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Abstract

In a seminal paper Abadie and Imbens (2008) showed that the limiting variance of the classi-

cal nearest neighbor matching estimator cannot be consistently estimated by a naive Efron-type

bootstrap. Specifically, they show that the conditional variance of the Efron-type boostrap es-

timator does not converge to the correct limit in expectation. In essence this is due to drawing

with replacement such that original observations appear more than once in the bootstrap sample

with positive probability even when the sample size becomes large. In the same paper, it is con-

jectured that the limiting variance should be consistently estimable by an M-out-of-N bootstrap.

Here, we prove that the conditional variance of an M-out-of-N-type bootstrap estimator does in-

deed converge to the correct limit in expectation in the setting considered in Abadie and Imbens

(2008). The key to the proof lies in the fact that asymptotically the M-out-of-N-type bootstrap

sample does not contain any observations more than once with probability one. The finite sample

performance of the M-out-of-N-type bootstrap is investigated in a simulation study of the DGP

considered by Abadie and Imbens (2008).
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1 Introduction

Matching estimators are intuitively simple procedures to estimate average treatment effects within

the potential outcomes framework. Asymptotic properties of these estimators were established in

Abadie and Imbens (2006, 2011, 2012). The expression for the variance of the asymptotic distri-

bution is typically seen to depend on numerous nuisance parameters. Besides possible finite sample

improvements, the need to estimate the nuisance parameters motivates the desire to apply resampling

based procedures to estimate the asymptotic variance in the mataching context. However, in a highly

influential paper Abadie and Imbens (2008) showed that the standard errors obtained from a naive

Efron-type bootstrap will in general be invalid. They showed this by considering a very simple data

generating process (DGP) for which it is clear that the nearest neighbor matching estimator for the

average treatment effect of the treated (ATET) will be
√
N1-consistent and asymptotically normal,

where N1 is the number of treated units. In their setting, the matching estimator is unbiased, thus

avoiding the necessity to look at bias-corrected versions of the estimator. Given their postulated

DGP they obtain closed form expressions for the limiting variance of the nearest neighbor matching

estimator for the ATET as well as for the limit of the expectation of the conditional variance of an

Efron-type bootstrap estimator, which is based on separately sampling with replacement from the

control group and from the treatment group. As the two limit expressions do not coincide, their sim-

ple setting is a counterexample showing that the considered Efron-type bootstrap variance estimator

is not valid. Of course, this is a hugely significant negative result as it implies that in more general

settings such an Efron-type resampling procedure will quite possibly also fail to reproduce the limit

distribution of the matching estimator.

In addition to this negative result on the validity of Efron-type resampling procedures,

Abadie and Imbens (2008) conjecture that using either the wild bootstrap of Härdle and Mammen

(1993) or the M-out-of-N bootstrap (Bickel et al. (1997)) should correctly estimate the limiting

distribution of nearest neighbor matching estimators. Recently, Otsu and Rai (2017) proposed and

proved the validity of a weighted bootstrap procedure that can be interpreted as a wild bootstrap.

In contrast to their procedure, which does bias correction before resampling, the present paper

investigates an M-out-of-N-type bootstrap estimator that directly resamples the original data. We
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will prove that in the setting considered in Abadie and Imbens (2008) the conditional variance

of this M-out-of-N-type bootstrap estimator is an asymptotically unbiased estimator of the limit

variance if the resample size satisfies M = o(N1/2). The proof is very technical. The key result is

that, whereas the Efron-type bootstrap samples even asymptotically contain ties, thus leading to

the failure to correctly replicate the matching procedure, the M-out-of-N-type bootstrap samples

will not contain any ties asymptotically.

The finite sample performance of our procedure is investigated in a simulation study based on the

DGP used in Abadie and Imbens (2008) for various sample sizes and degrees of balancedness between

the size of the treated group and the size of the control group. The simulations show, as would be

expected, that the performance of the M-out-of-N-type bootstrap conditional variance estimator

depends on the choice of the resample size. Moreover, it is seen that the (ex-post) best choice

depends not only on the sample size but on the interplay between the sample size and the degree of

balancedness.

The remainder of the paper is structured as follows. Section 2 provides the basic treatment effect

setup considered in Abadie and Imbens (2008) along with the resulting asymptotic properties for the

nearest neighbor matching estimator of the ATET and the Efron-type bootstrap variance estimator.

Our proposed M-out-of-N-type bootstrap procedure is presented in Section 3 along with the main

theoretical result showing that this procedure can be used to asymptotically unbiasedly estimate

the limiting variance of the nearest neighbor matching estimator for the ATET in the setting of

Abadie and Imbens (2008). The simulation study to illustrate the behavior of the M-out-of-N-type

bootstrap variance estimator and the dependence of its performance on the interplay between the

balancedness of the design and the resampling size are collected in Section 4. Section 5 concludes.

The details of the proof are collected in the appendix at the end of the manuscript.

2 Setup in Abadie and Imbens (2008)

We consider the basic binary treatment effects setup. For each unit i = 1, . . . , N let Yi(0) and Yi(1)

be the potential outcomes under control and after treatment, respectively. For each unit, we observe

Zi = (Yi,Wi, X
′
i)

′, where Wi is the treatment indicator (Wi = 1, if the unit is treated, and Wi = 0
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otherwise), Yi = WiYi(1)+(1−Wi)Yi(0) is the (observed) outcome and Xi is a vector of (continuously

distributed) covariates. Let (Y (1), Y (0),W,X ′)′ be the population random variables from which the

data are drawn. We will be interested in estimating the average treatment effect on the treated

(ATET)

τ t = E[Y (1)− Y (0) | W = 1].

Given data Z := {(Yi,Wi, X
′
i)}Ni=1, the simple nearest neighbor matching estimator for the ATET is

given by

τ̂ t =
1

N1

N
∑

i=1

Wi{Yi − Ŷi(0)},

where N1 =
∑N

i=1 Wi is the number of treated units and Ŷi(0) = Yj(i) is the imputed value for the

non-observed Yi(0) with j(i) being the index of the unit that is matched to unit i. The index j(i)

is the index of the control unit that is closest to treated unit i, where closeness is measured by the

distance of the regressor (vector) to Xi, that is

j(i) = argmin
j∈{1,...,N}:Wj=0

||Xj −Xi||.

In order to allow for the possibility that there is not a unique closest unit, as indeed will be the case

in the bootstrap samples, one can write Ŷi(0) =
1

#J (i)

∑

j∈J (i) Yj , with #J (i) the number of closest

units to treated unit i and J (i) = arg minj∈{1,...,N}:Wj=0 ||Xj−Xi||, the set of indices of those closest

control units. With Kj =
∑N

i=1 Wi
I{j∈J (i)}

#J (i) the number of times (control) unit j is a match to a

treated unit, we can rewrite the matching estimator as

τ̂ t =
1

N1

N
∑

i=1

(Wi − (1 −Wi)Ki)Yi. (1)

The naive bootstrap that was shown to fail in Abadie and Imbens (2008) resamples the data and

then calculates the estimator in (1) using the bootstrap data as follows.

