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Abstract

In recent years, Cascade Autoregression (CAR) models enjoy increasing popularity in applied econometrics.

This is due to the fact that they are able to approximate both short- and long-memory processes and are easy

to implement. However, their model order, namely the timing of the steps, relies on ad-hoc decisions rather

than being data-driven. In this paper, techniques for model order selection of CAR models in finite samples

are presented. The approaches are evaluated in an extensive simulation study, as well as in an empirical

application. The results suggest that model order selection may provide gains in both in- and out-of-sample

performance.
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1 Introduction

Over the last decades, it has become a goal to model an underlying time-series as parsimoneously as possible:

In theory, any covariance-stationary process can be represented by an autoregressive (AR) or moving average

(MA) model of infinite order. In practice however, estimation of AR or MA models of higher order entails the

estimation of many unknown parameters. This in turn leads to high estimation risk and thus, decreases the

forecasting performance of the AR and MA model. Therefore, modern model specification follows the major
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principles coined by Box and Jekins (1970). Parsimoneous specifications (i.e. including fewer past observations

in the model) are preferred over less sparse ones. This typically involves determining the model order by the

means of information criteria, or using mixtures of AR and MA models (ARMA). For a more recent review of

model selection in time series, see e.g. Leeb and Pötscher (2009).

Despite their popularity, there are however drawbacks of ARMA models which are of theoretical and prac-

tical relevance. First, in contrast to pure AR models, ARMA models do not possess the Markov property, so

they can not be used for applications that require this property. Second, they are used only for short-memory

processes, that are characterized by an exponentially decaying autocovariance function (ACVF). Therefore, they

are not able to capture the dynamics of long-memory processes with hyperbolically decaying ACVF.

One example of a long-memory process is the measure of realized volatility (RV), a proxy for the true volatility

of e.g. daily stock returns. To approximate long-memory dynamics, the order of the ARMA model must be

rather large, leading to the same problem of overfitting that simple AR or MA models suffer from (see Brockwell

and Davis 1991).

To overcome this shortcoming, Granger and Joyeux (1980) proposed the autoregressive fractionally integrated

moving average (ARFIMA) model. Although being a true long-memory model, estimation of ARFIMA models

is not straightforward and prediction accuracy depends strongly on the underlying process (see Crato and Ray

1996, Baille et al. 2012 and the references therein). As an alternative to ARFIMA, cascade autoregressive (CAR)

models gained in popularity, coined by the heterogeneous autoregressive model for realized volatility (HAR-RV)

of Corsi (2009). It was specifically designed for RV time-series, but can be applied to other time-series as well.

CAR models result from imposing linear restrictions on AR models of large order. Hence, an important ad-

vantage over conventional AR models is that CAR models are able to parsimoniously reproduce the hyperbolic

(exponential) decay of the ACVF of long-memory (short-memory) processes. In theory, this allows the use of

CAR models as an easy-to-implement approximation of many different processes.

Aside from being sparsely parameterized, CAR models offer additional benefits to practitioners: since they be-

long to the class of AR models, they possess the Markov property, can be easily estimated by Ordinary Least

Squares (OLS) and thus, a broad range of model diagnostics can be used.

Because the HAR model of Corsi (2009) is the most known special case of CAR and is primarily applied to

RV time-series, there exist different extensions of the model that are tailored to this purpose: Andersen et al.

(2007) amended the formulation by including a jump component, resulting in the HAR-RV-J model. Corsi et

al. (2010) also included a jump component into the model, but moreover, accounted for the fact that RV is an

inconsistent estimate of integrated volatility in the presence of jumps. The LHAR-CJ model by Corsi and Renò
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(2012) includes another factor - aside from the jump component - that allows for an asymmetric response of

the variance to positive or negative shocks. Patton and Sheppard (2015) account for this asymmetry by using

realized semivariances and present a panel version of the HAR model. A different modification was introduced by

McAleer and Medeiros (2008), that allows for smooth transitioning between multiple regimes of the coefficients.

For a literature overview, see Wen et al. (2016) and Corsi et al.. (2012).

All these extensions have in common, that the general order of the HAR model remains unchanged: In the stan-

dard HAR model, the weekly and monthly averages, together with today’s observation determine tomorrow’s

value of the time series. This specification of the model order is an implicit assumption that is theoretically

based only on the heterogeneous market hypothesis of Müller et al.. (1997). Also, this theoretical justification

is valid for financial time series only. Despite this, in empirical finance applications (cf. Bekaert and Hoerova

2014, Golosnoy et al. 2019, Wilms et al.. 2020), the standard HAR order prevails.

However, using a specific order of a CAR model has a large impact on the model’s dynamics. Hence, im-

posing one ad-hoc specification to fit all applications might not be appropriate.

To illustrate this, figure 1 shows the autocorrelation function (ACF) of two equally persistent CAR models

of different order. Both processes have the same coefficient vector (0.15, 0.2, 0.6)′, but include different lagged
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Figure 1: ACFs of CAR processes with exponential (left) and hyperbolical (right) decay.

means. The left process uses averages over the last two and five days, which results in an exponentially decaying

ACF. The right, hyperbolically decaying ACF results from a CAR model that uses averages over the last five

and 30 days. For the latter process, the cascade-like pattern with distinct steps can be observed clearly.

This example shows that specifying the order of a CAR model involves two decisions; First, the number of

cascades (averages) included in the model need to be set. Second, one needs to decide how long these steps

should be, i.e. over which time-horizon the averages should be calculated.

In this paper, ways how to select the order of a CAR model in a data-driven way are presented. This ap-
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proach has two implications: First, it makes the CAR model applicable outside of empirical finance, because

the structure is no longer driven by empirical finance considerations. Second, even in financial applications, the

standard HAR specification may not fit all realized volatility time-series. Applying model selection allows us to

discover those divergences. Audrino and Knaus (2016) and Audrino et al. (2018) also presented a procedure for

CAR model selection based on shrinkage. However, estimation is computationally expensive and thus, deprives

the CAR model of its main advantages – its simplicity. We therefore restrict ourselves to selection techniques

which are already known from autoregressive models. Furthermore, they do not require distributional assump-

tions, because in practice, the time-series’ true distribution is typically unknown.

