
Learning Strategies to Select Point
Cloud Descriptors for Large-Scale 3-D
Object Classification

Jens Garstka

2016

Research Report 2/2016
ISSN 1865-3944

© 2016 Jens Garstka

Editor: Dean of the Department of Mathematics and Computer Science

Type and Print: FernUniversität in Hagen

Distribution: http://deposit.fernuni-hagen.de/view/departments/miresearchreports.html

Learning Strategies to Select Point Cloud
Descriptors for Large-Scale 3-D Object
Classification

Dissertation

zur Erlangung des Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

der Fakultät Mathematik und Informatik
der FernUniversität in Hagen

vorgelegt von
Dipl.-Inf. Jens Garstka
geb. in Bochum

Hagen, 21. September 2015

Gutachterin und Gutachter:
Univ.-Prof. Dr. Gabriele Peters
Univ.-Prof. Dr. Heinrich Müller

Zusammenfassung

Maschinelles Lernen ist ein weites Feld der Informatik, welches sich mit Algorith-
men beschäftigt, die in der Lage sind, aus Daten zu lernen. Das Ziel hierbei ist
nicht nur die Erzeugung von Wissen. Es existiert zudem ein wachsender Bedarf
an selbst lernenden, intelligenten Systemen, welche in der Lage sind, auch unter
veränderlichen Bedingungen zu agieren. Eine allgemein übliche Vorgehensweise,
den Bereich des maschinellen Lernens in Teilbereiche zu strukturieren, besteht in
einer Einteilung in Methoden des überwachten, unüberwachten und bestärken-
den Lernens (Reinforcement Learning). Die letztgenannten Methoden eignen sich
insbesondere für autonome Agenten, die lernen, während sie mit der Umgebung
interagieren. Reinforcement Learning kann als eben diese langfristige Interaktion
eines lernenden Agenten und einer sich verändernden Umgebung verstanden wer-
den, bei welcher das der Umgebung zugrunde liegende Modell für den Agenten
verborgen bleibt. Der Agent lernt daher ausschließlich aufgrund der Beobachtung
der Umgebung. Einerseits wird Reinforcement Learning als Hilfsmittel verwendet,
mit welchem die theoretischen Grundlagen des agentenbasierten Lernens erforscht
werden können. Andererseits existieren zahlreiche praktische Implementierungen,
wie zum Beispiel autonome Roboter oder industrielle Anlagen, bei welchen sich
die Systeme durch Erfahrung selbst verbessern. Als weiteres Anwendungsfeld des
Reinforcement Learnings gelten zudem kombinatorische Suchprobleme.

Während sich die meisten praktischen Ansätze, Reinforcement Learning zur
Lösung solcher Suchprobleme zu verwenden, auf den Bereich der Computerspie-
le beschränken, ist eine Motivation dieser Arbeit zu zeigen, dass Reinforcement
Learning auch zur Lösung solcher Suchprobleme in einem Forschungsbereich des
maschinellen Sehens verwendet werden kann, der aktuell unter anderem aufgrund
großer, in der Praxis anfallender Datenmengen vor noch ungelösten Herausfor-
derungen steht. Der Fokus dieser Arbeit liegt hier auf einem bedeutenden Teil
des maschinellen Sehens, der Klassifikation von 3D-Punktwolken. Von einer zu-
verlässigen und effizienten Klassifikation von 3D-Punktwolken würde ein großer
Bereich unterschiedlicher Anwendungsfelder profitieren, wie beispielsweise ein au-

i

tomatisiertes Szenenverständnis, die Navigation in unbekanntem Terrain oder das
Greifen und Manipulieren von Objekten in der Robotik.

Die meisten aktuellen Systeme zu Klassifikation von 3D-Punktwolken verwen-
den Algorithmen, die sogenannte 3D-Merkmalsbeschreibungen als niedrig-dimen-
sionale Beschreibungen der gesamten 3D-Punktwolke oder lokaler Teilbereiche
derselben bestimmen. Einige dieser Algorithmen sind schnell aber ungenau, an-
dere erfordern individuell abgestimmte Werte für zahlreiche Parameter oder be-
nötigen sehr viel Rechenzeit für die Berechnung der 3D-Merkmalsbeschreibungen
und deren Vergleich. Es existiert aber bislang kein Verfahren, welches in jeder
Situation zufriedenstellend funktioniert.

Dies legt eine Kombination unterschiedlicher Verfahren zur Berechnung von
3D-Merkmalsbeschreibungen nahe. In dieser Arbeit wird der Nutzen einer suk-
zessiven Anwendung verschiedener, aktueller Techniken der Merkmalsbeschrei-
bung für die 3D-Objektklassifikation untersucht. Dies kann als kombinatorisches
Suchproblem betrachtet werden, welches sich aus der Fragestellung ergibt, welche
Verfahren zur Klassifikation von 3D-Punktwolken verwendet werden und in wel-
cher Reihenfolge selbige angewandt werden sollen. Um dies in ein Lernproblem
für einen Reinforcement Learning Ansatz zu übertragen und bekannte Einschrän-
kungen diesbezüglich zu überwinden, geht diese Arbeit unter anderem auch auf
fundamentale Hindernisse wie einen zu großen Zustandsraum ein. Zudem wird
gezeigt, wie Online-Lernmethoden des Reinforcement Learnings zugunsten der
Anpassungsfähigkeit des Systems genutzt werden können, so dass zum Beispiel
neu hinzugefügte Verfahren für 3D-Merkmalsbeschreibungen ohne Einschränkun-
gen in das laufende System integriert werden können. Abschließend wird gezeigt,
dass der vorgestellte Ansatz in der Lage ist, durch Kombination einzelner Ver-
fahren bessere Klassifikationsergebnisse zu erreichen, als es mit einem einzelnen
Verfahren möglich ist. Anhand des Anwendungsbeispiels der Klassifikation von
3D-Punktwolken wird gezeigt, dass selbst erlernte Kombinationen unterschiedli-
cher Lösungsansätze für ein und dieselbe Problemstellung das endgültige Ergebnis
zu verbessern vermögen. Neben diesem eher theoretischen, für die Grundlagen-
seite des maschinellen Lernens relevanten Erkenntnisgewinn besteht der Haupt-
beitrag dieser Arbeit in ihrem praktischen Nutzen, indem gezeigt wird, dass die
vorgeschlagene Vorgehensweise, 3D-Objektklassifikation mithilfe eines Reinforce-
ment Learning Ansatzes adaptiv zu gestalten, einen möglichen Lösungsansatz für
aktuell ungelöste Probleme des Computersehens darstellt.

Preface

Machine learning is a wide field of computer science, which is concerned with al-
gorithms that are able to learn from data. Not only the acquisition of knowledge
is its main goal. Rather there is a growing need for self-learning, intelligent sys-
tems, that are able to act under dynamic conditions in their environment. One
common way to structure the field of machine learning is the classification into
supervised, unsupervised, and reinforcement learning methods. The latter are
especially suited to create autonomous agents that learn while interacting with
the environment. The reinforcement learning problems can be outlined as long
term interaction between a learning agent and a dynamic environment, where the
underlying model is not visible to the agent, so that the agent learns only from the
observations of the environment. On the one hand reinforcement learning serves
as a theoretical tool for studying the principles of agents learning to act. On
the other hand there are many examples of practical implementations, e. g., au-
tonomous robots or industrial systems that improve themselves with experience.
Other fields of application are combinatorial search problems.

While the most practical cases of such search problems in the context of rein-
forcement learning are restricted solely to the games context, one motivation of
this thesis is to show, that reinforcement learning can also be used to solve such
search problems at the frontier of computer vision research. This will be done
with special focus on an important part of computer vision that currently faces
unsolved challenges, for example because of the large amount of data that accu-
mulate in practical applications: the classification of 3-D point clouds. A wide
range of applications such as scene understanding, navigation, or applications in
robotics like grasping or scene manipulation would benefit from a reliable and
efficient classification of 3-D point clouds.

Most of the current 3-D classification systems use so called 3-D feature de-
scriptors to compute lower dimensional descriptions of the entire 3-D point cloud
or of local parts of it. While some of them are fast but inaccurate, others have

iii

a large number of parameters or their computational costs of calculation and
comparison are high. However, there are no 3-D feature descriptors which work
satisfying in all situations.

This suggests the combination of different feature descriptors. In this thesis
the benefit of a successive application of state-of-the-art 3-D feature descriptors
for the classification of 3-D objects is investigated. This can be regarded as a
combinatorial search problem arising from the question which feature descriptors
should be used to classify an object and in which order. To be able to translate
this into a reinforcement learning problem and to overcome its known limita-
tions, this thesis addresses fundamental obstacles such as a possibly large state
space and shows how on-line learning can lead to an adaptive system, that is,
for example, able to adaptively integrate new feature descriptors into its learned
classification strategy. Finally, it is shown that the proposed approach of combin-
ing several algorithms leads to better classification results than the application of
one single algorithm alone. Thus, through the example of 3-D point cloud classi-
fication, the thesis shows how a self-learned combination of different approaches
to the same problem can improve the final result. Besides this more theoretically
relevant insight the main contribution of this work consists on its practical value,
namely in the demonstration that the proposed proceeding of an adaptive 3-D
object classification via reinforcement learning is a possible approach to finding
a solution for a current challenge in computer vision.

Contents

1 Introduction 1

1.1 From Object Classification to Scene
Understanding . 1

1.1.1 Methods of Object Recognition and Classification 2

1.1.2 The 3rd Dimension . 3

1.2 Contribution of the Thesis . 3

1.3 Organization of the Thesis . 4

1.4 Concepts and Terminology . 5

1.4.1 Three Dimensions . 5

1.4.2 Keypoints and Descriptions 5

2 Related Work 7

2.1 Recognition and Classification Pipelines 8

2.2 Keypoint Detection . 10

2.3 3-D Object Description . 10

2.3.1 Local 3-D Feature Descriptors 11

2.3.2 Global 3-D Descriptors . 11

2.3.3 Hybrid Feature Descriptors 13

2.4 Reinforcement Learning . 15

v

vi CONTENTS

3 Keypoint Detection 17

3.1 Keypoint Detection Algorithms . 18

3.1.1 Multi-scale Feature Extraction on Point-Sampled Surfaces . 18

3.1.2 Integral Volume Descriptor 19

3.1.3 Selection by the Smallest Eigenvalues of Local Regions . . . 22

3.1.4 Local Surface Patches . 23

3.1.5 Thrift . 23

3.1.6 Multi-Scale Interest Regions from Point Clouds 25

3.1.7 2.5-D SIFT . 26

3.1.8 Intrinsic Shape Signature 27

3.1.9 A Keypoint Quality Measure using Surface Variations . . . 27

3.1.10 Scale-Space Surface Analysis in Depth Images 28

3.1.11 Point Feature Extraction on 3D Range Scans 29

3.1.12 Interest Points of Local Surface Entropy 31

3.2 Performance Evaluation . 33

4 3-D Object Description 35

4.1 Local Feature Descriptors . 35

4.1.1 Spin Images . 36

4.1.2 3-D Shape Context . 37

4.1.3 Local Surface Patches . 38

4.1.4 Thrift . 39

4.1.5 Point Feature Histogram . 40

4.1.6 Fast Point Feature Histogram 42

4.1.7 2.5-D SIFT . 43

4.1.8 Intrinsic Shape Signatures 44

4.1.9 Shape Index SIFT . 46

4.1.10 Surface Fitting with a Uniform Lattice 46

CONTENTS vii

4.1.11 NARF . 47

4.1.12 Signatures of Histograms of Orientations 48

4.1.13 Unique Shape Context . 50

4.1.14 SURE . 51

4.1.15 Histogram of Oriented Normal Vectors 51

4.2 Performance Evaluation of Feature Descriptors 52

4.3 Bag of Features . 53

5 Support Vector Machines 55

5.1 Linear Separable Data . 55

5.2 Nonlinear Separation and the Kernel-Trick 57

5.3 Kernel Functions . 58

6 Reinforcement Learning 61

6.1 Markov Decision Process . 62

6.2 Reward and Return . 63

6.3 Value Functions and Policy . 64

6.4 Optimal Value Functions . 64

6.5 Learning Policies . 65

6.6 Exploration-Exploitation Dilemma 67

7 Survey on Methods 71

7.1 Description of the Problem . 71

7.2 Approaches . 72

7.2.1 The Basic Classification Pipeline 72

7.2.2 Fusion with Reinforcement Learning 78

7.2.3 Differentiation of the First State 82

7.2.4 Adaptive Learning . 83

7.3 Evaluation Methods . 84

viii CONTENTS

7.3.1 Experimental Datasets . 84

7.3.2 Computation Times . 87

7.3.3 Time Limit . 88

7.3.4 Handling the Data . 88

8 Baseline Method 91

8.1 Preprocessing . 91

8.1.1 Cleaning up Raw Data . 91

8.1.2 Approximation of the Point Cloud Resolution 92

8.2 Keypoint Detection . 98

8.2.1 Number of Keypoints . 99

8.2.2 Computation Time . 100

8.2.3 Interim conclusion on Keypoints 101

8.3 Local 3-D Feature Descriptors . 102

8.3.1 The algorithms . 102

8.3.2 Computation Times . 108

8.3.3 Interim conclusion on Local 3-D Feature Descriptors 110

8.4 Bag of Features . 110

8.4.1 Vocabulary Construction 110

8.4.2 Computation of Histograms 112

8.5 Training and Classification Results 112

8.5.1 Optimal Training Parameters – a Single Case 112

8.5.2 Optimal Training Parameters – Comparison 117

8.5.3 Local 3-D Feature Descriptors 121

8.5.4 Precision and Recall . 124

8.5.5 Increasing the Limit of the Prediction Values 125

8.5.6 Reducing the Number of Classes 127

8.5.7 Interim Conclusion on Training and Classification Results . 128

CONTENTS ix

8.6 Conclusion . 131

9 Adaptive 3-D Object Classification 133

9.1 Fusion with Reinforcement Learning 133

9.1.1 Results for all Object Classes – Different Limits 136

9.1.2 Results for 10 Object Classes – Different Limits 139

9.1.3 Results for all Object Classes – Unique Limits 141

9.1.4 Results for 10 Object Classes – Unique Limits 142

9.1.5 Interim Conclusion on Fusion with Reinforcement Learning 145

9.2 Differentiation of the First State 145

9.2.1 Results . 146

9.2.2 Conclusion . 149

9.3 Adaptive Learning . 149

9.3.1 Results . 150

9.3.2 Conclusion . 153

10 Comparative Evaluation of Results 155

10.1 Initial Situation . 155

10.2 Classification Results . 156

10.3 Adaptivity . 158

10.4 Computation Time . 158

11 Conclusion and Outlook 159

11.1 Conclusion . 159

11.2 Future Work . 160

x CONTENTS

A Software 163

A.1 System . 163

A.2 Development Environment . 163

A.3 Libraries . 164

A.3.1 VTK . 164

A.3.2 OpenCV . 165

A.3.3 PCL . 165

A.3.4 ROOT . 166

B Datasets 167

B.1 Stanford 3-D Scanning Repository 167

B.2 3-D Shape Retrieval Contest 2013 169

B.3 RGB-D Object Dataset . 171

C Extended Results 177

C.1 Approximation of the Mesh Resolution 177

C.2 Parameter Optimization . 184

C.2.1 3-D Shape Context . 184

C.2.2 Fast Point Feature Histogram 187

C.2.3 Point Feature Histogram . 190

C.2.4 Signature of Histograms of Orientations 193

C.2.5 Spin Images . 196

C.2.6 Unique Shape Context . 199

List of figures 206

Bibliography 218

Summary of Notation

Nomenclature

The nomenclature which is generally followed throughout this work concerning
equations and formulas is captured by the following list of examples.

Common Notation

a values and scalar functions
A random variables and major algorithm variables
A sets

Vector Spaces

ȧ vectors of R2

a vectors of Rn with n ≥ 3
A matrices
H histograms
‖a‖ l2-norm
〈a,b〉 inner product or scalar product

xi

Reinforcement Learning

s state
a action
S set of states
A(s) set of actions possible in state s
π policy
r(s, a, s′) immediate reward on transition s to s′ under action a
Vπ(s) state-value function – possible future reward in state s

following policy π
Qπ(s, a) action-value function – possible future reward in state s

when taking action a and following policy π

Abbreviations

The following abbreviations are used to dispense with the unwieldy terms, e. g.,
in a context of a table.

Keypoint Detectors

ISS intrinsic shape signatures (see Section 3.1.8)

Local 3-D Feature Descriptors

3DSC 3-D shape context (see Section 4.1.2)
FPFH fast point feature histogram (see Section 4.1.6)
PFH point feature histogram (see Section 4.1.5)
SHOT signature of histograms of orientations (see Section 4.1.12)
SI spin images (see Section 4.1.1)
USC unique shape context (see Section 4.1.13)

Other Algorithms

SVM support vector machine (see Section 5)
FFT fast Fourier transform
PCA principal component analysis

1 Introduction

The time where computers have stepped out of the stage of development where
their only task was to assist people to solve merely tedious and error-prone calcu-
lations, is long ago. Nowadays, computers are capable to mimic human activities
which often require a certain kind of intelligence. With the increasing computa-
tional capacity and the declining costs of such systems, their field of application
is also constantly expanding. One of these new technologies with great potential
is to capture the environment using a 3-D sensor in order to analyze and interpret
the content of a scene with the final goal of scene understanding.

The benefits of scene understanding are manifold. Autonomous robots and in-
teractive systems will profit from it, e. g., for the purpose of orienting themselves
in unfamiliar environments, for the detection of certain objects, or for their ma-
nipulation. In this context, autonomous vehicles should not remain unmentioned,
since they combine many of these requirements. Further fields of application are,
for example, augmented reality in which virtual objects are integrated into real
scenes, or environmental monitoring in the context of smart homes or surveil-
lance.

1.1 From Object Classification to Scene
Understanding

A simple form of object recognition identifies a single isolated object in one image
or a sequence of images, i. e., a video. This remains the most common form of
object recognition today. If the searched object has a unique texturing, this type
of object recognition has already reached a level of maturity that facilitates its

1

2 CHAPTER 1. INTRODUCTION

active usage in many areas. Certainly the most popular example for this is the
traffic sign recognition in modern cars.

The next challenge is an abstraction of the objects that should be recognized
within a scene. Only in this way it is possible to recognize the plurality of
different and similar objects under varying conditions. For this classification task
of multiple objects in various scenes, the individual objects have be distinguished
and separated from unimportant elements such as the background. Classification
of 3-D objects is the problem this thesis deals with. Finally, in order to understand
the meaning of a scene, the detected objects have to be brought into relationship,
which is beyond the scope of this thesis.

1.1.1 Methods of Object Recognition and Classification

There are many ways to classify objects by analysis of a wide variety of sensor
data such as color images, radar signals, 3-D points clouds from rotating laser
scanners, depth data from time-of-flight cameras. A significant break-through in
this complex but important area of computer vision was brought by the devel-
opment of scale and rotation invariant feature descriptors for color images over
the last 15 years. These methods have become integral parts of computer vision
and can be found in many application scenarios, e. g., in cameras with built-in
face detection and tracking, in augmented reality applications, e. g., city guides
which superimpose and align historical photos in live views, or as visual control
in manufacturing processes, just to name a few examples. By the end of 2014
research teams from Google [97] and Stanford University [39] have demonstrated
independently the capability of these 2-D methods in combination with artificial
intelligence.

There are, however, a few situations where 2-D color images are not a sufficient
source to classify objects. The methods mentioned above usually require color
information or at least enough contrast between elements of a picture to classify
the displayed objects. Accordingly, these methods work neither under difficult
lighting conditions, e. g., in darkness nor on objects without appropriate color or
brightness structures, e. g., a gray cup of coffee on a gray office table. A possibility
to solve these problems or essentially decrease their disadvantage is to exploit the
third dimension as additional source of information.

1.2. CONTRIBUTION OF THE THESIS 3

1.1.2 The 3rd Dimension

With the advent of new cheaply available depth sensors, the use of the third
dimension became available to a rapidly growing group of people who use the
three-dimensional (3-D) data in a wide range of 3-D applications. This gave rise
to a number of new algorithms for object recognition and classification tasks on
the basis of object representations in the form of 3-D point clouds in the last
few years. However, in contrast to object recognition and classification based
on color images, none of the current algorithms that utilize the 3-D point cloud
representations of objects was able facilitate the decisive breakthrough in the field
of object classification, neither in terms of higher recognition and classification
rates, nor in terms of lower computation times.

1.2 Contribution of the Thesis

Considering the aforementioned state of object recognition and classification uti-
lizing 3-D point clouds, one can ask for the reasons why the description of objects
in the form of 3-D point clouds does – despite using similar approaches as for
color images – not facilitate improved classification and recognition results.

There are several reasons for this. On the one hand the processing of 3-D
data is due to the continuous domain of the coordinates of 3-D points often
computationally expensive. Additionally, the calculation effort is, in contrast to
other 3-D object representations such as meshes, higher, because 3-D point clouds
typically do not contain structural information such as edges or faces of a mesh.
On the other hand the depth information provided by sensors is often affected by
excessive noise, or it is quantized in a way that the depth value of the 3-D point
is too vague to allow a high-quality description of a 3-D object.

One possibility would be to develop yet another algorithm to create descrip-
tions based on 3-D point clouds. This algorithm would, however, be struggling
with the same problems as all other state-of-the-art algorithms before. Since
many of these algorithms are based on different concepts, the question arises
whether a skillful combination of several algorithms can improve the detection
and classification results.

The contribution of this thesis consist in the development of a reinforcement
learning based adaptive selection of state-of-the-art descriptors and their succes-

4 CHAPTER 1. INTRODUCTION

sive application to 3-D point clouds. Furthermore, it investigates the capabilities
if this approach to improve 3-D object classification results, especially in the
context of large-scale applications with highly numerous and similar objects.

Starting point of this work is the precise treatment and analysis of existing 3-D
point cloud classification techniques. Therefore, the functional principle of the
most widely used classification pipeline is examined and all relevant components
are analyzed. This begins with the selection of an algorithm for the detection
of the so-called keypoints, continues with the inspection of numerous algorithms
for the local description of 3-D point clouds and closes with an optimization of
numerous parameters of the classification method used.

For all experiments, a large-scale data set of the University of Washington is
used. The data set contains more than 200000 distinctive point clouds from 300
different objects which are organized in 51 object classes.

An important aspect of the approach in this thesis is its adaptivity, which
is introduced by the reinforcement learning component. It allows for a dynamic
change of the set of algorithms that are available to the classification system,
while the system is on duty.

When algorithms are removed or new algorithms are added, the system is
still able to integrate these changes without a temporary loss of its capability to
classify objects. The thesis closes with a demonstration of the effectiveness of
this concept.

1.3 Organization of the Thesis

The Chapters 2, 3, 4, 5, and 6 discuss related work of this thesis. While Chapter 2
gives a brief overview on the concepts used as foundation of this thesis, the
subsequent chapters introduce the algorithms required for the basic classification
pipeline and reinforcement learning in more detail.

Chapter 7 provides a detailed description of the problems discussed in this
work as well as the description of the approaches to solve them. Chapter 8
includes the detailed analysis of the basic 3-D classification pipeline. This analysis
is used to determine an optimized combination of the individual components of
the classification pipeline, so that the pipeline delivers the best possible results.

1.4. CONCEPTS AND TERMINOLOGY 5

Chapter 9 treats the results which can be achieved using the proposed classifi-
cation approach based on reinforcement learning. Individual results are evaluated
and discussed as part of the experiments in this chapter. Finally, Chapter 10 sum-
marizes the individual results and joins them into an overall picture. Chapter 11
concludes this thesis with a summary and an outlook on future work.

1.4 Concepts and Terminology

1.4.1 Three Dimensions

Nowadays it is common practice to use digital cameras for capturing and record-
ing images. These images are usually stored with the intensity values of the red,
green and blue color channels (RGB color space) or with the raw sensor data in
a 2-D matrix. The elements of this matrix are called pixel.

In contrast, there are several common representations of 3-D data. Depth im-
ages are 2-D matrices where the pixels contain projective or orthogonal distances
to captured elements in space. The distances refer to the origin of the camera
coordinate system or the image plane. Point clouds are defined as set of points
pi = (xi, yi, zi)> ∈ R3. The term “cloud” reflects the unorganized nature of the
set and its spatial coherence.

If the points of a point cloud obtain a structure, e. g., polygonal meshes,
the points of this mesh are often referred to as vertices. They either refer to a
local or to a global reference frame. Meshes often contain additional structural
information as the surface direction specified by normal vectors. Normal vectors
are often determined for point clouds, too. In these cases the normal vectors can
only be approximated using the adjacent points.

In addition, there are further 3-D formats such as NURBS and splines to
describe a surface in a more mathematical way, but they play a subordinate role
in context of this work.

1.4.2 Keypoints and Descriptions

To avoid the application of certain algorithms on all available points of a 3-D
point cloud, a subset of points is determined which is representative of the entire

6 CHAPTER 1. INTRODUCTION

point cloud. This subset which is referred to as keypoints is used on all further
calculations.

On the one hand keypoints can be selected by simply thinning out the point
cloud. However, in the majority of cases the algorithms for keypoint detection are
directly developed together with the algorithms which shall be executed subse-
quently. Thus, the selection of the keypoints can be adapted to the requirements
of these algorithms.

Algorithms that create local 3-D feature descriptions of the neighborhood of
a keypoint are the so-called local 3-D feature description algorithms. Sometimes
this term may be shortened to local 3-D feature descriptor or just feature de-
scriptor. The resulting local 3-D feature descriptions are also shortened to local
feature descriptions or just feature descriptions.

In addition to the local 3-D feature descriptions, there are also global descrip-
tions of a 3-D point cloud mentioned within the context of this work. In order get
a clear distinction between the local and global approaches, the term “feature”
is never used in the context of a global description of a point cloud.

2 Related Work

This chapter gives a brief overview of 3-D recognition and classification pipelines
and provides an introduction of the important and typical parts of those. At a
conceptual level, a 3-D classification pipeline is essentially based on four main
components or steps. These four main steps correspond to the keypoint detec-
tion [72, 18, 19], the extraction of local feature descriptions [4, 27], a bag of words
model, and support vector machines that are mainly used as a machine learning
method for the classification task [91, 102, 12]. Figure 2.1 depicts these steps
with a conceptual illustration of such a pipeline.

SV
M "Coffee Mug"

Keypoint
Detection

Feature
Extraction

Quantization
& Pooling

Classification

Figure 2.1: A conceptual illustration of a pipeline for 3-D object classification. It depicts
a system based on local feature descriptors. The pipeline consists of four individual
steps: the detection of keypoints, the computation of feature vectors for all keypoints,
the quantization and pooling of all features (bag of words model), and the classification.

As already noted in the introduction, reinforcement learning is used as learn-
ing method to combine feature descriptor algorithms to sequences within the
classification pipeline to thereby improve the classification results. Hence, an
overview of reinforcement learning is subsequently given.

Each step, and, especially the keypoint detection and feature description al-
gorithms are discussed in detail in the Chapters 3 to 6.

7

8 CHAPTER 2. RELATED WORK

2.1 Recognition and Classification Pipelines

3-D recognition and classification pipelines usually consists of four steps. How-
ever, in existing approaches we often find additional preprocessing steps to ease
segmentation. This allows the execution of subsequent algorithms exclusively on
“interesting” parts of the scene and is done, for example, in a recognition pipeline
described by Rusu et al. in [69]. In the context of this work it is assumed that the
objects to be recognized are sufficiently segmented. Thus, this (preprocessing)
step is not discussed.

Therefore, the pipeline starts with the selection of points to be used for the
extraction of the feature descriptions. In many cases, these points are determined
by sparse sampling, e. g., in the pipelines described by Johnson and Hebert [37],
Frome [23], Drost [17], and Aldoma [3]. By contrast, keypoint detection algo-
rithms are used less frequently in current pipelines, such as in those described by
Chen and Bhanu [10], Zhong [105], and Mian [56].

Usually, the next step is the determination of local 3-D feature descriptions on
all selected points with methods described in Section 4. When all local features
have been determined, the next steps depend on the purpose of the pipeline. If
the pipeline is used for recognition tasks, objects are often searched within a point
cloud which represents a whole scene, but not a single object. In this case, the
next step is called hypothesis generation which considers all objects that could
be found in the scene.