Step 1: Split the sample Z = {(Yi,Wi, X
′
i)}Ni=1 into the treatment group (N1 units with Wi = 1)

and the control group (N0 units with Wi = 0). Sample with replacement N1 units from the

treated group and N0 units from the control group. Combine the two sample groups to get the

bootstrap sample {(Y ∗
i ,W

∗
i , X

∗ ′
i )}Ni=1.
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Step 2: Calculate the matching estimator for the bootstrap sample

τ̂ t,∗ =
1

N1

N
∑

i=1

(W ∗
i − (1 −W ∗

i )K
∗
i )Y

∗
i , (2)

where K∗
j =

∑N
i=1 W

∗
i

I{j∈J ∗(i)}
#J ∗(i) with J ∗(i) = arg min

j∈{1,...,N}:W∗

j =0

||X∗
j −X∗

i ||.

In a typical bootstrap sample some control units will be sampled multiple times. Hence, in contrast

to when matching in the original sample, there will be ties when matching in the bootstrap sample.

Thus, in the bootstrap world there can be multiple bootstrap control units that get matched to the

bootstrap treated unit i and the set of indices J ∗(i) will not necessarily be a singleton – as was the

case when matching in the original data.

Abadie and Imbens (2008) analysed the asymptotic behavior of the nearest neighbor matching esti-

mator for the ATET, τ̂ t, and its naive Efron-type bootstrap estimator, τ̂ t,∗, under the simple DGP

given in Assumption 1 that allowed to explicitly calculate the limiting variance of the matching es-

timator
√
N1(τ̂

t − τ t) and the probability limit of Var∗[
√
N1τ̂

t,∗ | Z], where Var∗[ · | Z] denotes the

variance over the resampling mechanism conditional on the data.

Assumption 1. Let Z = {(Yi,Wi, Xi)}Ni=1 be a sample of N = N1 + N0 independent draws from

Y,X | W = w for w = 0, 1 such that:

(i) The N1 treated and N0 control units occur in a fixed ratio α = N1/N0.

(ii) The regressor satisfies X ∼ U [0, 1].

(iii) The propensity score p(x) = Pr(W = 1|X = x) is constant.

(iv) Y = WY (1) + (1 −W )Y (0) and the potential outcomes satisfy:

(a) Y (1) is degenerate with Pr(Y (1) = τ t) = 1 for some fixed τ t.

(b) Y (0) | X = x ∼ N (0, 1) for all x ∈ [0, 1].

In particular, Abadie and Imbens (2008) showed that in the setting of Assumption 1, the Efron-type

bootstrap estimator is invalid as Var∗[
√
N1τ̂

t,∗ | Z] is an asymptotically biased estimator of the

limiting variance except for the case that α = 4(1−e−1)e−1

3−8e−1+2e−2 . This is easily seen from Lemma 1. Part

(i) states the limit distribution of τ̂ t including the simple formula for the asymptotic variance; and
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part (ii) provides the limit for the expectation of the conditional variance the Efron-type bootstrap

estimator.

Lemma 1 (Asymptotic results for τ̂ t and τ̂ t,∗). Given the DGP in Assumption 1, it holds that

(i)
√
N1(τ̂

t − τ t)
d−→ N (0, 1 + 3

2α).

(ii) E
[

Var∗[
√
N1τ̂

t,∗ | Z]
]

−→ 1 + 3
2α

5e−1−2e−2

3(1−e−1) + 2e−1

Simple calculations show that if α = ᾱ := 4(1−e−1)e−1

3−8e−1+2e−2 ≈ 2.84, then Var∗[
√
N1τ̂

t,∗ | Z] is an asymp-

totically unbiased estimator of the limit variance, whereas it will be too large (small) on average in

large samples if α < ᾱ (α > ᾱ).

3 The M-out-of-N-type boostrap

Next, we propose our M-out-of-N-type bootstrap procedure. The main idea is that rather than

resampling N1 treated and N0 controls as in the Efron-type bootstrap we will resample M1 < N1

treated units and M0 < N0 control units. There are a lot of different feasible choices for the resample

sizes M0 and M1. We propose to use a choice that attempts to keep the balancedness between the

treated and control groups as close as possible to the one in the original data. Specifically, we would

like to resample M1 treated and M0 controls from the original data with M1/M0 = N1/N0 = α.

Denoting by M = M0 + M1 the total number of resampled units requiring that the balancedness

between the treated and control groups is as in the original data implies that M0 = 1/(1 + α)M and

M1 = α/(1 + α)M . As these last two equations will generally lead to non-integer M1 and M0, we

will have to take interger parts in the algorithm. Our proposed M-out-of-N-type bootstrap matching

estimator for a given α = N1/N0 is construced as follows:

Step 1: Fix a γ ∈ (0, 1) large enough to ensure that ⌊1/(1+α)Nγ⌋ and ⌊α/(1+α)Nγ⌋ are non-zero,

where ⌊x⌋ is the largest integer less than or equal to x.

Step 2: Split the sample Z = {(Yi,Wi, X
′
i)}Ni=1 into the treatment and the control group. Sample

with replacement M0 = ⌊1/(1 + α)Nγ⌋ units from the control group and M1 = ⌊α/(1 + α)Nγ⌋

units from the treated group. Combine the two sample groups to get the bootstrap sample

{(Y ∗
i ,W

∗
i , X

∗ ′
i )}Mi=1 with M = M0 +M1.
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Step 3: Calculate the matching estimator for the bootstrap sample

τ̂ t,∗M =
1

M1

M
∑

i=1

(W ∗
i − (1−W ∗

i )K
∗
i )Y

∗
i (3)

with K∗
j =

∑M
i=1 W

∗
i

I{j∈J ∗(i)}
#J ∗(i) and J ∗(i) = arg min

j∈{1,...,N}:W∗

j =0

||X∗
j −X∗

i ||.

Step 1 of the procedure ensures that we have at least one observation in each treatment arm of the

bootstrap sample. The choosen γ captures the degree of undersampling as M ≈ ⌊Nγ⌋. Note, that if

we set γ = 1, then we would getM = N and the procedure would yield the naive Efron-type bootstrap.

In Step 3, we must again allow for ties when doing the matching in the bootstrap world. However,

in contrast to the naive Efron-type bootstrap, it will be seen that there are no ties asymptotically,

which ensures that the variance estimator Var∗[
√
M1τ̂

t,∗
M | Z] is asymptotically unbiased in the setting

considered by Abadie and Imbens (2008). The formal result is given in Theorem 1.

Theorem 1. Given the DGP in Assumption 1. If M0 = o(
√
N0) and M1 = αM0, then as N0 → ∞

E

[

Var∗[
√

M1(τ̂
t,∗
M − τ̂ t) | Z]

]

→ 1 +
3

2
α,

showing that the conditional variance of the M-out-of-N-type bootstrap estimator is an asymptotically

unbiased estimator of the limiting variance of
√
N1(τ̂

t − τ t) given in Lemma 1(i).