The remainder of the paper is organized as follows. In section 2, we present the class of linear CAR mod-

els and analyze their stochastic properties. In section 3 we present approaches for selecting the CAR model

order which are based on either least squares (LS), general method of moments (GMM), or cross-validation.

The performance of the model selection procedures is illustrated in an extensive Monte Carlo study in section 4,

where we investigate the ability of our procedures to find the correct CAR model order. We further evaluate the

approaches in an empirical application in section 5. In section 6 we will summarize the findings and give a brief

outlook over the implications of the results and possible extensions.

2 Linear CAR models

Let yt be a covariance-stationary process observed at time t = 1, ..., T . If yt follows a CAR model, then it is

defined as the weighted sum of q past averages plus an intercept. The averages are constructed over windows of

different lengths. The length of window i is denoted by si, so the corresponding average is defined as

ȳt−1,si =
1

si

si∑
j=1

yt−j , i = 1, ..., q. (1)

The number of averages q is also referred to as the number of ’steps’, while si is the ’width’ of the i-th step.

Without loss of generality, we assume that s1 < s2 < ... < sq.

The order of a CAR model is therefore given by the parameter q and the q×1 dimensional vector s = (s1, ..., sq)′.

Then, the CAR(q, s) model reads as

yt = µ+ δ1ȳt−1,s1 + ...+ δq ȳt−1,sq + ut, ut ∼ iid(0, σ2), (2)

yt = µ+ δ′ȳt−1 + ut, with ȳt−1 = (ȳt−1,s1 , ..., ȳt−1,sq )′. (3)

The coefficient vector δ = (δ1, ..., δq)′ contains the weights of the corresponding averages. A prominent example

of a CAR model is the standard HAR of Corsi (2009) which is specified by q = 3 and s = (1, 5, 22)′.
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As mentioned earlier, CAR(q, s) could be seen as a restricted AR(p) model with p = sq.

The AR(sq) representation with coefficient vector φ can be easily obtained through (4):

R′δ = φ = (φ1, ..., φsq )′, (4)

where R is a q × sq matrix with the i-th row given by (ι′si ,0
′
(sq−si))/si, with ιsi (0(sq−si)) being a column vector

of length si (sq−si) containing only ones (zeros).

For example, in the standard HAR model, the matrix R is equal to
1 0 · · · · · · 0

1/5 1/5 1/5 1/5 1/5 0 · · · 0

1/22 · · · · · · 1/22

 .

Properties of linear CAR models

Using the transformation from (4), stationarity can be easily checked; using φ, we can construct the characteristic

polynomial

φ(z) = 1− φ1z − ...− φsqzsq .

If the roots of φ(z) = 0 all lie outside the unit-circle, the CAR model is stationary.

If a CAR model is found to be stationary, its first and second moments can also be calculated via the AR(sq)

representation. Then, the expectation of yt is given as

E(yt) = µ/(1− φ′ιsq ).

For presentation convenience and without loss of generality, we set µ = 0 for the remainder of this paper. This

imposes no restriction, since this property can always be ensured by previously de-meaning the time-series.

Similarly, the autocovariance function (ACVF) of yt at lag `, γ` = E(ytyt−`) can be obtained. It is given by the

Yule-Walker equations:

γ` = γ′`−1R
′δ, with γ`−1 = (γ`−1, ..., γ`−sq )′ for ` = 0, 1, .... (5)

They allow to determine the complete ACVF and autocorrelation function (ACF) of a CAR model, conditional

on s and δ.

One advantage of CAR models is that, depending on the model order, they are able to approximate expo-

nential and hyperbolic decay of the ACVF. For example, setting sq = 1 and q = 1 results in a AR(1) model

with exponentially decaying ACVF. On the other hand, if sq increases, the decay of the ACVF becomes more

hyperbolic.
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3 Selecting CAR model order

CAR models are parameterized through q, s = (s1, ..., sq)′ and δ = (δ1, ..., δq)′. Conditional on s and q, estimation

of δ is easily carried out via an ordinary least squares (OLS) regression of (3). Therefore, we focus on data-driven

ways to select s and q. This selection can be divided into three steps:

First, sq is of special interest, because it determines the order of the underlying restricted AR model. Section 3.1

presents techniques to estimate sq. Having estimated sq, we need to determine in a second step the remaining

paremeters of s, conditional on a pre-specified value q. The selection procedures for s are presented in section

3.2. Thirdly, q needs to be estimated from the data as well, by repeating step two for different values of q and

deciding, which q fits the data best. This is presented in section 3.3.

3.1 Selection of sq

Although it is of high importance for CAR model selection, there is little theoretical guidance, how to estimate

sq. One asymptotically valid criterion for choosing sq is that for an AR(sq) model, the partial autocorrelation

function (PACF) drops to zero at lags larger than sq. Unfortunately, this approach is not feasible in finite

samples, because it is highly unlikely that the PACF is exactly zero at some lags. In a similar manner, Audrino

et al.. (2015) presented a test for the coefficients of an unrestricted AR model of large order; after lag sq, the

coefficients should drop to zero. Unfortunately, they show that this test is too conservative for most applications.

However, as figure 1 indicates, in order to approximate long memory behavior, it is recommendable to select sq

not too small. Therefore, possible ad-hoc values for sq exist.

For example, the HAR model fixes sq = 22 so it refers to a monthly component, if data were sampled daily.

Another candidate for sq could be the criterion of Schwert (1989), that sets sq = 12b 4
√
T/100c, with bxc denoting

the integer part of x. Although it is primarily used in unit-root tests, it may be of interest in the setting of CAR

models, too.

Since we are interested in estimating the parameters from data, we focus on the selection of sq via information

criteria. Two popular information criteria for AR models are Akaike’s (AIC, cf. Akaike 1973, 1974) or Bayes’

(BIC, cf. Schwartz 1978): Several AR models of increasing order p = 1, ..., pmax are fitted to the data1 and sq

is equal to the value p that minimizes

IC(p) = ln(σ̂2
p) + CT

p+ ηT (p)

T − pmax
(6)

with σ̂2
p being the estimated residual variance of the fitted AR(p) model. Fixing ηT (p) = 1 and setting CT = 2

yields the AIC, while ηT (p) = 1 and CT = ln(T − pmax) results in the BIC.