Zhong, Drost et al. and Mian et al. use a method called pose clustering [105,
17, 56]. When performing pose clustering, each local 3-D feature description
of the scene is compared to the features of the searched objects. Each pair of
matching features is labeled with the corresponding object ID. Sets of size k of
feature pairs with the same label are used to compute transformations between
the object and the corresponding features in the scene. Finally, a clustering of
these transformations is performed to find the transformation, which is supported
by the most feature pairs.

Another technique used by Aldoma et al. [3] is called geometric consistency.
They compute all pairs of features as shown above and select one of the pairs
randomly as an initial element of a set G. Then they start adding all feature
pairs to G, which are geometrically consistent to all pairs already within G until
no more consistent feature pairs can be found. This is repeated several times

2.1. RECOGNITION AND CLASSIFICATION PIPELINES 9

Point Cloud Keypoint
Detection

Feature
Extraction

Hypothesis
Generation

Hypothesis
Verification

Figure 2.2: The generic steps of a recognition pipeline.

with different initial elements. Finally, the largest set G is used as a hypothesis,
since this set corresponds with a high probability to the desired object.

In both approaches a final verification of the hypothesis is performed by com-
paring the individual features of the searched objects and the scenes. Therefore,
a generic recognition pipeline can be summed up as shown in Figure 2.2.

In contrast to a recognition pipeline, where a specific instance of an object
is searched within a scene, a classification pipeline requires other, more abstract
steps subsequently to the determination of the feature descriptions. A common
way to classify objects based on local descriptions is a combination of a bag of
words or bag of features model, respectively, and a classifier [90, 91, 41, 52, 51,
75, 103]. The bag of features model is used to quantize the large number of
possible variants of high-dimensional feature descriptions to a finite vocabulary.
The creation of vocabulary in a context of a bag of features model is often done
in a preprocessing step with a k-means algorithm [90, 91, 41, 52, 51, 103]. Fur-
thermore, Jégou et al. describe a way to improve the quality of the vocabulary
words [36]. During the classification each of the feature descriptions is mapped to
its corresponding word and filled into a histogram with the same number of bins
as the size of the vocabulary. This histogram is called frequency histogram. That
way a global description of the object emerges. Frequency histograms are used
as input vectors for classifiers. All of the pipelines except the approach proposed
by Yi use support vector machines (SVM) as classifiers. Yi et al. [103] perform
a comparison of their own approach in which they use a language model with
approaches using SVMs and conditional random fields (CRF).

Point Cloud Keypoint
Detection

Feature
Extraction

Bag of Words
Model Classification

Figure 2.3: A generic representation of a classification pipeline.

Therefore, under the assumption of already segmented point clouds, a classifi-
cation pipeline can be summarized with the four main steps shown in Figure 2.3.

10 CHAPTER 2. RELATED WORK

2.2 Keypoint Detection

3-D data processing algorithms are computationally expensive. Accordingly, it is
useful to reduce the set of points to a much smaller subset. Depending on the
input data, a simple way to achieve this is to calculate a sparse sampling or a mesh
decimation. In addition, a comparison of uniform and recurrent regions of point
clouds is hardly helpful. Hence, it makes sense to identify regions of interest,
i. e., qualified keypoints in terms of repeatability and informativeness, and the
calculation of keypoints should be, whenever possible, the first step towards a
local feature based 3-D classification system.

A survey from Guo et al. [27] from the year 2014 provides a comprehensive
overview of the available keypoint detection algorithms. In addition, two recent
evaluations can be found in the works of Bronstein et al. [8] and Salti et al. [72].

Although the keypoint detection algorithms are often developed in conjunc-
tion with feature description algorithms, in some cases there are individual key-
point detection algorithms or feature description algorithms without a specific
keypoint algorithm. Therefore, the methods are – also with regard to the pipeline
– treated separately. A detailed description of individual algorithms can be found
in Chapter 3 of this thesis.

2.3 3-D Object Description

To compare and match 3-D point clouds, an object description, which should be
as unique as possible, is necessary. This description of a 3-D object is a major
challenge, especially when noise and occlusion should be taken into account.
Descriptors for 3-D objects can be roughly divided into three categories:

• local 3-D feature descriptor

• global 3-D object descriptor

• hybrid solutions of the above mentioned approaches, where local 3-D feature
descriptors are combined into a global descriptor algorithm

Common to all these methods is, that they generate n-dimensional signatures or
histograms with n bins, which can be used for classification or recognition tasks.

2.3. 3-D OBJECT DESCRIPTION 11

In both cases, the term feature vector is often used synonymously to local feature
descriptions.

Additionally, there is a kind of generic global descriptor, which can be used
in many different environments. This aforementioned generic global descriptor,
namely the bag of words model, is a histogram containing the occurrences of
each “word” of a precomputed “vocabulary”. In context of local 3-D feature
descriptions, the vocabulary is determined by a clustering of feature descriptions,
where each element of the vocabulary is a centroid of a cluster. Therefore, this
method is also called “bag of features”. Further details regarding the bag of
features approach are located in Section 4.3.

2.3.1 Local 3-D Feature Descriptors

A local 3-D feature description is a representation of the local neighborhood
at a certain 3-D point, which is typically given by a keypoint. At this point,
geometric information of the local surface, i. e., the local 3-D point cloud around
that keypoint can be extracted and encoded into a feature description. The
existing methods can be divided roughly into three broad categories: signature
based, histogram based, and transform based methods.

Most of the currently available local 3-D feature description algorithms can
be found in the survey from Guo et al. [27]. Since these algorithms are an es-
sential part of this thesis, a detailed description of the methods can be found in
Section 4.1.

In addition, there are some evaluations of the proposed algorithms: Bus-
tos et al. [9], Heider et al. [30], and Alexandre [4].

2.3.2 Global 3-D Descriptors

The goal of global descriptors is to process a 3-D object as a whole for recognition,
regardless of it being a mesh or a point cloud. One of the simplest options to
describe a 3-D object is a bounding box aligned along the principle axes. This
reduces the object to three absolute lengths or two values that describe the length
ratios of the principal axes. The significance of these values is indeed very limited.

However, many methods have been developed in the 90s and the beginning
21st century, which allow a more detailed description of 3-D objects. Based on the

12 CHAPTER 2. RELATED WORK

article by Bustos et al. [9], these global description algorithms can be categorized
with respect to the underlying approaches used: descriptions with conceptually
different types of shape information, statistical approaches, and structural 3-D
object shape description that can be represented in the form of a graph.

Although no global 3-D descriptors will be used in the context of this work,
for the sake of completeness some selected methods will be mentioned hereinafter:

Suzuki et al. [85] introduced a rotation invariant shape descriptor which uses
the point cloud data only. They fit the point cloud into a unit cube, divide the
cube into a coarse grid and count the points in each grid cell.

Vranić and Saupe [98] and Lucchese et al. [50] proposed FFT based shape
descriptors for voxelized representations of point clouds. They divide a 3-D point
cloud into a voxel grid and use it as input for a 3-D Fourier transform. While
Vranić and Saupe use the absolute values of the obtained coefficients as descrip-
tion, Lucchese et al. use the slice theorem to calculate radial projections, which
they compare.

Other methods use the voxelized volume data of normalized models to make a
direct comparison. Approaches of this kind are used in the shape based similarity
search from Keim [40] and a system from Paquet et al. [58, 59] called Nefertiti.

The method for similarity search on 3-D databases by Heczko et al. [29] creates
a set of descriptions. The first description consists of length values of a set of
rays beginning at the mass center of the 3-D objects and ending at the surface of
the object. The second description consists of volume values of 6 sliced pyramids
with its peak at the mass center and its floors forming cube around the object.
Furthermore, Heczko et al. use a parallel projection onto the 6 faces of a bounding
cube aligned along the principal axes of the 3-D object. Then they apply a Fourier
transform on the resulting silhouettes and use the absolute Fourier coefficients
as global description. In a second variant Heczko et al. create normalized depth
images instead of silhouettes on the 6 faces of the bounding cube.

Saupe et al. [74] and Vranić et al. [99] use spherical harmonics to approximate
the objects shape. The parameters of the spherical harmonics will be used as
description.

Furthermore, there are many other publications on the subject of global 3-D
object descriptions and the list is by no means complete. However, many of them
are based on one of the methods mentioned above.

2.3. 3-D OBJECT DESCRIPTION 13

2.3.3 Hybrid Feature Descriptors

The following methods and algorithms can be understood as a combination of
local features to build a single global description for larger regions or full objects in
3-D point clouds, and will hereinafter be referred to as hybrid feature descriptors.

Such methods essentially summarize the local feature description to a single
global description in a subsequent step. While this principle, depending on the
objective, is also typically used within classification pipelines (see Section 2.1),
hybrid solutions enable the simplified use of the local feature descriptions (on
which they are based).

Since within this thesis local 3-D feature descriptions are always combined
with the already mentioned bag of features approach, these methods are not
used in context of this thesis. Nevertheless, for completeness some of them are
briefly described:

One early hybrid method is the local feature histogram introduced by Hetzel
et al. [31] in 2001. The work is intended to be used on depth images. Hetzel et al.
mention three characteristics which can be obtained for each individual point of
the depth image: the distance between neighboring points, the surface normals
described by ϕ and θ, and the shape index Si which is explained in the section
on local surface patches (Section 3.1.4). By combining these three features, i. e.,
four values for all points of interest in a single 4-D histogram, Hetzel et al. use
this histogram as global description for an 3-D object. They performed several
tests to assess the number of bins with the highest recognition rate. The best
recognition results were achieved with a combination of all three features and
with 8 bins for depth values, 4 bins for both, ϕ and θ,and with 8 bins for the
shape index.

Drost et al. [17] introduced a hybrid feature descriptor which they called point
pair feature. Point pair features are rotationally invariant without the need of a
local reference frame, but require the approximation of normal vectors for each
point of a point cloud or a mesh. Point pair features are 4-tuples, that describe
the relative orientation and distance between two 3-D points pi and pj . Let
d = pi − pj be the displacement vector between those two points. Then the
feature consists of the Euclidean length of d, the angle between the normal vector

14 CHAPTER 2. RELATED WORK

pi

n
i

v
p

v
p
-p

i
α

Figure 2.4: The computation of the viewpoint component of the viewpoint feature
histogram from [67].

ni and the displacement vector d, the angle between the normal vector nj and
d, and the angle between the two normals:

(2.1) f(pi,pj) =
(
‖d‖2, cos−1(n1 · d), cos−1(n2 · d), cos−1(n1 · n2)

)
Since this method was developed specifically for object recognition, Drost et al.
compute a global model representation based on these local feature. This global
representation is a hash table where the keys are quantized and mapped repre-
sentations of the local features and the values are sets of point pairs with similar
local features. On the one hand this allows a very efficient mapping between local
features of an input scene and those of the model, and on the other hand a com-
parison of the spatial dependencies between all local features that are associated
with the key of the hash table.

The viewpoint feature histogram is part of a full recognition pipeline for robots
introduced by Rusu et al. [67] in 2010 and is a hybrid descriptor for point clouds.
A larger part of this descriptor has been taken over from the fast point feature
histogram introduced in Section 4.1.6. The viewpoint feature histogram is a
concatenated histogram filled with angles from different sources. For the first
component they determine a direction d = vp − pi, where vp is the viewpoint
and pi is the central point of a 3-D point cloud as depicted in Figure 2.4. The
angles between this central viewpoint direction and each of the normal vectors,
i. e., cos−1(d · nj), are filled into the histogram.

The second component consists of the three angles α, ϕ, and θ, determined
with the method which has been described in the context of the fast point feature
histogram, relative to the central viewpoint direction d. Figure 2.5 depicts an
example of a viewpoint feature histogram.

2.4. REINFORCEMENT LEARNING 15

Viewpoint component

extended FPFH component

Figure 2.5: An example of a viewpoint feature histogram obtained from [67].

2.4 Reinforcement Learning

Machine learning and artificial intelligence were originally motivated by biological
nervous systems. The aim was to construct the algorithms in a way, that enables
a computer system to mimic or simulate the human intelligence. Today, machine
learning is used in a variety of tasks and typically classified into three broad
categories [64].

If the learning algorithm is left on its own to find structure in its input,
e. g., for clustering or pattern recognition tasks, the algorithm does unsupervised
learning. Another class of learning algorithms can use a “teacher” which describes
the coherences of a system by exemplary observations and creates training data,
by means of which a machine learning system can derive the phenomenological
relationships and learn. This type of algorithm is called supervised learning. The
third class of machine learning algorithms is reinforcement learning (RL) [84, 83].
The main characteristics of reinforcement learning are reflected by the following
quotation from the book by Richard S. Sutton and Andrew G. Barto:

“The idea that we learn by interacting with our environ-
ment is probably the first to occur to us when we think
about the nature of learning. When an infant plays, waves
its arms, or looks about, it has no explicit teacher, but
it does have a direct sensorimotor connection to its envi-
ronment. Exercising this connection produces a wealth of
information about cause and effect, about the consequences
of actions, and about what to do in order to achieve goals.

16 CHAPTER 2. RELATED WORK

Throughout our lives, such interactions are undoubtedly a
major source of knowledge about our environment and our-
selves. Whether we are learning to drive a car or to hold a
conversation, we are acutely aware of how our environment
responds to what we do, and we seek to influence what hap-
pens through our behavior. Learning from interaction is a
foundational idea underlying nearly all theories of learning
and intelligence.” (Sutton and Barto [83]).

A quick overview on reinforcement learning can be found in a book of Szepes-
vári [87], and large a collection of surveys about methods from different fields
of reinforcement learning can be found in a book of Wiering and Otterlo [101].
Reinforcement learning in general, and in particular the method which will be
used in this thesis named Q-learning by Watkins [100] will be introduced and
discussed in Chapter 6.

A preliminary concept of the reinforcement learning based approach intro-
duced in this work was presented by Garstka and Peters [24].

3 Keypoint Detection

Keypoints, also referred to as interest points, are points in an image or 3-D point
cloud that should be stable and distinctively describe an interesting region of a
point cloud. Typically, the number of interest points in a 3-D point cloud is only
a small subset of all 3-D points. The goal of keypoint detection algorithms is to
support the local feature descriptors, and thus a keypoint detection algorithm is
often developed in combination with a local feature descriptor.

Subsequently, the keypoint detection algorithms are presented in chronolog-
ical order and classified according to important characteristics. According to
Guo et al. [27], these characteristics are:

1. The type of data on which the algorithm is applied to, distinguishing be-
tween meshes, point clouds and depth images.

2. The scalability of the keypoint detection method is divided into fixed scale
and adaptive scale methods. While fixed scale methods use a predetermined
parameter, which describes the radius of the local region to be used for the
determination of keypoints, adaptive methods build a scale-space to pick
distinctive keypoints at different scales.

3. The method maps each algorithm to a basic process concept. For fixed
scale approaches, a distinction is made between curvature based and other
methods. Adaptive approaches are differentiated into coordinate smooth-
ing, geometric attribute smoothing, and surface variation based methods.

Since the focus of this work lies on unstructured point data, only algorithms
for point clouds and depth images are discussed in this section. An overview of
the available keypoint detection methods for meshes can be found in the afore-
mentioned survey from Guo et al. [27].

17

18 CHAPTER 3. KEYPOINT DETECTION

3.1 Keypoint Detection Algorithms

3.1.1 Multi-scale Feature Extraction on Point-Sampled Surfaces

The keypoint detection algorithm introduced by Pauly et al. [60] in 2003 is an
adaptive method designed for point clouds and determines the keypoint due to
the calculation of surface variations.

Given an unstructured point cloud P, the set of the n nearest neighbors of a
point p ∈ P is Np,n. Let p̄ the centroid of Np,n and p̂i = pi − p̄ with pi ∈ Np,n

the difference vector between the centroid and the i-th nearest neighbor. The
covariance matrix C of Np,n is defined as

(3.1) C = 1
k

p̂1,x p̂1,y p̂1,z
...

...
...

p̂n,x p̂n,y p̂n,z

>

·

p̂1,x p̂1,y p̂1,z
...

...
...

p̂n,x p̂n,y p̂n,z

 .

Then the surface variation σn(p) introduced by Pauly et al. is

(3.2) σn(p) = λ0
λ0 + λ1 + λ2

,

where λ0, λ1, and λ2 are the eigenvalues of C with λ0 ≤ λ1 ≤ λ2.

If the surface variation σn(p) is used as weight ω for each point, then weights
for different scales can be obtained by varying the neighborhood size n. The
covariance matrix, as proposed by Pauly et al., is defined as sums of squared dis-
tances from the neighborhoods centroid. If the neighborhood size n is increased,
high-frequency structures are attenuated. For this reason, the neighborhood size
n can be used as discrete scale parameter.

On the one hand a user can select a proper scale for their application itself.
On the other hand Pauly et al. propose an automatic scale selection based on a
method introduced by Lindeberg [46] and used, for instance, by the well known
image feature extraction SIFT by Lowe [49]. The keypoints are obtained from
the points at which the weights attain extrema with respect to the scale level.
In comparison to the 2-D approaches for images, the spatial coordinates will be
ignored, as they are unstructured.

3.1. KEYPOINT DETECTION ALGORITHMS 19

r p
Br(p)

Vr(p)

(a)

r p
Br(p)

Vr(p)

(b)

Figure 3.1: These two figures from [26] depict the integral descriptor for a point p of a
curvature. The value of the descriptor is the proportion of the interior Vr of a circle Br

with radius r intersected by the curvature. An approximation of the continuous case (a)
can be computed efficiently using a grid (b).

In order not to use a single weight for the determination of a keypoint, and
to avoid problems due to noise, Pauly et al. recommend to count the number of
times a surface variation exceeds a threshold σmax. For this, they define

(3.3) Ω(p, n) =

 1 σn(p) > σmax
0 σn(p) ≤ σmax

and use

(3.4) ω(p) =
∑
n

Ω(p, n)

as persistent point weight, which can be used to identify persistent keypoints over
different scales.

3.1.2 Integral Volume Descriptor

The keypoint detection algorithm introduced by Gelfand et al. [26] in 2005 is an
adaptive method, that can be used with meshes. It determines the keypoint due
to the calculation of surface variations. The approach is based on the method
of Manay et al. [53] and adopts the concept of integral invariant signatures from
2-D to 3-D.

Figure 3.1 depicts the concept of this descriptor in 2-D. For each point of a
curvature, the surface ratio of a local area, which is intersected by the curvature,
is calculated (Figure 3.1 (a)). By the discretization of the local area (commonly a
circle), an approximation of the ratio can be calculated efficiently (Figure 3.1 (b)).

As already mentioned, Gelfand et al. extended the 2-D integral descriptor to
3-D. While the integration kernel Br(p) is a sphere of radius r centered at the

20 CHAPTER 3. KEYPOINT DETECTION

0.20

0.55

(a)

0.07

0.73

(b) (c)

Figure 3.2: These figures from [26] show the values of normalized Vr(p) of the ’Bunny’
(The Stanford 3-D Scanning Repository [13]). The figures (a) and (b) show the values for
a smaller and a larger convolution sphere. Figure (c) shows the keypoints identified by
this algorithm. The yellow markers show stable keypoints for (a), while the red markers
show corresponding features for (b).

point p, the value Vr(p) is the interior part of the sphere intersected by the input
mesh. Analogous to the method of Manay et al. the discretization of the local
area is implemented using a voxel grid. This enables a fast approximation of
Vr(p) convolving a voxelized input object with Br(p). The convolution results,
i. e., the approximations of Vr(p)∀p ∈ P, are filled into a histogram with a bin
size according to Scott’s rule. 3-D points with rare Vr(p) values, i. e., 3-D points
of less filled histogram bins, will be used as keypoint candidates.

Figure 3.2 shows an example result based on the method of Gelfand et al. To
be able to use the same method for depth images and point clouds, the algorithm
needs to be extended. This extension by Garstka et al. [25] primarily consists of
the following additional steps:

1. The estimation of the mean distance between 3-D points (hereinafter re-
ferred to as point cloud resolution) to get an appropriate voxel size.

2. The determination of watertight voxel representations for point clouds and
depth images.

In a mesh the mean distance between 3-D points is defined by Johnson
et al. [37] as median distance between vertices in the mesh. To find appropri-
ate parameters for an approximation of the point cloud resolution in terms of a
corresponding mesh resolution, experiments indicate, that the mean distance of
the 7 nearest neighbors is the best choice to approximate this value. The point

3.1. KEYPOINT DETECTION ALGORITHMS 21

cloud resolution is used as voxel size for a cubic voxel grid. Each voxel containing
a 3-D point is initialized with a value of 1. In the case that the 3-D data is a
depth image, the 3-D points will be calculated by back-projection and the x- and
y-axis of voxel grid will be aligned to the x- and y-axis of the depth image.

Both, depth images and point clouds require an approximation of the surface
to create a watertight model. In 3-D point clouds based on depth images, related
3-D points can be determined easily based on the corresponding depth pixels.
The watertight voxel grid will be computed filling all voxels along the z-axis in
ascending order beginning with the first voxel intersected by the approximated
surface.

For pure 3-D point clouds a closed model is assumed. One possible approach
to create a watertight model is the method by Adamson et al. [1]. They use
spheres around all points of the point cloud to dilate the points to a closed
surface. Another approach by Hornung et al. [33] is based on a combination
of adaptive voxel scales and local triangulations. The major drawback of both
methods consists in their long computation times.

For this reason, Garstka et al. have developed a fast and highly parallelizable
approach, with the minor disadvantage, that the algorithm may provide inaccu-
rate results in a few cases. Each voxel containing a 3-D point is initialized with 1.
All other voxel values are set to 0. For each dimension x, y and z the algorithm
iterates over the voxels. Beginning with the first occurrence of a voxel with a
value of 1, the following ones will be decreased by 1 until the next voxel of value
1 is reached. This steps will be repeated until the boundary of the voxel grid is
reached. If the boundary is reached while decreasing the voxel values by 1, there
is at least one hole in the surface. In this case all values of this iteration step will
be set back to previous values. Finally, all voxels with a value ≤ −2, i. e., which
have been marked as inner voxels by at least two passes, will be treated as inner
voxels. These voxels will get a value of 1, while all other voxels will get a value
of 0. In a post-processing step all holes, i. e., tubes of size 1 will be filled. Both
scenarios are shown in Figure 3.3.

At this point a convolution of the voxel grids with a spherical kernel, as
described by the work of Gelfand et al., is possible.

22 CHAPTER 3. KEYPOINT DETECTION

(a) (b) (c)

Figure 3.3: Extensions for the integral volume descriptor. Figure (a) shows a voxelized
depth image from the ’ Stanford Bunny’. Blue dots represent voxels with corresponding
3-D points. Red dots represent the filled voxels. The figures (b) and (c) show sliced
versions of the filled voxel grid of pure point cloud from the ’Stanford Bunny’. In (b) the
tubes that occur if voxelized surface contains a hole, are visible. Figure (c) shows the
result after the post-processing step where those tubes got filled.

3.1.3 Selection by the Smallest Eigenvalues of Local Regions

The keypoint selection used by Matei et al. [54] in 2006 is a fixed scale method,
that can be used with point clouds. It determines the keypoint due to the scatter
of a local region measured with the smallest eigenvalue of the local region.

The approach is relatively easy and straightforward. For each 3-D point
p ∈ P, Matei et al. compute a normalized covariance matrix

(3.5) C(p) = 1
np

∑
i

(p̂i − p) · (p̂i − p)>,

which they call a scatter matrix, where np is the number of points p̂i with a
distance ‖p̂i − p‖ less than w.

From the eigenvalues for each C(p) with λC(p)
0 ≥ λC(p)

1 ≥ λC(p)
2 the smallest

eigenvalues λC(p)
2 will be sorted into a list. Finally, the selection of the keypoints

is done in a greedy manner based on the sorted list: the highest eigenvalue is
removed from the list and the corresponding 3-D point is used as keypoint, if the
distance to already chosen keypoints is larger than d. Otherwise the 3-D point is
discarded.

3.1. KEYPOINT DETECTION ALGORITHMS 23

3.1.4 Local Surface Patches

This keypoint detection algorithm introduced by Chen and Bhanu [10] in 2007
is a fixed scale method, that can be used with depth images. The algorithm uses
curvatures as distinctiveness measure to detect the keypoints.

To estimate the curvatures, they fit a quadratic surface f(x, y) = ax2 + by2 +
cxy+ dx+ ey+ f to a local window. The quadratic surface is used to determine,
among other things, the surface normals and the principal curvatures. On this
basis Chen and Bhanu define a shape index Si for a 3-D point p as follows:

(3.6) Si(p) = 1
2 −

1
π

tan−1 k1(p) + k2(p)
k1(p)− k2(p) ,

where k1 and k2 are the maximum and minimum principal curvatures, respec-
tively. Let p be the center point of a local window, then Mp defines the set of
all points in the local window, and accordingly

(3.7) µ = 1
|Mp|

∑
p̂∈Mp

Si(p̂)

is the mean of shape indexes in the local window. The point p is marked as
keypoint, if its shape index satisfies the following condition:

(3.8)

Si(p) = max
p̂∈Mp

Si(p̂) and Si(p) ≥ (1 + α) · µ

or
Si(p) = min

p̂∈Mp
Si(p̂) and Si(p) ≤ (1− β) · µ

The parameter α and β control the keypoint selection. In summary, p is a
keypoint if its shape index is a local optimum (minimum/maximum) within a
local window, where p is the center point. An example is shown in Figure 3.4.

3.1.5 Thrift

The algorithm presented by Flint et al. [22] in 2007 is a 3-D extension of 2-D
algorithms like SIFT and SURF called THRIFT. It is an adaptive algorithm for
point clouds using the coordinate smoothing approach.

Flint et al. construct a density function f(p) for a 3-D point cloud. They
divide the spatial space by a uniform voxel grid V = {Vi,j,k}, where (i, j, k) ∈ I ⊂

24 CHAPTER 3. KEYPOINT DETECTION

(a) (b)

Figure 3.4: Local surface patches. The figures (a) and (b) from [10] show the keypoints
identified for one object and two different views.

Z3 are the indexes of the voxels in each spatial dimension. With the quantity of
3-D points |Vi,j,k| the normalized quantity of each voxel is

(3.9) D = |Vi,j,k|
max

(i,j,k)∈I
|Vi,j,k|

.

With the center ci,j,k of each voxel, the density function is a sum of delta functions

(3.10) f(p) =
∑

(i,j,k)∈I
D(i, j, k) · δ(p− ci,j,k).

To construct a density scale-space Flint et al. convolve D(i, j, k) with a series
of 3-D Gaussian kernels

(3.11) g(p, σ) = exp
(
−p2

x − py2 − pz2

2σ2

)
,

where the scale of each layer l is defined by σl+1 = m ·σl. Flint et al. use a factor
m = 2 for efficiency. This gives rise to a scale-space for D(i, j, k) with

(3.12) S(p, σ) = (D ⊗ g(p, σ)).

Finally, they compute the determinant of Hessian matrix |Det(H(p, σ))| at
each point of the scale space. Within the resulting 3 × 3 × 3 × 3 matrix, a non
maxima suppression reduces the entries to local maxima, which become interest
points.

3.1. KEYPOINT DETECTION ALGORITHMS 25

3.1.6 Multi-Scale Interest Regions from Point Clouds

The keypoint detection algorithm introduced by Unnikrishnan and Hebert [95] in
2008 is an adaptive method designed for point clouds. It determines the keypoints
based on surface variations.

Unnikrishnan and Hebert introduce an integral operator Ã for non-uniformly
sampled sensor data. For this purpose they start with the continuous case where
A : Rd × R+ → Rd for d = 2 is defined as

(3.13) A(α(s), t) =
∫

Γ
φ(s, u, t)α(u)du,

where α(s) : R → R2 is a parameterized function of a curve Γ and φ(s, u, t) is a
Gaussian integral kernel

(3.14) φ(s, u, t) = (2πt2)−
1
2 exp

(
−(s− u)2

2t2

)
.

With the assumption, that the function is parameterized so that α(0) = x is a
point on this curve, they infer

(3.15) A(α(0), t) ≈ x + κ(x)nx
t2

2 ,

where κ(x) is the curvature at x and nx is the normal vector of x. In other
words, A(x, t) displaces x along its normal vector in a proportion of κ(x).