Sketch of Proof. The variance estimator based on the M-out-of-N-type bootstrap estimator is given

by Var∗[
√
M1(τ̂

t,∗
M − τ̂ t) | Z]. As we can write

√

M1(τ̂
t,∗
M − τ̂ t) =

√

M1(τ̂
t,∗
M − τ t)−

√

M1(τ
t − τ̂) (4)

=
√

M1(τ̂
t,∗
M − τ t) +

√

M1

N1

√

N1(τ̂
t − τ t)

and the last term is asymptotically negligible we can concentrate on the leading term Var∗[
√
M1(τ̂

t,∗
M −

τ t) | Z]. From the assumptions on the DGP in Assumption 1, the definition of the M-out-of-N-type

bootstrap estimator in (3) and the the clever and unorthodox notation used by Abadie and Imbens

(2008) it is possible to write our bootstrap estimator in terms of the original data as

τ̂ t,∗M =
1

M1

N
∑

i=1

(WiRbM ,i − (1−Wi)KbM ,i)Yi

= τ t − 1

M1

N
∑

i=1

(1−Wi)KbM ,iYi(0),

7



where KbM ,i =
∑N

j=1 WjBM,i(Xj)RbM ,j is the number of (bootstrap) treated units the (original)

control unit i is matched to if the (original) control unit i is in the bootstrap and is zero otherwise.

RbM ,j counts the number of times the (original) treated unit (with regressor value Xj) is contained

in the bootstrap sample. BM,i(Xj) is an indicator that shows whether the (original) control unit

i is in the boostrap sample and is matched to a treated unit in the bootstrap with covariate value

Xj . Straightforward calculations then show that the expectation of the conditional variance of the

leading term of the M-out-of-N-type bootstrap estimator in (4) can be written as

E
[

Var∗[
√

M1(τ̂
t,∗
M − τ t) | Z]

]

=
N0

M1
E
[

E
∗[K2

bM ,i | Z]
]

, (5)

where E
∗[ · | Z] denotes the expectation over the resampling mechanism conditional on the original

data. The proof then proceeds by establishing that N0

M1

E
[

E∗[K2
bM ,i | Z]

]

→ 1 + 3
2α. The details are

given in Appendix A.

If we replacedM by N (and M1 by N1) in (3), the definition of our bootstrap estimator then we would

get the naive Efron-type bootstrap estimator, that is τ̂ t,∗N = τ̂ t,∗. Similarly, replacing the subscript

M , in KbM ,i,BM,i and RbM ,i by N when considering these entities for the naive Efron-type bootstrap

estimator it is possible to show using results from Abadie and Imbens (2008) that the expectation of

the conditional variance of the Efron-type bootstrap estimator can be written as

E

[

Var∗[
√

N1(τ̂
t,∗ − τ̂ )2 | Z]

]

= N1Var[τ̂
t]− 2

1

α
E[KiE

∗[KbN ,i | Z]] +
1

α
E[E∗[K2

bN ,i | Z]].

In contrast to this equation, the expression in (5) is not of the form “target + error”. Secondly,

(5) does not contain any terms of the form E
[

KiE
∗[K2

bM ,i | Z]
]

, which are quite complicated to

handle. Finally, the arguments used to establish the limit of N0

M1

E
[

E∗[K2
bM ,i | Z]

]

are substantially

different to those used by Abadie and Imbens (2008) to analyse N0

N1

E[E∗
[

K2
bN ,i | Z]

]

. In particular,

their arguments cannot be directly applied here. Instead, we make use of a degeneracy result for the

occupation distribution in the low intensity sampling scheme. This degeneracy result ensures that

asymptotically the M-out-of-N-type bootstrap samples contain only distinct units with probability

one. This in turn allows for the matching mechanism to be replicated correctly asymptotically.

The difficulty to replicate the matching mechanism correctly is due to the fact that even though

the covariate is continuously distributed in the population, the distribution of the covariate in the
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bootstrap sample is discrete. Thus, when matching in the bootstrap sample, there will be ties.

In the Efron-type bootstrap in Abadie and Imbens (2008) the reason for the failure is that, with

positive probability, control units are used more than once even as the sample size increases. Thus

the matching mechanism is not replicated correctly by the Efron-type bootstrap. In contrast, as just

discussed the M-out-of-N-type bootstrap samples will asymptotically not contain any ties.

4 Simulations

In order to investigate the finite sample behavior of the M-out-of-N-type bootstrap estimator τ̂ t,∗M

(given in (3)) for different choices of resample size M under the DGP in Assumption 1 we conduct

an extensive simulation study to see how well the limit variance of the nearest neighbor matching

estimator is approximated by the conditional variance of the resampling estimators when varying

the sample size (N = N0 + N1) and the degree of balancedness between the treated and control

groups measured by α = N1/N0. The simulations will re-affirm that the naive Efron-type bootstrap

estimator is invalid except when N1/N0 = ᾱ ≈ 2.84. We will also see that although as shown in

Theorem 1 the conditional variance of the M-out-of-N-type bootstrap estimator is an asymptotically

unbiased estimator of the limit variance of the nearest neighbor matching estimator for the ATET,

its behaviour is very much dependent on the interplay between the balancedness of the number of

treated and control units and the degree of undersampling as measured by γ, where M ≈ ⌊Nγ⌋

denotes the total number of units in the bootstrap sample.

The simulations were based on S = 10 000 simulation runs. We considered sample sizes of

N ∈ {100, 250, 500, 1 000, 2 000}. The balancedness of the design was varied by considering

α ∈ {10, 5, ᾱ, 2, 1, 0.5, 0.2, 0.1}. In each simulation run we simulated data sets according to the

DGP given in Assumption 1 for all the considered values of N and α with τ t fixed at a value of 1

throughout. For each simulated data set, we calculated the nearest neighbor matching estimator τ̂ t

(given in (1)). We also computed the naive Efron-type estimator τ̂ t,∗ (according to (2)) and the

M-out-of-N-type bootstrap estimator τ̂ t,∗M (as in (3)) for various choices of γ ∈ {0.4, 0.5, 0.6, 0.7}.

The bootstrap estimators were recomputed using B = 1 000 bootstrap resamples.
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Table 1: Exact variance of
√
N1(τ̂

t − τ t) as given in (6) for various N and α. The last row is 1 + 3
2α,

which is the value of the limiting variance.