1For estimation, we use the sample from pmax + 1 to T and use the remaining values as starting values. This way, the sample

size is constant for all AR(p) models.
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However, in finite samples for processes with high persistency, Ng and Perron (2001) show that sq is likely

to be underestimated, so they introduced modified information criteria by allowing ηT (p) to depend on sam-

ple statistics. These modified criteria are not calculated based on AR models. Instead, a Dickey-Fuller (cf.

Dickey and Fuller, 1979 and Said and Dickey, 1984) autoregression is fitted to the data for increasing values of

p = 1, ..., pmax:

∆yt = β̂0yt−1 +

p∑
i=1

β̂i∆yt−i + êt,p.

The parameters used in (6) are then given by

σ̂2
p =

1

T − pmax

T∑
t=pmax+1

ê2t,p

ηT (p) = β̂2
0/σ̂

2
p ·

T∑
t=pmax+1

y2t .

Setting CT = 2 then yields the modified Akaike information criterion (MAIC) and CT = ln(T − pmax) results in

the modified BIC (MBIC). Ng and Perron (2001) showed that values of sq found by minimizing the modified

information criteria can be expected to be much larger than those found by AIC and BIC. Although the primary

use of the estimates was unit-root testing, Ng and Perron (2001) highlighted the relevance of their findings for

other applications, so we use them in the context of CAR models. Throughout the applications of this paper,

we set the maximum number of lags to pmax = 50.

3.2 Selection of s

For a given number of steps q ≥ 3 and sq, q − 1 integer step widths need to be selected. It is reasonable to

assume that the most recent observation has a distinctive influence on today’s value of yt. Therefore we fix

s1 = 1, so q − 2 unknown parameters remain.2 These parameters are collected in the vector sq = (s2, ..., sq−1)′.

To emphasize that sq controls the linear restrictions, the restriction matrix from (4) will be denoted R(sq). The

elements of sq, si are integer-valued, limited from above by sq and ordered, so it holds that si−1 < si < si+1.

Therefore, the amount of possible values of sq is limited. Denote the set of all possible combinations Sq, with

sq ∈ Sq, so that in general, there are |Sq| =
(
sq−2
q−2

)
possible combinations in total.

To illustrate this, consider the following example: for q = 3, only one width, s2, needs to be determined and the

set of all possible values of s2 is Sq = {2, 3, ..., sq − 1}. In total, there are |Sq| = sq − 2 possibilities, whereas for

q = 4 there are two steps (s2, s3) with (sq − 2)(sq − 3)/2 possibilities.

We contrast three possible methods for obtaining an estimate of the model order, ŝq. First, we present a

2CAR models with q = 1 or q = 2 are trivial special cases, because they are completely determined by s1 and sq .
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least squares (LS) approach which is based on minimizing the residual sum of squares (RSS). LS produces an

estimate that maximizes the in-sample fit. Second, the step widths could be obtained from minimizing the

distance between the empirical ACVF and the theoretical ACVF of the CAR, which ultimately results in GMM

estimation. This approach is also similar to Yule-Walker estimation of unrestricted AR models. In applications

with focus on predictions, selection based on Cross-Validation may be more appropriate, so we present the

approach of Bergmeir et al.. (2018) as a third possible way to obtain an estimate of sq.

Least Squares

Let xt = (yt−1, ..., yt−sq )′ contain lagged observations of yt. For given q, sq and conditional on each sq ∈ Sq, we

are able to obtain δ̂(sq), the (conditional) OLS estimate of δ. The RSS conditional on sq is given by

RSS(sq) =

T∑
t=1

(yt − δ̂(sq)′ȳt−1)2. (7)

The estimate ŝq is defined as the value that minimizes RSS(sq) among all possible combinations.

ŝq = arg min
sq∈Sq

RSS(sq).

Selection Based on Wald Statistic

While LS is concerned with minimizing RSS, this approach minimizes the distance between the empirical ACVF

and the restricted ACVF resulting from the CAR model.

Since yt is a stationary process, the elements of the ACVF at lag ` can be consistently and non-parametically

estimated by γ̂` = 1
T

∑T
`+1 ytyt−`. Let γ̂ = (γ̂1, ..., γ̂sq )′ denote yt’s estimated ACVF up to lag sq. Moreover, let

γ̂(sq) be the ACVF up to lag sq, resulting from an estimated CAR model with given sq. If a CAR model is the

true data-generating process (DGP), the two quantities should be approximately equal, i.e.

γ̂ − γ̂(sq) ≈ 0sq . (8)

Using the Yule-Walker equation from (5) in vector notation, conditional on sq, the estimated ACVF of the CAR

model up to lag sq is defined by

γ̂(sq) = Γ̂R(sq)′δ̂(sq),

with Γ̂ being a sq × sq symmetric Toeplitz matrix defined by the vector (γ̂0, ..., γ̂sq−1)′.

As stated earlier, the difference in (8) is not exactly zero, due to the restriction matrix. Moreover, the distance

might not be equal over all lags of the ACVF. Hence, it would be optimal to have a scalar distance measure that

accounts for both. To this end, we first need asymptotic (model-free) properties of the ACVF of yt:

Using Bartlett’s formula (cf. Schlittgen and Streitberg 2001), it is known that the empirical ACVF, γ̂, is

asymptotically normally distributed,

γ̂
a∼ N(γ,Σ). (9)
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The element in the i-th row and j-th column of the sq × sq covariance matrix Σ is defined by:

Σi,j =
1

T

∞∑
`=−∞

γ`γ`+i−j + γ`−jγ`+i (10)

In finite samples, it is not possible to compute the elements of Σ, because of the sum with limits −∞ and ∞.