In a second step Unnikrishnan and Hebert extend this approach to 3-D. Let
Πθ be a plane that contains nx and whose normal lies in the tangent space of x
at an angle θ to some reference tangent. The intersection of this plane and the
surface is a curve described by a parameterized function αθ(s) with αθ(0) = x.
With the surface property, that the mean of the curvature of two orthogonal
tangent directions θ and θ + π/2 is equivalent to the mean curvature at x, they
extend equation (3.15) to

(3.16) A(x, t) ≈ x +
[
κθ(x) + κθ+π/2(x)

]
nx
t2

2 .

They adopt this approach for a non-uniform sampling by eliminating the
invariance of the sampling distribution using the geodesic distance d2

G(xi,xj)
between all 3-D points. Furthermore, to create a scale-space, they define multiple
scales with tk = t01.6k, where t0 is the base scale. This leads to an operator

(3.17) Ã(xi, t) =
∑
j φ̃(xi,xj , t)xj∑
j φ̃(xi,xj , t)

,

26 CHAPTER 3. KEYPOINT DETECTION

where the weight for each pair of points is

(3.18)
φ̃(xi,xj , t) = φ(xi,xj , t)

pt(xi)pt(xj)
, with

φ(xi,xj , t) = (2πt2)−
1
2 exp

(
−d

2
G(xi,xj)

2t2

)
and pt(xi) =

∑
j

φ(xi,xj , t).

Finally, they compute the invariant as

(3.19) F (xi, t) = 2‖Ã(xi, t)− xi‖
t

exp
(
−2‖Ã(xi, t)− xi‖

t

)
,

which is an exponentially damped displacement value of the point xi in a local
area of size t. If F (xi, t) is an extremum within the geodesic neighborhood and
the scale, xi is used as keypoint.

3.1.7 2.5-D SIFT

In 2009 Lo and Siebert [48] presented an adaptive algorithm for keypoint detection
in depth images. Their coordinate smoothing method is inspired by 2-D SIFT from
Lowe [49].

To extract keypoints from depth images Lo and Siebert create a smoothed ver-
sion of the depth image, which is upscaled by a factor of 2. This is done to avoid
alias effects and false keypoints at sharp boundaries. Furthermore, they normalize
the depth values to a standard normal distribution, i. e., with the mean/expec-
tation µ = 0 and the standard deviation σ = 1 to constrain potentially large
ranges.

Based on this depth image they build a difference of Gaussians (DoG) scale-
space and identify extrema by comparing a pixel to its 26 neighbors in regions
of size 3 × 3 at the current and adjacent scales in the same way Lowe does for
2D SIFT [49]. Based upon experiments Lo and Siebert define a threshold of
0.003 between the value of a keypoint pixel and its surrounding values to reject
keypoints with relatively small differences between depth values.

Finally, they filter all keypoint candidates where the ratio between the two
principal curvatures κ1 and κ2 is below 5. The last named value is determined
by experiments, too. The remaining points are the final keypoints.

Additionally, they compute an orientation θ for each keypoint and use the en-
hanced version of Lowe’s orientation assignment. Therefore, they use a histogram

3.1. KEYPOINT DETECTION ALGORITHMS 27

with 360 bins covering all possible orientations in steps of 1◦. The histogram is
filled with Gaussian weighted image gradients and convolved with a 1-D sym-
metric Gaussian kernel with a fixed size of 17 and σ = 17. In a last step they
fit a quadratic polynomial to the three largest consecutive bins for each peak
within 80% of the largest peak. This allows an approximation of the orientation
to sub-bin accuracy.

3.1.8 Intrinsic Shape Signature

The algorithm presented by Zhong [105] in 2009 determines the keypoints on
point clouds due to the calculation of surface variations. The size of the local
regions is fixed.

Zhong computes the keypoints in a similar way to Pauly et al. (see Sec-
tion 3.1.1) and Matei et al. (see Section 3.1.3). Given an unstructured point
cloud P, Zhong computes a covariance matrix Cpi for a point pi ∈ P and all its
neighbors pj ∈ P in a spherical neighborhood of radius r:

(3.20) Cpi =

∑
‖pj−pi‖<r

wj(pj − pi)(pj − pi)>∑
‖pj−pi‖<r

wj
,

where the weight wi = 1/ |{pj : ‖pj − pi‖ < r}| is the inverse of the amount of
points in a spherical neighborhood of radius r of a point pi. This weight is
used to compensate unequal distributions of points within a point cloud. For
all Cpi Zhong computes the eigenvalues λ0, λ1, and λ2 with λ0 ≤ λ1 ≤ λ2 and
introduces two constrains λ0/λ1 < τ0,1 and λ1/λ2 < τ1,2 to exclude all, in terms
of local symmetries ambiguous points.

The final keypoints are selected successively from the remaining keypoint
candidates. Those candidates, which are too close to already selected keypoints
are skipped.

3.1.9 A Keypoint Quality Measure using Surface Variations

2010 Mian et al. [56] presented an adaptive keypoint detection approach, that can
be used for point clouds, depth images, and meshes. This is a surface variation
based method, too.

28 CHAPTER 3. KEYPOINT DETECTION

If the input is a mesh, Mian computes the normal vector ni for each vertex
vi ∈M. LetMi ⊂M be the partition of the mesh, where ‖vi−vj‖ < r,∀vj ∈Mi

for a given radius r. Now, the partitionMi is rotated, that the normal vector ni
is aligned with the positive z-axis of a local reference frame. The vertices inMi

are used to calculate a covariance matrix, and on this the principal axis using a
principal component analysis.

Let M̂i be the aligned partition of the mesh. Then Mian et al. compute a
ratio δ of the extrema of the x and y components of the vertices:

(3.21) δ = maxx(M̂i)−minx(M̂i)
maxy(M̂i)−miny(M̂i)

With this δ they select a vertex as keypoint, if the first principal axis is 6%
longer compared to the second one, i. e., δ > 1.06. This value was experimentally
determined.

To use this approach with depth images and point clouds, they make a few
changes. For depth images they formulate two boundary conditions to avoid key-
points along boundaries. On the one hand there is a boundary of the view in a
depth image. On the other hand there are a boundaries caused by the self occlu-
sion of the acquired object, which are indicated be identified by abruptly changing
depth values. In addition, they consider holes in depth images interpolating the
values.

In unstructured point clouds Mian et al. have to deal with boundaries, too.
Surfaces are usually non-uniformly sampled. Therefore, they introduce a soft
threshold between the global density of all points and the density of the local
part within radius r.

To be scale invariant, they compare multiple δ’s for different radii r. They
use the scale r where the surface variation δ reaches a local maximum.

3.1.10 Scale-Space Surface Analysis in Depth Images

The work of Stückler and Behnke [82] from 2011 is an adaptive method designed
for depth images. The method is based on surface variations and is an extension
of the work of Unnikrishnan and Hebert (see Section 3.1.6). The algorithms are
identical, except that Stückler and Behnke use the Euclidean distance on depth
images, while Unnikrishnan and Hebert use a geodesic distance on a graph on
top of a point cloud.

3.1. KEYPOINT DETECTION ALGORITHMS 29

3.1.11 Point Feature Extraction on 3D Range Scans

The keypoint detection method proposed by Steder et al. [79, 80] in 2010 is a
fixed keypoint detection approach with focus on depth images. The algorithm is
named ’normal aligned radially feature’, briefly NARF.

The method consists of two steps. In a first step Steder et al. label all pixels
of a depth image with four scores which reflect the probability that a pixel lies
on a border to the left, right, bottom and/or top. For this purpose they define
a distance δ of pixels which they assume to be on the same surface as a pixel ṗ.
The value of δ is determined for a squared neighborhood with the size of 5 × 5,
where ṗ is the pixel at the center. They assume, that at least m = 9 elements
lie on the same surface, which would be the case if ṗ is the tip of a right angle
corner. Therefore, they sort all distances between ṗ and all depth values in the
neighborhood in an ascending order {d1 ≤ . . . ≤ d25} and select δ = d9. Then
they take a look at the values in each direction (hereinafter exemplarily for the
right side).

Let px,y be the 3-D representation of the pixel ṗ lying at (x, y). Then

(3.22) p̄right = 1
3

3∑
i=1

px+i,y

is the average 3-D position of the three pixels right of px,y. Then they calculate
the distance dright = ‖px,y − p̄right‖. The final score is based on the quotient
between δ and dright

(3.23) sright = max
(

0, 1− δ

dright

)
.

Since many depth sensors deliver information about unrecognized depth val-
ues or depth values out of range, Steder et al. map these values to a score
sright = 1. In addition, they check if – with respect to the depth value – ṗ
is in front of or behind the border. The first case indicates an obstacle border,
the second a shadow border. For all obstacle borders they search in a distance of
3 pixels for a shadow border. From a potential shadow border they select that
pixel with the highest score sshadow and decrease sright according to

(3.24) s′right = max
(
0.9, 1− (1− sshadow)3

)
· sright.

Finally, if s′right is above 0.8 and is a maximum regarding ṗx+1,y and ṗx−1,y, it will
be marked as obstacle border and the pixel corresponding to sshadow as shadow

30 CHAPTER 3. KEYPOINT DETECTION

Figure 3.5: This figure from [80] illustrates different border types marked during the
first keypoint detection phase.

Figure 3.6: This figure from [80] shows the weights along the detected borders.

border. All pixels in between will be marked as veil points. A brief overview is
depicted in Figure 3.5.

To extract keypoints from the previously computed borders, Steder et al. cal-
culate the main direction v and the magnitude, i. e., the largest eigenvalue λ using
a PCA for each pixel and its 5 × 5 neighborhood. In addition, each pixel gets
a weight w, that is 1 for each border pixel and 1 − (1 − λ)3 for all other pixels.
Figure 3.6 shows the weights of an exemplary scene.

Subsequently they determine the directions of the borders. For each 3-D
point pi in a neighborhood Npi of size σ they select all points pj that do not
have another border in between pi and pj and calculate the angle of the dominant
direction αi on the plane perpendicular to the direction to the sensor. Since these
directions are ambiguous, they map them into an interval of [−90◦, 90◦). Finally
they compute how much the surface points differ:

(3.25) i1(pi) = min
pj∈Npi

(
1− wj ·max

(
1− 10 · ‖pi − pj‖

σ
, 0
))

3.1. KEYPOINT DETECTION ALGORITHMS 31

Figure 3.7: This figure from [80] shows selected keypoints corresponding to Figure 3.6.

and how much the directions differ:

(3.26)
f(pm,pn) =

√
wn
(
1−

∣∣∣2·‖pm−pn‖
σ − 1

2

∣∣∣),
i2(pi) = max

pj ,pk∈Npi

(f(pi,pj)f(pi,pk) (1− |cos(αj − αk)|)) .

Using these two values gives a score for keypoint candidates: i(pi) = i1(pi)·i2(pi).
A non-maximum suppression with a static threshold selects all points that will
be used as keypoints. Figure 3.7 shows the determined keypoints.

3.1.12 Interest Points of Local Surface Entropy

Fiolka et al. [20] proposed a keypoint detection algorithm in 2012. This fixed
keypoint detection algorithm works with point clouds and selects the keypoints
based on the distribution of local surface normals.

They approximate a surface normal ni for a 3-D point pi ∈ P based on points
of the local neighborhood Npi,r with radius r. The eigenvector corresponding to
the smallest eigenvalue of the covariance matrix for Npi,r is used as a normal
vector.

In order to extract regions of interest, Fiolka et al. use an entropy h with

(3.27) h(XE) = −
∑
x∈XE

p(x) log p(x),

where E ∈ R3 is a given region where the entropy is calculated for, and X is a
probability distribution with the discrete probabilities p(x).

To compute this entropy for a point cloud, Fiolka et al. fill all normal vectors
of a region into an orientation histogram. To create an orientation histogram
where each bin corresponds to an approximately equal part of the surface of
a unit sphere, a uniform sampling of the sphere would be helpful. The exact

32 CHAPTER 3. KEYPOINT DETECTION

solution for uniform sampling of the sphere with equal area cells has no closed-
form solution. But Fiolka et al. use an approximation of the uniform sampling
introduced in [61] by Tahir Rabbani.

To get this approximation they sample the polar angle θ uniformly and change
the sampling along the azimuth angle ϕ adaptively. Let the number of samples
in θ be nθ, then for a given value of θi the number of samples in ϕ, i. e., nϕ,i is
given by

(3.28) nϕ,i = 2nθ sin(θi) + 1.

Based on this sampling, let vb be the vector pointing to a sampling point and
corresponding to the histogram bin b. Then the histogram is filled with the
weights wb, which are calculated for the normal vector ni of each point pi within
an E-neighborhood Np,E of a point p with

(3.29) wb =

 0 , if ni · vb < cosα,
ni·vb−cosα

1−cosα , otherwise.

The angle α denotes the maximum angle to be used to compute the histogram.
Finally, the histogram for point p is normalizes and the entropy is calculated
according to Equation 3.27.

To select keypoints from those entropy values, Fiolka et al. first define a
threshold to skip all points with an entropy below. This is done to handle noisy
data which could cause local maxima of the surface entropy. In the next step
they test for a considerable variance of surface entropy in all directions to find
corners and edges, beginning with the computation of the local center of entropy
mass within a neighborhood Np,E for a point p

(3.30)
µH(Np,E) = 1∑

pi∈Np,E

h(XNpi,E)
∑

pi∈Np,E

h(XNpi,E)pi.

This enables the computation of the entropy covariance matrix:

(3.31)
C

H(Np,E) = 1∑
pi∈Np,E

h(XNpi,E)
∑

pi∈Np,E

h(XNpi,E)·

(
(pi − µH(Np,E)) (pi − µH(Np,E))>

)
.

By an eigenvalue decomposition of C
H(Np,E) the final decision in favor of or against

p as keypoint is

(3.32) λ1
λ3
≥ pmin.

3.2. PERFORMANCE EVALUATION 33

Fiolka et al. recommend a pmin = 0.15.

3.2 Performance Evaluation

For a selection of suitable keypoint algorithms among those presented so far,
already existing evaluations of all these methods would be helpful. However, at
this moment only a handful of reviews exists.

Bronstein et al. [8] presented a review of algorithms used for 3-D recognition
and classification tasks based on local features in 2010. In their work, however,
they present only four keypoint algorithms, whose application domain is primarily
limited to meshes.

Sali et al. [72] presented a performance evaluation just for keypoint detection
algorithms in 2011. Of the eight proposed methods, at least five are suitable for
depth images and point cloud. These works are local surface patches (LSP) from
Chen and Bhanu (see Section 3.1.4), the work of Unnikrishnan and Hebert with
a scale space based on the Laplace-Beltrami operator (LBSS) (see Section 3.1.6),
the intrinsic shape signature (ISS) by Zhong (see Section 3.1.8), and two variants
(KPQ & KPQ-SI) of the keypoint detection algorithms from Mian et al., where
KPQ-SI is the proposed scale invariant version (see Section 3.1.9).

Salti et al. use two synthetic and two captured datasets in their experiments.
They define the quality of a keypoint detector by the ability of the detector to find
the same set of keypoints for different views of the same part of an object, what
they name repeatability. In addition, they vary the scenes regarding occlusion.
To simulate sensor noise, they add 3 levels of Gaussian noise on the two synthetic
datasets.

The results of these experiments can be summarized as follows:

• The ISS keypoint method by Zhong is by far the fastest algorithm proposed.
However, this method is not scale invariant, so that its application may be
problematic on data from different sources and with different scales.

• The adaptive KPQ-SI keypoint method by Mian et al. has relatively high
repeatability rates and is relatively reliable on noisy data. For this, however,
computation times, which are one order of magnitude greater than those of
ISS must be accepted.

34 CHAPTER 3. KEYPOINT DETECTION

Dutagaci et al. [18] chose another approach to evaluate the quality of keypoint
detectors. They created a website and asked visitors of the website to mark
points of interest on the displayed 3-D objects. The results were transferred
into a ground truth, first by combining all markers within a radius r to a single
group. Then all groups selected by less than n users were discarded. Finally they
selected a representative point for each group with the minimum sum of geodesic
distances to all other points within the group. This ground truth was compared
to the results of 6 keypoint detection algorithms. However, all the methods used
in the article are intended for meshes.

In 2013 Filipe and Alexandre [19] compared four keypoint algorithms with
a focus on implementations available in the Point Cloud Library (PCL) [68].
The algorithms are 3-D extensions of the Harris corner detector [28] and SU-
SAN [77], where the image gradients in the covariance matrix get replaced by
surface normals, as well as Thrift (see Section 3.1.5) and ISS (see Section 3.1.8).
Like Sali et al., Filipe and Alexandre prefer the repeatability as a quality mea-
sure. They conclude that Thrift and ISS yielded the best scores in terms of
repeatability. They also note that ISS is the fastest of the tested algorithms.

Gou et al. [27] published 2014 a comprehensive survey paper with focus on 3-D
object recognition based on local features. Among other aspects of this applica-
tion area they present a total of 29 keypoint detection methods for meshes, depth
images and point clouds. The mostly short reviews of the proposed algorithms,
however, do not come from their own evaluations.

4 3-D Object Description

One of the main components of the basic 3-D classification pipeline is the com-
putation of a distinctive description of the point cloud. It must be considered
that the point cloud may be partially occluded. Accordingly, in most cases, lo-
cal feature descriptors are used, which are summarized to a global description
in a subsequent step. This chapter begins with numerous different algorithms
for local feature descriptions. Afterwards it is described how, in the context of
this work, a so-called bag of features approach can be used to combine the local
feature descriptions to get an aggregated representation that can be used as a
global description of the point cloud.

4.1 Local Feature Descriptors

The goal of local descriptors is the description of particularly “interesting” local
areas of a 3-D object. In contrast to global 3-D descriptors not just one but
rather several signatures or histograms will be computed. The advantages of
local representations are, that they are robust with respect to noise, variability
in object shape and partial occlusions [27]. On the other hand they remain less
discriminating due to the limited scope of the local neighborhood. For this reason,
the subsequent comparison of feature descriptions is another challenging part of
a recognition pipeline which will be discussed later in this chapter.

The algorithms discussed below are distinguished with respect to the following
characteristics:

• Is the method designed to work with point clouds and/or depth images?

• Does the method compute a signature or a histogram?

35

36 CHAPTER 4. 3-D OBJECT DESCRIPTION

p

s(pi)
I(k,l)+=(1-a)(1-b)

I(k,l+1)+=(1-a)b

I(k+1,l+1)+=ab

I(k+1,l)+=a(1-b)

a

b
s(pi)

Figure 4.1: The figure from [38] depicts the calculation of spin images. The values a
and b are: a = (ṗy − δy · k) /δy and b = (ṗb − δx · l) /δx

• Does the method require or compute a local reference frame, i. e., a normal
vector or the principal axis of the local part of the point cloud?

4.1.1 Spin Images

The spin image descriptor introduced 1999 by Johnson and Hebert [38, 37] is
arguably the most cited and popular local 3-D descriptor. It is a histogram
based method that requires a normal vector as a rotation axis. The algorithm
was introduced for 3-D surfaces, but it also performs well on point clouds if the
computation of a normal vector is possible.

For the determination of the spin images Johnson and Hebert first introduce
the notion of a spin map. The spin map s maps the 3-D points p ∈ R3 to 2-D
points ṗ ∈ R2 in the following manner:

(4.1) s(pi) = ṗi =
(√
‖pi − p‖2 − (n · (pi − p))2,n · (pi − p))

)>
,

where pi ∈ P is an arbitrary point of the point cloud, p ∈ P is the 3-D point for
which the spin image is to be calculated, and n is the normal vector of p. This
leads to 2-D points, where ṗx cannot be negative.

The spin image I is a matrix of size n ×m. Each matrix element has a size
of δx and δy. The values of this matrix are determined based on the spin map,
allocating a value of 1 for each mapped 2-D point ṗ to the 4 corresponding matrix
elements (k, l), (k+1, l), (k+1, l+1), and (k, l+1) of I by bilinear interpolation,

4.1. LOCAL FEATURE DESCRIPTORS 37

Figure 4.2: This figure from [38] represents 2-D point clouds (red) and the correspond-
ing spin image (gray) for three exemplary selected 3-D points.

where l · δx ≤ ṗx, (l + 1) · δx ≥ ṗx, k · δy ≤ ṗy, and (k + 1) · δy ≥ ṗy. This is
shown in Figure 4.1.

A spin images can also be represented as a normalized gray-scale image. This
allows a simple visual check of the local descriptions (see Figure 4.2).

4.1.2 3-D Shape Context

The descriptor called 3-D shape context proposed by Frome et al. [23] in 2004
is a histogram based descriptor for 3-D point clouds. The spherical histogram
requires a normal vector for the alignment of its north pole, but it does not have
a unique reference frame.

Let p ∈ P be the point for which a local description is to be determined. Let
n be the normal of p. Let S be a sphere with its north pole aligned to n. The
sphere is divided into J + 1 radial divisions, K + 1 elevation divisions, and L+ 1
azimuth divisions. Each bin accumulates a weighted count of all points that fall
within its coordinate intervals. The weight of each point is given by

(4.2) ω(pi) = 1
ρi

3
√
V (j, k, l)

,

38 CHAPTER 4. 3-D OBJECT DESCRIPTION

Figure 4.3: The figure from [23] shows a schematic view of the 3-D shape context
histogram.

where V (j, k, l) is the volume of the bin and ρi is the local point density, which
is estimated by the number of points that fall into a sphere with radius r around
point pi. The values of this histogram result in a J ×K ×L-dimensional feature
vector. A schematic visualization of this histogram is shown in Figure 4.3.

As already mentioned, the 3-D shape context does not have a unique reference
frame. The problem is that the azimuth angle is not bound. Frome et al. overcome
this problem by calculating additional feature vectors for the searched object,
using each azimuth segment once as a reference for the azimuth angle.

4.1.3 Local Surface Patches

Chen and Bhanu [10] introduced an integrated local surface descriptor in 2007.
Their approach is intended to be used on depth images and determines a his-
togram. Since the histogram is build upon the angles between normal vectors it
does not require a (uniform) local reference frame.

Chen and Bhanu name the local region around a keypoint p ∈ P a ’local
surface patch’. Let Np ⊆ P be the neighborhood of p with

(4.3) Np =
{

pi|pi ∈ P, ‖pi − p‖ < ε, cos−1(npi · np) ∈ [−1, 1]
}
,

where npi and np are normal vectors of pi and p. The elements of Np are limited
to an Euclidean distance ε and the angle between the normal vectors npi and np.
In addition to the angle, Chen and Bhanu compute a quantitative measure of the
surface named ’shape index’ [16] for each pi ∈ Np:

(4.4) s(pi) = 1
2 −

1
π

tan−1 κ1(pi) + κ2(pi)
κ1(pi)− κ2(pi)

.

4.1. LOCAL FEATURE DESCRIPTORS 39

local surface patch

- 2-D histogram

- surface type: 9
- centroid: (20.3, 16.2, 450.7)

shape index

dot product

Figure 4.4: The figure is adopted from [10] and shows a depth image with its keypoint
(green) and the local surface patch (red) on the left side. On the right side a schematic
view of the descriptor results, i. e., the histogram, the surface type, and the centroid are
shown.

The angle and the shape index form the two axes of a histogram. The histogram
is filled in the same way as Johnson and Hebert do for spin images (see Sec-
tion 4.1.1).

In addition to the histogram, they determine a value, which they name ’surface
type’:

(4.5) t = 1 + 3(1 + sgn(H)) + (1− sgn(K)),

where H is a mean curvature and K is a Gaussian curvature.

Finally they use a combination of the means and standard deviations as keys
for a hash table, while the values consist of the model id, the surface type, the
centroid of the patch and the histogram. This is illustrated in Figure 4.4.

4.1.4 Thrift

Flint et al. [22] proposed a descriptor for point clouds in 2007 they named ’Thrift’.
It is a histogram based descriptor which does not require a local reference frame,
since each histogram represents the number of pairs of normal vectors with similar
angles to each other.

Flint et al. define the local neighborhood Np ⊆ P for a keypoint p ∈ P as

(4.6) Np = {pi|pi ∈ P, ‖pi − p‖ ≤ σ} ,

what they name ’support’. For each element of pi ∈ Np they define two windows:

(4.7)
Wsmall,i = {pj |pj ∈ P, ‖pj − pi‖ ≤ ωsmall} ,
Wlarge,i = {pj |pj ∈ P, ‖pj − pi‖ ≤ ωlarge} .

40 CHAPTER 4. 3-D OBJECT DESCRIPTION

Plarge

Psmall

ωsmall

ωlarge

nsmall

nlarge

θ

Figure 4.5: The figure is adopted from [22] and shows the planes Psmall and Plarge

with the corresponding normals nsmall,i and nlarge,i for an exemplary point on a sample
surface. The bin of the descriptor histogram is selected by the angle θ.

These windows are used to approximate two planes Psmall and Plarge with the
method of least squares. The normal vectors of these planes are nsmall,i and
nlarge,i as shown in Figure 4.5

A bin of a histogram is selected depending on the angle θ between the nor-
mal vector pair nsmall,i and nlarge,i and increased by one for all points in the
neighborhood. Finally, the histogram is normalized to a sum of 1.

The number of bins and the parameters ωsmall and ωlarge are user defined
parameters. Flint et al. use 10 bins, ωsmall = 0.3σ, and ωlarge = 0.8σ.

4.1.5 Point Feature Histogram

Rusu et al. [66] proposed a ’point feature histogram’ (PFH) in 2008. As its name
already suggests, it is a histogram based approach. PFH does not require a local
reference frame. The algorithm can be used on depth images, as well as on point
clouds. However, it is assumed, that a viewpoint is known.

Rusu et al. compute a Darboux frame to define a descriptor. Let Np ⊆ P be
the local neighborhood of a keypoint p ∈ P with

(4.8) Np = {pi|pi ∈ P, ‖pi − p‖ ≤ r} ,

where r is the radius of the spherical neighborhood. Each point pi ∈ P requires
a corresponding normal vector ni, which may have to be approximated using
a principal component analysis for Npi . To get consistent normal vectors they
re-orient them with respect to the viewpoint c:

(4.9) 〈c− pi,ni〉 < 0 : ni = −ni.

4.1. LOCAL FEATURE DESCRIPTORS 41

Figure 4.6: This figure from [66] shows a Darboux frame consisting of the vectors u, v
and w.

Furthermore, let pi,pj ∈ Np, i 6= j, j < i a pair of points within the neighborhood
of p. One of the two points are the source point ps, the other the target point
pt:

(4.10)
if 〈ni,pj − pi〉 ≤ 〈nj ,pi − pj〉,
then ps = pi,pt = pj ,
otherwise ps = pj ,pt = pi.

Then the Darboux frame (see Figure 4.6) is defined by

(4.11) u = ns,v = (pt − ps)× u,w = u× v.

Finally Rusu et al. define four values build upon the Darboux frame and the
point pairs:

(4.12)

f1 = 〈v,nt〉,
f2 = ‖pt − ps‖,
f3 = 〈u,pt − ps〉/f2,
f4 = tan−1〈w,nt〉.

The values of f1 and f3 range from −1 to 1, the values of f2 are between 0 and
2 ·r, and the values of f4 are between ±π/2. Let b(s, f) be a binary function that
is 0 if f < s and 1 otherwise. Then

(4.13) i = b(0, f4) · 23 + b(0, f3) · 22 + b(r, f2) · 21 + b(0, f1)

42 CHAPTER 4. 3-D OBJECT DESCRIPTION

is an index between 0 and 15, that are used to increase one of 16 bins of a
histogram for each point pair of Np. Finally, the bins of the histogram are
normalized so that the sum of all bins is 1.

In later publications Rusu et al. note, that two significant changes lead to
better results [71, 65]:

• The length feature (f2 in Equation 4.12) is omitted, since it has been found
that this feature does not only not increase robustness, but causes problems
in some situations in depth images.

• The subdivision intervals in the feature’s value range are increased from 2
to 5. This results in a 125-D feature vector in place of the 16-D vector.

4.1.6 Fast Point Feature Histogram

Since the computational complexity for the determination of a Darboux frame
at each point with a k-neighborhood is O(k2), the computation of point feature
histograms is relatively slow. For that reason, Rusu et al. [71] proposed a simpli-
fied version of PFH in 2009 they named ’fast point feature histogram’ (FPFH).
They preserved the basic characteristics of the descriptor, but changed the com-
putation of the Darboux frame with an approximation of it. The changes from
PFH to FPFH are as follows:

• The Darboux frame and the three remaining features (Equation 4.12 with-
out the distance feature f2) will no longer be estimated for point pairs in the
neighborhood Np of a keypoint p, but for each point p′ ∈ P and k points
p′i in a k-neighborhood of p′. Thus, for each point of the point cloud a
reduced histogram is filled, which Rusu et al. call a ’simplified point feature
histogram’ (SPFH).