N\α 10 5 ᾱ 2 1 0.5 0.2 0.1

100 13.81 8.07 4.95 3.84 2.46 1.71 1.27 1.13

250 15.50 8.33 5.14 3.93 2.48 1.74 1.29 1.14

500 15.66 8.38 5.20 3.98 2.49 1.74 1.29 1.14

1000 15.91 8.46 5.24 3.98 2.50 1.75 1.30 1.15

2000 15.95 8.47 5.25 3.99 2.50 1.75 1.30 1.15

INF 16.00 8.50 5.26 4.00 2.50 1.75 1.30 1.15

4.1 The target

Interest lies in seeing how well the resampling procedures estimate the (limiting) variance of the

nearest neighbor matching estimator for the ATET. From Lemma 1(i), we see that the limiting

variance of the matching estimator is given by 1 + 3
2α. In fact, we could also investigate how well

the finite sample variance of the matching estimator is approximated, because from Lemma 3.1(i) of

Abadie and Imbens (2008) it follows that under the DGP of Assumption 1

Var
[

√

N1(τ̂
t − τ t)

]

= 1 +
3

2

(N1 − 1)(N0 + 8/3)

(N0 + 1)(N0 + 2)
. (6)

Table 1 provides the exact variance given in (6) for the choices ofN and α considered in the simulations

along with the value of the limiting variance for different α. Notice that the asymptotics bite earlier

when α is small. This is to be expected as the randomness in the estimator under the DGP of

Assumption 1 is entirely due to the imputation of the counterfactual outcome under no treatment,

which will be better if there are relatively more controls, which corresponds to α being small. Note,

that in settings where the asymptotic distribution is less accurate any resampling procedure will tend

to perform worse. Before comparing the condtional variance estimators based on the resampling

procedures and the corresponding finite sample and asymptotic target, it is insightful to see how well

these targets are approximated by our simulations. Empirical moments of the estimators calculated

over the simulations should be close to the population moments of the estimator. Thus, if we index

each simulation run by s = 1, . . . , S and denote by τ̂ ts(N,α) the nearest neighbor matching estimator
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based on the simulated data set with index s using a sample size of N and a degree of balancedness

α, then

VarS [
√

N1τ̂
t(N,α)] :=

1

S − 1

S
∑

s=1

(

√

N1τ̂
t
s(N,α) − 1

S

S
∑

s=1

√

N1τ̂
t
s(N,α)

)2

(7)

should be close to the variance of
√
N1(τ̂ (N,α)t−τ t), whose exact value is given in Table 1. The value

of the empirical variance in (7) for the different values of N and α is given in Table 2. Comparing

these with the values for the population variance given in Table 1, we see that the approximation

using the empirical moments is in general very good, but especially for the smaller sample sizes there

is still a small error due to the simulations, which we should bare in mind when determining if the

variance estimators get close to the target.

Table 2: Emprical variance
√
N1(τ̂ (N,α)t − τ t) over the S = 10 000 simulations as in (7) for various

N and α.

N\α 10 5 ᾱ 2 1 0.5 0.2 0.1

100 13.83 8.05 5.02 3.86 2.47 1.68 1.29 1.15

250 15.72 8.36 5.16 3.85 2.38 1.75 1.26 1.12

500 15.87 8.27 5.13 3.95 2.42 1.70 1.27 1.13

1000 15.69 8.47 5.13 3.91 2.46 1.75 1.28 1.15

2000 15.99 8.29 5.15 4.01 2.49 1.76 1.32 1.13

4.2 Performance of bootstrap based variance estimators

Having established the appropriate target and seeing how well it is approximated in the simulations,

we now investigate how well the target is estimated by the bootstrap based procedures. We will focus

on determining how close the expectation of the conditional variance of the bootstrap estimators

are to the target. Unlike the variance of the nearest neighbor matching estimator we only have

asymptotic results (Theorem 1 and Lemma 1(ii)) and no exact expressions in finite samples. Hence,

for a fixed sample size we have to approximate the expectation of the conditional variance of the

resampling based procedure by calculating its empirical mean over the simulations. Let v̂(α;N) be

a generic estimator of the limiting variance of the nearest neighbor matching estimator based on N
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observations and degree of balancedness α. Then the empirical mean of the variance estimator over

the simulations is given by

ES [v̂(α;N)] :=
1

S

S
∑

s=1

v̂s(α;N), (8)

where v̂s(α;N) is the corresponding variance estimator based on the simulated data set indexed by

s. If the estimator v̂(α;N) is asymptotically unbiased then as N tends to infinity it should hold that

(up to simulation error) ES [v̂(α;N)] converges to the limit variance. Naturally, for any given N we

could compare ES [v̂(α;N)] in (8) with the corresponding limit variance 1+ 3
2α to determine the sum

of the asymptotic bias and the bias resulting from using an asymptotic approximation. Moreover,

by comparing ES [v̂(α;N)] for any given N with the corresponding exact variance of the matching

estimator in Table 1 we could determine the finite sample bias of the variance estimator. However,

as our focus lies in seeing whether the variance estimators are asymptotically unbiased we will report

the results for the largest considered sample size N = 2 000 only. Before showing the results, we

need to specify how we constructed the variance estimators based on the bootstrap procedures. Let

τ̂ t,∗s,b (α;N) be a generic bootstrap based estimator of the nearest neighbor matching estimator based

on the simulated data set index by s with sample size N and degree of balancedness α, which is

calculated using the bootstrap data set indexed by b = 1, . . . , B. For this generic estimator, we define

the estimator of the limiting variance by

v̂∗s (α;N) =:
1

B − 1

B
∑

b=1

(

τ̂ t,∗s,b (α;N)− 1

B

B
∑

i=1

τ̂ t,∗s,b (α;N)

)2

.

Applying (8) to (v̂∗s (α;N), s = 1, . . . , S) we get an estimate of the expectation of the conditional

variance of the (generic) bootstrap procedure.

The results of the simulation study for N = 2 000 are collected in Table 3. The first two rows state

the exact and the limit variance of the matching estimator for different values of balancedness as

previously given in the last two rows of Table 1. The next two lines contain the simulation based

approximated expectation of the conditional variance of the naive Efron-type bootstrap estimator

and its theoretical limit as given in Lemma 1(ii). We can clearly see that for α = ᾱ, the variance

estimator is asymptotically unbiased, whereas it is too large (small) on average if α < ᾱ (α > ᾱ). The

final block gives the simulation based approximated expectation of the conditional variance of our

M-out-of-N-type bootstrap estimator for the different choices of γ ∈ {0.4, 0.5, 0.6, 0.7}. Recall that

12



Table 3: Results on ES [v̂(α;N)] in (8) for various estimators given the largest considered sample size,

N = 2000.