However, since yt is stationary, we know that γ−` = γ` converges towards zero, as ` increases. Therefore, it is

advisable to choose a value `max < ∞, up to which the ACVF is calculated. `max should be chosen in a way

that the ACVF is close to zero.3 Using the empirical ACVF instead of the theoretical, Σi,j can be estimated by

Σ̂i,j =
1

T

`max∑
`=−`max

γ̂`γ̂`+i−j + γ̂`−j γ̂`+i. (11)

Using these results, the distance between γ̂ and γ(sq) is then measured by the Wald statistic, which is equal to

the squared Mahalanobis distance

W (sq) = [γ̂ − γ(sq)]
′
Σ−1 [γ̂ − γ(sq)] = [γ̂ − ΓR(sq)′δ]

′
Σ−1 [γ̂ − ΓR(sq)′δ] . (12)

Note that, if a CAR model – with known parameters sq, sq and δ – is the true DGP, then W (sq) follows a

χ2-Distribution with q degrees of freedom.

W (sq) from (12) relies on true values which have to be replaced by estimates in practice. Γ and Σ are replaced

by their empirical and unrestricted counterparts, Γ̂ and Σ̂. Then, the distance measured by (12), depends only

on R(sq) and the conditional OLS estimate δ̂(sq), obtained from the regression in (3).

The feasible version of (12) is therefore given by

W (sq) =
[
γ̂ − Γ̂R(sq)′δ̂(sq)

]′
Σ̂−1

[
γ̂ − Γ̂R(sq)′δ̂(sq)

]
. (13)

If only q and sq are given, W (sq) can be calculated for all sq ∈ Sq. The minimum of W (sq) then defines the

optimal value ŝq:

ŝq = argmin
sq∈Sq

W (sq) (14)

In the following proposition, we will show that ŝq is a consistent estimate for its true counterpart.

Proposition 1. Let yt be a stationary, ergodic process, defined by (3), δ0 and s0 = (1, s0, sq)′. Let the set of all

possible values of sq be Sq, with known q and sq, such that Sq is compact and s0 ∈ Sq. Furthermore, let ŝq ∈ Sq

be some estimate for the true vector s0. Then W (sq), defined by (13), attains its minimum only at ŝ = s0.

Proof. Define g(φ) = γ̂ − Γ̂φ, where φ is completely determined by sq and δ. Suppose γ̂ is estimated by

γ` = T−1
∑T

t=`+1(yt − y)(yt−` − y), so that γ̂
p→ γ, Γ̂

p→ Γ and Σ̂
p→ Σ. Then it follows, that minimizing

(13) with respect to δ and sq ∈ Sq is equivalent to the Generalized Method of Moments and thus, ensures that

plim δ̂ = δ0 and plim ŝq = s0.

3We set `max = 250 for the simulation study and the empirical application.
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Under the Nullhypothesis that yt follows an CAR model defined by s = s0, it holds that Ws
a∼ χ2

sq−q, which

can be used for testing specific CAR models:

Wq = W (ŝq), Wq
a∼ χ2

sq−q. (15)

Cross-Validation

While LS aims to maximize in-sample fit, cross-validation (CV) maximizes out-of-sample fit. Since yt is autocor-

related and not iid, standard CV is not applicable, i.e. re-sampling and leaving out random observations would

destroy the time-dependency of the series.

Recently, Bergmeir et al. (2018) derived a way of implementing CV for selecting the order of pure AR models.

The procedure is similar to the leave-one-out CV and leaves the time structure intact. It can also be used in the

context of CAR models, so we apply it to select sq.

Although yt itself is not iid, conditional on xt = (yt−1, ..., yt−sq )′ it is. Moreover, yt|xt has mean δ(sq)′R(sq)xt

and variance σ2. Hence, this allows for the removal of n pairs of information (yt,xt) that are chosen at random.

These j = 1, ..., n pairs (yoj ,x
o
j) form the out-set that will be used for validation. Correspondingly, the remaining

pairs are called the in-set. Over the in-set, we use OLS to obtain δ̃(sq), conditional on sq.4 Then, over the

out-set, the mean squared forecasting error (MSFE) is calculated by

MSFE(sq) = n−1
n∑

j=1

(
yoj − δ̃(sq)′R(sq)xo

j

)2
. (16)

This procedure is repeated k times, also referred to as folds. For each fold, yt is partitioned into in- and out-set.

The out-set is chosen randomly, but it is ensured that, across all k folds, every pair (yt,xt) is exactly once in

the out-set (for details, see Bergmeir et al. 2018). This automatically fixes n = T/k.

Over each fold, the MSFE is calculated, resulting in k values of MSFE for each sq ∈ Sq. Denote MSFE(sq, i)

the MSFE of the i-th fold and the model defined by sq. Then, ŝq is the value of sq that produces on average the

lowest MSFE over all folds:

ŝq = arg min
sq∈Sq

1

k

k∑
i=1

MSFE(sq, i)

Following Bergmeir et al. (2018), we use k = 5 in the simulation study and the empirical application.

3.3 Selection of q

Using the methods presented, we are able obtain the estimate ŝ = (1, ŝq, ŝq)′ conditional on a pre-specified value

of q. It is worth noting that an increase or decrease in q does not change all elements of ŝ; per construction, the

first and last step parameters remain the same, so changes in q only affect ŝq.

4In general, δ̃(sq) is different from δ̂(sq), because it does not use all the data.
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In most applications, q = 3 or q = 4 should suffice, because one of the main advantages of CAR models is that

they are sparse. Increasing q therefore gradually nullifies this advantage, because more parameters, i.e. step

width and the corresponding weight, need to be estimated from the data. This in turn leads to lower predictive

power of the model. For example, Hwang and Shin (2014) showed that q = 3 may already be optimal regarding

the trade-off between better approximation and higher estimation risk.

However, in theory, the choice of q is only limited by the relationship 2 ≤ q ≤ sq.5 Moreover, q can be selected

data-driven, which might be desirable for some applications:

The in sample fit of a model with q steps can be measured by RSSq. Increasing the number of steps de-

creases on average the residual sum of squares, i.e. RSSq+1 ≤ RSSq, because the CAR model becomes more

flexible. Hence, it may be tempting to include more steps into the model to achieve better in sample results.

On the other hand, maximizing in sample fit usually leads to overfitting and thus, deteriorated out of sample

forecasting performance.