• In a second iteration they compute the FPFH (see Figure 4.7) for a keypoint
p with the SPFHs for each point pi in the neighborhood Np weighted by
the distance ωi = ‖p− pi‖:

(4.14) FPFH(p) = SPFH(p) + 1
|Np|

∑
pi∈Np

1
ωi
SPFH(pi).

4.1. LOCAL FEATURE DESCRIPTORS 43

Figure 4.7: This figure from [71] shows the relationship between the simplified point
feature histograms and the fast point feature histogram. The red point pq in the center
of this figure is the keypoint for which the FPFH is determined. The FPFH is com-
bined of SPFH (corresponding to the colored circles) of all points pk1, . . . , pk5 in the
neighborhood Npq

represented by the dotted circle.

• To reduce the dimensionality (125 dimensions for a PFH) and the often
empty bins, they propose the decorrelation of the values. The values of the
three features are filled into separate feature histograms with 11 bins and
then concatenated to a 33-D feature description.

4.1.7 2.5-D SIFT

The algorithm proposed by Lo and Siebert [48] in 2009 is a feature descriptor
for depth images. The algorithm is inspired by the 2-D version of SIFT and
computes a histogram based on oriented gradients. A uniform reference frame is
required and computed.

The reference frame is determined by the tuple (x, y, σ, θ, ϕ, τ) for each key-
point. The values of x, y and σ are the in-plane coordinates and the scale of the
keypoint p. The values of x and y are taken from the keypoint used. The angle θ
is a gradient orientation. Its calculation was presented within Section 3.1.7 of the
2.5-D SIFT keypoint algorithm. The computation of the other values requires a
surface normal n for which they use an approach proposed by Sze et al. [86]:

(4.15) n = (−f(p)x,−f(p)y, 1)>√
f(p)2

x + f(p)2
y + 1

,

44 CHAPTER 4. 3-D OBJECT DESCRIPTION

where f(p)x and f(p)y are the first Gaussian derivatives of p in x and y direction,
using the known scale σ. With that normal vector Lo and Siebert compute the
two missing angles of the slant ϕ and the tilt τ :

(4.16)

ϕ = tan−1

√

n2
x + n2

y

nz

 ,

τ = tan−1
(

nx
ny

)
.

The computation of the descriptor values is done in four steps:

1. The area of the local surface patch around the keypoint is rotated with
respect to the canonical in-plane orientation θ. Then the degree of curvature
is calculated based on the Gaussian curvatureK and the mean curvatureH:

c =
√

2H2 −K.

2. The local surface patch is divided into nine elliptical sub-regions, overlap-
ping by one standard deviation, as shown in Figure 4.8. The ellipses have
an aspect ratio of ϕ and an orientation given by τ .

3. Two different histograms are filled for each of the elliptical sub-regions. On
the one hand they create a histogram Hisurface of nine surface types (from
cup to cap) based on the local curvature values and weighted by c. On
the other hand they formulate an eight bin histogram Hiorientation covering
the range of all possible orientations. Both histograms are normalized to a
magnitude of 1 and concatenated to one of nine local histograms:

Hi = [Hisurface , Hiorientation].

4. All nine histograms build the final descriptor:

D = [H1, . . . ,H9].

4.1.8 Intrinsic Shape Signatures

The ’intrinsic shape signatures’ introduced by Zhong [105] in 2009 is a histogram
based feature descriptor for point clouds. The method includes the determination
of a reference frame, but its orientation is ambiguous.

4.1. LOCAL FEATURE DESCRIPTORS 45

θ

H1

H4

H7

H2

H5

H8

H3

H6

H9

Figure 4.8: This is an illustration of the local surface patch (blue), which is oriented
by θ and divided into nine elliptical sub-regions (beige). For each sub-region weighted a
histogram Hi is filled with surface types and orientations.

As already mentioned in the summery of the keypoint extraction algorithm
in Section 3.1.8, Zhong computes the eigenvalues and eigenvectors of a spherical
neighborhood. The eigenvectors e1, e2 and the cross product e1 × e2 is used as
x-, y- and z-axis for four possible local reference frames.

Similar to 3-D shape context from Frome et al. (see Section 4.1.2) the intrinsic
shape signature (ISS) is a spherical histogram with radius r. But instead of a
segmentation based on the spherical radius, the azimuth, and the elevation, Zhong
computes a spherical grid starting with an octahedron. First, she divides each
triangle into 4 smaller triangles by adding new vertexes at the midpoint of each
edge. Each new vertex is moved along an axis from the center to the vertex, until
it intersects the surface of a surrounding sphere. In a third step each point of the
sphere is assigned to its nearest neighbor, which leads to a Voronoi diagram on the
surface (see Figure 4.9). These three steps can be repeated multiple times to refine
the cells on the sphere. After three iteration the spherical tessellation consists
of n = 66 Voronoi cells. This process leads to uniformly and homogeneously
distributed cells.

To ensure that the algorithm is able to select the corresponding cell as quickly
as possible, Zhong stores a lookup table to map each angle pair (θ, ϕ) to the
corresponding bin. In combination with l radial distances ρ0, ρ1, . . . , ρl−1 she
partitions the spherical volume into k = 1 + (l − 1) · n bins with no angular
discrimination for radii ρ < ρ0. Each point pi that falls into a bin is weighted by
wi = 1/ |{pj : ‖pj − pi‖ < r}|, the inverse of the amount of points in a spherical
neighborhood of radius r. The sums within the bins form the feature vector.

46 CHAPTER 4. 3-D OBJECT DESCRIPTION

x
x

x

y y y

z
z

z

pi
pi+ +

(a) (b) (c)

Figure 4.9: These figures of spherical tessellation as a method for binning are adopted
form [105]: (a) a point pi and its axis with the associated angle pair (θ, ϕ), (b) the base
structure, an octahedron, is used for spherical tessellation, which results in (c) a spherical
Voronoi grid. The cell corresponding to (θ, ϕ) is filled in purple.

4.1.9 Shape Index SIFT

Bayramoglu and Alatan [6] proposed a feature descriptor for depth images in
2010. The approach is straightforward. They compute the shape indexes as
shown in Equation 4.4 for all points of the depth image and map the values to
a gray scale image in the range of 0-255. Then they apply the 2-D SIFT from
Lowe [49] on the gray scale image.

4.1.10 Surface Fitting with a Uniform Lattice

The method proposed by Mian et al. [56] in 2010 determines a signature for
meshes, point clouds and depth images in the same way. It does not have a
unique reference frame, but requires an already aligned partition of the surface
M̂i as determined by the keypoint detection part of their work mentioned in
Section 3.1.9.

To determine the feature description a surface fitting of a surface S onto the
point cloud is performed using a MATLAB extension named ’gridfit’ [15]. The
extension is applied with a smoothing factor to get a dense smoothed surface
without sharp edges and with damped noise. Furthermore, they define a uniform
n×n grid with n = 20, which they align to the x- and y-axis of the local reference
frame of M̂i and S, respectively. The grid is used to sample the relative depth
values of the surface S.

Mian et al. fill a 400 dimensional vector with these grid values. However, as
a dimensionality of 400 is quite high, they reduce the vector size using a singular
value decomposition of the covariance matrix made from all vectors of a set of

4.1. LOCAL FEATURE DESCRIPTORS 47

Figure 4.10: This figure from [79] shows the star pattern placed on top of the smoothed
grid of depth values used to compute the NARF description.

scanned 3-D objects. They propose that only the highest k = 10 eigenvalues
should to be used to map the 400 dimensional vector to a 10 dimensional de-
scription. Due to their experiments they propose a fidelity of 95% for these low
dimensional feature descriptions.

4.1.11 NARF

Steder et al. [79, 80] proposed a signature based feature descriptor for depth
images in 2010. The algorithm creates a local reference frame for each feature
point and its local environment.

The keypoint defines the origin of the local reference frame. The z-axis is
parallel to the normal vector and the y axis is oriented along the upright vector
by definition. The area with a radius of σ/2 is translated to the local reference
frame and rotated in such a way, that the dominant direction αi, calculated with
the corresponding keypoint detection algorithm described in Section 3.1.11, is
aligned to the y-axis.

Based on the aligned patch with radius σ/2, Steder et al. use a 10 × 10 grid
oriented to the x- and y-axes of the local reference frame. The grid is filled
with the smallest z-values of all points falling into each cell. Cells without a
corresponding 3-D point get filled with the maximum value of the local area.
Finally, the patch is smoothed with a gaussian blur.

Based on the smoothed patch, Steder et al. extract the descriptor values di
placing a star pattern with n beams on top of this grid (see Figure 4.10). Let

48 CHAPTER 4. 3-D OBJECT DESCRIPTION

ci,0, . . . , ci,m be the cells of the patch lying under beam bi starting with ci,0 at the
center of the star pattern. Then di is calculated by

(4.17)

w(ci,j) = 2− 2 · ‖ci,j − ci,0‖
σ

,

d′i =

m−1∑
j=0

(w(ci,j) · (ci,j+1 − ci,j))

m−1∑
j=0

w(ci,j)
,

di =
atan2

(
d′i,

σ
2
)

180◦ .

Here, w(ci,j) is a distance based wighting factor, whereby changes of the surface
nearby the center affect the resulting values more than surface changes at a larger
distance. By using atan2 the values are normalized to a range of [−0.5, 0.5]. So
far, this descriptor is not invariant to the rotation. Thus, Steder et al. use a
histogram with bins for each possibile orientation in steps of one degree. The
value of each bin for an orientation β is

(4.18) h(β) = 1
2 + 1

n

n∑
i=1

di ·
(

1− |β − γi|180◦
)2
,

where γi is the angle of the i-th beam. Finally, the dominant orientation and all
orientations with a value exceeding 80% of the maximum value are used to store
the corresponding description.

4.1.12 Signatures of Histograms of Orientations

Tombari, Salti and Di Stefano [93, 73] introduced a 3-D point cloud descriptor al-
gorithm in 2010 they dub ’signatures of histograms of orientations’ (SHOT). The
algorithm is designed to handle depth images, point clouds and meshes. Further-
more, they proposed an extension in 2011 to use RGB data if it is available [94].
A major part of their work devotes attention to the estimation of a stable lo-
cal reference frame and they state that the local reference frame is more stable
in comparison to other recent approaches, particularly to the two local feature
description algorithm for meshes called MeshHOG [104] and 3-D SURF [41].

Similar to other already mentioned approaches they compute a covariance
matrix C of the local neighborhood with a radius r of a point p to estimate a

4.1. LOCAL FEATURE DESCRIPTORS 49

normal vector by eigenvalue decomposition. To improve the robustness against
clutter, they weight the points by distance

(4.19) C = 1∑
i,di≤r(r − di)

k∑
i=1

(r − di)(pi − p)(pi − p)>, di = ‖pi − p‖2.

Let x+, y+, and z+ be the unit vectors with their directions pointing to the
eigenvectors corresponding to the eigenvalues in descending order. Let x−, y−,
and z− be the unit vectors in the opposite direction. The necessary steps to
decide which of the two conceivable unit vectors should be used for each direction
is shown exemplary for the x-axis:

Initially Tombari, Salti and Di Stefano compute two sets of points that contain
all points pi which lie in front of p with respect to x+ and x−

(4.20)
S+
x =

{
pi : di ≤ r ∧ (pi − p)x+ ≥ 0

}
,

S−x = {pi : di ≤ r ∧ (pi − p)x− > 0} .

If one of the two sets contains more points than the other, the direction of the
x-axis points to the side of the most points, i. e., x+ if |S+

x | > |S−x | or x− if
|S+
x | < |S−x |. In the (rare) case that |S+

x | = |S−x |, they estimate the median
distance dm and select those k points pi within the neighborhood of p whose
distance di = ‖pi − p‖2 is the closest to dm:

(4.21) M(k) =
{

pi : min
k

(|dm − di|)
}
.

Based on this set they compute two further sets

(4.22)
S̃+
x =

{
pi ∈M(k) ∧ (pi − p)x+ ≥ 0

}
,

S̃−x = {pi ∈M(k) ∧ (pi − p)x− > 0}

and chose the direction of the x-axis in the same manner as above: x+ if |S̃+
x | >

|S̃−x | or x− otherwise. This procedure is done in the same way for the z-axis.
Finally, x× z results in y.

To compute the SHOT description Tombari, Salti and Di Stefano use a spheri-
cal segmentation as shown in Figure 4.11. For each for the segments they compute
a histogram filled with the cosine values of the angles between the z-axis of the
local reference frame and the normal vectors nj of points pj which are part of
the currently considered segment, i. e., zp · nj . To avoid boundary effects, they
perform a quadrilinear interpolation with the neighboring bins and with the cor-
responding bins of the histograms from the four adjacent segments. As the final

50 CHAPTER 4. 3-D OBJECT DESCRIPTION

Figure 4.11: This figure from [73] shows the signature segmentation of the spherical
neighborhood for a point p used by the SHOT descriptor algorithm. Histograms for all
segments are combined to form the local 3-D point description.

step the whole description is normalized to have an Euclidean norm of 1, which
is done to achieve robustness to point density variations.

According to the results of their experiments, they recommend histograms
with 11 bins. Furthermore, they recommend a segmentation with 8 azimuth
divisions, 2 elevation divisions, and 2 radial divisions (please note: Figure 4.11
shows 4 azimuth divisions). This leads to a description with total length of 352
values.

4.1.13 Unique Shape Context

Another local 3-D feature descriptor which was also introduced by Tombari et al.
in 2010 is dubbed ’unique shape context’ (USC) [92]. It is an extension of the
3-D shape context from Frome et al. summarized in Section 4.1.2.

The extension only consists of the adaptation of the local reference frame
introduced by Tombari et al. within the context of the SHOT-algorithm (Sec-
tion 4.1.12) to align the spherical volume to the local reference frame. This
reduces the memory consumption, since, in comparison to 3-D shape context
only one description per feature point must be stored in memory. In addition,
the reduced number of feature descriptions reduces the ambiguity and therefore
enables better detection and classification rates [4, 27].

4.1. LOCAL FEATURE DESCRIPTORS 51

Figure 4.12: This figure from [20] outlines the computation of SURE descriptions ex-
emplary for two dimensions. Discretized values of the Darboux frame are filled into
histograms with 11 bins. The histograms for values of inner points (blue / upper his-
togram) and outer points (green / lower histogram) differ.

4.1.14 SURE

The algorithm introduced by Fiolka et al. in 2012 [20, 21] computes the feature
description by means of the Darboux frame which was introduced in context of
the point feature histogram by Rusu et al. in Section 4.1.5.

As already mentioned in the keypoint detection part of the SURE-algorithm
(Section 3.1.12), Fiolka et al. determine points of interest for a neighborhood
Np,E based on a cubic region E ⊆ R3. To compute the local feature description
they use the same region and calculate the 4 values of the Darboux frame for
each point pair (p,pi) with pi ∈ Np,E . They divide the range of values into 11
equidistant intervals and fill the values with respect to the corresponding interval
into histograms with 11 bins. These histograms differ whether pi is an inner point
(i. e., if the point was within the radius used to approximate the normal vector)
or an outer point. For two dimensions this is shown exemplary in Figure 4.12.

The final description is a concatenation of all 8 histograms, and accordingly
has 88 dimensions. Furthermore, Fiolka et al. showed that the descriptor outper-
forms the matching score of the NARF descriptor introduced in Section 4.1.11.

4.1.15 Histogram of Oriented Normal Vectors

The histogram of oriented normal vectors (HONV) proposed by Tang et al. [89]
in 2013 is a local 3-D feature description algorithm to be applied to depth images.

It is clear from the title, that this algorithm requires an approximation of
normal vectors to compute the description. For a given depth image let the

52 CHAPTER 4. 3-D OBJECT DESCRIPTION

depth values at a 2-D position (x, y) be dx,y. To approximate a normal vector
nx,y at this position, Tang et al. use the cross product of vectors on the two
tangent planes:

(4.23) nx,y = tx × ty, where tx = ∂

∂x

x

y

dx,y

 , ty = ∂

∂y

x

y

dx,y

 .
This leads to a finite difference approximation:

(4.24) nx,y =

−∂dx,y

∂x

−∂dx,y

∂y

1

 ≈

−1

2 (d(x+ 1, y)− d(x− 1, y))
−1

2 (d(x, y + 1)− d(x, y − 1))
1

 .
Tang et al. found that the use of spherical coordinates is better than the use of
Cartesian coordinates. Therefore, they determine the values as follows:

(4.25)
ϕ = tan−1

(
d(x+1,y)−d(x−1,y)
d(x,y+1)−d(x,y−1)

)
,

θ = tan−1
(

1
2 (d(x+ 1, y)− d(x− 1, y) + d(x, y + 1)− d(x, y − 1))

) 1
2

Finally, Tang et al. compute a histogram for a sliding detection window of 8× 8
pixel by counting the quantized values of φ and θ in a 2-D histogram, normalize
the histogram and rotate the cells by a circular shift along each direction, so that
the mean orientation is represented by the first bin. The last step is necessary to
make the description rotationally invariant.

Unfortunately, Tang et al. give no information what size should to be used
for the histogram. However, it can be seen in the figures of their work (see
Figure 4.13) that a size of 9× 6 is used.

4.2 Performance Evaluation of Feature Descriptors

Over the last years, many of the proposed algorithms were evaluated, e. g., from
Bustos et al. [9], Heider et al. [30], and Alexandre [4]. Moreover, the available
methods were summarized in a recent survey paper by Guo et al. [27].

However, no specific recommendations for or against certain methods are for-
mulated in the conclusions of these evaluations. Instead, Alexandre summarizes
an important point as follows:

4.3. BAG OF FEATURES 53

Figure 4.13: This histogram from [89] illustrates a final histogram of oriented normal
vectors (HONV). The two dimensions represent the values of ϕ and θ corresponding to
normal vectors.

“[. . .] since there are big differences in terms of recognition perfor-
mance, size and time requirements, the descriptor should be matched
to the desired task [. . .]” (Alexandre [4]).

4.3 Bag of Features

As already mentioned in Section 2.1, many of the classification pipelines use a
bag of features model as a global description of a point cloud. The bag of features
model has its origin in a field of computer science named natural language pro-
cessing. There, a bag of words model is a histogram that counts the occurrences
of words in a text without regarding the grammar. In the same way a bag of
features is a histogram in which the occurrences of local feature descriptions are
counted.

Since the number of possible feature descriptions is, in contrast to a natural
language infinite, a defined subset of feature descriptions is required. Therefore,
the feature descriptions need to be quantized to a finite number of representatives.
This is often done with a k-means clustering.

Although invented by Lloyd in 1957 k-means was published accessible to the
public only in 1982 [47]. The aim of k-means is to cluster the data in k partitions
so that the sum of squared distances between each data element of a cluster and

54 CHAPTER 4. 3-D OBJECT DESCRIPTION

the centroid of a cluster is at a minimum. In the bag of features context, the
problem can be formulated as follows. Let D be a set of n-dimensional feature
descriptions. Further, let Ci be one of the k clusters and C1 ∪ . . .∪ Ck = D. Then
the problem corresponds to the optimization of the function

(4.26) argmin
C1∪...∪Ck=D

k∑
i=1

∑
d∈Ci

‖d− d̄i‖2, where d̄i = 1
|Ci|

∑
d∈Ci

d.

The only parameter required in advance is the number of clusters k. Depend-
ing on the classification pipeline, the selected k differs by orders of magnitude.
Toldo et al. use values of k between 20 and 80 [90] and values from 50 to 150 [91],
Knopp et al. use 10% of all feature descriptions extracted from a training set as a
value of k [41], Madry et al. use between 7 and 300 clusters [52, 51], and Yi et al.
use 20% of the average number of features they extracted for each patch of all
objects of their training set [103].

Given these significant differences, it is difficult to generalize the number of
clusters. But there is another question in this context: is the Euclidean distance
the best choice in distinguishing the feature descriptions while performing a k-
means clustering?

The last question can partly be answered by a work of Madry et al. [51]. They
compared, among others, different distance measures for a 33 dimensional fast
point feature histogram (see Section 4.1.6). The evaluation is performed with two
different test configurations. In the first configuration the original training objects
were rotated and used as test objects. The average classification rates differ only
slightly, i. e., a bag of features based on Jaccard distance for vectors [11] achieves
≈ 70%, while a bag of features based on Euclidean distance achieves ≈ 72%. In
the second configuration Madry et al. use only objects where the test data differ
significantly from the training set. This leads to an average classification rate of
≈ 36% for the jaccard and of ≈ 46% for the Euclidean distance.

Therefore, the Euclidean distance provides at least better results than the
Jaccard distance for feature descriptions with a small number of dimensions (33
dimensions in this case).

5 Support Vector Machines

Object classification is the correct assignment of an object to one of a given set of
abstract classes, e. g., cup, bottle, chair, and so on. In contrast to object recog-
nition, any object, even previously unseen objects shall be classified correctly.

As already mentioned in Section 2.1, a common way to identify a class based
on a given object description, i. e., a frequency histogram, is to use a classifier.
Most of the current 3-D classification pipelines as well as the basic classification
pipeline used in this thesis use a support vector machine. Hence, the support
vector machine is described in more detail.

The support vector machine (SVM) introduced by Vapnik and Chervonen-
kis [96] is a learning algorithm that learns the relationship between a set of input
vectors to an output. Initially, SVMs handled only problems with two categories.
To show the principle of SVMs, Figure 5.1 depicts a simple initial example of
data points associated with two disjoint classes.

5.1 Linear Separable Data

As shown, the data points in Figure 5.1 can be separated in 2-D by a straight line.
For this simple example, the classification problem could be described as follows:
find a straight line that separates the data points of the two classes maximizing
the points’ distances to the line. This approach corresponds, in essence, to the
approach of an SVM: identify a linear separator – a straight line in this case –
that separates the data points with a maximum margin.

55

56 CHAPTER 5. SUPPORT VECTOR MACHINES

Figure 5.1: SVM example 1: linear separable data points in 2-D. associated with two
disjoint classes.

v
a

b
p H

Figure 5.2: SVM example 2: two data points at ȧ = (0.5, 0.5)> and ḃ = (1.0, 1.0)>

separated by a hyperplane H (dashed line) defined by a support vector ṗ = (1.0, 0.5)>

and a normal vector ṅ = (0.5, 1.0)>.

While Figure 5.1 shows the separation of the two categories by a straight
line, a higher-dimensional space requires a hyperplane H. The location of the
hyperplane in Rn is defined by a support vector p ∈ Rn and a normal vector
v ∈ Rn\{0}:

(5.1) H = {x ∈ Rn|〈v,x− p〉 = 0}

Figure 5.2 shows an example with two data points in R2, where the hyperplane is
defined by a support vector ṗ = (1.0, 0.5)> and a normal vector ṅ = (0.5, 1.0)>.
The figure also contains two points ȧ = (0.5, 0.5)> and ḃ = (1.0, 1.0)> lying on
different sides of the hyperplane.

Whether, with respect to the direction of the normal vector, a point is above
or below the hyperplane, can be determined with the plane equation. Then one
has 〈v̇, ȧ − ṗ〉 = −0.5 and 〈v̇, ḃ − ṗ〉 = +0.5. These values correspond to the
distance between the data point and the support vector ṗ. The sign reflects the
side of the hyperplane. The different signs can be used for a classification. In
connection with SVMs these label are particularly specified as yi ∈ {−1, 1}.

5.2. NONLINEAR SEPARATION AND THE KERNEL-TRICK 57

(a) (b) (c)

Figure 5.3: SVM example 3: (a) the XOR problem is a simple situation where a
geometrical solution of the linear separation does not exist. In order to separate the
data linearly (b), the original space must be left to rearrange the data points in a higher
dimensional space (here R3). The orthogonal representation of (b) viewed from the side
results in (c), where a geometrical solution of the linear separation exists.

In summary, training an SVM means to determine the support vector p and
the normal vector v, that the hyperplane separates the classes with a maximum
margin.

5.2 Nonlinear Separation and the Kernel-Trick

However, in many cases it is not possible to perform a linear separation of the
data into two classes. An often referred example is the XOR problem shown in
Figure 5.3.

To get a linear separation of situations like the XOR problem, the original
space must be left to rearrange the data points in a higher dimensional space (see
Figure 5.3 (b)):

(5.2) φ : Rn → Rm, x̂ = φ(x),m > n.

Since it is very complex to transform a large amounts of data pairs into a higher-
dimensional space and to search for an optimal hyperplane, a function is sought
to map the hyperplane back from the higher dimensional space to the original
space. This is knows as the so called kernel-trick.

According to Mercer’s theorem [55], the hyperplane of the linear separation
in Rm can be transformed back to the original space Rn, if the hyperplane has

58 CHAPTER 5. SUPPORT VECTOR MACHINES

a representation in the original space. This representation exists, if there is a
continuous symmetric non-negative definite kernel function.

5.3 Kernel Functions

A continuous symmetric non-negative definite kernel function is given, for exam-
ple, by the scalar product:

(5.3) K(x,x′) = 〈x̂, x̂′〉 = 〈φ(x), φ(x′)〉.

But this kernel function is primarily suitable for linear separable data and cannot
solve the XOR problem [34] and therefore is also referred to as a linear kernel
function. An extension to the linear kernel function is the polynomial kernel
function:

(5.4) K(x,x′) =
(
〈x̂, x̂′〉+ 1

)d .
For d = 2 the polynomial kernel function allows the solution of the XOR problem.

Another frequently used kernel function is the Gaussian kernel or the radial
basis function kernel (RBF kernel):

(5.5) K(x,x′) = exp
(
−γ‖x̂− x̂′‖2

)
, with γ > 0.

Moreover, there are a variety of other kernel functions. But since the use of
different kernel functions affects the SVM algorithm only marginally for linear
separable cases, at this point no further kernel functions will be introduced.

Finally, it remains to be clarified how the kernel function is used as part of
the SVM to determine the hyperplane. Beginning with the hyperplane equation
〈v̂, x̂− p̂〉 = 0 a simplified version is given with v̂>x̂− b = 0, where b = v̂>p̂ [64].
As already mentioned above, the classes will be labeled with yi ∈ {−1,+1}. It
therefore follows that

(5.6)
v̂>x̂− b ≥ 0 ∀ yi = +1,
v̂>x̂− b < 0 ∀ yi = −1.

To take into account, that the margin on both sides of the hyperplane should be
maximized, the margin takes a fixed size of 1, first:

(5.7)
v̂>x̂− b ≥ +1 ∀ yi = +1,
v̂>x̂− b ≤ −1 ∀ yi = −1.

5.3. KERNEL FUNCTIONS 59

In combination with the class label this can be written as

(5.8) yi
(
v̂>x̂− b

)
≥ 1.

The absolute value of Equation 5.8 depends only on the length of the normal
vector v̂. Thus, it is desirable to minimize the length of v̂ to maximize the
margin between the data points. But an approach which takes only the normal
vector length into account cannot keep the hyperplane between the two classes
of data points. Instead, a solution with a hyperplane outside the data points and
with infinitely wide margin would be found, since the length of the normal vector
would tend to zero.

Therefore, a constraint should keep each data points on the right side of the
hyperplane at a positive distance. This was already mentioned in Equation 5.8
and if this equation is considered as constraint during minimization, the hyper-
plane is kept between the classes. Therefore, the optimization problem can be
summarized as follows:

• minimize v̂>v̂,

• for each data point x̂ let yi
(
v̂>x̂− b

)
≥ 1.

The first item represents a quadratic function, which needs to be minimized,
while the second item defines a linear constraint for each data point. This is a
quadratic optimization problem which can be solved as follows [64]:

• Find positive Lagrange multipliers αi ≥ 0, which let the following sum
result in zero:

(5.9)
d∑
i=0

αi · yi = 0,

where d is the number of data points to be considered.

• Maximize:

(5.10)
d∑
i=1

αi −
1
2αiαjyiyj〈x̂i, x̂j〉.

The last equation represents the linear case. Generally, the optimization of an
SVM problem can be written as follows:

(5.11)
d∑
i=1

αi −
1
2αiαjyiyjK(xi,xj).

60 CHAPTER 5. SUPPORT VECTOR MACHINES

Based on Equation 5.11 it is possible to use different kernel functions for different
classification scenarios. Once all parameters have been determined, the solution
can be constructed as follows:

(5.12)
v̂ = ∑d

i=1 αiyix̂i
and

b = yi − v̂>x̂i.