Est.\α 10 5 ᾱ 2 1 0.5 0.2 0.1

Target 15.95 8.47 5.25 3.99 2.50 1.75 1.30 1.15

Asy.Target 16.00 8.50 5.26 4.00 2.50 1.75 1.30 1.15

Efron 14.00 7.88 5.23 4.21 2.97 2.35 1.98 1.85

Efron limit 14.14 7.94 5.26 4.22 2.98 2.36 1.98 1.86

MooN(0.4) 10.92 6.01 4.03 3.43 2.31 1.54 1.19 1.01

MooN(0.5) 14.02 7.27 4.79 3.78 2.45 1.68 1.28 1.15

MooN(0.6) 14.65 8.25 5.18 3.98 2.52 1.79 1.35 1.20

MooN(0.7) 15.53 8.62 5.33 4.18 2.68 1.93 1.48 1.31

γ governed the degree of undersampling by determining M ≈ ⌊Nγ⌋ the number of resampled units

in the procedure. From Theorem 1, we know that the M-out-of-N-type bootstrap variance estimator

is asymptotically unbiased provided the appropriate growth conditions for the resample size M are

met. Not surprisingly, the results from the simulation study show that the performance of the M-out-

of-N-type bootstrap variance estimator very much depends on the actual M chosen. In particular,

when the resample size is too small the performance is very poor as seen for the results using γ = 0.4.

Discarding this choice, we see that the performance of the remaining variance estimators in terms

of bias very much depends on the interplay between α and γ. In particular, a larger choice of γ

(and thus of M) seems to be better whenever α is larger. The interpretation for this finding is quite

simple. Recall that the randomness in the estimator under the DGP of Assumption 1 is entirely

due to the imputation of the counterfactual outcome under no treatment, which will be better if

there are relatively more controls, which corresponds to α being small. Thus for small α, when there

are many controls relative to treated in the original data, it is better to resample only a relatively

small number of observations by taking a smaller γ as this minimizes the chance of having ties in

the matching, whilst still ensuring that the bootstrap sample will have a sufficient number controls

to do the imputation of the counterfactual well enough. In contrast when α is large we have only a

few control units relative to treated in the original data. In this case we need to resample relatively

13
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Figure 1: Histograms of naive Efron based bootstrap variance estimates with γ = 0.6 for N = 2000

and various α.

many observations by choosing a larger γ to make sure that there are sufficient controls to do the

imputation of the counterfactual well enough. Finally, if we ignore the extreme balancedness settings

α ∈ {0.1, 10}, then for our simulation setting a choice of γ = 0.6 provides satisfactory results.

Finally, restricting attention to the non-extreme balancedness settings with α ∈ {5, ᾱ, 2, 1, 0.5, 0.2},

we compare the distribution over the S = 10 000 simulations of the variance estimates based on

the naive Efron-type bootstrap and our M-out-of-N-type bootstrap with γ = 0.6, that was seen to

produce satistfactory results. The distributional results for the Efron-type bootstrap are given in

Figure 1 for the largest sample size N = 2 000. Each panel shows the distribution of the variance

14



estimates in terms of a histogram for a particular value of balancedness between the treated and

control. The solid vertical line corresponds to the asymptotic target of 1 + 3
2α. The dashed vertical

line corresponds to the simulation based expectation of the variance estimator. Again, we can clearly

see that for α = ᾱ, the variance estimator is asymptotically unbiased, whereas it is too large (small)

on average if α < ᾱ (α > ᾱ). Furthermore, the distribution of the variance estimates is quite clearly

positively skewed.

In Figure 2, we have plotted the corresponding results on the distribution of the variance estimates

based on our M-out-of-N-type bootstrap with γ = 0.6. To ease the comparison, we have plotted the

histograms on the same scale as those for the Efron-type estimator. As previously seen, the simulation

based expectation of the variance estimator is much closer to the asymptotic target. Moreover, we can

see that the distribution of the variance estimates is considerably less dispersed and quite substantially

less skewed than for the Efron-type estimates.

5 Conclusion

We have proposed an M-out-of-N-type bootstrap on the data to estimate the variance of the nearest

neighbor matching estimator for the ATET. We have also shown that in the counterexample DGP

used by Abadie and Imbens (2008) to demonstrate that the naive Efron-type based variance estimator

is asymptotically biased the variance estimator based on our M-out-of-N-type bootstrap estimator is

in fact asymptotically unbiased. In simulations based on the DGP considered by Abadie and Imbens

(2008) it was seen that the actual performance of the M-out-of-N-type bootstrap variance estimator

heavily depends on the choice of the bootstrap sample size. In particular, we saw that bootstrap

sample sizes need to be chosen larger when there are relatively few control units in the original

data. Thus, although our result provides evidence for the conjecture made in Abadie and Imbens

(2008) in the setting they considered, it also highlights how delicate the actual performance is with

respect to the chosen bootstrap sample size. Sadly, all we can say concerning the choice of M is

that for the present setting unless the degree of balancedness is extreme, one should get satisfactory

results by choosing the bootstrap sample size according to γ = 0.6 in our procedure. Naturally,

the next steps are to find a good data driven choice for the bootstrap sample size M as well as
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Figure 2: Histograms of M-out-of-N-type bootstrap variance estimates with γ = 0.6 for N = 2000

and various α.

establishing the theoretical results in more general settings. Nonetheless, the current paper provides

in essence a proof of concept that using the M-out-of-N-type bootstrap for matching estimators of

the ATET works. Moreover, the proof of the theoretical result also highlights that the key is that the

bootstrap samples do not contain any ties asymptotically, which avoids the problem of not replicating

the matching process in the bootstrap sample as was the case for the naive Efron-type bootstrap.

Finally, although not of immediate practical use, the intuition for requiring a larger bootstrap sample

when there are relatively few controls in the original data should nonetheless carry over to more

general settings.
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A Proof of Theorem 1

Using the clever and unorthodox notation introduced by Abadie and Imbens (2008) it was seen in

the main text that

τ̂ t,∗M = τ t − 1

M1

N
∑

i=1

(1−Wi)KbM ,iYi(0) (9)

with KbM ,i =
∑N

j=1 WjBM,i(Xj)RbM ,j and its constituents defined in the main text. Moreover, as

argued in the main text, we can concentrate on Var∗[
√
M1(τ̂

t,∗
M − τ t) | Z]. Rearranging (9), we obtain

√

M1(τ
t − τ̂ t,∗M ) =

√

M1
1

M1

N
∑

i=1

(1−Wi)KbM ,iYi(0)

and from this with Z = (Y,X0,X1,W), where X0 collect the covariate values for the controls in the

sample and X1 for the treated, we get upon taking expectations over the resampling that

E
∗[τ t − τ̂ t,∗M | Z] = 1

M1

N
∑

i=1

(1−Wi)E
∗[KbM ,i | Z]Yi(0).

Integrating out Y and using the fact that E∗[KbM ,i | Z] = E∗[KbM ,i | X0,X1,W], we get

E[E∗[τ t − τ̂ t,∗M | Z] | X0,X1,W]

= E[
1

M1

N
∑

i=1

(1 −Wi)E
∗[KbM ,i | Z]Yi(0) | X0,X1,W]

=
1

M1

N
∑

i=1

(1−Wi)E
∗[KbM ,i | Z]E[Yi(0) | X0,X1,W]

= 0.

Thus, E
[

E∗[
√
M1(τ̂

t,∗
M − τ t) | Z]

]

= 0.