To obtain a parsimoniously parameterized model that accounts for this trade-off a model selection criterion

P(q, ŝq) can be used, that penalizes the inclusion of additional steps

(q̂, ŝq̂) = arg min
q
P(q, ŝq).

(q̂, ŝq̂) are then the CAR model order estimates.

For P(q, ŝq), we consider AIC and BIC, which are the most prominent model selection criteria in the context of

time-series models. They are given as

AIC = ln

(
RSSq

T − sq

)
+ 2

q + 2

T − sq
, (17)

BIC = ln

(
RSSq

T − sq

)
+ ln(T − sq) · q + 2

T − sq
. (18)

The appropriateness of a CAR model with q steps can be tested by using the test statistic given in (15), because

if the number of steps is correct, Wq follows a χ2
sq−q distribution.

Another way to test the adequacy of the estimated model is to use the standard F -test, which implicitly relies

on the assumption that an unrestricted AR(sq) is the true DGP; denote RSSq the RSS of the estimated Cascade

model and by RSSsq the RSS of the unrestricted AR(sq) model. For stationary time-series, the F statistic is

then given by

F =
RSSq −RSSsq

RSSsq

T − 2sq
sq − q

H0−→
T→∞

Fsq−q,T−2sq .

Lastly, the adequacy of the model can be verified by the means of residual diagnostics, e.g. the Ljung-Box test

(cf. Ljung and Box 1978).

5If q = sq , the CAR model is equal to the unrestricted AR(sq)
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4 Monte Carlo study

In this section, we compare the methods for order selection of CAR models, ie. the selection of sq and s, in two

simulation studies. Throughout the simulations, we use different CAR models following

yt = δ1yt−1 + δ2yt−1,s2 + ...+ δqyt−1,sq + ut, ut
iid∼ N(0, 1). (19)

Hence, each model is completely determined by the vectors s = (1, s2, ..., sq)′ and δ = (δ1, ..., δq)′. δ is constructed

in a way that it only depends on a persistency parameter ξ =
∑q

i=1 δi. To model long-memory behavior, ξ needs

to be close to, but smaller than one6. Based on ξ, we define δ:

δ = ξ ·


(0.1, 0.45, 0.45)′ for q = 3

(0.1, 0.3, 0.3, 0.3)′ for q = 4.

(20)

4.1 Simulation study for selection procedures for sq

To compare the performance of the selection of sq according to the four information criteria (AIC, BIC, MAIC,

and MBIC), we simulate the CAR models according to (19) and (20) with two adjustments: first, we fix q = 3,

because the effect of the number of steps on ŝq is assumed to be negligible. The same applies to the value of s2,

so we fix it to s2 = b sq2 c, with bxc denoting the integer part of x. Hence, the DGP only depends on ξ and sq.

The different parameterizations are given in table 1.

We draw B = 10, 000 samples, each of length T = 1000, from twelve different CAR models. For each sample, we

estimate ŝq according to the minimum of the information criteria and obtain the estimation error, i.e. the distance

between ŝq and sq. Table 1 reports the Mean-Squared-Error (MSE) of the estimates across all replications.

On average, the MSE increases in sq for all four information criteria, especially when the processes are more

persistent. Very large values of sq are therefore harder to estimate precisely than smaller values. This holds

regardless of the chosen selection criterion. However, the selection approaches perform quite differently: overall,

BIC does not seem to be a good choice for estimating sq in this setting, because it produces by far the largest

MSE for larger sq. In those cases, the MSE associated with AIC estimates is also larger than those of MAIC

and MBIC. This indicates that AIC and BIC are not suited for model selection of an high order AR process.

Interestingly, even if the order is rather low, i.e. sq = 10, the conventional information criteria are outperformed

by MBIC, if the persistency is high. Therefore, the modified information criteria appear to be preferable over

the conventional ones. While the MAIC estimates of sq exhibit lower MSE if the true order and persistency are

high, the MBIC produces on average the lowest MSE among the four information criteria. Therefore, without

prior knowledge of the true underlying process, the MBIC should be preferred.

6ξ = 1 results in a non-stationary CAR model.
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Parametrization MSE

sq ξ MAIC MBIC AIC BIC

1. 10 0.80 141.413 52.727 26.425 21.837

2. 10 0.90 33.100 6.259 25.740 18.969

3. 10 0.95 12.170 5.077 25.965 17.091

4. 15 0.80 114.052 49.179 40.724 70.717

5. 15 0.90 33.835 12.755 33.676 62.077

6. 15 0.95 16.592 19.584 31.943 59.215

7. 20 0.80 92.904 46.828 70.939 169.224

8. 20 0.90 40.117 29.680 59.722 128.071

9. 20 0.95 31.353 50.976 56.239 117.179

10. 25 0.80 80.007 54.201 134.433 357.475

11. 25 0.90 49.547 57.086 112.306 263.666

12. 25 0.95 53.260 97.362 103.149 231.752

Note: Bold values indicate the lowest MSE for a given specification.

Table 1: Results of the simulation study for sq

4.2 Simulation study for selection procedures for sq

We are interested in evaluating the three different selection procedures for sq, conditional on sq. To this end,

we assume sq = 22 to be known. We also simulate the process given by (19) and (20) for different choices of s,

i.e. with q = 3 or q = 4 steps. For q = 3 (q = 4), this entails the estimation of s2 (s2 and s3) by the approaches

presented in section 3.

By varying the parameters ξ and sq, we simulate 24 different cascade models in total. The parametrizations are

given in table 2; for example, parametrization 17 yields δ = 0.9 · (0.1, 0.3, 0.3, 0.3)′ = (0.09, 0.27, 0.27, 0.27)′ and

s = (1, 2, 5, 22)′, so that sq = (2, 5)′ needs to be estimated.

Like in the previous simulations, we use B = 10, 000 replications per model to calculate the performance mea-

sures. Throughout the simulation of each model, the number of observations T is set to 2000. The first 1000

observations are treated as in-sample whereas the remaining 1000 are used for forecasting.

In-sample, we employ the three approaches presented (LS, Wald and CV) to estimate the unknown vector

sq and δ, resulting in ŝq(b, j) and δ̂(b, j) for replication b = 1, ..., B and model selection method j.