6 Reinforcement Learning

Reinforcement learning is a machine learning method for sequential decision-
making, in which through trial and error an optimal behavior at each stage of
the sequence shall be learned. The goal is to learn the best possible way to solve
a given task, which may consist of a plurality of different decision dimensions.

First of all a reinforcement learning system consists of an agent that interacts
with an environment. Based on the current state of the environment the agent
decides with respect to the learned experience what action will be performed next.
The mentioned experience arises from consequences within the environment, i. e.,
a positive or negative reward, which reflects whether the action was appropriate
to bring the agent closer to its goal.

Agent

Environment

reward rt

state st

action at

st+1

rt+1

Figure 6.1: The agent-environment interaction in reinforcement learning, adopted
from [83].

Figure 6.1 shows the main agent-environment interaction loop. At a discrete
time step t the agent selects with respect to the current state st one of the available
actions at ∈ A(st). When the action is performed the environment changes to
state st+1 . In addition to information about the new state st+1 the agent receives
a numerical reward rt+1. Based on this reward the agent can learn to select the
next and ideally best action. The goal of a reinforcement learning task is to find

61

62 CHAPTER 6. REINFORCEMENT LEARNING

a so called policy π that maximizes the long-term reward, i. e., to maximize the
sum of future rewards.

6.1 Markov Decision Process

Before we consider how an appropriate policy can be determined using the re-
wards, the following few lines give a brief overview of how reinforcement problems
and rewards are often modeled. Typically the issues of constructing or modeling
a reward signal are not part of a reinforcement learning problem, but they help
to enhance the understanding of reinforcement learning.

A Markov decision process (MDP) consists of a set of states S, a set of actions
A, a set of rewards Rass′ received when action a leads to a transition from the
state s to state s′, and a set of probabilities Pass′ that describes the probability
that an action a in state s leads to a state s′.

high low1.0 | 0 recharge

1.0 - β | -3
search

β | rsearch

wait

1.0 | rwait

wait

search

1.0 | rwait

α | rsearch 1.0 - α | rsearch
Figure 6.2: A simple Markov decision process with two states, three actions and various
transitions, adopted from [83].

Figure 6.2 shows an exemplary Markov decision process of a recycling robot
as introduced in [83]. The task of the robot is to collect empty soda cans in
an office environment. The robot has two battery states, low and high. Based
on these states the agent decides between three possible actions: searching for
empty cans, waiting for someone to bring a can, and return to the base station
to recharge the battery. In the latter case a recharge makes sense only when the
battery level is low. Therefore, a recharging transition from state high to state
high makes no sense. The wait action can be quickly explained, too. If the robot
waits, it does not run down the battery power. Accordingly, the transitions for

6.2. REWARD AND RETURN 63

this action keeps the state. Finally there are four transitions when the robot
is actively searching for cans. If the battery state is high, it keeps high with a
probability of α, and drops to low with a probability of 1− α. When continuing
the search of cans with a low battery state, it might work with a probability of
β. But with a probability of 1 − β the battery is fully discharged. In the latter
case the robot must be rescued and taken to the base station. This leads to an
immediate reward of −3. If rrearch > rwait, the robot will actively search for
empty can, while it is worthwhile.

6.2 Reward and Return

As already mentioned above, a positive or negative reward reflects whether the
action was appropriate to bring the agent closer to its goal. This means not the
maximization of this immediate reward. Instead, the reward can be thought as
a signal passing from the environment with the following informal idea:

“ That all of what we mean by goals and purposes can be well thought
of as the maximization of the expected value of the cumulative sum
of a received scalar signal.” (Sutton and Barto [83])

This means, that the agent should maximize the cumulative reward in the long
run. This cumulative reward is called return. Accordingly the sum of future
rewards is called expected return. Thus, the goal is to find exactly that action
which maximizes the expected return.

When the agent-environment interaction loop has a natural termination at
time T or allows only a finite number of state transitions, the loop breaks into
finite sequences of actions, so called episodic tasks. In this case the expected
return can be formulated simply as

(6.1) Rt = rt+1 + rt+2 + . . .+ rT .

In case of continuing tasks an additional concept called discounting is required
and the value function has the following form:

(6.2) Rt =
∞∑
k=0

γkrt+k+1,

where γ is the discount rate with 0 ≤ γ ≤ 1. This function determines how
strongly immediate rewards are weighted compared to rewards in the future. If

64 CHAPTER 6. REINFORCEMENT LEARNING

γ < 1 the distant rewards are less important and it is ensured, that the expected
return is always a finite number if the immediate reward is bounded.

Subsequently, only the continuous case is considered, because the episodic
case can easily be converted into a continuing task.

6.3 Value Functions and Policy

The state-value function estimates a value reflecting how good it is to be in a
specific state. Essentially, the state-value function describes how much reward
can be expected in a specific state. This value primarily depends on which actions
will be performed in the future and which states will then be reached. This is
done by the already mentioned policy π. A policy is a mapping of each state
s ∈ S and each possible action a ∈ A(s) to a probability that action a is taken
and applied in state s. Using this policy and using Rt the state-value function
can be formalized as

(6.3) V π(s) = Eπ

{ ∞∑
k=0

γkrt+k+1

∣∣∣∣∣ st = s

}
,

where Eπ{} denotes the expected value. Furthermore, a value function can be
formalized where the value is separated for each available action in state s. This
is called the action-value function, also known as quality function or simply Q-
function:

(6.4) Qπ(s, a) = Eπ

{ ∞∑
k=0

γkrt+k+1

∣∣∣∣∣ st = s, at = a

}
.

6.4 Optimal Value Functions

For finite Markov decision processes it is possible to define an optimal policy. A
policy π is better than a policy π′ if the expected return for π is greater than
the expected return for π′. This implies, that V π(s) ≥ V π′(s), ∀s ∈ S. This
natural order of policies leads to a single optimal policy π∗. Hence, the optimal
state-value function and action-value function will be defined as follows:

(6.5)
V ∗(s) = max

π
V π(s),

Q∗(s, a) = max
π

Qπ(s, a).

An agent, that learns a policy that largely resembles the optimal policy is doing
very well.

6.5. LEARNING POLICIES 65

6.5 Learning Policies

Over the last years several types of reinforcement learning algorithms have been
introduced. According to Konda and Tsitsiklis [42] they can be divided into three
classes: actor-only, critic-only and actor-critic methods. Konda and Tsitsiklis use
actor and critic as synonyms for policy and value function.

The following algorithm from Watkins and Dayan [100] is a critic-only al-
gorithm called Q-learning. Q-Learning has some specific advantages over other
algorithms [83]:

• It is a model-free technique, i. e., it can be used to compute optimal policies
without a perfect model of the environment as a Markov decision process,
in contrast to, for example, dynamic programming.

• It is proven to converge to an optimal value Qπ(s, a)t → Q∗(s, a) with
t→∞ [100].

• It learns iteratively building an optimal value function and is therefore
computational efficient.

There are certainly a few restrictions on Q-Learning, but they should be of no
consequence within the context in this work. These are (exemplarily):

• For large Markov decision processes the stored Q-table can become very
large.

• Furthermore, large Markov decision processes have a problem that is known
as the curse of dimensionality. This problem is expressed in the fact that
a reinforcement learning method needs to visit each state-action pair suffi-
ciently often to ensure convergence.

Introducing Q-learning, it is first assumed that the successor states for all s ∈ S
are known. Then the optimal state-value function can be formulated as follows:

(6.6) V ∗(st) = rt+1 + γV ∗(st+1).

To approximate the optimal state-value function it is further assumed, that a
fixed policy π is used:

(6.7) V π(st) = rt+1 + γV π(st+1).

66 CHAPTER 6. REINFORCEMENT LEARNING

Initialize Q(s, a) with arbitrary value (e.g., with zero)
repeat

Initialize s
repeat

Select action a from s using any policy (e.g., random or ε-greedy)
Perform action a and observe r and s′

Q(s, a)← Q(s, a) + α[r + γmax
a′

Q(s′, a′)−Q(s, a)]
Update the current state: s← s′

until a terminal state is reached;
until no more episodes should be processed;

Algorithm 1: Q-learning algorithm

But the problem is, that V π(st+1) is not known. Therefore, the current state
value estimation Vt(st+1) is used instead. Furthermore, this estimation can be
used to update older state values. Let s be the current and s′ be the next state,
as well as V (s) and V (s′) be the values of the current and the next state. Then
the update rule is

(6.8) V (s) = V (s) + α
[
r + γV ′(s)− V (s)

]
,

where α is a parameter that controls the update rate. This equation is called
temporal-difference estimation for V . There is only one snag with this solution:
It is assumed, that the policy is fixed and thus a fixed action a is selected for
each state s. This is called on-policy learning.

The important change that has led to the off-policy learning algorithm Q-
learning, is the use of the action-value function instead of the state-value function.
After observing a transition of the form (st, at, rt+1, st+1) the value of the state-
action pair (st, at) is estimated by the Q-function:

(6.9) Q(st, at) = Q(st, at) + α
[
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
.

In this way, the update of the Q-values Q(st, at) is independent of the selected
action, i. e., independent of the selected policy.

Algorithm 1 gives a brief overview of the entire Q-learning approach.

6.6. EXPLORATION-EXPLOITATION DILEMMA 67

state
0.1 | -10action 1 0.9 | +2
1.0 | 0action 2

Figure 6.3: This illustrates a small part of an MDP.

6.6 Exploration-Exploitation Dilemma

In connection with the curse of dimensionality it was already mentioned that a
reinforcement learning method needs to visit each state-action pair sufficiently
often to ensure convergence. This means that in every state, all actions should
be used as often as possible. This could be done systematically. However, since
the values of different states and actions can relate to each other, a systematic
approach can influence the results. Therefore, the actions are usually selected at
random. Hence this will be called a random policy. Since this kind of exploration
is needed due to uncertain action values, a random policy seems to be a preferable
strategy to select actions.

However, if the current knowledge a reinforcement learning system has learned
shall be applied to solve its goal, a random policy is inappropriate. Instead a
policy that maximizes the expected reward in accordance with the objective of the
reinforcement learning task is required. This can be achieved selecting the action
with the greatest Q-value for each state. This is a greedy policy called maxQ
policy. Selecting an action this way means exploiting the current knowledge.

But there are some reasons, why a pure exploiting may also be impractical:

• Let assume, that there is state as shown in Figure 6.3. The state allows
two different actions. Action 1 leads to an immediate reward of +2 with
probability 0.9 and to an immediate reward of −10 with a probability 0.1.
This results in an average value of 0.8. The immediate reward for action
2 is always zero. It is assumed as well that the maximum Q-values of the
subsequent states are relatively similar to each other. This means, that
the Q-values of the two actions shown in Figure 6.3 depend only on the
immediate reward. If, during exploration, action 1 results several times in
that transition, which leads to a negative reward, the Q-value of action 1

68 CHAPTER 6. REINFORCEMENT LEARNING

0%

20%

40%

60%

80%

100%

0 250 500 750 1000
Steps

%
 O

ptim
al action

ϵ = 0.1
ϵ = 0.01ϵ = 0.0 (greedy)

Figure 6.4: Exploration-exploitation dilemma with learning curvatures for greedy (ε =
0.0) and ε-greedy policies with ε = 0.01 and ε = 0.1. Figure adopted from [83].

might be negative. In this case only action 2 would be used by a greedy
policy, although action 1 would be the better choice in the long run.

• It must also be taken into account that in natural systems the environment
and the results of actions may change over time. A reinforcement learning
agent, that greedily takes only those actions corresponding to the best Q-
value looses effectiveness over time.

In short, too much exploration prevents from maximizing the short-term reward
(possible negative reward), but pure exploiting prevents from maximizing the
long-term reward. This is known as the exploration-exploitation dilemma [83].

A simple way to solve this dilemma is to behave greedily most of the time.
But with a probability of ε, the agent selects an action randomly. This method
is called ε-greedy. Sutton and Barto use an 10-armed bandit problem to show
the influence of different ε-values. Using ε = 0.1 performs better than ε = 0.01
or ε = 0, but the ratio between Q∗ and Qπ has more scatter (see Figure 6.4).

While using an ε-greedy approach, the actions will be selected indiscriminately
with a probability ε. But there might be some actions with a higher potential for
actually being optimal, i. e., actions with higher Q-values.

Let Nt(a) be the number of how often action a was selected prior to time step t,
then

(6.10) Qt(a) =
R1 +R2 + · · ·+RNt(a)

Nt(a)

6.6. EXPLORATION-EXPLOITATION DILEMMA 69

Steps

Average Reward

upper confidence bound
ϵ-greedy

Figure 6.5: Upper confidence bound versus ε-greedy with ε = 0.1 and c = 2 respectively.
Figure adopted from [83].

is the mean reward received when action a was selected. Based on this, the
actions can be selected as follows:

(6.11) At = argmax
a

[
Qt(a) + c

√
ln t
Nt(a)

]
,

where c is a number that controls the degree of exploration.

This is called upper confidence bound (UCB). Figure 6.5 shows the difference
between ε-greedy and the upper confidence bound using the 10-armed bandit.
According to [83] this method seems to perform best.

70 CHAPTER 6. REINFORCEMENT LEARNING

7 Survey on Methods

This chapter can be seen as an overview over of the remaining chapters of this
thesis. It briefly describes the problems when using local 3-D feature descriptors
for classification tasks as well as the approaches that will be used to improve the
classification results gradually.

This focus is on local 3-D feature descriptor algorithms for point clouds with-
out additional structural information like triangle meshes and surfaces. These
local 3-D feature description algorithms differ considerably with respect to de-
scriptiveness and computation times. However, in general the computational
costs of calculation and comparison are high.

7.1 Description of the Problem

Note that a recognition or classification task of objects which are represented
exclusively as a 3-D point cloud of the surface of an object is a problem even for
a human observer. This is particularly clear when one bears in mind how objects
like apples, oranges or tennis balls look like without additional color information
and without a continuous surface: they look equal.

A comparison of recent algorithms [4] and a survey of local feature based
approaches for 3-D object recognition [27] show, that there is not a single best
algorithm in the domain of 3-D object recognition. Concerning these two publica-
tions it must also be taken into account that they use local 3-D feature descriptors
for object recognition and not for object classification tasks. That means, that
they typically look at most for a hand full of objects which are usually very dis-
tinctive. Accordingly, it can be assumed that the classification rate of objects
from large scale data sets with many similar object classes is much worse.

71

72 CHAPTER 7. SURVEY ON METHODS

Keypoint

Detection
Point Cloud

Feature

Description

Bag of

Features

Vocabulary SVMs

Classifica-

tion

Environment

Figure 7.1: The structure of the baseline experiment to determine the classification
rates of each feature descriptor.

This raises the question which descriptors should be used in which cases.
Furthermore, the question arises whether a combination of two or more different
algorithms leads to better results.

7.2 Approaches

The aim of this work is to show that a reinforcement learning system is able to in-
crease the classification rate of 3-D objects by a skillful selection and combination
of algorithms for local 3-D feature description.

7.2.1 The Basic Classification Pipeline

To ensure the comparability of the individual local feature descriptors, the clas-
sification rates of each individual local feature descriptor will be determined for
different parameter settings of the basic classification pipeline. This involves a
selection of a suitable keypoint algorithm, the determination of a proper bag of
feature vocabulary size, and the identification of appropriate kernel parameters
to train the support vector machines.

The structure of the baseline experiment is schematically shown in Figure 7.1
and is described in detail below.

Preprocessing

The preparation of 3-D point clouds is an important step toward a successful
application of 3-D feature descriptors. Since the used point clouds may arise

7.2. APPROACHES 73

from different sources, it is important to clean up the raw data first. This im-
plies, for example, the elimination of point redundancies that may arise from the
combination of several point clouds.

Thereupon the mesh resolution needs to be approximated based on the point
cloud. This value is required for both the keypoint detection method, as well as
for the local 3-D feature descriptor algorithms.

A full overview of the 3-D objects that are used to get the number of nearest
neighbors which lead to the best approximation of the mesh resolution based on
a point cloud can be found in the Appendix B.

Keypoint Detection

The keypoint detection algorithm used within all experiments has to be taken in
advance. But considering the fact that there are still current pipelines that rely
on sparse sampling (see Section 2.1), it was decided that sparse sampling will be
initially included in the baseline experiments.

Secondly, a keypoint detection algorithm has been selected which was in-
troduced by Zhong [105] in the context of intrinsic shape signatures (see Sec-
tion 3.1.8). This algorithm is chosen, because both Salti et al. [72] as well as
Filipe and Alexandre [19] (see Section 3.2) conclude that the intrinsic shape sig-
nature yields the best scores in terms of repeatability and is the fastest of the
tested algorithms.

Local 3-D Feature Descriptors

When performing the basic classification pipeline, each of the 3-D feature descrip-
tion algorithms listed in Table 7.1 will be used separately to compute descriptions
of the geometrical patterns around each of the keypoints extracted in the preced-
ing step. A detailed description of all required parameters for each algorithm is
given in Chapter 8.

The algorithms are chosen so that their properties are as heterogeneous as pos-
sible:

1. Three approaches use histograms (3DSC spherical / SI cylindrical / USC
spherical), two approaches create a signature using surface properties (PFH

74 CHAPTER 7. SURVEY ON METHODS

Table 7.1: This table gives a brief overview of the local 3-D feature description algorithm
used in this work. The column ’Size’ contains the size of the descriptions in bins of
histograms or in dimensions of a corresponding feature vector. The third column ’Normal
Vectors’ indicates if normal vectors are required or computed, respectively.

Local 3-D Feature Description Algorithm Size Normal
Vectors

Spin images (Johnson and Hebert [38]) 153 yes
3-D shape context (Frome et al. [23]) 1980 yes
Point feature histogram (Rusu et al. [66]) 125 yes
Fast point feature histogram (Rusu et al. [71]) 33 yes
Unique signatures of histograms (Tombari et al. [93]) 352 yes
Unique shape context (Tombari et al. [92]) 1960 yes

/ FPFH), and one algorithm is a hybrid solution of a spherical histogram
and surface properties, i. e., normal vectors (SHOT).

2. The size of the feature descriptions should cover the largest possible area:
FPFH = 33 → 3DSC = 1980.

3. In the same way the speed of the algorithms should cover a large area:
SI = 0.045ms → PFH = 64.5ms (see Chapter 8).

4. Half of the algorithms require a local reference frame (SHOT / SI / USC)
half do not (3DSC / FPFH / PFH).

Vocabulary Construction

To combine the local 3-D feature descriptions in a global description, i. e., in a
histogram, a finite vocabulary of quantized 3-D feature descriptions has to be
determined. These quantized 3-D feature descriptions are often referred to as
visual words. Each visual word is associated with a bin of the histogram, so
that each local 3-D feature description can be assigned to its nearest visual word,
represented by the corresponding bin.

This raises three issues, the first of which relates to the number of local 3-D
feature descriptions that should be used to extract the visual words, while the
second relates to the clustering algorithm and the distance measure, and the third

7.2. APPROACHES 75

relates to the number of visual words of a bag of features vocabulary, i. e., the
number of bins a histogram should have.

The answer to the first question is as follows: to show, that the determination
of the visual words is to a certain extent independent of the objects used, only
the first 10 (’apple’ to ’cellphone’) as well as the first 20 (’apple’ to ’foodjar’)
of the 51 categories in alphabetical order from the RGB-D Object Dataset (see
Section 7.3.1) will be used initially. To have a reference to compare to, the visual
words will also be determined on the basis of all object categories.

In relation to the second question, Section 4.3 provides a commonly used
combination: k-means clustering with an Euclidean distance. The initial centers
of the clusters are chosen at random from the point cloud by using a variant
proposed by Arthur and Vassilvitskii [5] in 2007, where they weigh positions of
points according to the squared distance to the closest 3-D point already cho-
sen. They show that their approach (named k-means++) leads to about 20%
better results and is up to 70% faster in comparison with the standard k-means
algorithm.

The third question can not be answered directly. The vocabulary should be
large enough to represent relevant changes, but not so large as to distinguish
between irrelevant variations caused by noise. The methods mentioned in Sec-
tion 4.3 use values of k that differ by orders of magnitude, i. e., k = 7 versus
k = 300. For this reason, the classification results for 7 different vocabulary and
histogram sizes will be determined in this work:

(7.1) k ∈ {10, 20, 50, 100, 200, 500, 1000}.

The best k will be used by the reinforcement learning framework.

Computation of Histograms

After the determination of the bag of features vocabulary, the computation of
histograms is straightforward. It can safely be assumed, that the distance measure
used to find the nearest visual word to each of the feature descriptions, should
be the same as used for the k-means clustering: the Euclidean distance.

For each point cloud all visual words corresponding to the feature descriptions
will be counted in bins of a so called frequency histogram.

76 CHAPTER 7. SURVEY ON METHODS

Training a Classifier

As already stated in Section 5, most of the mentioned classification approaches
use support vector machines as underlying technique. Rusu et al. [70, 65] state,
that support vector machines have already been used for a classification based
on frequency histograms of feature descriptions for color images with great suc-
cess. In the referenced work, Rusu et al. test support vector machines, k-nearest
neighbor searches and k-means clustering in different configurations against each
other. The algorithm used in context of their classification is the point feature
histogram.

The differences between the three mentioned methods are clearly visible.
While k-means reaches only classification rates of ≈ 74%, the results of k-nearest
neighbors are considerably better with classification rates up to ≈ 87%. But in
comparison to the results that were achieved using a support vector machine, the
results are rather weak, as can be seen in Table 7.2.

Table 7.2: This table shows an extract of the classification results from [70, Table 1].
The best results are achieved using a radial basis function (RBF).

Method Result
SVM Linear kernel 95.17%
SVM Polynomial kernel 94.39%
SVM Sigmoid kernel 86.15%
SVM RBF Gaussian kernel 94.55%
SVM RBF Laplacian kernel 95.18%
SVM RBF Sublinear kernel 95.26%

In the work proposed by Lai et al. [45], two variants of support vector ma-
chines, strictly speaking, an SVM with a linear kernel and another SVM with
a Gaussian radial basis function, and a random forest [7] are used. A random
forest is a classification method, which consists of several different, uncorrelated
decision trees. For a classification, each tree makes a decision and the class with
the most votes will make the final classification.

Lai et al. also compare the results depending on whether they use only local
3-D feature descriptions, color image based features or a combination of both.
Since only the classification rates of local 3-D feature descriptions are of interest
in the context of this work, only the relevant results are included in Table 7.3.

7.2. APPROACHES 77

Table 7.3: This table shows an extract of the classification results from [45, Figure 8].
The best results are achieved using a random forest. But the results of the support vector
machine using a Gaussian radial basis function are close to this value. Considering the
values shown in Table 7.2 the suspicion may arise, that a sublinear radial basis function
could have led to an even smaller difference.

Method Result
SVM Linear kernel 53.1%
SVM RBF Gaussian kernel 64.7%
Random forest 66.8%

The situation is similar in many other approaches. Johnson and Hebert [37],
Kong et al. [43], Madry et al. [51, 14], and Yi et al. [103] use an SVM with a
Gaussian radial basis function. Seib et al. [75] use an SVM without giving further
information. Himmelsbach et al. [32] also use an SVM without specifying the
kernel, but the given parameters indicate, that they use a radial basis function.

For this reason, an SVM with a Gaussian radial basis function will be used as a
binary classifier for each object class.

Summary

In brief, the determination of best parameter settings used for 3-D object classi-
fication can be summarized as follows:

• Keypoint detection:

– Keypoints determined with the intrinsic shape signatures keypoint al-
gorithm

– Keypoints based a sparse sampling

• Feature extraction:

– Spin images
– 3-D shape context
– Point feature histogram
– Fast point feature histogram
– Unique signature of histograms
– Unique shape context

78 CHAPTER 7. SURVEY ON METHODS

Keypoint

Detection
Point Cloud

Feature

Description

Bag of

Features

Vocabulary SVMs

Classifica-

tion

Environment

Class-Candidates

Figure 7.2: This illustration shows the basic classification pipeline as shown in Fig-
ure 7.1 embedded into the environment of the reinforcement learning model.

• Bag of features vocabulary:

– Sizes: 10, 20, 50, 100, 200, 500, and 1000
– Used object classes to extract the visual words:

’apple’ to ’cellphone’, ’apple’ to ’foodjar’, and all object classes

• Bag of features histogram

• Classification:

– Support vector machine
– Kernel: Gaussian radial basis function

7.2.2 Fusion with Reinforcement Learning

Once the main parameters of the basic pipeline are determined, the pipeline
will be successively fused with the reinforcement learning environment. To fuse
the basic classification pipeline with a reinforcement learning framework, the
pipeline is modified in a way, that a local 3-D feature description algorithms will
be selected by a reinforcement learning agent, while all other parameters of the
pipeline remain unchanged.

Initially, it is assumed that the environment of the proposed reinforcement
learning framework is only defined on the class candidates. Hence, the computa-
tion of the feature descriptions, their conversion into a bag of features histogram
and the classification are those components of the pipeline, which may lead to a
change of the class candidates and of the environment, respectively. The keypoint
detection is not taken into account, because the algorithm is given and fixed, and
is only carried out once per input cloud. This is shown in Figure 7.2.

The next step is to extend the reinforcement learning model with the elements
of the agent. The agent knows the current state of the environment, i. e., the

7.2. APPROACHES 79

Keypoint

Detection
Point Cloud

Feature

Description

Bag of

Features

Vocabulary SVMs

Classifica-

tion

Environment

Agent
State

Actions

Descriptor

Algorithms
Class-Candidates

?

a
ctio

n
Class-Candidates

Figure 7.3: Extending the reinforcement learning model: the agent.

class candidates left. In addition, the agent has a list of actions. These actions
correspond to local 3-D feature description algorithms the agent has not used at
the time.

Based on the current state the agent can select the next action, i. e., the local
3-D feature algorithm that will be applied next. This is shown in Figure 7.3. At
this point, the agent neither follows any policy or rule, nor learns anything, since
there is no reward.

Therefore, it has to be clarified in which situations (states) the agent receives
which amount of reward. For this purpose the states in which the reinforcement
model should terminate must be defined in advance. For some of these cases,
a special value is required, namely the sum that is calculated for each object
class with the prediction values which have been determined for an object by
the corresponding support vector machine while applying a sequence of local 3-D
feature description algorithms.

Let us assume that c is an object class which is included in the remaining set
of class candidates at step t: c ∈ Ct. Further it is assumed that S = (a1, . . . , at) is
a sequence of local 3-D feature description algorithms ai that have been applied
on an object o within these t steps. Finally, pc(o, a) is a function, that returns
the prediction value of the support vector machine for object class c when using
algorithm a. Then the sum is defined as.

(7.2)
t∑
i=1

pc(o, ai).

80 CHAPTER 7. SURVEY ON METHODS

This sum, which is hereinafter referred to as prediction sum, describes the aggre-
gated acceptance of an object by an object class over the application of several
local 3-D feature description algorithms.

With the help of this short definition the terminal states can now be described:

1. If the set of class candidates does not contain the corresponding object
class, a terminal state is reached and labeled as fail state.

2. If the computation time limit was exceeded two sub-cases can be distin-
guished. If the class candidate with the highest prediction sum

(a) corresponds to the correct object class, the state is counted as over-
time/match.

(b) does not correspond to the correct object class, the state is counted as
overtime/miss.

3. If the class candidates contains only a single object class, the state is counted
as an exact match.

4. Finally, if no algorithm is left, another two sub-cases can be distinguished.
If the class candidate with the highest prediction sum

(a) corresponds to the correct object class, the state is counted as no
actions/match.

(b) does not correspond to the correct object class, the state is counted as
no actions/miss.

If none of the above mentioned situations fits the current state, the reinforce-
ment learning model has not reached a terminal state and thus the agent can
select a new action. In the latter case, the selection of the value of the immediate
reward is simple, because, since the selection of an action should not be influ-
enced by external regulations, the reward is simply equal to zero. For all other
cases the rewards are differentiated shown in Table 7.4.