Similarly, we get

E[E∗[(τ̂ t,∗M − τ t)2 | Z] | X0,X1,W]

= E[E∗[
1

M2
1

N
∑

i=1

N
∑

j=1

(1−Wi)(1 −Wj)KbM ,iKbM ,jYi(0)Yj(0) | Z] | X0,X1,W]

=
1

M2
1

N
∑

i=1

N
∑

j=1

(1−Wi)(1 −Wj)E
∗[KbM ,iKbM ,j | Z]E[Yi(0)Yj(0)) | X0,X1,W]

=
1

M2
1

N
∑

i=1

(1−Wi)E
∗[K2

bM ,i | Z]

=
N0

M2
1

E
∗[K2

bM ,i | X0,X1,W]
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=
N0

M2
1

E
∗[K2

bM ,i | Z+],

where in the last line we have defined Z+ := (X0,X1,W) to lighten notation. From the above we

get

E[Var∗[
√

M1(τ̂
t,∗
M − τ t)2 | Z] | X0,X1,W] =

N0

M1
E
∗[K2

bM ,i | Z+].

A.1 Derivation of limit of E∗[K2
bM ,i | Z+]

Plugging in the expression for KbM ,i we get

E
∗[K2

bM ,i | Z+] = E
∗[(

N
∑

j=1

WjBM,i(Xj)RbM ,j)
2 | Z+]

=

N
∑

j=1

WjE
∗[BM,i(Xj)R

2
bM ,j | Z+]

+

N
∑

j=1

∑

l 6=j

WjWlE
∗[BM,i(Xj)BM,i(Xl)RbM ,jRbM ,l | Z+]

=: (A1)M + (A2)M .

A.1.1 Derivation of limit of (A1)M

For the summand in the term (A1)M , we get, with DbM ,i the indicator of whether the (control) unit

i is in the bootstrap sample or not, that

E
∗[BM,i(Xj)R

2
bM ,j | Z+] = E

∗[BM,i(Xj)R
2
bM ,j | Z+, DbM ,i = 1]P∗(DbM ,i = 1 | Z+)

= E
∗[R2

bM ,j | Z+, BM,i(Xj) = 1, DbM ,i = 1]

× P∗(BM,i(Xj) = 1 | Z+, DbM ,i = 1)P∗(DbM ,i = 1 | Z+),

where P∗ denotes the probability function over the resampling mechanism.

Due to the (conditional) independence of (RbM ,j, RbM ,l) and (DbM ,i, BM,i(Xj), BM,i(Xl)), we get

from Lemma 2 (i) in Appendix B that

E
∗[R2

bM ,j | Z+, BM,i(Xj) = 1, DbM ,i = 1] = E
∗[R2

bM ,j | Z]

= Var∗[RbM ,j | Z] + (E∗[RbM ,j | Z])2

= M1

(

1

N1

(

1− 1

N1

))

+

(

M1

N1

)2

=
M1

N1

(

N1 − 1 +M1

N1

)
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→ 0.

Notice that this expression only depends on the number of treated observations N1 and the resample

size M1, but not on Z+. Similarly,

P∗(DbM ,i = 1 | Z+) = 1− (1− 1/N0)
M0 =: P∗(DbM ,i = 1)

only depends on the number of control units N0 and the resample size M0, but not on the data

Z+. To finish analysing (A1)M , we need to deal with P∗(BM,i(Xj) = 1 | Z+, DbM ,i = 1). Dealing

with P∗(BM,i(Xj) = 1 | Z+, DbM ,i = 1) directly is complicated. However, in analogy to the Efron

case considered in Abadie and Imbens (2008), it is much simpler to deal with E
[

P∗(BM,i(Xj) =

1 | Z+, DbM ,i = 1, NbM ,0) | W, DbM ,i = 1, NbM ,0

]

, where NbM ,0 denotes the distinct number of

control units in the boostrap sample. By Bayes’ Theorem and as P∗(NbM ,0 = n | Z+, DbM ,i = 1) :=

P∗(NbM ,0 = n | DbM ,i = 1) does not depend on the data, we get

P∗(BM,i(Xj) = 1 | Z+, DbM ,i = 1)

=

M0
∑

n=1

P∗(BM,i(Xj) = 1 | Z+, DbM ,i = 1, NbM ,0 = n)P∗(NbM ,0 = n | Z+, DbM ,i = 1)

=

M0
∑

n=1

P∗(BM,i(Xj) = 1 | Z+, DbM ,i = 1, NbM ,0 = n)P∗(NbM ,0 = n | DbM ,i = 1)

=

M0
∑

n=1

P∗(BM,i(Xj) = 1 | Z+, DbM ,i = 1, NbM ,0 = n)

× P∗(DbM ,i = 1 | NbM ,0 = n)P∗(NbM ,0 = n)

P∗(DbM ,i = 1)

=
1

P∗(DbM ,i = 1)

M0
∑

n=1

P∗(BM,i(Xj) = 1 | Z+, DbM ,i = 1, NbM ,0 = n)
n

N0
P∗(NbM ,0 = n),

where we have used P∗(DbM ,i = 1 | NbM ,0 = n) = n
N0

on the last line. Integrating out X0 and X1

allows us to use Lemma 2(iv) in Appendix B yielding

E
[

P∗(BM,i(Xj) = 1 | Z+, Db,i = 1) | W, Db,i = 1
]

=
1

P∗(DbM ,i = 1)

M0
∑

n=1

E
[

P∗(BM,i(Xj) = 1 | Z+, DbM ,i = 1, NbM ,0 = n) | W, DbM ,i = 1
]

× n

N0
P∗(NbM ,0 = n)

=
1

P∗(DbM ,i = 1)

N0
∑

n=1

1

n

n

N0
P∗(NbM ,0 = n) =

1

N0

1

P∗(DbM ,i = 1)
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From these results, we get

E[E∗[BM,i(Xj)R
2
bM ,j | Z] | W] =

M1

N1

(

N1 − 1 +M1

N1

)

1

N0P∗(DbM ,i = 1)
P∗(DbM ,i = 1)

=
1

N0

M1

N1

(

N1 − 1 +M1

N1

)

,

from which it follows that

(A1)M =
N1

N0

M1

N1

(

N1 − 1 +M1

N1

)

=
M1

N0

(

N1 − 1 +M1

N1

)

(10)

whose contribution to E[Var∗[
√
M1(τ̂

t,∗
M − τ)2 | Z] | W] is N0

M1

M1

N0

(

N1−1+M1

N1

)

→ 1.

Thus, if we can show that the contribution to E[Var∗[
√
M1(τ̂

t,∗
M − τ)2 | Z] | W] from the (A2)M term

goes to 3
2α, then we are finished.

A.1.2 Derivation of limit of (A2)M

In order to derive a limit expression for the term related to (A2)M note that

E
∗[BM,i(Xj)BM,i(Xl)RbM ,jRbM ,l | Z+]

= E
∗[RbM ,jRbM ,l | Z+, BM,i(Xj) = 1, BM,i(Xj) = 1, DbM ,i = 1]

P∗(BM,i(Xj)BM,i(Xl) = 1 | Z+, DbM ,i = 1)P∗(DbM ,i = 1 | Z+).