These estimates are then used to calculate measures of fit for the in-sample and out-of-sample period. In-sample,

13



we make use of the euclidean distance between sq and ŝq(b, j):

ϑ(b, j) = ||̂sq(b, j)− sq||2 =
√

(ŝ2(b, j)− s2)2 + ...+ (ŝq−1(b, j)− sq−1)2, ϑ(b, j) ≥ 0. (21)

If ŝq(b, j) is equal to sq, the euclidean distance is zero. Larger values indicate that ŝq(b, j) deviates substantially

from its true value. For example, if q = 3, equation (21) reduces to ϑ(b, j) =
√

(ŝ2(b, j)− s2)2.

Out-of-sample fit is evaluated based on the accuracy of the predictions: we first derive one-step ahead fore-

casts ŷt|t−1(b, j) for the out-of-sample period 1000 < t ≤ T , conditional on estimates ŝq(b, j) and δ̂(b, j). The

forecasts are then used to calculate the Root Mean Squared Forecasting Error (RMSFE):

RMSFE(b, j) =

√√√√ 1

1000

T∑
t=1001

(ŷt|t−1(b, j)− yt)2 (22)

Upon completition of all B replications, we are able to compare the model selection approaches using the averages

of the two performance measures given in (21) and (22), ϑ(j) and RMSFE(j). Table 2 shows the results of the

simulation for q = 3 (parametrizations 1 to 12) and q = 4 (parametrizations 13 to 24). We also provide results

of three additional models; first, the true model with known s. For this model, only δ needs to be estimated

and serves as a benchmark. Second, the standard HAR model and third, a cascade model that may useful in

smaller samples and involves an ad-hoc model selection - denoted by ’fixed’. sq is not estimated from the data.

Instead, s is completely determined by sq and q:

s =


(
1, b√sqc, sq

)′
if q = 3(

1, b√sqc, b sq2 c, sq
)′

if q = 4,

.

In-sample standard LS selection consistently outperforms Cross-Validation in terms of lower ϑ(j). This is

not suprising, since CV uses not the complete sample per each fold. Moreover, especially for q = 3, LS delivers

estimates, that are on average the closest to the true value of sq. For q = 4, the relative performance of the

estimation procedure depends more strongly on the true value of sq, rather than ξ; for processes with model

order s = (1, 2, 5, 22)′ or s = (1, 5, 10, 22)′ Wald-based selection performs best in-sample.

Out-of-sample, all models produce RMSFE close to the theoretical value of one. Since the differences are small,

we multiply the results by 100. This finding is independent from the choice of steps and persistency. Moreover,

the average RMSFE are almost identical across the selection procedures, which stems from the fact that they

often select the same ŝq. However, the estimated models outperform the ad-hoc and HAR parametrization in

many cases. In cases, where HAR produces the smallest average RMSFE, the true value of s is either very similar

to or exactly equal to the HAR parametrization. Aside from those cases, Wald and LS produce on average the

most accurate predictions.
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Parametrization In-sample, ϑ(j) Out-of-sample, RMSFE(j), scaled by factor 100

q = 3 ξ s LS Wald CV LS Wald CV True fixed HAR

1. 0.8 (1,2,22)’ 0.084 0.072 0.101 100.150 100.153 100.154 100.115 100.983 101.176

2. 0.8 (1,5,22)’ 0.671 0.652 0.746 100.265 100.269 100.275 100.148 100.386 100.148

3. 0.8 (1,10,22)’ 2.427 2.435 2.645 100.320 100.317 100.328 100.177 100.483 100.443

4. 0.8 (1,15,22)’ 4.114 4.486 4.328 100.278 100.271 100.274 100.135 100.273 100.269

5. 0.9 (1,2,22)’ 0.036 0.042 0.044 100.159 100.166 100.162 100.138 101.201 101.446

6. 0.9 (1,5,22)’ 0.452 0.478 0.498 100.277 100.287 100.284 100.174 100.476 100.174

7. 0.9 (1,10,22)’ 1.969 2.075 2.173 100.304 100.313 100.316 100.165 100.555 100.505

8. 0.9 (1,15,22)’ 3.721 4.265 3.947 100.282 100.281 100.280 100.139 100.311 100.307

9. 0.95 (1,2,22)’ 0.025 0.027 0.027 100.211 100.215 100.214 100.194 101.360 101.632

10. 0.95 (1,5,22)’ 0.387 0.423 0.429 100.259 100.274 100.267 100.156 100.492 100.156

11. 0.95 (1,10,22)’ 1.807 2.010 1.977 100.302 100.318 100.313 100.161 100.599 100.536

12. 0.95 (1,15,22)’ 3.483 4.295 3.755 100.309 100.314 100.312 100.167 100.363 100.355

q = 4

13. 0.8 (1,2,5,22)’ 3.327 2.558 3.941 100.376 100.335 100.408 100.166 100.620 100.580

14. 0.8 (1,2,10,22)’ 3.796 3.864 4.255 100.422 100.418 100.448 100.218 100.643 100.794

15. 0.8 (1,2,15,22)’ 4.785 5.314 5.160 100.356 100.351 100.365 100.156 100.617 100.672

16. 0.8 (1,5,10,22)’ 5.329 5.102 5.453 100.445 100.437 100.441 100.170 100.309 100.253

17. 0.9 (1,2,5,22)’ 2.413 1.825 2.836 100.339 100.303 100.368 100.148 100.706 100.678

18. 0.9 (1,2,10,22)’ 3.065 3.233 3.406 100.372 100.381 100.397 100.193 100.720 100.930

19. 0.9 (1,2,15,22)’ 4.233 5.046 4.523 100.367 100.374 100.380 100.195 100.757 100.849

20. 0.9 (1,5,10,22)’ 4.845 4.643 4.999 100.475 100.471 100.476 100.205 100.373 100.324

21. 0.95 (1,2,5,22)’ 1.952 1.411 2.329 100.370 100.338 100.400 100.200 100.807 100.786

22. 0.95 (1,2,10,22)’ 2.716 3.015 3.045 100.389 100.402 100.415 100.220 100.795 101.034

23. 0.95 (1,2,15,22)’ 4.008 4.979 4.236 100.342 100.354 100.351 100.177 100.801 100.914

24. 0.95 (1,5,10,22)’ 4.547 4.487 4.700 100.503 100.513 100.504 100.232 100.418 100.372

Table 2: Simulation results: Bold values indicate the lowest ϑ or RMSFE (True model excluded).
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To sum up, in-sample gains can be considerably large, when estimating sq by the methods presented and LS

seems to be the preferred choice. Out-of-sample, performing model selection also gives an advantage over fixed

parametrizations, unless the true parameters are close to the assumed ones.