As it can be seen in Table 7.4, the rewards for the terminal states are divided
mainly into 4 groups, plus the reward for intermediate states of each episode. It
starts with a negative reward of −1.0 for fail states, i. e., the situation in which
it is impossible to get a correct result in any way. The neutral reward of 0.0
is used for intermediate states of an episode. Finally, three connected intervals

7.2. APPROACHES 81

Table 7.4: Summary of rewards of the reinforcement learning model. Here is C the set
of class candidates, nC the number of all object classes, t the computation time required
to get a result, and tmax the time limit.

case name reward note
1 fail state −1.0 the worst case
2(a) overtime/match 2.0− |C|/nC directly enables correct classification
2(b) overtime/miss 1.0− |C|/nC does not allow direct classification,

but contains correct class
3 exact match 3.0− t/tmax the best case
4(a) no actions/match 2.0− |C|/nC directly enables correct classification
4(b) no actions/miss 1.0− |C|/nC does not allow direct classification,

but contains correct class

Keypoint

Detection
Point Cloud

Feature

Description

Bag of

Features

Vocabulary SVMs

Classifica-

tion

Environment

Agent
State

Actions

Descriptor

Algorithms
Class-Candidates

!

Policy

Q-Table Update Q-Table

rew
a
rd

 -1
,[0

,3
[

n
ew

 sta
te

a
ctio

n

Class-Candidates

Figure 7.4: Extending the reinforcement learning model: reward and policy.

are used to describe the terminal states with more or less positive results. The
cases 2(b) and 4(b), where the set of class candidates contains the correct object
class, but where it is not possible to get a correct assignment, get rewards in an
interval of [0, 1[depending on the number of class candidates left. The cases 2(a)
and 4(a), where the set of class candidates contains the correct object class and
the class can be correctly assigned by the prediction sum lead to rewards in
an interval of [1, 2[, which also depends on the number of class candidates left.
Finally, the reward of an exact match is in an interval of [2, 3[and depends on
the computation time.

82 CHAPTER 7. SURVEY ON METHODS

Using these specifications, which are summarized in Table 7.4, the reinforce-
ment learning model can be extended and realized as shown in Figure 7.4. On
the one hand this involves an approximation of the Q-values, i. e., learning the
Q-table and on the other hand the ability to use a policy to select the next action.
To what extent the policy uses the Q-table, of course, depends on the policy.

7.2.3 Differentiation of the First State

On closer inspection, it turns out that the previously presented model is neither
adaptive nor uses the characteristics of the point cloud to influence the selection
of the local 3-D feature description algorithm. The latter is the case, because the
first state will always be the same, since the state is only given by the set of class
candidates and it consists always of all 51 objects classes.

To overcome this, the state is enhanced by additional properties. These properties
consist of characteristics of the point cloud. These will be:

1. The number of keypoints.
Note: one could also use the number of 3-D points of the point cloud. But
this value correlates roughly with the number of keypoints. And because
the number of keypoints has a direct impact on the computation time, the
number of keypoints plays a more important role.

2. The ratios between the two successive eigenvalues of the covariance matrix
of the point clouds, i. e., r1 = e1/e2 and r2 = e2/e3, where e1 ≤ e2 ≤ e3.
Note: this indicates, whether the point cloud has a rather uniformly, flat,
or elongated shape.

Since each of the aforementioned properties has a continuous range of values, the
ranges will be divided into different intervals.

1. The number of keypoints:
1st quartile → small number of keypoints → 1
2nd and 3rd quartile → medium number of keypoints → 2
4th quartile → large number of keypoints → 3

7.2. APPROACHES 83

Keypoint

Detection
Point Cloud

Feature

Description

Bag of

Features

Classifica-

tion

Environment

Agent
State

Actions

Descriptor

Algorithms
Class-Candidates

Cloud-Properties

Policy

Q-Table Update Q-Table

rew
a
rd

 -1
,[0

,3
[

n
ew

 sta
te

a
ctio

n

Class-Candidates

Cloud-Properties
Compute

Properties
Vocabulary SVMs

!

Figure 7.5: Extending the reinforcement learning model: point cloud properties.

2. The ratios between the two successive eigenvalues:
r1 ≤ 3.0 ∧ r2 ≤ 3.0 → in all dimensions rather uniformly → 1
r1 ≤ 3.0 ∧ r2 > 3.0 → rather uniformly in two dimensions, but flat → 2
r1 > 3.0 ∧ r2 ≤ 3.0 → rather elongated → 3
r1 > 3.0 ∧ r2 > 3.0 → elongated and flat → 4

Due to these different properties of a point cloud, the reinforcement learning
agent is enabled to perform different actions in the initial state. This is shown in
Figure 7.5 of the final reinforcement learning model.

7.2.4 Adaptive Learning

Furthermore, it must be clarified how the reinforcement learning model can re-
spond to changes of the environment, i. e., to new local 3-D feature description
algorithms.

This problem is directly related to a small restriction of the model:

The determination of immediate rewards is only possible when the object class
is known in advance. Thus, initially a classification phase following a training
phase with known objects can only use a max-Q policy. To be able to adapt
the Q-table if a new local 3-D feature descriptor is added to the classification
framework, the ε-greedy policy is adopted to ε-greedy episodes. This means that
rather than sprinkling random actions with a probability of ε into each episode,

84 CHAPTER 7. SURVEY ON METHODS

completely random episodes will be used with a probability of ε. During these
random episodes only known objects will be used, so that the object class is
known in advance.

7.3 Evaluation Methods

To ensure that the results of this thesis can be compared objectively with respect
to the multitude of different algorithms, some requirements and restrictions are
motivated hereafter.

7.3.1 Experimental Datasets

There are a lot of range image datasets available for different evaluation tasks.
Many of them contain complete models, e. g., meshes of 5 objects obtained by a
laser scanner [57]1, meshes distributed over 5 datasets obtained from 29 individual
objects and various synthetic scenes [93, 94]2, 20 meshes of fully synthetic objects
with scenes [63]3, or 35 CAD models in combination with real scenes containing
the objects corresponding to the models [3]4.

Another dataset is the Berkeley 3-D Object Dataset (B3DO) [35]5, which
contains depth images and RGB data of different scenes. Each scene contains
rectangular areas labeled with one of 50 objects that can be found in each of
these areas. However, the dataset does not contain an exact segmentation of the
objects.

Thus, the previously mentioned datasets consist either of complete models,
from which a variety of poses could be created, or of depth data, which is not
sufficiently segmented. Another dataset that contains LiDAR and stereo depth
data patches of 5 models as 3-D point clouds in various placements obtained by a
laser scanner and with a stereo vision setup [88]6, is a step in the right direction.
Nevertheless, there is still a problem that is related to all of the above mentioned
datasets: within the context of object classification the datasets should contain

1http://www.csse.uwa.edu.au/~ajmal/recognition.html – April 2015
2http://www.vision.deis.unibo.it/research/78-cvlab/80-shot – April 2015
3http://www.dsi.unive.it/~rodola/data.html – April 2015
4http://users.acin.tuwien.ac.at/aaldoma/datasets/ECCV.zip – April 2015
5http://kinectdata.com/ – April 2015
6http://rcvlab.ece.queensu.ca/~qridb/ – April 2015

7.3. EVALUATION METHODS 85

Figure 7.6: RGB-D Object Dataset [45] from the Faculty of Computer Science and
Engineering at the University of Washington. The dataset contains 300 objects in 51
categories provided as segmented point clouds and masked depth images.

Figure 7.7: Point clouds of Trimble 3D Warehouse [44] objects as part of the RGB-D
Scenes Dataset v.2. The dataset contains segmented objects in 9 categories placed in
different scenes to evaluate object recognition systems.

multiple objects of the same class, which is not the case for any of the datasets
so far.

Finally, only two dataset were found that met all the criteria for a simple evalu-
ation of classification tasks:

• The dataset should contain multiple labeled object classes,

• with multiple different objects within each object class

• and segmented patches of each object obtained from different locations,
such that the size and the position of the objects varies.

86 CHAPTER 7. SURVEY ON METHODS

Statistics
Entries 207621
Mean 5908
Std Dev 6910

3-D Points/Object
0 10000 20000 30000 40000 50000 60000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000 Statistics
Entries 207621
Mean 5908
Std Dev 6910

Statistics
Entries 207621
Mean 5908
Std Dev 6910

Figure 7.8: Distribution of point clouds of the RGB-D Object Dataset [45] according
to the number of point.

These datasets are the RGB-D Object Dataset [45]7 shown in Figure 7.6 and
the Trimble 3DWarehouse [44]8, shown in Figure 7.7. Both dataset come from the
Faculty of Computer Science and Engineering at the University of Washington.
Together they contain over 300 objects in more than 50 categories and all in all
more then 200000 distinct patches of different poses. Thus, the two datasets are
an ideal basis for the evaluation of the classification. Images of all 300 objects
that can be found in these two datasets are shown in Appendix B.3. A detailed
examination of the RGB-D Object Dataset is shown in Table 7.5.

Table 7.5: Properties of the RGB-D Object Dataset [45] from the Faculty of Computer
Science and Engineering at the University of Washington.

Property Value
Object classes 51
Distinct objects 300
Point clouds 207481
Mean points/cloud ≈ 5908.22
Median points/cloud 3296
Maximum points/cloud 59958
Mean point cloud resolution ≈ 0.001295

7http://rgbd-dataset.cs.washington.edu/dataset/rgbd-dataset/ – April 2015
8http://rgbd-dataset.cs.washington.edu/dataset/rgbd-scenes-v2/ – April 2015

7.3. EVALUATION METHODS 87

Statistics
Entries 207621
Mean 0.001295
Std Dev 05− 7.877e

Point Cloud Resolution/Object
0 0.0005 0.001 0.0015 0.002 0.0025

0

5000

10000

15000

20000

25000

30000

35000

40000 Statistics
Entries 207621
Mean 0.001295
Std Dev 05− 7.877e

Statistics
Entries 207621
Mean 0.001295
Std Dev 05− 7.877e

Figure 7.9: Distribution of point cloud resolutions of the RGB-D Object Dataset [45].

The distribution of sizes of all point clouds in this dataset is also visualized in
the histogram in Figure 7.8. It is clearly recognizable that the majority of point
clouds – exactly 140064 – lie in a range between 0 and 5000 points per point
cloud.

A corresponding distribution of point cloud resolutions is shown in Figure 7.9.
It can be seen that the densities of the point clouds vary only little in an interval
[0.0011, 0.0014].

7.3.2 Computation Times

The computation times of algorithms or parts of them will be determined at sev-
eral different points. Since the computation times heavily depend on the system
used, Table 7.6 gives a brief overview of the system used for all computations.

Table 7.6: System used for experiments.

Parameter Value
System Dell Precision WorkStation T3500
CPU Intel Xeon E5630 @2.53GHz
Memory 12GB DDR3 @1066MHz
GPU NVIDIA GeForce GTX 670
OS Debian 8.0 (Jessie) GNU/Linux 64bit

88 CHAPTER 7. SURVEY ON METHODS

A full overview of all hardware and software components, i. e., libraries, sys-
tem software, development environment, and compilers can be found in the Ap-
pendix A.

7.3.3 Time Limit

For all subsequent experiments, in which the time limit does matter, the value
for the time limit is set to 10 seconds. Table 7.7 anticipate the results of the
required computation times of different local 3-D feature description algorithms
shown in Chapter 8.

Table 7.7: Computation times of different algorithms. The second column is the average
computation time of a feature description per keypoint in millisecond. The third column
shows the average computation time for an object assuming an average number of 131
keypoints per object. These values anticipate results shown in Chapter 8.

Algorithm t(ms)/keypoint t(s)/object
3DSC 27.1 3.55
FPFH 6.69 0.88
PFH 64.5 8.45
SHOT 0.282 0.04
SI 0.0449 < 0.01
USC 9.95 1.30

The value of 10 seconds is chosen so that on the one hand it is usually unlikely,
that all algorithms can be combined within this time limit, and on the other hand
each algorithm can be applied individually without reaching the time limit.

7.3.4 Handling the Data

To be as efficient as possible, all classification results of known objects will be
precomputed. Since the dataset consists of 51 classes it is possible to encode a
classification result as bit pattern in a 64 bit long integer value. Furthermore,
this enables fast bitwise logical operations.

Therefore, the classification results for each combination of object, object
class and feature description are precomputed and stored in a long integer value.
Within this long integer each object class has a fixed assignment to a single bit.

7.3. EVALUATION METHODS 89

Additionally, the real computation times of the feature descriptors and prediction
times as well as the responses and the class labels of the classification will be
stored in a data structure. This enables a fast access to the classification results
with the help of a lookup table to accelerate the learning and classification phase
of the reinforcement learning environment.

90 CHAPTER 7. SURVEY ON METHODS

8 Baseline Method

The results of applying different parameters at different stages of the standard
classification pipeline will be discussed in this chapter. Just to keep the basic
structure of this pipeline in mind, it is shown in Figure 8.1 once again.

Keypoint

Detection
Point Cloud

Feature

Description

Bag of

Features

Vocabulary SVMs

Classifica-

tion

Environment

Figure 8.1: The structure of the baseline experiment to determine the classification
rates of each feature descriptor.

8.1 Preprocessing

The preparation of 3-D point clouds is an important step toward a successful
application of 3-D feature descriptors. Especially the point cloud resolution in
terms of an approximated mesh resolution is a significant value, which is required
by many of the subsequent algorithms. Therefore, the experiments start with a
cleanup of the raw data and with the determination of the point cloud resolution
to match a corresponding mesh resolution as good a possible.

8.1.1 Cleaning up Raw Data

The pipeline begins with a cleanup of the 3-D point clouds used as input for the
classification pipeline. The remaining data structure consists only of an unsorted
list of coordinates triples (x, y, z) ∈ R3.

91

92 CHAPTER 8. BASELINE METHOD

To avoid potential problems with redundancies in point clouds (e. g., the near-
est neighbor search will result in a point with the same coordinates as the refer-
ence point and thus with zero distance) it is important to remove redundant 3-D
points. Due to the limited accuracy of 32-bit floating point systems, the redun-
dancy is defined as follows: given a point cloud P ⊂ R3, two points p,p′ ∈ P
are redundant, if the values of the three coordinates are approximately equal by
a relative value of ε:

(8.1) a
ε≈ b⇔ |a− b| < max(a, b) · ε,

which leads to

(8.2) p ε≈ p′ ⇔ px
ε≈ p′x ∧ py

ε≈ p′y ∧ pz
ε≈ p′z.

The ε used in context of this work is the difference between 1.0 and the next
representable value: 0.000000119209.

Finally, all points of a point cloud will be sorted and compared with respect
to the x-, y- and z-coordinate to remove the redundant points.

8.1.2 Approximation of the Point Cloud Resolution

Typically, the determination of the point cloud resolution is a straightforward
task: compute the mean of the Euclidean distances between each point and its
nearest neighbor. However, this approach is in several aspects not necessarily the
best choice:

• Noisy data is not considered.
• Only the smallest distance of all direct neighbors is taken into account.

Especially the second point should, with respect to the sensors used to capture
3-D point cloud data, be considered more in detail. Regardless of whether the
capture device is a time-of-flight camera, a rotating LiDAR system, a stereo vision
system, a light section scanner, or a light coding system like the Microsoft Kinect,
it is always a grid-like image of the depth values generated. This means, that
any point – depending on the pixel connectivity one prefers – has 4 or 8 direct
neighbors. On the other hand already processed point clouds are often structured
as a triangle mesh. This leads to an average of 6 direct neighbors for each point.

Since most of the subsequently used algorithms use the mesh resolution as
a measure for different properties, it is necessary to approximate the mesh res-
olution from unstructured point cloud data. The approximation of the mesh

8.1. PREPROCESSING 93

resolution is done by an experiment. The datasets are obtained from The Stan-
ford 3-D Scanning Repository [78] and from the SHREC’13 - 3-D Shape Retrieval
Contest 2013 [76]. The objects from the Stanford repository were captured using
a Cyberware 3030 MS scanner (’Stanford Bunny’, ’Happy Buddha’, and ’Dragon’)
and the Stanford Large Statue Scanner (’Lucy’). With the exception of ’Lucy’
all Stanford objects have 4 different resolutions, each. The SHREC’13 dataset
consists of 10 numbered objects which were captured with the Microsoft Kinect
camera. More details on the The Stanford 3-D Scanning Repository and the
SHREC’13 - 3-D Shape Retrieval Contest 2013 can be found in Appendix B.1
and B.2.

The mesh resolutions for all objects of Stanford 3-D Scanning Repository are
shown in Table 8.1. They were calculated based on the Euclidean length of the
set of unique edges.

Table 8.1: This tables show the mean edge lengths (mesh resolutions) of all test objects
of the Stanford 3-D Scanning Repository.

object mesh
nr. resolution

Bu
nn

y

1 0.001471
2 0.003049
3 0.006283
4 0.012605

object mesh
nr. resolution

Bu
dd

ha

1 0.000345
2 0.000724
3 0.001515
4 0.003130

object mesh
nr. resolution

D
ra
go

n

1 0.000453
2 0.000989
3 0.002052
4 0.004228

The mesh resolution for Lucy is 0.487633. The mesh resolution values of all test
objects of the SHREC’13 - 3-D Shape Retrieval Contest 2013 can also be found
in Table 8.2.

Table 8.2: This tables show the mean edge lengths (mesh resolutions) of all test objects
of the of the SHREC’13 - 3-D Shape Retrieval Contest 2013.

object mesh
resolution

22 1.610645
29 1.598942
49 1.619552
56 1.628885

object mesh
resolution

57 1.623456
141 1.624918
144 1.597935

object mesh
resolution

146 1.714728
205 1.610277
210 1.632092

94 CHAPTER 8. BASELINE METHOD

In addition, the mean Euclidean distances between the n nearest neighbors
of m randomly selected 3-D points were calculated 20 times for each object,
with n ∈ [2, 10] and m ∈ [1, 100]. The differences of this mean values and the
previously calculated mesh resolution were filled into a separate histogram for
each value of n.

The histograms for different values of n, e. g., for values between 4 and 9
nearest neighbors of the point cloud from ’Happy Buddha’ shown in Figure 8.2
are illustrative for all results. It shows, that 7 nearest neighbors lead to the best
approximation of the mesh resolution of the corresponding triangle mesh.

Furthermore, it can be seen that the spread of approximated mean values at
a sample size of 50 randomly selected points gets smaller. Since in the following
experiments the local neighborhood of keypoint detection and feature description
algorithms will have a size of at least 6 times the mesh resolution, these changes
of < 10% of the mesh resolution (see the Table 8.3 for details) is small enough
that the approximated mesh resolution can be used as a “stable” value for a point
cloud resolution (pcr).

A complete overview is provided in Appendix C.1.

As already mentioned, Table 8.3 shows all results for a sample size of 50
random points. These values confirm once more, that most of the results with
the smallest difference between the mesh resolution and the approximated values
can be achieved using 7 nearest neighbors. For ’dragon1’ and ’210’ 8 nearest
neighbors provide the best results and for ’happy1’ 9 nearest neighbors are the
best.

8.1. PREPROCESSING 95

0

10

20

30

40

50

60

70

80

90

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

-310×0

10

20

30

40

50

60

70

80

90

100 4 NN
Entries 100000
Mean x -0.0001312
Mean y 49.58
RMS x 2.407e-05
RMS y 28.82

(a)

20

40

60

80

100

-310

10

20

30

40

50

60

70

80

90

100 5 NN
Entries 100000
Mean x -9.08e-05
Mean y 49.53
RMS x 2.466e-05
RMS y 28.85

0-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
×0

(b)

0

20

40

60

80

100

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
-310×

10

20

30

40

50

60

70

80

90

100 6 NN
Entries 100000
Mean x -5.22e-05
Mean y 49.53
RMS x 2.496e-05
RMS y 28.85

0

(c)

0

10

20

30

40

50

60

70

80

90

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
-310×0

10

20

30

40

50

60

70

80

90

100 7 NN
Entries 100000
Mean x -1.56e-05
Mean y 49.54
RMS x 2.514e-05
RMS y 28.84

(d)

0

10

20

30

40

50

60

70

80

90

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

-310×0

10

20

30

40

50

60

70

80

90

100
8 NN

Entries 100000
Mean x 1.924e-05
Mean y 49.56
RMS x 2.538e-05
RMS y 28.83

(e)

0

10

20

30

40

50

60

70

80

90

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

-310×0

10

20

30

40

50

60

70

80

90

100
9 NN

Entries 100000
Mean x 5.297e-05
Mean y 49.59
RMS x 2.561e-05
RMS y 28.82

(f)

Figure 8.2: The distribution of differences between the mean point distances and the
mesh resolution for ’Happy Buddha’ of resolution 2. The x-axis shows the difference
to the corresponding mesh resolution and the y-axis shows the number of randomly
selected points which have been used to calculate the mean point distance to the n
nearest neighbors.

96 CHAPTER 8. BASELINE METHOD

Table 8.3: This table shows the best 3 results for approximation the point cloud res-
olutions with a sample size of 50 randomly selected 3-D points. The n.n. column show
the number nearest neighbors used to calculate the point cloud resolution. The columns
app. pcr and mean diff. show the approximation results of the point cloud resolution
and the differences to the mesh resolution based on edge lengths. The column diff.(%)
is the mean difference divided by the mesh resolution. The highlighted rows show the
results with the smallest difference between the mesh resolution and the approximated
point cloud resolution.

n.n. app. pcr mean diff. mean error deviation diff.(%)
6 0.00143414 −0.00003648 ±0.00000057 0.00001813 −2.54
7 0.00149832 0.00002769 ±0.00000059 0.00001860 1.85

bu
nn

y1

8 0.00155601 0.00008539 ±0.00000061 0.00001934 5.49
6 0.00293929 −0.00010926 ±0.00000124 0.00003933 −3.72
7 0.00308892 0.00004036 ±0.00000118 0.00003743 1.31

bu
nn

y2

8 0.00322700 0.00017844 ±0.00000114 0.00003604 5.53
6 0.00601250 −0.00027031 ±0.00000243 0.00007673 −4.50
7 0.00631754 0.00003474 ±0.00000232 0.00007326 0.55

bu
nn

y3

8 0.00660285 0.00032004 ±0.00000226 0.00007155 4.85
6 0.01188754 −0.00071759 ±0.00000540 0.00017065 −6.04
7 0.01248901 −0.00011612 ±0.00000526 0.00016623 −0.93

bu
nn

y4

8 0.01307578 0.00047065 ±0.00000505 0.00015977 3.60
7 0.00042213 −0.00003129 ±0.00000057 0.00001813 −7.41
8 0.00044624 −0.00000719 ±0.00000059 0.00001864 −1.61

dr
ag
on

1

9 0.00046935 0.00001592 ±0.00000060 0.00001912 3.39
6 0.00092701 −0.00006225 ±0.00000048 0.00001525 −6.72
7 0.00097762 −0.00001164 ±0.00000048 0.00001513 −1.19

dr
ag
on

2

8 0.00102583 0.00003656 ±0.00000048 0.00001518 3.56
6 0.00194520 −0.00010637 ±0.00000082 0.00002589 −5.47
7 0.00204684 −0.00000473 ±0.00000078 0.00002476 −0.23

dr
ag
on

3

8 0.00214213 0.00009057 ±0.00000076 0.00002415 4.23
6 0.00401105 −0.00021716 ±0.00000167 0.00005278 −5.41
7 0.00421530 −0.00001291 ±0.00000160 0.00005074 −0.31

dr
ag
on

4

8 0.00440744 0.00017923 ±0.00000156 0.00004927 4.07
8 0.00033166 −0.00001351 ±0.00000062 0.00001955 −4.07
9 0.00034918 0.00000401 ±0.00000064 0.00002023 1.15

ha
pp

y1

10 0.00036598 0.00002080 ±0.00000066 0.00002091 5.68

8.1. PREPROCESSING 97

Table 8.3 – continued from previous page
n.n. app. pcr mean diff. mean error deviation diff.(%)

6 0.00067256 −0.00005146 ±0.00000052 0.00001650 −7.65
7 0.00070928 −0.00001473 ±0.00000054 0.00001698 −2.08

ha
pp

y2

8 0.00074425 0.00002023 ±0.00000055 0.00001752 2.72
6 0.00143529 −0.00007986 ±0.00000065 0.00002053 −5.56
7 0.00150868 −0.00000646 ±0.00000063 0.00002004 −0.43

ha
pp

y3

8 0.00157839 0.00006325 ±0.00000063 0.00001987 4.01
6 0.00296176 −0.00016873 ±0.00000124 0.00003915 −5.70
7 0.00310749 −0.00002299 ±0.00000122 0.00003844 −0.74

ha
pp

y4

8 0.00324530 0.00011482 ±0.00000120 0.00003781 3.54
6 0.45372069 −0.03391227 ±0.00040262 0.01270632 −7.47
7 0.47769997 −0.00993299 ±0.00039771 0.01255136 −2.08

lu
cy
1

8 0.50063982 0.01300686 ±0.00036343 0.01146380 2.60
6 1.49075900 −0.105988623 ±0.00097743 0.03090919 −8.04
7 1.57352661 −0.03711863 ±0.00090484 0.02861369 −2.3622

8 1.65140697 0.04076174 ±0.00085199 0.02694224 2.47
6 1.48519538 −0.105374654 ±0.00102160 0.03230577 −7.66
7 1.56539965 −0.03354228 ±0.00095677 0.03025567 −2.1429

8 1.64167482 0.04273289 ±0.00090659 0.02866880 2.60
6 1.51214879 −0.10740342 ±0.00106044 0.03353415 −7.10
7 1.59634297 −0.02320924 ±0.00101488 0.03209331 −1.4549

8 1.67625568 0.05670347 ±0.00098079 0.03101521 3.38
6 1.51268232 −0.105620260 ±0.00102263 0.03233830 −7.68
7 1.59552272 −0.03336221 ±0.00096106 0.03039137 −2.0956

8 1.67340803 0.04452311 ±0.00091293 0.02886928 2.66
6 1.50576873 −0.105768710 ±0.00099913 0.03159514 −7.82
7 1.58644845 −0.03700738 ±0.00094638 0.02992731 −2.3357

8 1.66332667 0.03987084 ±0.00090344 0.02856938 2.40
6 1.50570396 −0.105921381 ±0.00100312 0.03172154 −7.92
7 1.59172876 −0.03318901 ±0.00093044 0.02942320 −2.0914

1

8 1.67249761 0.04757984 ±0.00088021 0.02783460 2.84
6 1.48245410 −0.105548125 ±0.00105712 0.03342901 −7.79
7 1.56492910 −0.03300625 ±0.00100340 0.03173018 −2.1114

4

8 1.64288338 0.04494803 ±0.00096563 0.03053598 2.74

98 CHAPTER 8. BASELINE METHOD

Table 8.3 – continued from previous page
n.n. app. pcr mean diff. mean error deviation diff.(%)

6 1.59723832 −0.105748991 ±0.00117551 0.03717277 −7.36
7 1.68091940 −0.03380884 ±0.00112022 0.03542443 −2.0114

6

8 1.75864098 0.04391275 ±0.00106408 0.03364913 2.50
6 1.49864524 −0.105163184 ±0.00100471 0.03177172 −7.45
7 1.58350502 −0.02677207 ±0.00094614 0.02991970 −1.6920

5

8 1.66422949 0.05395240 ±0.00090713 0.02868590 3.24
7 1.59129154 −0.04080090 ±0.00104614 0.03308190 −2.56
8 1.66709094 0.03499849 ±0.00099471 0.03145546 2.1021

0

9 1.74407467 0.11198222 ±0.00096867 0.03063199 6.42

At this point, it can be summarized, that the mean of the distances to the 7
nearest neighbors has been found as a suitable value for the point cloud resolution.

8.2 Keypoint Detection

As mentioned in Chapter 7 two different sets of keypoints will be used in com-
parison: keypoints based on sparse sampling and keypoints based on the intrinsic
shape signature keypoint algorithm.

All relevant parameters for the intrinsic shape signature keypoint algorithm
have been compared in the evaluation of Salti et al.. Thus, the decision is straight-
forward: While the repeatability rate of ≈ 75% at a salient radius of 6 times the
point cloud resolution (pcr) lies slightly below the absolute maximum of ≈ 80%
at a salient radius of 10 ·pcr, the total number points decreased significantly from
≈ 180 at 6 · pcr to ≈ 140 at 10 · pcr. Consequently, a salient radius of 6 · pcr will
be used for this algorithm.