Due to the (conditional) independence of (RbM ,j , RbM ,l) and (DbM ,i, BM,i(Xj), BM,i(Xl)), we get

E
∗[RbM ,jRbM ,l | Z+, BM,i(Xj) = 1, BM,i(Xj) = 1, DbM ,i = 1] = E

∗[RbM ,jRbM ,l | Z+]

= Cov∗[RbM ,j, RbM ,l | Z+] + E
∗[RbM ,j | Z+]E∗[RbM ,l | Z+].

By Lemma 2 (i) of Appendix B, as the {RbM ,j : Wj = 1} are (conditionally) exchangeable, with

∑

j:Wj=1 RbM ,j = M1, we get E∗[RbM ,j | Z+] = E∗[RbM ,l | Z+] = M1

N1

. Furthermore, we get

Var∗[RbM ,j] = Cov∗[RbM ,j, RbM ,j ] = Cov∗[M1 −
∑

l 6=j

RbM ,l, RbM ,j]

= −(N1 − 1)Cov∗[RbM ,l, RbM ,j ]

which upon rearranging yields Cov∗[RbM ,j, RbM ,l | Z+] = −Var∗[RbM ,j | Z+]/(N1 − 1) = −M1/N
2
1

for j 6= l. Thus,

E
∗[RbM ,jRbM ,l | Z+, BM,i(Xj) = 1, BM,i(Xl) = 1, DbM ,i = 1] =

M1

N1

(

M1

N1
− 1

N1

)
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which does not depend on Z+. Notice, that from Lemma 2 (ii) of Appendix B, P∗(DbM ,i = 1 | Z+) =

1− (1 − 1/N0)
M0 also does not depend on the data Z+.

Next, let us analyse P∗(BM,i(Xj)BM,i(Xj) = 1 | Z+, DbM ,i = 1).

Remark 1. We cannot follow the proof of Abadie and Imbens (2008). To see why, note that by

Lemma 2(vi) and (v) in Appendix B we get

E
∗

[

NbM ,0

N0

]

→ 0

and

1

N0
Var∗[NbM ,0] → 0.

From these it is clear that, in contrast to the standard bootstrap case, E[N0/NbM ,0] will not converge.

In the standard bootstrap case the limit of E[N0/Nb,0] was derived in Lemma A.5 of Abadie and Imbens

(2008) and was used to establish

N2
0E[P

∗(Bi(Xj)Bi(Xl) = 1 | Z, Db,i = 1, Nb,0) | W, Db,i = 1, Nb,0]

P∗

−→ 3

2

(

1

1− exp(−1)

)2

.

In order to deal with P∗(BM,i(Xj)BM,i(Xj) = 1 | Z+, DbM ,i = 1)P∗(DbM ,i = 1 | Z+) note that

P∗(BM,i(Xj)BM,i(Xl) = 1 | Z+, DbM ,i = 1)

=

M0
∑

n=1

P∗(BM,i(Xj)BM,i(Xl) = 1 | Z+, DbM ,i = 1, NbM ,0 = n)P∗(NbM ,0 = n | Z+, DbM ,i = 1)

=

M0
∑

n=1

P∗(BM,i(Xj)BM,i(Xl) = 1 | Z+, DbM ,i = 1, NbM ,0 = n)

P∗(DbM ,i = 1 | Z+, NbM ,0 = n)P∗(NbM ,0 = n)

P∗(DbM ,i = 1 | Z+)

=
1

P∗(DbM ,i = 1)

M0
∑

n=1

P∗(BM,i(Xj)BM,i(Xl) = 1 | Z+, DbM ,i = 1, NbM ,0 = n)

× n

N0
P∗(NbM ,0 = n)

where we have used P∗(DbM ,i = 1 | Z+, NbM ,0 = n) = n/N0 in the last line. Integrating out X0 and

X1 allows us to use Lemma 2(v) of Appendix B yielding

E
[

P∗(BM,i(Xj)BM,i(Xl) = 1 | Z+, DbM ,i = 1)P∗(DbM ,i = 1 | Z+) | W, DbM ,i = 1
]
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= P∗(DbM ,i = 1)E
[

P∗(BM,i(Xj)BM,i(Xl) = 1 | Z+, DbM ,i = 1) | W, DbM ,i = 1
]

=

M0
∑

n=1

n

N0
P∗(NbM ,0 = n)

× E
[

P∗(BM,i(Xj)BM,i(Xl) = 1 | Z+, DbM ,i = 1, NbM ,0 = n) | W, DbM ,i = 1, NbM ,0 = n
]

=

M0
∑

n=1

n

N0
P∗(NbM ,0 = n)

3

2

(n+ 8/3)

n(n+ 1)(n+ 2)
=

1

N0

3

2

M0
∑

n=1

(n+ 8/3)

(n+ 1)(n+ 2)
P∗(NbM ,0 = n)

Next notice, that by Lemma 2(iii) of Appendix B and the fact that S(M0,M0) = 1, where S(m, k) =

{

m
k

}

denotes the Stirling number of the second kind, we get that

P∗(NbM ,0 = M0) =

(

N0

N0 −M0

)

M0!

NM0

0

S(M0,M0)

=
N0!

(N0 −M0)!M0!

M0!

NM0

0

=
N0(N0 − 1) · · · (N0 −M0 + 1)

NM0

0

=
(N0 − 1)

N0
· · · (N0 −M0 + 1)

N0
.

Note that P∗(NbM ,0 = M0) is bounded from above by 1 and from below by

(

N0 −M0

N0

)M0

=

(

1− M0

N0

)M0



1−
M2

0

N0

M0





M0

=

(

1− cM0

M0

)M0

,

where cM0
:=

M2

0

N0

. Hence, if M0 = o(
√
N0) holds, we have cM0

→ 0 if M0 → ∞ such that

(

1− cM0

M0

)M0

→ exp(−0) = 1,

leading to P∗(NbM ,0 = M0) → 1. Furthermore, it is clear that for n 6= M0, it holds that P
∗(NbM ,0 =

n) = O(1/N0). Using these results, for any small δ ∈ (0, 1), we get

M0

M0
∑

n=1

(n+ 8/3)

(n+ 1)(n+ 2)
P∗(NbM ,0 = n)

=
M0(M0 + 8/3)

(M0 + 1)(M0 + 2)
P∗(NbM ,0 = M0) +M0

M0−1
∑

n=1

(n+ 8/3)

(n+ 1)(n+ 2)
P∗(NbM ,0 = n)

=
M0(M0 + 8/3)

(M0 + 1)(M0 + 2)
P∗(NbM ,0 = M0) +O

(

M0

M0−1
∑

n=1

(n+ 8/3)

(n+ 1)(n+ 2)N0

)

=
M0(M0 + 8/3)

(M0 + 1)(M0 + 2)
P∗(NbM ,0 = M0) +O

(

M0

N1−δ
0

M0−1
∑

n=1

(n+ 8/3)

(n+ 1)(n+ 2)N δ
0

)

=
M0(M0 + 8/3)

(M0 + 1)(M0 + 2)
P∗(NbM ,0 = M0) +O

(

M0

N1−δ
0

)

,
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where in the last line we have used

M0−1
∑

n=1

(n+ 8/3)

(n+ 1)(n+ 2)N δ
0

≤
M0−1
∑

n=1

(n+ 8/3)

(n+ 1)(n+ 2)nδ
≤

∞
∑

n=1

O

(

1

n1+δ

)

< ∞.

