96 percent in Haryana).

As a further verification step, we compare the village population recorded by the NRDWP in

2009 to the village population recorded by the 2011 PCA. For any village name match in which

these figures diverge by more than 20 percent, we exclude the village from the matched set.38 Using

this matched sample, we identify single-habitation villages, and use the population of each of these

in the 2001 round of the Census to gauge its eligibility for electrification under RGGVY Phase I.

37Our match rate is comparable to others in the literature. For instance, Burlig and Preonas (2016) report matching

86 percent of villages from the 2003 and 2009 NRDWP habitation surveys to corresponding Census villages. While

Asher and Novosad (2020) do not report a village-level match rate, they do indicate they matched over 85 percent of

habitations listed in the PMGSY to corresponding Census villages. Aggarwal (2018) and Kaczan (2020), who also

evaluate the impact of India’s rural roads program, report match rates of 80 and 83 percent, respectively.
38We have also run our analysis using thresholds other than 20 percent and find substantially similar results (Figure

D3).
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Appendix D Additional Figures

Figure D1: RD results (quadratic interaction)

Notes. This figure shows results from estimating a modified version of the regression discontinuity specification outlined

in Equation (1) that includes a fully-interacted term for the square of the population running variable. The outcome

variables presented in this figure come from the Primary Census Abstract tables of the 2011 round of the Population

Census. Best-fit curves are constructed using predicted values from the regressions. Each solid (hollow) dot represents

the mean value of the relevant outcome variable for approximately 10 (500) villages in fifteen-person bins.
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Figure D3: Sensitivity of results to varying Census–NRDWP population discrepancy rates

Notes. This figure shows how the results reported in Table 1 (column 1) and Table 2 (columns 1 and 4) for the estimated

value of β̂2 evolve as we relax the Census 2011–NRDWP 2009 population discrepancy threshold we impose during our

fuzzy matching procedure to validate matches (see Appendix C). Markers represent point estimates from regressions;

dashed lines indicate corresponding 90 percent confidence intervals.
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Figure D4: Sensitivity of results to varying RD bandwidths

Notes. This figure shows how the results reported in Table 1 (column 1) and Table 2 (columns 1 and 4) for the estimated

value of β̂2 evolve as we vary the population bandwidth around RGGVY’s 300-person eligibility threshold to identify

our analytical sample. Markers represent point estimates from regressions; dashed lines indicate corresponding 90

percent confidence intervals.
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Appendix E Additional tables

Table E1: Designating guar-growing districts based on technical reports

State

(1) (2) (3) (4)

Technical reports Analytical sample

APEDA NRAA USDA Guar-growing district

Rajasthan Alwar

Barmer Barmer Barmer �
Bhilwara

Bikaner Bikaner Bikaner �
Churu Churu Churu �
Dausa Dausa �
Hanumangarh Hanumangarh Hanumangarh �
Jaipur Jaipur �
Jaisalmer Jaisalmer �

Jalore

Jhunjhunu Jhunjhunu Jhunjhunu �
Jodhpur Jodhpur Jodhpur �
Nagaur Nagaur Nagaur �

Pali

Sikar Sikar Sikar �
Sirohi Sirohi �
Sri Ganganagar Sri Ganganagar Sri Ganganagar �

Haryana Bhiwani Bhiwani �
Gurgaon Gurgaon �
Mahendragarh Mahendragarh �
Rewari Rewari �

Gujarat Ahmedabad Ahmedabad �
Banaskantha Banaskantha �
Kutch Kutch �
Mehsana Mehsana �
Sabarkantha Sabarkantha �
Vadodara Vadodara �

Punjab Bathinda

Firozpur

Mansa

Sri Muktsar Sahib

Notes. Columns (1), (2) and (3) of this table list districts that are characterized as India’s top guar producers in

technical reports released by the Agricultural and Processed Food Products Export Development Authority (2011,

p. 13), the National Rainfed Area Authority (2014, p. 3) and the US Department of Agriculture (Singh, 2014, p.

23), respectively. Column (4) indicates those that are mentioned by at least two of these technical reports, and

which we thus designate as guar-growing districts for the purposes of our analyses (as described in Section 4.1).
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Table E2: Testing for discontinuous changes at RGGVY Phase I threshold in 2001

(1) (2) (3) (4) (5)

Outcome variable (2001)
�(Village pop. (2001) > 300)

N Adj. R2 Mean of outcome
Coef. Std. Err.