To get a sense of the number of keypoints extracted when using the sparse
sampling, the mentioned pipelines were examined for corresponding values. John-
son and Hebert [38] use 20% of all points as keypoints. Frome et al. [23] use a
fixed number of 300 points. The objects that have been examined by Frome et al.,
contain an average of ≈ 60000 points, what would correspond to an selection rate
of 0.5%. Drost et al. [17] select the samples with a distance of 0.05 times the
diameter of the point cloud. With respect to a unit sphere this would correspond
to a fixed number of ≈ 2900 points. Finally, Aldoma et al. [3] use two different

8.2. KEYPOINT DETECTION 99

metric scales of 0.5cm and 1.0cm for point clouds of dishes. This results to a
total number of ≈ 600/2400 points for a cup of coffee with a height of 10cm and
a diameter of 6cm, and to a total number of ≈ 875/3500 points for plate with
a diameter of 26cm. Both, Drost et al. and Aldoma et al., make no statements
about how many points the point clouds actually contain. Thus, an estimation
of the sparse sampling rate is not possible.

However, if the area covered by a keypoint is specified to have the same
size as the intrinsic shape context keypoint, i. e., a salient radius of 6 · pcr, the
corresponding circle would cover an area of ≈ 113 · pcr2. Moreover, if it can
be assumed that the areas covered by keypoints may not overlap, and if it can
further be assumed, that the 3-D points of the point cloud are evenly spaced, one
can approximate the number of keypoints, since the densest packing of circles in
the plane is the hexagonal lattice [81]. This would lead to a subset of keypoints
which is ≈ 1.25 of the original point cloud. But this is only a lower bound. If the
point clouds – as it can been expected – have irregular spacings and holes, then
the real number of keypoints is expected to be larger.

To summarize, two sets of keypoints will be computed and compared during the
baseline experiments:

• Keypoints determined with the intrinsic shape signatures keypoint algo-
rithm with a radius of 6 · pcr.
• Keypoints based a sparse sampling with a radius of 6 · pcr.

8.2.1 Number of Keypoints

It is primarily the number keypoints and the computation time that are of inter-
est. Figure 8.3 contains the distributions of keypoints for the keypoint detection
algorithm introduced with intrinsic shape signatures and sparse sampling.

As expected, the results of the sparse sampling look similar to the number
of 3-D point of all objects shown in Figure 7.8. With an average of ≈ 355 key-
points, the number of keypoints is more than two and a half times higher, then
the number of keypoints determined by the intrinsic shape signatures algorithm
with an average of ≈ 132 keypoints per point cloud. If it turns out that the
classification results using the keypoints from the intrinsic shape signatures al-
gorithm are similar or even better than those with the keypoints determined by
sparse sampling, the vastly reduced computation times of the feature descriptors

100 CHAPTER 8. BASELINE METHOD

Statistics
Entries 207481
Mean 355.2
Std Dev 380.7

keypoints/object
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

2000

4000

6000

8000

10000

12000

14000 Statistics
Entries 207481
Mean 355.2
Std Dev 380.7

sparse samplingsparse sampling

Statistics
Entries 207481
Mean 355.2
Std Dev 380.7

Statistics
Entries 207481
Mean 131.5
Std Dev 157.2

keypoints/object
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

5000

10000

15000

20000

25000

30000
Statistics

Entries 207481
Mean 131.5
Std Dev 157.2

intrinsic shape signaturesintrinsic shape signatures

Statistics
Entries 207481
Mean 131.5
Std Dev 157.2

Figure 8.3: The distribution of keypoints per object. The histogram on the left side
contains the number of keypoints for each of the 207481 objects determined by sparse
sampling with a radius of 6 · pcr. Accordingly, the histogram on the right side contains
the number of keypoints for each object determined by the keypoint detection algorithm
introduced in context with the intrinsic shape signatures algorithm with the same radius.

Statistics
Entries 207481
Mean 05− 5.248e
Std Dev 05− 6.72e

seconds

0 0.0002 0.0004 0.0006 0.0008 0.001
0

5000

10000

15000

20000

25000

30000
Statistics

Entries 207481
Mean 05− 5.248e
Std Dev 05− 6.72e

sparse samplingsparse sampling

Statistics
Entries 207481
Mean 05− 5.248e
Std Dev 05− 6.72e

Statistics
Entries 207481
Mean 0.03834
Std Dev 0.05279

seconds

0 0.1 0.2 0.3 0.4 0.5
0

5000

10000

15000

20000

25000

Statistics
Entries 207481
Mean 0.03834
Std Dev 0.05279

intrinsic shape signaturesintrinsic shape signatures

Statistics
Entries 207481
Mean 0.03834
Std Dev 0.05279

Figure 8.4: Computation times of a single keypoint. The histogram on the left shows
the computation times of a single keypoint using sparse sampling. The right histogram
shows the same using the intrinsic shape signature keypoint detection algorithm. Whilst
at first glance the two histograms look very similar, the computation times using sparse
sampling are more than 500 times smaller than those by the intrinsic shape signature.

and the bag of features histograms are worth the investment in a “real” keypoint
detection algorithm.

8.2.2 Computation Time

When looking at the computation times for a single keypoint using the two key-
point detection approaches as shown in Figure 8.4, it quickly becomes clear that
sparse sampling is magnitudes faster, i. e., more than 500 times than the intrin-
sic shape signature keypoint detection algorithm. While the mean computation

8.2. KEYPOINT DETECTION 101

Statistics
Entries 207481
Mean 0.007462
Std Dev 0.001893

seconds

0 0.005 0.01 0.015 0.02
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000 Statistics
Entries 207481
Mean 0.007462
Std Dev 0.001893

sparse samplingsparse sampling

Statistics
Entries 207481
Mean 0.007462
Std Dev 0.001893

Statistics
Entries 207481
Mean 1.591
Std Dev 0.5018

seconds

0 1 2 3 4 5
0

2000

4000

6000

8000

10000

12000 Statistics
Entries 207481
Mean 1.591
Std Dev 0.5018

intrinsic shape signaturesintrinsic shape signatures

Statistics
Entries 207481
Mean 1.591
Std Dev 0.5018

Figure 8.5: Computation times for the determination of keypoints per object. The
left histogram shows the results for sparse sampling. The right histogram shows the
corresponding values for the intrinsic shape signature keypoint detection algorithm.

time for sparse sampling is ≈ 0.05ms, the computation of a keypoint using the
intrinsic shape signature approach takes ≈ 38ms for a single keypoint.

Considering the mean number of keypoints per object, this would lead to
mean computation times of ≈ 18ms and ≈ 5s respectively. But the results show,
that the mean computation times per object have values of about ≈ 7.5ms for
sparse sampling and of ≈ 1.6s for the intrinsic shape signature algorithm as
shown in Figure 8.5. This significant difference suggests that there is no linear
relation between the computation time and the size of an object, i. e., the number
of keypoints.

8.2.3 Interim conclusion on Keypoints

The number of keypoints per object appears not to significantly affect the overall
computation time for objects with a size similar to those used in this experiment.
This relation is shown in Figure 8.6. It cannot be expected, however, that this
holds for objects of any size. But for the objects of the RGB-D object dataset
from the University of Washington the overall computation time seems to be
dominated by a mostly constant overhead, e. g., method calls, instantiation of
objects, or routines for memory allocation.

Therefore, at this stage of the experiments it can be stated, that the sparse
sampling is magnitudes faster than the intrinsic shape signature keypoint de-
tection algorithm. For the used objects the computation time for both can be
assumed as nearly fixed: ≈ 7.5ms for sparse sampling and ≈ 1.6s for the in-

102 CHAPTER 8. BASELINE METHOD

points
10 210 310

se
co

n
d
s

5−10

4−10

3−10

0

500

1000

1500

2000

2500

3000

3500

4000

sparse samplingsparse sampling

points
210 310

se
co

n
d
s

3−10

2−10

1−10

0

200

400

600

800

1000

1200

1400

1600

1800

2000

intrinsic shape signaturesintrinsic shape signatures

Figure 8.6: These two histograms show the computation time for a single keypoint in
relation to the number of keypoint determined for the object. The histogram on the left
shows the results for sparse sampling while the histogram on the right shows the same
for the intrinsic shape signature keypoint detection algorithm. As can clearly be seen, a
tenfold increase of the number of keypoints per object approximately leads to a tenth of
the computation time for a single keypoint.

trinsic shape signature algorithm. It remains to be seen how much the keypoint
detection contributes to the total computation time of the classification pipeline.

8.3 Local 3-D Feature Descriptors

The local 3-D feature descriptors used within this thesis require some parameters.
Their values are taken from the publications of the respective algorithms where
possible and subsequently discussed.

8.3.1 The algorithms

Spin Images

There are essentially three parameters to configure the spin image algorithm: the
height and the width of the spin image, i. e., the number of bins, and the radius
used for the determination of the normal vector. Since the original algorithm was
designed for the use of meshes, the normal vectors are determined using the direct
neighbor vertexes. The size of the spin image histograms used in the experiments

8.3. LOCAL 3-D FEATURE DESCRIPTORS 103

(a) (b)

Figure 8.7: Two possible spin image placements, one with an even number of 20 × 10
bins (a) and one with an uneven number of 17× 9 bins (b).

described in [38] was 20 × 10. In a later work [37] Johnson and Hebert propose
a spin image with a size of 15 × 15, while Aldoma et al. [2] preferred a size of
17×9. Johnson and Hebert place the keypoint vertically centered and horizontally
aligned on the outer edge of the histogram, Aldoma et al. place the keypoint into
the center of the bin in the middle of the first column (see Figure 8.7). The latter
makes sense when using an uneven number of bins in both directions and a bin
size identical with the point cloud resolution.

Since there are no further details regarding the determination of the normal
vectors, they will be calculated based on the same points that will be used to
compute the spin image. Accordingly, the radius for the determination of the
normal vectors is 9 · pcr. The parameters for the computation of the spin images
are finally summarized in Table 8.4.

Table 8.4: Summary of the spin image parameters.

Parameter Value
Number of bins 17× 9 = 153
Radius to approximate the normal vector 9 · pcr

3-D Shape Context

Frome et al. specify the values of all six relevant parameters within their pub-
lication. These are the area used to estimate the normal vector, the radius of
the spherical region used to determine the description, and four other parameter,

104 CHAPTER 8. BASELINE METHOD

that describe the segmentation of the sphere. However, all distance measures
were specified in meters.

The used point clouds have an average point distance of 6cm. The normal
vectors were determined in a cubic area with a diameter of 55cm, and 105cm
for objects with larger noise. This is roughly equivalent to cubes with sides of
9.1 · pcr and 17.5 · pcr, respectively. Spheres with the same volume would have
radii of 5.6 ·pcr and 10.8 ·pcr. According to their evaluation, the recognition rates
are nearly identical with normal vectors based on these different radii. Therefore,
the smaller radius seems to be sufficient and will be used in this work.

The support radius of the description is relatively large: 2.5m, which corre-
sponds to a radius of ≈ 41 · pcr. The description, i. e., the spherical histogram is
divided into 15 radial divisions, 12 azimuth divisions, and 11 elevation divisions.
The innermost sphere with a radius of 10cm (≈ 1.6 · pcr) will not be considered.

Finally, Frome et al. require a radius to estimate the local point density. This
radius is set to 20cm, which is ≈ 3.3·pcr. All parameters of the 3-D shape context
are finally summarized in Table 8.5.

Table 8.5: Summary of the 3-D shape context parameters.

Parameter Value
Radial divisions 15
Azimuth divisions 12
Elevation divisions 11
Number of bins 15× 12× 11 = 1980
Outer radius of the spherical histogram 40 · pcr
Inner radius of the spherical histogram 2 · pcr
Radius to approximate the normal vector 6 · pcr
Density radius 3 · pcr

Point Feature histogram

Rusu et al. also propose and compare the size of the k-neighborhood, on which the
point feature histograms are calculated, in meters and centimeters with respect
to two given scenes. The tested radii lie within an interval of [2.0cm, 3.5cm] for
an indoor kitchen scene and within [50cm, 155cm] for an outdoor urban scene.

8.3. LOCAL 3-D FEATURE DESCRIPTORS 105

Rusu et al. assess the situation as follows:

“[. . .] As the point clouds are obtained directly from laser sensors by
scanning the environment, the scale is known so the radii of a sphere
can be chosen intuitively.[. . .]” (Rusu et al. [66]).

In addition, Rusu et al. do not provide any specific information on the deter-
mination of the normal vectors. Alexandre [4] gives an indication of the size of
the area used for the approximation of the normal vectors: 1cm. Since he uses
the same dataset as it will be used in this work, the value corresponds to a radius
of ≈ 7.7 · pcr (the average point cloud resolution over all patches is 0.001295 –
see Section 7.3.1).

Finally, there is the remaining question concerning the radius that will be used
for calculating the feature descriptions. As mentioned by Rusu et al., the size of
the description intuitively depends on the size of the object. The information
given by Alexandre also does not help. He writes:

“[. . .] the values used were the ones set by default in PCL [. . .]”
(Alexandre [4]).

The point cloud library (PCL) is a large scale, open project for 3-D point cloud
processing [68]. Within the PCL the default value for the support radius of
the point feature histogram is set to zero. For this reason it must be specified
manually in each case. The only reference where a value is given, is a tutorial for
the point feature histogram1: 0.05, which is a radius of 5cm or ≈ 38.6 · pcr with
respect to the test data used.

Since the test data mainly includes household objects and with an approxi-
mate diameter between 10cm and 30cm, it is safe to assume that the seemingly
small features have a maximum diameter of 5cm (radius ≈ 19.3 · pcr). This
corresponds well to the radii that are used by Rusu et al. for the kitchen scene.

As described in Section 4.1.5 Rusu et al. prefer 5 subdivisions for each of the
3 values. Thus, the histogram has a fixed size of 53 = 125 values. All parameters
of the point feature histogram are summarized in Table 8.6.

1http://pointclouds.org/documentation/tutorials/pfh_estimation.php – May 2015

106 CHAPTER 8. BASELINE METHOD

Table 8.6: Summary of the point feature histogram parameters.

Parameter Value
Number of bins used for this histogram 53 = 125
Radius of the spherical support area 20 · pcr
Radius to approximate the normal vector 8 · pcr

Fast point feature histogram

As the fast point feature histogram is based on the point feature histogram and
follows the same mechanism, the radius of the spherical support area and the
radius to approximate the normal vector will be the same as for the point feature
histogram. However, the subdivisions of the values from the Darboux frame are
structured differently: 11 bins per value concatenated to a description with 33
values.

All parameters of the fast point feature histogram are summarized in Table 8.7.

Table 8.7: Summary of the fast point feature histogram parameters.

Parameter Value
Number of bins used for this histogram 11 · 3 = 33
Radius of the spherical support area 20 · pcr
Radius to approximate the normal vector 8 · pcr

Unique signatures of histograms

Tombari et al. create histograms for a spherical environment, which they divided
into several segments. They recommend histograms with 11 bins and a segmenta-
tion of the spherical environment with 8 azimuth divisions, 2 elevation divisions,
and 2 radial divisions. This leads to 32 histograms and at least to a description
with 352 values.

It is particularly pleasing that Tombari et al. specify an experimentally op-
timized size of the support area in point cloud resolution: 15 · pcr. Thus, all
parameters given in their work can be found in Table 8.8.

8.3. LOCAL 3-D FEATURE DESCRIPTORS 107

Table 8.8: Summary of the unique signatures of histograms parameters.

Parameter Value
Number of bins used for each histogram 11
Radial divisions 2
Azimuth divisions 8
Elevation divisions 2
Size of the description 11× 2× 8× 2 = 352
Radius of the spherical support area and to
approximate the normal vector

15 · pcr

Unique shape context

For the descriptor dubbed unique shape context, which is also proposed by
Tombari et al., and which is an extension to the 3-D shape context, all param-
eters are given in detail. The parameters, which slightly differ in most of the
parameters used for the 3-D shape context, are summarized Table 8.9.

At this point it should be noted, that Tombari et al. evaluate their descrip-
tor in direct comparison to the 3-D shape context. But they do not use the
parameters given by Frome et al.

Table 8.9: Summary of the unique shape context parameters.

Parameter Value
Radial divisions 10
Azimuth divisions 14
Elevation divisions 14
Number of bins 10× 14× 14 = 1960
Outer radius of the spherical histogram 20 · pcr
Inner radius of the spherical histogram 2 · pcr
Radius to approximate the normal vector 20 · pcr
Density radius 2 · pcr

Now all local 3-D feature description algorithms used can be summarized as
shown in Table 8.10.

108 CHAPTER 8. BASELINE METHOD

Table 8.10: 3-D feature description algorithms used within the experiments.

Algorithm Size
3-D shape context (3DSC) 1980
Fast point feature histogram (FPFH) 33
Point feature histogram (PFH) 125
Signatures of histograms of orientation (SHOT) 352
Spin images (SI) 153
Unique shape context (USC) 1960

8.3.2 Computation Times

In context of this work the computation times of the different local 3-D feature
description algorithms are of special interest, since these values will be part of
the decision process of the reinforcement learning framework.

The histograms shown in Figure 8.8 depict the distribution of computation
times required by each of the algorithms to determine a single local 3-D feature
description. The mean computation times differ in orders of magnitude.

Table 8.11: Computation times of 3-D feature description algorithms used within the
experiments in ascending order. The last column shows the factor with respect to the
fastest algorithm, the spin images.

Algorithm Time Factor
SI ≈ 0.045ms 1
SHOT ≈ 0.28ms ≈ 6
FPFH ≈ 6.69ms ≈ 150
USC ≈ 9.95ms ≈ 220
3DSC ≈ 27.14ms ≈ 600
PFH ≈ 64.51ms ≈ 1430

Table 8.11 shows the mean computation times and a factor that enables a
quick comparison of the computation times with respect to the fastest algorithm,
the spin images. So it must be expected that the reinforcement learning agent will
start the classification with SI or SHOT if those two algorithms lead to similar
or even better classification results than the other algorithms.

8.3. LOCAL 3-D FEATURE DESCRIPTORS 109

Statistics
Entries 207481
Mean 27.14
Std Dev 13.38

ms
0 20 40 60 80

0

1000

2000

3000

4000

5000

Statistics
Entries 207481
Mean 27.14
Std Dev 13.38

3D shape context3D shape context

Statistics
Entries 207481
Mean 27.14
Std Dev 13.38

(a)

Statistics
Entries 207481
Mean 6.69
Std Dev 2.696

ms
0 10 20

0

2000

4000

6000

8000

10000
Statistics

Entries 207481
Mean 6.69
Std Dev 2.696

fast point feature histogramfast point feature histogram

Statistics
Entries 207481
Mean 6.69
Std Dev 2.696

(b)

Statistics
Entries 207481
Mean 64.51
Std Dev 32.7

ms
0 100 200 300

0

2000

4000

6000

8000

10000 Statistics
Entries 207481
Mean 64.51
Std Dev 32.7

point feature histogrampoint feature histogram

Statistics
Entries 207481
Mean 64.51
Std Dev 32.7

(c)

Statistics
Entries 207481
Mean 0.2816
Std Dev 0.0642

ms
0 0.2 0.4 0.6 0.8

0

2000

4000

6000

8000

10000

12000

14000
Statistics

Entries 207481
Mean 0.2816
Std Dev 0.0642

signature of histograms of orientationsignature of histograms of orientation

Statistics
Entries 207481
Mean 0.2816
Std Dev 0.0642

(d)

Statistics
Entries 207481
Mean 0.0449
Std Dev 0.008221

ms
0 0.1 0.2 0.3

0

10000

20000

30000

40000

50000

Statistics
Entries 207481
Mean 0.0449
Std Dev 0.008221

spin imagesspin images

Statistics
Entries 207481
Mean 0.0449
Std Dev 0.008221

(e)

Statistics
Entries 207481
Mean 9.946
Std Dev 4.27

ms
0 10 20 30

0

1000

2000

3000

4000

5000

6000

7000

8000 Statistics
Entries 207481
Mean 9.946
Std Dev 4.27

unique shape contextunique shape context

Statistics
Entries 207481
Mean 9.946
Std Dev 4.27

(f)

Figure 8.8: These six histograms show the computation times for a single feature
description using (a) 3DSC, (b) FPFH, (c) PFH, (d) SHOT, (e) SI, and (f) USC. The
computation times are measured in milliseconds. The difference between the smallest (SI
with ≈ 0.045ms) and the largest (PFH with ≈ 64.5ms) computation time is tremendous
(a factor of > 1400).

It should be noted that the results could be expected regarding some aspects.
First, the PFH is an algorithm where many of the values will be redundantly
computed multiple times. In addition the search of nearest neighbors in the local
neighborhood, which is used intensively, is despite using data structures like a

110 CHAPTER 8. BASELINE METHOD

k-d-tree a processing intensive task. It is therefore hardly surprising that this
algorithm is so slow. The simplified variant of PFH, the FPFH, where most of
the redundancy is removed, is therefore 10 times faster.

In case of 3DSC and USC the situation differs, since the algorithms share
a simple structure. The reason for the large computation times is undoubtedly
based on the large number of dimensions and the spherical structure of the his-
togram. The latter requires a computational expensive calculation of angles.
Without a doubt this can be done with a lookup table having about 2000 entries.

8.3.3 Interim conclusion on Local 3-D Feature Descriptors

Therefore, the following conclusion can be drawn regarding the used feature de-
scription algorithms: with regard to the significant differences in computation
times, it will be interesting to see if and how the slow algorithms might be use-
ful to identify a final object class from a probably already reduced set of class
candidates.

8.4 Bag of Features

8.4.1 Vocabulary Construction

Concerning the baseline experiments, the vocabulary construction has no val-
ues or parameters which require an analysis. As described in Section 7.2.1 the
computation of the vocabulary is done by a k-means++ clustering using the Eu-
clidean distance. For each of the local 3-D feature description algorithms a set of
vocabularies defined by all combinations of the following parameters is computed:

• 7 different vocabulary sizes (10, 20, 50, 100, 200, 500, and 1000)

• 2 different keypoint sets (sparse sampling / intrinsic shape signatures)

• 3 different subsets of the available object classes (’apple’-’cellphone’, ’apple’-
’foodjar’, and ’all’)

This leads to overall 6× 7× 2× 3 = 252 vocabularies.

8.4. BAG OF FEATURES 111

size

10 20 50 100 200 500 1000
0

20

40

60

80

100

120

140

3D shape context3D shape context

size

10 20 50 100 200 500 1000
0

20

40

60

80

100

120

140

fast point feature histogramfast point feature histogram

size

10 20 50 100 200 500 1000
0

20

40

60

80

100

120

140

point feature histogrampoint feature histogram

size

10 20 50 100 200 500 1000
0

20

40

60

80

100

120

140

signature of histograms of orientationsignature of histograms of orientation

size

10 20 50 100 200 500 1000
0

20

40

60

80

100

120

140

spin imagesspin images

size

10 20 50 100 200 500 1000
0

20

40

60

80

100

120

140

unique shape contextunique shape context

 keypoints based on
 ISS sparse sampling

10 object classes

20 object classes

all object classes

Figure 8.9: These graphs show the computation times for bag of features vocabularies
in hours. The cyan colored bars correspond to feature vectors determined at keypoints
based on the intrinsic shape signature algorithm. The blue bars correspond to feature
vectors determined at keypoints based on sparse sampling.

Although the determination of the vocabularies is a one-time task and there-
fore has no relevance during classification, the computation times have been an-
alyzed.

As Figure 8.9 illustrates the computation time rises with the number of object
classes (10, 20, and 51) and with the mean number of features per object (≈ 130

112 CHAPTER 8. BASELINE METHOD

with ISS vs. ≈ 350 with sparse sampling) used during clustering. In other words,
the computation time is approximately proportional to the number of features.

Surprisingly, with the exception of the 3-D shape context there is not much
difference between the computation times of the different feature description algo-
rithms. On the contrary, the computation time of SHOT with its 352 dimensions
is less than the computation time of FPFH with only 33 dimensions. There might
potentially be a correlation between the distinctiveness or descriptiveness of the
feature descriptor and the computation time.

8.4.2 Computation of Histograms

The computation of histograms is a straight forward task without any intermedi-
ate results. For each point cloud, each keypoint algorithm, each local 3-D feature
description algorithm, and each histogram size all visual words corresponding to
the feature descriptions will be counted in bins.

This leads to 252 different histograms for each of the 207481 objects. This is
an enormous number of 52285212 histograms that are hereinafter used to train
the support vector machines.

8.5 Training and Classification Results

In this section the training and classification results will be analyzed. Within this
context several aspects, i. e., the determination of optimal training parameters,
the computation time of the training, the prediction time of a single classification,
and the classification results will be discussed.

8.5.1 Optimal Training Parameters – a Single Case

As described in Section 7.2.1 a Gaussian radial basis function is used as the kernel
function. The kernel function

(8.3) K(xi, xj) = e−γ‖xi−xj‖2
, γ > 0

has a parameter γ which has to be determined depending on the data which
is used to train the support vector machine. Additionally, the support vector
machine requires a parameter C > 0, which is the penalty parameter of the error

8.5. TRAINING AND CLASSIFICATION RESULTS 113

C
1 5 25 125

γ

0.0001

0.0008

0.0064

0.0512

Figure 8.10: This figure shows the axes and labels of all histograms with parameters of
the training phase of the support vector machines. Parameter C is the penalty parameter
for misclassified samples and γ is the only parameter of the radial basis function.

term, i. e., a multiplier of the distance of misclassified samples to their region.
This parameter must also be determined in combination with γ.

The following pages present a lot of small histograms with the size of 4 × 4
bins. All these histograms have the same axes and labels. To save space the axes
and labels are not included for each histogram.

Instead, the labels and axes of all of these histograms are shown only once in
Figure 8.10. The values of C increase from the left to the right, while the values
of γ increase from the top to the bottom. The value ranges have been chosen due
to preliminary experiments and cover the required ranges for all local 3-D feature
descriptors. To reduce the computation time the ranges have been divided into
4 values using a logarithmic scale. This leads to a logarithmic step size of 5 for
C and a logarithmic step size of 8 for γ.

In addition it makes no sense to discuss all details of the results separately.
Accordingly, only details of some selected parameter combinations will be shown
to illustrate the similarities and differences which have been caused by each of
the parameters. The full set of results can be found in Appendix C.2.

All subsequent histograms match the following subset of test-parameters, until
any of these parameters are explicitly changed:

• keypoint: ISS
• features: FPFH
• dictionary based on: 10 classes (’apple’ to ’cellphone’)

Figure 8.11 shows the classification results of a small subset of all pipeline
parameters. The columns (a)-(g) are differentiated with respect to the 7 different
sizes of the bag of features vocabularies (10, 20, 50, 100, 200, 500, and 1000).
The histograms show the mean of the classification rates over all object classes.
They illustrate, that the size of the bag of features vocabulary has only a minor

114 CHAPTER 8. BASELINE METHOD

(a) (b) (c) (d) (e) (f) (g)

80% 90% 95% 100%≤

Figure 8.11: These figures show the mean classification rate for the local 3-D feature
description algorithm FPFH with different values of the SVM parameters C and γ. The
bag of features histograms used for training and classification were determined with ISS
as the keypoint detection algorithm and with a vocabulary based on the first 10 object
classes (’apple’ to ’cellphone’). Each column of this figure corresponds to a bag of features
vocabulary with a different number of entries: (a)-(g) = 10, 20, 50, 100, 200, 500, 1000.

affect on the classification rates for this parameter configuration. However, it is
conspicuous, that there is a large difference of the classification rate when γ rises
to a value of 0.0512. Then all classification rates drop to values of approximately
80% and below. To gain a better sense of the values, Table 8.12 shows the mean
classification rates of Figure 8.12 (d), i. e., of a bag of features vocabulary with
100 entries.

Table 8.12: The mean classification rates of Figure 8.12 (d).

C
1 5 25 125

γ

0.0001 93.10 94.46 95.33 95.90
0.0008 95.46 96.18 96.57 96.65
0.0064 94.33 94.73 94.59 94.19
0.0512 79.35 79.88 79.77 79.72

It turns out that many parameter configurations reach the classification rates
of 95% ± 1% on average. It therefore does not make sense to select a support
vector machine only on these values.

If one looks at the total number of object classes where a specific parameter
combination leads to the best classification results, as shown in Figure 8.12, some
parameter combinations will become more apparent. Table 8.13 shows the values
of Figure 8.12 (d).

8.5. TRAINING AND CLASSIFICATION RESULTS 115

(a) (b) (c) (d) (e) (f) (g)

0 5 10 20 51

Figure 8.12: These figures show the number of object classes where a parameter pair
(C, γ) lead to the best classification rate. The histograms are computed on the same
classification pipeline parameters used for Figure 8.11. Analogously, each column of
corresponds to a bag of features vocabulary with a different number of entries: (a) 10,
(b) 20, (c) 50, (d) 100, (e) 200, (f) 500, (g) 1000.