In particular, we can choose δ = 1
2 , which with M0 = o(

√
N0) implies

M0

M0
∑

n=1

(n+ 8/3)

(n+ 1)(n+ 2)
P∗(NbM ,0 = n) =

M0(M0 + 8/3)

(M0 + 1)(M0 + 2)
P∗(NbM ,0 = M0) + o(1).

Therefore, it follows that

M0N0E
[

P∗(BM,i(Xj)BM,i(Xl) = 1 | Z+, DbM ,i = 1)P∗(DbM ,i = 1 | Z+) | W, DbM ,i = 1
]

= M0N0
1

N0

3

2

M0
∑

n=1

(n+ 8/3)

(n+ 1)(n+ 2)
P∗(NbM ,0 = n)

=
3

2
M0

M0
∑

n=1

(n+ 8/3)

(n+ 1)(n+ 2)
P∗(NbM ,0 = n)

→ 3

2
.

Thus, putting everything together including M1 = αM0 we get

E
[

(A2)M | W
]

=

N
∑

j=1

∑

l 6=j

WjWlE

[

E
∗
[

BM,i(Xj)BM,i(Xl)RbM ,jRbM ,l | Z+
]

| W
]

= N1(N1 − 1)E
[

E
∗
[

BM,i(Xj)BM,i(Xl)RbM ,jRbM ,l | Z+
]

| W
]

= N1(N1 − 1)E
[

E
∗[RbM ,jRbM ,l | Z+, BM,i(Xj) = 1, BM,i(Xj) = 1, DbM ,i = 1]

P∗(BM,i(Xj)BM,i(Xl) = 1 | Z+, DbM ,i = 1)P∗(DbM ,i = 1 | Z+)
]

| W
]

= N1(N1 − 1)
M1

N1

(

M1

N1
− 1

N1

)

1

M0N0
M0N0

× E

[

P∗(BM,i(Xj)BM,i(Xl) = 1 | Z+, DbM ,i = 1)

× P∗(DbM ,i = 1 | Z+) | Z+)
]

| W
]

=
N1 − 1

N0

M1

M0

(

M1

N1
− 1

N1

)

3

2
M0

M0
∑

n=1

(n+ 8/3)

(n+ 1)(n+ 2)
P∗(NbM ,0 = n)

=

(

α− 1

N0

)

α

(

M0

N0
− 1

N1

)

3

2
M0

M0
∑

n=1

(n+ 8/3)

(n+ 1)(n+ 2)
P∗(NbM ,0 = n)

from which the contribution of (A2)M to E[Var∗[
√
M1(τ̂

t,∗
M − τ)2 | Z] | W] satisfies

N0

M1
E
[

(A2)M | W
]
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=
N0

M1

(

α− 1

N0

)

α

(

M0

N0
− 1

N1

)

3

2
M0

M0
∑

n=1

(n+ 8/3)

(n+ 1)(n+ 2)
P∗(NbM ,0 = n)

=

(

α− 1

N0

)

α

(

N0

M1

M0

N0
− N0

M1

1

N1

)

3

2
M0

M0
∑

n=1

(n+ 8/3)

(n+ 1)(n+ 2)
P∗(NbM ,0 = n)

=

(

α− 1

N0

)

α

(

M0

M1
− N0

N1M1

)

3

2
M0

M0
∑

n=1

(n+ 8/3)

(n+ 1)(n+ 2)
P∗(NbM ,0 = n)

=

(

α− 1

N0

)(

1− 1

M1

)

3

2
M0

M0
∑

n=1

(n+ 8/3)

(n+ 1)(n+ 2)
P∗(NbM ,0 = n)

→ 3

2
α.

Thus we get the desired E[Var∗[
√
M1(τ̂

t,∗
M − τ)2 | Z] | W] → 1 + 3

2α.

B Distributional results for the M-out-of-N resampling mech-

anism

A key ingredient for the proof, that we make use of numerous times is Lemma 2, which is an analog

to Lemma A.4 in Abadie and Imbens (2008) for the M-out-of-N resampling scheme.

Lemma 2 (Distributional results for M-out-of-N entities). For M0 ≤ N0, M1 ≤ N1 and w ∈ {0, 1}

we get

(i) RbM ,i | Wi = w,Z ∼ B(Mw, 1/Nw)

(ii) DbM ,i | Wi = w,Z ∼ B(1, 1− (1− 1/Nw)
Mw )

(iii) Let NbM ,0 the number of distinct control units in the bootstrap sample. The occupancy distribu-

tion is given by

P∗(NbM ,0 = n) =

(

N0

N0 − n

)

n!

NM0

0

S(M0, n)

where S(m, k) =
{

m
k

}

= 1
k!

∑k
i=1(−1)i

(

k
i

)

(k − i)m is the Stirling number of the second kind.

(iv) Let NbM ,0 be the number of distinct control units in the bootstrap sample, then for (control) i

E
[

P∗(BM,i(Xj)) = 1 | Z, DbM ,i = 1, NbM ,0) | W, DbM ,i = 1, NbM ,0

]

=
1

NbM ,0
.
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(v) Let NbM ,0 be the number of distinct control units in the bootstrap sample, then for (control) i

and distinct treated units j 6= l, we have

E
[

P∗(BM,i(Xj)BM,i(Xl) = 1 | Z, DbM ,i = 1, NbM ,0) | W, DbM ,i = 1, NbM ,0

]

=
3NbM ,0 + 8

2NbM ,0(NbM ,0 + 1)(NbM ,0 + 2)

(vi) The expectation of the occupancy distribution is given by

E
∗[NbM ,0] = N0 −N0(1−

1

N0
)M0 .

(vii) The variance of the occupancy distribution is given by

Var∗[NbM ,0] = N0(N0 − 1)(1− 2

N0
)M0 +N0(1 −

1

N0
)M0 −N2

0 (1−
1

N0
)2M0 .

Proof. Parts (i), (ii), (iv) and (v) are obvious given the results in lemma A.4 of Abadie and Imbens

(2008). Parts (iii), (vi) and (vii) follow immediately from Johnson and Kotz (1977). Note that for

part (vi) one has

E
∗[NbM ,0] =

N0
∑

i=1

E
∗[DbM ,i].
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