Number of households -0.08 (61.96) 7649 0.64 53.97

Females (% of population) -0.01 (16.43) 7649 0.28 48.73

Ages 0–6 (% of population) 0.04 (35.86) 7649 0.36 17.78

Scheduled Caste/Tribe (% of population) -0.57 (338.47) 7649 0.28 36.02

Literate (% of population) -0.01 (6.49) 7649 0.36 45.01

All workers (% of population) -1.00 (1.93) 7649 0.38 43.98

Agricultural workers (% of population) -0.38 (228.06) 7649 0.32 37.22

Non-agricultural workers (% of population) -0.62 (2.87) 7649 0.15 6.76

Area (Hectares) -14.02 (101.07) 7649 0.36 158.07

Irrigated area (% of total area) -0.65 (387.19) 7324 0.40 35.67

Primary schools (per 1,000 people) -0.10 (0.40) 7649 0.27 1.97

Community health workers (per 1,000 people) 0.05 (0.22) 7649 0.10 0.20

�(Bus facilities) 0.01 (4.77) 7649 0.22 0.17

�(Postal facilities) 0.02 (0.13) 7649 0.15 0.18

�(Approach: Paved road) 0.00 (4.37) 7649 0.10 0.37

�(Power supply) 0.03 (0.08) 7649 0.35 0.66

Notes. Column (1) reports the value of β̂1 obtained from estimating the following regression specification on our main analytical sample of

single-habitation villages located in RGGVY Phase I districts: y2001
vds = β0 +β1Tvds +β2P̃2001

vds +β3TvdsP̃2001
vds + γd + εvds, where y2001

vds represents an

outcome variable for village v in district d in state s in 2001, Tvds is a binary variable that equals one if the population of village v in 2001 is

greater than 300, P̃2001
vds is the population running variable, and γd represents a district fixed-effect. Standard errors—in column (2)—are clustered

at the district level and inferred from p-values obtained using the free step-down resampling methodology of Westfall and Young (1993). ***

p < 0.01, ** p < 0.05, * p < 0.1.
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Table E3: RD estimates of impact of electrification on total population in 2011

(1) (2) (3)

Total population (2011)

All Male Female

β̂1 �(Village pop. (2001) > 300) 3.39** 2.22** 1.16

(1.70) (0.94) (0.91)

β̂2 �(Village pop. (2001) > 300)× 2.27 6.53* -4.45

�(Village in boom district) (6.29) (3.77) (2.91)

District FEs Yes Yes Yes

Census (2001) controls Yes Yes Yes

N 7649 7649 7649

Adjusted R2 0.54 0.54 0.49

Mean of outcome 349.24 178.92 170.32

Notes. This table shows results from estimating Equation (1). Each regression

includes all single-habitation villages in RGGVY Phase I districts with a 2001

population within a fifty-person bandwidth of RGGVY’s 300-person eligibility

threshold. Estimates associated with the population running variable
(
P̃2001

vds

)
are

omitted. Following Correia (2015), six singleton observations are excluded. Stan-

dard errors—in parentheses—are clustered at the district level. *** p < 0.01, **

p < 0.05, * p < 0.1.
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Table E4: Differences between villages in guar and non-guar-growing districts in 2001

Outcome variable (2001)

(1) (2) (3) (4) (5) (6)

All RGGVY Phase I villages RD sample villages

Non-boom Boom
p-value

Non-boom Boom
p-value

of difference of difference

Total population 1390.86 1502.61 0.056* 299.99 306.22 0.284

(1654.30) (1455.01) (29.18) (28.44)

Number of households 247.03 231.91 0.142 54.07 48.87 0.385

(316.25) (225.51) (11.68) (8.78)

Females (% of population) 48.62 48.26 0.940 48.74 47.89 0.484

(2.91) (2.40) (3.04) (2.85)

Age 0–6 (% of population) 18.07 19.87 0.940 17.75 19.09 0.972

(4.17) (3.47) (4.57) (4.16)

Scheduled Caste/Tribe (% of population) 31.65 27.24 0.599 36.33 20.77 0.285

(27.65) (22.97) (34.78) (26.04)

Literate (% of population) 44.74 47.00 0.462 44.94 48.81 0.434

(14.48) (13.35) (16.33) (13.87)

Total workers (% of population) 41.61 46.14 0.219 43.91 47.12 0.434

(12.86) (10.32) (14.14) (12.05)