5 Empirical Application

In this section, we apply the procedures on time-series of realized variances (RV) and show the benefits of model

selection, in contrast to using a fixed s. The data is obtained from the Oxford-Man Institute’s realized library

by Heber et al. (2009) and consists of daily RV estimators of major stock indices, calculated using 5-minute

intra-day returns. The indices used are DAX 30, EURO STOXX 50, FTSE 100, Nifty 50, Nikkei 225 and S&P

500. The data ranges from from 2005 to 2018 and consists of approximately 3550 observations each.7

The years 2005 to 2014 are treated as in-sample and used for estimation and selection of the model parameters.

The remaining four years are used to construct out-of-sample one-step-ahead forecasts. Because of the presence

of large outliers and skewness in the data, we use a log transform of the data. It is worth mentioning that our

aim is to model the time-series of RV itself and not the underlying latent variance process.8

Using the methods presented, we estimate models with 3 and 4 steps and determine sq by using MBIC.For

further comparison, we also estimate AR(1) and ARMA(1,1) models.9

The estimated values for s are reported in table 3. For q = 3, the results are sometimes similar to the HAR

specification, for example the OLS estimates for the DAX index are (1, 5, 19)′. However, the short-run dynamics

are emphasized by the data, because s2 is often smaller than 5 and sq is always estimated to be smaller than

22. This becomes even more clear for q = 4, because s2 and s3 are almost exclusively estimated to be smaller or

equal to 5.

In tables 4 and 5 it can be seen that these differences to the standard HAR formulation result in a better

in-sample fit on average. Although the ARMA(1,1) model produces the lowest AIC and BIC for the S&P 500

index, the OLS approach provides the best in-sample fit for most of the RV time-series. AIC and BIC also often

indicate, that the inclusion of the additional cascade step results in a better fit.

However, table 6 shows that the increased in-sample fit does not necessarily result in improved forecasts. For

example, the Wald-based estimation and the EURO STOXX 50, the inclusion of an additional step decreases

7Differences in sample length are caused by, among other factors, different national holidays.
8RV is only a proxy for the latent variance process. Hence, a model that fits log(RV) best is not necessarily the best fitting model

for the true volatility. For a discussion of comparing models fitted to variance proxies, see eg. Hansen and Lunde (2006) and Patton

(2011)
9In contrast to the other models, we estimate the ARMA(1,1) using Maximum-Likelihood and assume normally distributed

errors.
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q = 3 LS Wald CV fixed

DAX (1, 5, 19)’ (1, 3, 19)’ (1, 5, 19)’ (1, 4, 19)’

STOXX (1, 5, 19)’ (1, 3, 19)’ (1, 5, 19)’ (1, 4, 19)’

FTSE (1, 4, 15)’ (1, 4, 15)’ (1, 4, 15)’ (1, 3, 15)’

Nifty 50 (1, 3, 16)’ (1, 3, 16)’ (1, 3, 16)’ (1, 4, 16)’

Nikkei (1, 3, 16)’ (1, 3, 16)’ (1, 3, 16)’ (1, 4, 16)’

S&P (1, 3, 18)’ (1, 2, 18)’ (1, 3, 18)’ (1, 4, 18)’

q = 4

DAX (1, 2, 5, 19)’ (1, 3, 5, 19)’ (1, 2, 5, 19)’ (1, 4, 9, 19)’

STOXX (1, 3, 5, 19)’ (1, 3, 5, 19)’ (1, 3, 5, 19)’ (1, 4, 9, 19)’

FTSE (1, 2, 5, 15)’ (1, 2, 5, 15)’ (1, 2, 5, 15)’ (1, 3, 7, 15)’

Nifty 50 (1, 3, 5, 16)’ (1, 3, 5, 16)’ (1, 2, 5, 16)’ (1, 4, 8, 16)’

Nikkei (1, 2, 5, 16)’ (1, 2, 3, 16)’ (1, 3, 10, 16)’ (1, 4, 8, 16)’

S&P (1, 2, 5, 18)’ (1, 2, 5, 18)’ (1, 2, 5, 18)’ (1, 4, 9, 18)’

Table 3: Estimation results, ŝ

the AIC (BIC) from −2, 520.29 to −2, 534.04 (−2, 502.78 to 2, 510.69). But simultaneously, the scaled RMSFE

increases from 66.57 to 66.63. However, the model selection procedures on average all produce more precise

out-of-sample forecasts than the standard HAR approach and, aside from the FTSE 100, ARMA(1,1).
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q = 3 LS Wald CV fixed HAR ARMA(1,1) AR(1)

DAX -3,260.121 -3, 259.414 -3,260.121 -3, 246.814 -3, 256.078 -3, 250.953 -2, 836.476

STOXX -2, 527.423 -2, 520.288 -2, 527.423 -2, 520.502 -2,528.036 -2, 518.801 -2, 059.023

FTSE -2,810.168 -2,810.168 -2,810.168 -2, 797.053 -2, 797.379 -2, 804.616 -2, 256.185

Nifty 50 -2,933.014 -2,933.014 -2,933.014 -2, 928.626 -2, 914.384 -2, 894.541 -2, 457.880

Nikkei -3,195.107 -3,195.107 -3,195.107 -3, 182.060 -3, 176.565 -3, 179.111 -2, 839.178

S&P -2, 475.766 -2, 465.954 -2, 475.766 -2, 473.624 -2, 462.698 -2,500.127 -1, 990.094

q = 4

DAX -3,269.263 -3, 268.525 -3,269.263 -3, 247.896 -3, 256.078 -3, 250.953 -2, 836.476

STOXX -2,534.041 -2,534.041 -2,534.041 -2, 522.856 -2, 528.036 -2, 518.801 -2, 059.023

FTSE -2,817.542 -2,817.542 -2,817.542 -2, 805.572 -2, 797.379 -2, 804.616 -2, 256.185

Nifty 50 -2,935.703 -2,935.703 -2, 935.338 -2, 926.865 -2, 914.384 -2, 894.541 -2, 457.880