Agricultural workers (% of population) 33.79 37.82 0.847 37.17 39.94 0.742

(14.10) (13.32) (15.27) (13.96)

Non-agricultural workers (% of population) 7.81 8.31 0.729 6.75 7.18 0.972

(7.57) (7.59) (7.89) (9.32)

Area (Hectares) 358.69 1428.10 0.219 148.41 648.16 0.486

(756.26) (2316.45) (224.87) (1161.81)

Irrigated area (% of total area) 38.36 21.09 0.940 35.97 21.21 0.972

(33.84) (25.04) (33.69) (27.24)

Primary schools (per 1,000 people) 1.27 1.45 0.628 1.95 3.01 0.678

(2.24) (6.64) (1.81) (1.06)

Community health workers (per 1,000 people) 0.15 0.10 0.940 0.20 0.11 0.910

(1.10) (0.60) (0.83) (0.59)

�(Bus facilities) 0.27 0.60 0.092* 0.17 0.32 0.393

(0.44) (0.49) (0.37) (0.47)

�(Postal facilities) 0.40 0.64 0.219 0.18 0.36 0.678

(0.49) (0.48) (0.38) (0.48)

�(Approach: Paved road) 0.53 0.60 0.219 0.37 0.34 0.434

(0.50) (0.49) (0.48) (0.48)

�(Power supply) 0.73 0.89 0.940 0.65 0.84 0.972

(0.45) (0.31) (0.48) (0.36)

N 182051 6232 7507 148

Notes. This table reports mean and standard deviations (in parentheses) for villages located in boom and non-boom districts of India. Columns (1) and (2)

report these values for our full sample of habitation-matched villages in RGGVY Phase I districts; column (4) and (5) report these values for our main analytical

sample of single-habitation villages. Columns (3) and (6) report the p-value for β̂1 obtained from estimating the following regression specification on the

relevant sample: y2001
vds = β0 +β1Gds + γs + εvds, where y2001

vds represents an outcome variable for village v in district d in state s in 2001, Gds is a binary variable

that equals one if village v is located in a guar-growing district, and γs represents a state fixed-effect. Standard errors (not shown) are clustered at the district

level; p-values are obtained using the free step-down resampling methodology of Westfall and Young (1993). *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table E5: Placebo RD estimates of short-term impact of electrification on labor-market outcomes

(1) (2) (3)

All workers Ag. workers Non-ag. workers

(% of 2011 population)

β̂1 �(Village pop. (2001) > 300) 0.29 −0.18 0.55

(0.56) (0.71) (0.43)

β̂2 �(Village pop. (2001) > 300)× −0.63 1.74 −2.39

�(Village in boom district) (1.51) (2.21) (1.80)

District FEs Yes Yes Yes

Census (2001) controls Yes Yes Yes

N 6992 6992 6992

Adjusted R2 0.38 0.45 0.32

Mean of outcome 48.23 39.94 8.28

Notes. This table shows results from estimating Equation (1) on a sample of single-habitation villages located

in RGGVY Phase II districts (where large-scale electrification did not occur during the period covered by our

data) with a Census 2001 population within a fifty-person bandwidth around RGGVY’s 300-person eligibility

threshold. Outcome variables for regressions reported in columns (1)–(3) are constructed using data from

the Primary Census Abstract tables of the 2011 round of the Indian Census. Specifically, “agricultural

workers” represents a village-level sum of main and marginal cultivators and agricultural laborers, while

“non-agricultural workers” represents a village-level sum of main and marginal household-industry and

“other” workers. Estimates associated with the population running variable
(
P̃2001

vds

)
are omitted. Following

Correia (2015), 21 singleton observations are excluded. Standard errors—in parentheses—are clustered at

the district level. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table E6: RD estimates with multiple hypothesis test adjustment

Outcome variable
(1) (2)

β̂2 Adj. p-value

All workers (% of population) 0.14 0.997

Male -0.13 0.996

Female 0.07 0.997

Agricultural workers (% of population) -6.39* 0.095

Male -2.85 0.203

Female -3.25 0.265

Non-agricultural workers (% of population) 5.60** 0.043

Male 2.30 0.296

Female 3.22 0.265

Notes. Column (1) reports the estimated β̂2 coefficients from Tables 1 and 2. Column

(2) reports corresponding p-values for this “family” of regressions, adjusted for multi-

ple hypothesis testing using the free step-down resampling methodology of Westfall

and Young (1993). *** p < 0.01, ** p < 0.05, * p < 0.1.
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