Nikkei -3,199.797 -3, 197.708 -3, 195.428 -3, 181.256 -3, 176.565 -3, 179.111 -2, 839.178

S&P -2, 492.811 -2, 492.811 -2, 492.811 -2, 471.769 -2, 462.698 -2,500.127 -1, 990.094

Table 4: In-sample fit, AIC: Bold values indicate the lowest AIC.

q = 3 LS Wald CV fixed HAR ARMA(1,1) AR(1)

DAX -3,242.621 -3, 241.913 -3,242.621 -3, 229.313 -3, 238.578 -3, 239.272 -2, 825.795

STOXX -2, 509.910 -2, 502.775 -2, 509.910 -2, 502.989 -2,510.524 -2, 507.112 -2, 048.334

FTSE -2, 792.684 -2, 792.684 -2, 792.684 -2, 779.569 -2, 779.895 -2,792.949 -2, 245.518

Nifty 50 -2,915.585 -2,915.585 -2,915.585 -2, 911.197 -2, 896.955 -2, 882.911 -2, 447.249

Nikkei -3,177.713 -3,177.713 -3,177.713 -3, 164.666 -3, 159.171 -3, 167.503 -2, 828.569

S&P -2, 458.297 -2, 448.484 -2, 458.297 -2, 456.154 -2, 445.228 -2,488.468 -1, 979.435

q = 4

DAX -3,245.929 -3, 245.190 -3,245.929 -3, 224.562 -3, 238.578 -3, 239.272 -2, 825.795

STOXX -2,510.691 -2,510.691 -2,510.691 -2, 499.505 -2, 510.524 -2, 507.112 -2, 048.334

FTSE -2,794.229 -2,794.229 -2,794.229 -2, 782.260 -2, 779.895 -2, 792.949 -2, 245.518

Nifty 50 -2,912.464 -2,912.464 -2, 912.1000 -2, 903.627 -2, 896.955 -2, 882.911 -2, 447.249

Nikkei -3,176.605 -3, 174.516 -3, 172.236 -3, 158.064 -3, 159.171 -3, 167.503 -2, 828.569

S&P -2, 469.518 -2, 469.518 -2, 469.518 -2, 448.476 -2, 445.228 -2,488.468 -1, 979.435

Table 5: In-sample fit, BIC: Bold values indicate the lowest BIC.
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q = 3 LS Wald CV fixed HAR ARMA(1,1) AR(1)

DAX 53.907 53.661 53.907 53.813 53.898 53.911 59.974

STOXX 67.046 66.565 67.046 66.836 67.005 66.774 73.788

FTSE 64.471 64.471 64.471 64.451 64.527 64.217 72.701

Nifty 50 53.674 53.674 53.674 54.027 54.012 53.841 61.338

Nikkei 62.164 62.164 62.164 62.274 62.450 62.733 66.662

S&P 62.711 62.781 62.711 62.960 63.353 63.852 65.318

q = 4

DAX 53.733 53.636 53.733 53.837 53.898 53.911 59.974

STOXX 66.630 66.630 66.630 66.842 67.005 66.774 73.788

FTSE 64.244 64.244 64.244 64.363 64.527 64.217 72.701

Nifty 50 53.703 53.703 53.711 54.008 54.012 53.841 61.338

Nikkei 62.215 62.171 62.105 62.259 62.450 62.733 66.662

S&P 62.998 62.998 62.998 62.994 63.353 63.852 65.318

Table 6: Out-of-sample fit, RMSFE (scaled by factor 100): Bold values indicate the lowest RMSFE.

6 Conclusion and possible extensions

In this paper, we presented three different ways for model selection in CAR models, namely the order of the

underlying AR model, the number of steps and the width of each step. In a simulation study, we showed that

the procedures are able to identify the model order in a satisfying way. This results in two major benefits over

standard HAR procedures: First, by estimating the step pattern, one gain deeper insights into the dynamics

of a time-series in-sample: we showed empirically, that the model order may deviate from the standard HAR

formulation.

Second, we showed in a simulation study and empirically that, despite the additional estimation risk, out-of-

sample forecasting performance is similar or even better than the standard HAR model.

Since we focused on univariate time-series, future research may concern model selection in a multivariate setting.

Moreover, the CAR model results from imposing linear restrictions on a AR model. Hence, a natural next step

would be considering non-linear restrictions.
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[18] Golosnoy, V., Hildebrandt, B., Köhler, S. (2019). Modeling and forecasting realized portfolio diversification benefits. Journal

of Risk and Financial Management, 12(3): 116.

[19] Granger, C. W., Joyeux, R. (1980). An introduction to long-memory time series models and fractional differencing. Journal of

Time Series Analysis, 1(1): 15–29.

[20] Hansen, P. R., and Lunde, A. (2006). Consistent ranking of volatility models. Journal of Econometrics, 131(1-2): 97–121.

20



[21] Hayashi, F. (2000). Econometrics. Princeton University Press: New Jersey.

[22] Heber, G., Lunde, A., Shephard, N., Sheppard, K. (2009). Oxford-Man Institute’s realized library (v0.3). Oxford-Man Institute,

University of Oxford.

[23] Hwang, E., Shin, D. W. (2014). Infinite-order, long-memory heterogeneous autoregressive models. Computational Statistics &

Data Analysis, 76: 339–358.

[24] Ljung, G. M., Box, G. E. (1978). On a measure of lack of fit in time series models. Biometrika, 65(2): 297–303.

[25] Leeb, H., Pötscher, B. M. (2009). Model Selection. In Handbook of Financial Time Series. Springer-Verlag Berlin Heidelberg

[26] McAleer, M., Medeiros, M. C. (2008). A multiple regime smooth transition heterogeneous autoregressive model for long memory

and asymmetries. Journal of Econometrics, 147(1): 104–119.
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