Table 8.13: The number of best classification rates of Figure 8.12 (d).

C
1 5 25 125

γ

0.0001 0 1 1 3
0.0008 2 11 9 9
0.0064 0 25 6 2
0.0512 0 1 0 0

Here it becomes clear, that one would use the support vector machines with
γ = 0.0064 and C = 5 to reach the highest recognition rates for a large portion
of the object classes.

However, there is another aspect that should be envisaged in the context of
this work: the computation time. On the one hand there is a prediction time,
i. e., the computation time to achieve a decision if an input vector is within an
object class or not, but there is also a computation time for the training phase
of the support vector machine. Since the latter does not have an impact on the
running classification process, the training times will only be shown to get a feel
for how long a training will take, but not discussed in detail.

Figure 8.13 shows the training times of the subset of pipeline parameters used
in this section. Significant differences with regard to the size of a bag of features
vocabulary become apparent for the first time in the histograms shown in this
figure. The larger the bag of features vocabularies, the higher the training times
are. Apart from this, higher values of γ lead to significant longer training times.
The training of the support vector machines of (g) with C = 125 and γ = 0.0512,

116 CHAPTER 8. BASELINE METHOD

(a) (b) (c) (d) (e) (f) (g)

0s 5s 10s 30s ≥120s

Figure 8.13: These figures show the training times for different parameter pairs (C, γ).
The histograms were determined under the same conditions as the figures shown pre-
viously, i. e., keypoints with ISS, features with FPF, and a bag of features vocabulary
extracted from features of the first 10 object classes. Each column of corresponds to a
bag of features vocabulary with a different number of entries: (a) 10, (b) 20, (c) 50, (d)
100, (e) 200, (f) 500, (g) 1000.

(a) (b) (c) (d) (e) (f) (g)

0s 1s 2.5s 5s ≥20s10s
(
≈
2
0
m

s *
)

(
≈
5
0
m

s *
)

(
≈
1
0
0
m

s *
)

(
≈
2
0
0
m

s *
)

Figure 8.14: These figures show the prediction times for different parameter pairs
(C, γ). The histograms were determined under the same conditions as the figures shown
previously, i. e., keypoints with ISS, features with FPF, and a bag of features vocabulary
extracted from features of the first 10 object classes. Each column corresponds to a bag
of features vocabulary with a different number of entries: (a) 10, (b) 20, (c) 50, (d)
100, (e) 200, (f) 500, (g) 1000. It is important to note that these values correspond to
a prediction of ≈ 6000 input vectors: ≈ 2000 positive and ≈ 4000 negative examples.
The values in parentheses with the superscripted asterisk correspond to a rough estimate
for the required prediction time if for each of the 51 object classes a single prediction is
performed.

for example, required ≈ 336 seconds on average and 859 seconds for the maximum
case.

As already mentioned, the prediction times are of greater importance in con-
text of this work. Thus, Figure 8.14 shows the prediction times for the pipeline
setting as they have already been mentioned multiple times before. It is impor-

8.5. TRAINING AND CLASSIFICATION RESULTS 117

tant to note that these values correspond to a prediction of ≈ 6000 input vectors:
≈ 2000 positive and ≈ 4000 negative examples.

Later in this work, in context of the reinforcement learning framework, not
a single support vector machine with a large set of input vectors but multiple
support vector machines with exactly one input vector are invoked. Therefore,
it will be presupposed that the prediction time of all support vector machines
must not have a notable influence on the computation time at all. Thus, the
computation time for a prediction of a single object class is limited to 2ms. In
case of the data used in this work, this will limit the prediction time of all 51
object classes to ≈ 100ms.

Based on this limitation, the prediction times of Figure 8.14 can be interpreted
as follows: when assuming an overhead of at least 50% for initialization and
function calls, a single prediction should take at most 1ms. Projected to the
number of vectors used in Figure 8.14 this limitation is equivalent to ≈ 5s. The
values in parentheses with the superscripted asterisk in Figure 8.14 correspond
to this rough estimate of the required prediction times.

Since especially those support vector machines are of interest, that are, besides
being good classifiers, particularly fast, those support vector machines with an
input space of 200 and more dimensions (Figure 8.14 (e)-(g)) can be excluded in
this particular case of classification pipeline parameters.

8.5.2 Optimal Training Parameters – Comparison

All of the above mentioned histograms and values have been taken from a small
subset of all (254) parameter combinations of the classification pipeline. How
much do parameters influence the classification results at all?

The first parameter which is modified, is the number of object classes which
have been used to determine the bag of features vocabularies. Figure 8.15 shows
the results in comparison to Figure 8.11, which is equivalent to the first row of
Figure 8.15 where the vocabulary is based on the first 10 object classes. The sec-
ond and the third row of this figure show the same histograms with vocabularies
based on the first 20 and all object classes, respectively. It can clearly be seen
that there is absolutely no difference according to the recognition rates. Besides,

118 CHAPTER 8. BASELINE METHOD

80% 90% 95% 100%≤

Figure 8.15: These histograms show the mean recognition rates of FPFH. The first
row is equivalent to Figure 8.11. The histograms in the second row use vocabularies
determined on 20 object classes, while the third row shows the same for vocabularies
determined on all object classes.

the numerical values underline this result. Most of the mean classification results
differ only in the second decimal place.

At this point a small intermediate result can be summarized:

If the number of local 3-D feature descriptions is large enough, the
classification results do not depend on the subset of feature vectors
that has been used to compute the bag of features vocabulary.

In the present case at least 5000000 feature vectors have been determined within
the first 10 object classes using the keypoints from ISS. Thus, the smallest number
of feature vectors that have been used for clustering the bag of features vocabulary
was 5000000.

8.5. TRAINING AND CLASSIFICATION RESULTS 119

Mean classification rates

80% 90% 95% 100%≤

Training times

0s 5s 10s 30s ≥120s

Prediction times

0s 1s 2.5s 5s ≥20s10s
(
≈
2
0
m

s *
)

(
≈
5
0
m

s *
)

(
≈
1
0
0
m

s *
)

(
≈
2
0
0
m

s *
)

Figure 8.16: These histograms illustrate the differences when using sparse sampling in
comparison to the intrinsic shape signature keypoint algorithm. The first row of each
group is equivalent to the previously shown figures corresponding to ISS keypoints. The
second row of each group shows the same results when using sparse sampled keypoints.

120 CHAPTER 8. BASELINE METHOD

The next step is to compare the results according to the set of keypoints
used. Figure 8.16 shows three different aspects of the support vector machines
trained when using sparse sampled keypoints in comparison to the intrinsic shape
signature keypoints. It shows that the mean classification rates, the training times
as well as the prediction times have nearly the same values shifted by one γ-step.

In order to assess the visual results of the histograms, Table 8.14 contains
the mean classification rates of ISS with gamma = 0.008 (second row of each
histogram) and of sparse sampling with gamma = 0.001 (first row of each his-
togram).

Table 8.14: Classification results of ISS (i) and sparse sampling (s) for bag of features
vocabularies with 10-100 entries. In case of ISS the values correspond to γ = 0.0008. In
case of sparse sampling the values correspond to γ = 0.0001.

10
/2
0

C 1 5 25 125
i 94, 66 95, 09 95, 34 95, 47
s 94, 88 95, 38 95, 68 95, 84

|i−s| 0, 34 0, 37 0, 36 0, 31

1 5 25 125
95, 22 95, 75 96, 04 96, 15
95, 51 96, 06 96, 37 96, 56
0, 06 0, 05 0, 10 0, 02

50
/1
00

C 1 5 25 125
i 95, 45 96, 12 96, 48 96, 58
s 95, 67 96, 33 96, 74 96, 90

|i−s| 0, 20 0, 15 0, 17 0, 25

1 5 25 125
95, 46 96, 18 96, 57 96, 65
95, 65 96, 44 96, 92 97, 14
0, 19 0, 26 0, 35 0, 49

Comparing the results that could be achieved with ISS and sparse sampling
shows that each best classification rate only depends on the values of C and γ

while training the support vector machine. Furthermore, it is important to note
that this characteristic holds not only for the mean classification rate, but also
for the training and prediction time.

At this point another intermediate result can be summarized:

Considering the fact that the classification process is not influenced
by the use of sparse sampling or the intrinsic shape signature keypoint
algorithm, the intrinsic shape signature keypoint algorithm should be
preferred, since the number of keypoints is much smaller in compari-
son to sparse sampling.

8.5. TRAINING AND CLASSIFICATION RESULTS 121

8.5.3 Local 3-D Feature Descriptors

Finally, a look at the results of different algorithms will be taken. In the previous
sections it has turned out, that it is irrelevant which object classes have been used
to determine the vocabulary, when the number of local 3-D feature descriptions
becomes as large as in the context of this work. Thus, the vocabulary determined
on the 10 object classes ’apple’ to ’cellphone’ will be used in the remainder of
the work. Of course, one could also select the other two options. However,
when taking the total calculation time into account, a smaller number of local
3-D feature descriptions leads to a faster computation of the bag of features
clustering.

It has also been shown that the intrinsic shape signature keypoint algorithm
is the better choice. While the classification rate is almost identical to the classi-
fication rate using sparse sampling, the number of keypoints and the number of
feature descriptions, respectively, is much smaller. Therefore, the intrinsic shape
signature keypoint algorithm and the vocabulary determined on the 10 object
classes ’apple’ to ’cellphone’ are assumed as default in the following sections.

Figure 8.17 illustrates the results that can be achieved with different local
3-D feature description. It is particularly noticeable that the spin images have
remarkable lower classification rates than all other algorithms. On the other
hand it is not very surprising that independent of the algorithm that is used, the
best results can always be found in the area of C = 25 and γ = 0.0008. This
is of course, because the bag of features histograms are only statistics on the
distribution of the feature vectors, so that it is not possible to get a relation to
the feature descriptions used.

Finally, this raises the question: what about the prediction times for the dif-
ferent algorithms? An answer is provided in Figure 8.18. It a appears, that there
is a connection between the classification rates and the prediction times. Far more
importantly, however, is the knowledge that each of the support vector machines
is able to reach suitable classification rates within a reasonable computation time
for the prediction.

122 CHAPTER 8. BASELINE METHOD

3-D shape context

Fast point feature histogram

Point feature histogram

Signature of histograms of orientations

Spin images

Unique shape context

(a) (b) (c) (d) (e) (f) (g)

80% 90% 95% 100%≤

Figure 8.17: Mean classification rates for different local 3-D feature descriptors. As
in all previous figures here it also applies that the columns (a)-(g) correspond to bag of
features vocabularies with 10, 20, 50, 100, 200, 500, and 1000 entries.

8.5. TRAINING AND CLASSIFICATION RESULTS 123

3-D shape context

Fast point feature histogram

Point feature histogram

Signature of histograms of orientations

Spin images

Unique shape context

(a) (b) (c) (d) (e) (f) (g)

0s 1s 2.5s 5s ≥20s10s
(
≈
2
0
m

s *
)

(
≈
5
0
m

s *
)

(
≈
1
0
0
m

s *
)

(
≈
2
0
0
m

s *
)

Figure 8.18: Prediction times for different local 3-D feature descriptors. As in all
previous figures here it also applies that the columns (a)-(g) correspond to bag of features
vocabularies with 10, 20, 50, 100, 200, 500, and 1000 entries. As noted in Figure 8.14
these values correspond to a prediction of ≈ 6000 input vectors. Hence the values in
parentheses correspond to rough estimates for the required prediction times for a single
prediction on all 51 object classes.

124 CHAPTER 8. BASELINE METHOD

The parameters of the pipeline which are used in the remainder of this work will
be selected as follows:

• support vector machines, which have the highest classification rates
• in conjunction with a prediction time limit for all object classes of 100ms

This leads to the following set of parameters (Table 8.15):

Table 8.15: Final set of pipeline parameters / support vector machines

Fe
at
ur
es

K
ey
po

in
ts

Bo
F

cl
us
te
rin

g

Bo
F
siz

e

C γ C
la
ss
ifi
ca
-

tio
n
ra
te

Pr
ed
ic
-

tio
n
tim

e

3DSC ISS 10 cl. 100 125 0.008 96.97% 3.62s (≈ 72ms∗)
FPFH ISS 10 cl. 100 125 0.008 96.65% 1.30s (≈ 26ms∗)
PFH ISS 10 cl. 100 125 0.008 96.56% 1.40s (≈ 28ms∗)
SHOT ISS 10 cl. 100 125 0.008 96.27% 4.52s (≈ 90ms∗)
SI ISS 10 cl. 50 125 0.008 92.80% 3.57s (≈ 71ms∗)
USC ISS 10 cl. 200 125 0.008 97.62% 2.08s (≈ 42ms∗)

8.5.4 Precision and Recall

In order to evaluate a classifier besides the pure classification rate, which is usually
referred to as recall, the accuracy also known as precision is also important.
The values of the following precision-recall-diagrams will be determined by the
definitions shown in Table 8.16.

Table 8.16: Terminology of the terms true positives, true negatives, false positives, and
false negatives in context of classification tasks.

true positive (t+) an object corresponding to object class C is
correctly assigned to C

true negative (t−) an object corresponding to object class C is
correctly rejected from another objects class C ′

false positive (fp) an object corresponding to object class C is
incorrectly assigned to another objects class C ′

false negative (fn) an object corresponding to object class C is
incorrectly rejected from C

8.5. TRAINING AND CLASSIFICATION RESULTS 125

precision
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

re
ca

ll

0

0.2

0.4

0.6

0.8

1

3D shape context

precision
0 0.01 0.02 0.03 0.04 0.05

re
ca

ll

0

0.2

0.4

0.6

0.8

1

fast point feature histogram

precision
0 0.0050.010.0150.020.0250.030.0350.04

re
ca

ll

0

0.2

0.4

0.6

0.8

1

point feature histogram

precision
0.005 0.01 0.015 0.02 0.025 0.03

re
ca

ll

0.2

0.4

0.6

0.8

1

signature of histograms of orientation

precision
0.005 0.01 0.015 0.02 0.025 0.03 0.035

re
ca

ll

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

spin images

precision
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

re
ca

ll

0

0.2

0.4

0.6

0.8

1

unique shape context

Figure 8.19: Precision-recall graphs for all classifiers. Each data point (+) corresponds
to a single object class.

Precision and recall are then defined as [62]

(8.4)
precision = t+

t+ + f+
,

recall = t+
t+ + f−

.

In the following diagrams precision and recall are presented for each individual
local 3-D feature description algorithm. Each data point corresponds to a single
object class.

The graphs shown in Figure 8.19 illustrate that in particular the precision
values of many object classes are very low. However, that was to be expected,
because the shapes of many objects are too similar to each other.

8.5.5 Increasing the Limit of the Prediction Values

The question is whether it is possible to increase the precision at least slightly.
To achieve this it was tested how precision and recall are changing if the limit

126 CHAPTER 8. BASELINE METHOD

for the assignment to a particular class is increased successively. The results are
in Table 8.17.

Table 8.17: This table shows the precision (pre.) and recall (rec.) values of all local
3-D feature description algorithms for different classification limits (lim.). The latter
corresponds to the distance to the hyperplane, which separates the two classes of a
support vector machine to an input vector, i. e., a bag of features histogram. Thus, only
those objects which result in a distance to the hyperplane greater than the limit are
assigned to the corresponding object class.

3dsc fpfh pfh shot si usc
lim. pre. rec. pre. rec. pre. rec. pre. rec. pre. rec. pre. rec.
2.00 3.18 68.17 4.55 69.79 3.81 71.82 2.89 73.25 3.33 83.78 3.18 72.75
3.00 3.38 65.05 5.15 64.78 4.30 68.29 3.31 69.98 3.71 82.64 3.38 68.17
4.00 4.01 61.79 5.62 60.84 4.56 65.61 3.59 67.05 3.91 81.32 4.01 65.05
5.00 4.07 58.96 5.75 57.39 5.24 62.96 4.16 65.27 4.12 79.76 4.01 61.79
6.00 4.17 55.43 6.63 54.52 6.10 60.24 4.20 63.78 4.22 77.98 4.41 58.96

This shows that the growth of the mean precision unfortunately has a lim-
ited extent. This is also not surprising, because this way it is not possible to
differentiate similar objects. However, there is a certain number of object classes
in the dataset that should allow a better differentiation. To this end, the num-
ber of object classes with a precision ≥ 5% and a recall ≥ 75% will be counted
while increasing the classification limit. The corresponding results are shown in
Table 8.18. The best limit-values are highlighted gray.

Table 8.18: Number of object classes with a precision ≥ 5% and a recall ≥ 75% for
different classification limits.

3dsc fpfh pfh shot si usc
1.0 0 5 0 0 0 0
2.0 8 19 10 0 2 8
3.0 8 18 9 5 5 8
4.0 8 18 7 5 6 8
5.0 8 17 6 6 7 8
6.0 10 16 7 5 5 10
7.0 13 15 6 4 6 13
8.0 14 14 7 4 6 14
9.0 13 14 9 4 7 13

8.5. TRAINING AND CLASSIFICATION RESULTS 127

precision
0 0.02 0.04 0.06 0.08 0.1 0.12

re
ca

ll

0

0.2

0.4

0.6

0.8

1

3-D shape context

precision
0 0.02 0.04 0.06 0.08 0.1

re
ca

ll

0

0.2

0.4

0.6

0.8

1

fast point feature histogram

precision
0 0.010.020.030.040.050.060.070.080.09

re
ca

ll

0

0.2

0.4

0.6

0.8

1

point feature histogram

precision
0 0.02 0.04 0.06 0.08 0.1 0.12

re
ca

ll

0

0.2

0.4

0.6

0.8

1

signature of histograms of orientation

precision
0 0.010.020.030.040.050.060.070.080.09

re
ca

ll

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

spin images

precision
0 0.05 0.1 0.15 0.2 0.2

re
ca

ll

0

0.2

0.4

0.6

0.8

1

unique shape context

Figure 8.20: Precision-recall graphs for all classifiers with diffent limits. The red dotted
lines depict the counting limits of 5% precision and 75% recall. The corresponding limits
are taken from Table 8.18: 3DSC: 8.0, FPFH: 2.0, PFH: 2.0, SHOT: 5.0, SI: 5.0, and
USC: 8.0.

The corresponding precision-recall graphs for the highlighted limit values are
shown in Figure 8.20.

During the learning phase of the reinforcement learning algorithm both vari-
ants of support vector machines, i. e., the support vector machines with a regular
distance of 0.0 to the separating hyperplane and the support vector machines
with a distance corresponding to the highlighted values in Table 8.18 will be
made available.

8.5.6 Reducing the Number of Classes

Due to the very small precision values it can be assumed that an unambiguous
assignment of an object to a single object class is almost impossible. To determine
the classification rate of a single local 3-D feature description algorithm in relation
to the classification rate of a sequence of algorithms, a subset of 10 of the 51 classes
of objects is determined. This set is determined from the object classes with the
best precision values. Table 8.19 shows the set.

128 CHAPTER 8. BASELINE METHOD

Table 8.19: Subset of 10 object classes.

class no. object class
8 cap

11 coffee_mug
15 food_bag
22 greens
23 hand_towel
25 keyboard
26 kleenex
32 notebook
37 pitcher
43 shampoo

8.5.7 Interim Conclusion on Training and Classification Results

Table 8.20 shows the classification results of single local 3-D feature description
algorithms when used with the basic classification pipeline. The six types of
terminal states in the order of their tests are:

1. If the set of class candidates does not contain the corresponding object
class, the terminal state is counted as fail state.

2. If the computation time limit was exceeded two sub-cases can be distin-
guished:
If the class candidate with the maximum of summed prediction values over
all algorithms that have been applied

(a) corresponds to the correct object class, the state is counted as over-
time/match.

(b) does not correspond to the correct object class, the state is counted as
overtime/miss.

3. If the class candidates contains only a single object class, the state is counted
as an exact match.

4. Finally, if no algorithm is left, another two sub-cases can be distinguished:
If the class candidate with the maximum of summed prediction values over
all algorithms that have been applied

8.5. TRAINING AND CLASSIFICATION RESULTS 129

(a) corresponds to the correct object class, the state is counted as no
actions/match.

(b) does not correspond not to the correct object class, the state is counted
as no actions/miss.

As already introduced in Section 7.3.3, a time limit of 10 seconds is assumed for
the subsequent results.

Table 8.20: Results of single algorithms when applied to objects of the complete data
set. None of the algorithms is able to classify a single object without uncertainty. The
point feature histogram is so slow, that about 17 to 18% of all objects result in one of
the two overtime states, i. e., require more than 10 seconds for computation.

algorithm 3DSC 3DSC FPFH FPFH PFH PFH
classification limit 0.0 8.0 0.0 2.0 0.0 2.0
fail state 24.3% 51.1% 21.8% 28.5% 23.8% 28.1%
overtime/match 0.0% 0.0% 0.0% 0.0% 2.8% 2.8%
overtime/miss 0.0% 0.0% 0.0% 0.0% 15.2% 14.0%
exact match 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
no actions/match 6.1% 5.7% 9.4% 9.7% 3.2% 2.9%
no actions/miss 69.6% 43.2% 68.8% 61.8% 55.0% 52.2%
sum of positive results 6.1% 5.7% 9.4% 9.7% 6.0% 5.8%

algorithm SHOT SHOT SI SI USC USC
classification limit 0.0 5.0 0.0 5.0 0.0 8.0
fail state 27.3% 37.7% 15.5% 20.3% 22.2% 43.0%
overtime/match 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
overtime/miss 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
exact match 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
no actions/match 3.6% 3.8% 7.4% 7.3% 8.5% 8.7%
no actions/miss 69.1% 58.5% 77.1% 72.4% 68.2% 47.3%
sum of positive results 3.6% 3.8% 7.4% 7.3% 8.5% 8.7%

It shows, that it is not possible to assign an object to a single object class.
Apart from this, the ratio of sets of class candidates, which contains the correct
object class (overtime/match + hit + out-of-algorithm/match), is between ≈ 50%
and ≈ 80%. Interestingly, the point feature histogram (PFH) is so slow, that

130 CHAPTER 8. BASELINE METHOD

about 17 to 18% of all objects result in one of the two overtime states, i. e.,
require more than 10 seconds for computation.

Table 8.21: Results of single algorithms when applied to objects of the reduced data
set of 10 object classes.

algorithm 3DSC 3DSC FPFH FPFH PFH PFH
classification limit 0.0 8.0 0.0 2.0 0.0 2.0
fail state 7.9% 63.0% 13.2% 17.9% 14.0% 18.2%
overtime/match 0.0% 0.0% 0.0% 0.0% 52.5% 51.2%
overtime/miss 0.0% 0.0% 0.0% 0.0% 14.3% 12.4%
exact match 0.0% 17.1% 0.0% 7.9% 0.0% 0.7%
no actions/match 56.6% 12.2% 65.0% 57.7% 10.4% 9.5%
no actions/miss 35.5% 7.7% 21.8% 16.5% 8.7% 8.1%
sum of positive results 56.6% 33.3% 65.0% 65.5% 62.9% 61.4%

algorithm SHOT SHOT SI SI USC USC
classification limit 0.0 5.0 0.0 5.0 0.0 8.0
fail state 19.0% 43.0% 15.3% 20.4% 3.6% 60.0%
overtime/match 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
overtime/miss 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
exact match 0.0% 5.1% 0.0% 0.8% 0.0% 18.1%
no actions/match 22.8% 18.6% 23.8% 23.2% 59.7% 15.2%
no actions/miss 58.1% 33.3% 60.9% 55.6% 36.6% 6.7%
sum of positive results 22.8% 23.7% 23.8% 23.9% 59.7% 33.3%

In comparison, the results using the reduced number of object classes are
shown in Table 8.21. Although the results still do not show a considerable number
of states that lead to an exact match of the object class, at least low rates in
which the object classes can be identified with a single algorithm can be achieved.
On the other hand the number of hits in the sets of class candidates increased
significantly. But given the small number of object classes this is not surprising.

8.6. CONCLUSION 131

8.6 Conclusion

That the classification rates of individual objects are so low in comparison to the
recognition rates reported in the corresponding evaluations shows how important
it is to find a way to increase the classification rates.

A possible reason for this problem might be the major principle underlying
the classification task. While the computational effort for a one-to-one compar-
ison of the local 3-D feature descriptions in the context of object recognition is
acceptable, this approach is not acceptable for large scale classification tasks. For
this reason, the bag of features approach is used to aggregate the local 3-D feature
descriptions to a generic and even smaller description. This involves that essen-
tial information of local feature descriptions falls a victim to statistics. However,
the latter has only a chance to be as informative as possible, if the number of
counted elements is relatively large.

At this point the question from the last paragraph of Section 8.4.1, i. e., the
construction of the bag of features vocabulary should be addressed once again.
There it was asked if there might be a correlation between the long compu-
tation time of k-means in the determination of the vocabulary for 3DSC and
the informativeness of the local 3-D feature vectors. It was assumed that this
might be reflected in the classification results. This question can be answered
unequivocally with “no”, since the classification results between 3DSC and other
algorithms such as PFH and USC hardly differ.

Accordingly, the informativeness of the bag of feature histograms has to be
gradually increased by a skillfully combination of different algorithms, which will
be implemented in the following by the fusion of the basic classification pipeline
with a reinforcement learning framework.

132 CHAPTER 8. BASELINE METHOD

9 Adaptive 3-D Object Classification with
Reinforcement Learning

In this chapter, the primary results of this work are presented. The structure of
the chapter is geared to the outline proposed in Section 7.2.2 to Section 7.2.4.

The first section will demonstrate that learning of a sequence of local 3-D
feature description algorithms leads to significantly better classification results.

The second section shows, how global properties of a 3-D point cloud can help
the reinforcement learning agent to select a proper initial action to reduced the
number of fail states after the first application of an algorithm.

The third section shows how the ε-greedy episodes work and how the classi-
fication can benefit from a new feature descriptor added afterwards, when this
descriptor provides better features and thus leads to better classification results.

9.1 Fusion with Reinforcement Learning

The reinforcement learning framework initially consists of the elements intro-
duced in Section 7.2.2. To keep it in mind, Figure 9.1 illustrates the corresponding
model again.

As already introduced in Section 7.3.3, a time limit of 10 seconds is assumed
for the subsequent results. The following graphs show different aspects from the
course of learning of the reinforcement learning framework. In each episode the
learner passes through the following steps:

1. The set of object class candidates C is initialized with all available object
classes.

133

134 CHAPTER 9. ADAPTIVE 3-D OBJECT CLASSIFICATION

Keypoint

Detection
Point Cloud

Feature

Description

Bag of

Features

Vocabulary SVMs

Classifica-

tion

Environment

Agent
State

Actions

Descriptor

Algorithms
Class-Candidates

!

Policy

Q-Table Update Q-Table

rew
a
rd

 -1
,[0

,3
[

n
ew

 sta
te

a
ctio

n

Class-Candidates

Figure 9.1: Model I: the fusion of the basic classification pipeline with reinforcement
learning.

2. The set of algorithms A is initialized with all available local 3-D feature
description algorithms.

3. An object o is selected randomly from all available objects O, |O| = 207481.

4. A local 3-D feature description algorithm a ∈ A is selected randomly. Later,
a parameter ε controls the probability of a random choice of an algorithm.

5. Algorithm a is applied to the 3-D point cloud of the selected object o.

6. For each of the remaining class candidates c ∈ C a classification is done
with the corresponding support vector machine and the final 3-D object
description, i. e., the bag of features histogram.

7. Based on the classification results and depending on the limit of the pre-
diction values for the currently selected algorithm the class candidate c is
kept or removed from C.

8. Finally, it is checked whether the current state is a terminal state:

(a) The set of class candidates does not contain the correct class:
→ fail state, reward r = −1.0

(b) The computation time limit was exceeded, max prediction sum
i. belongs to the correct object class:
→ overtime/match, reward r ∈ [1.0, 2.0[

9.1. FUSION WITH REINFORCEMENT LEARNING 135

ii. does not belong to the correct object class:
→ overtime/miss, reward r ∈ [0.0, 1.0[

(c) One class left:
→ exact match, reward r ∈ [2.0, 3.0[

(d) No algorithms left unused, max prediction sum
i. belongs to the correct object class:
→ no actions/match, reward r ∈ [1.0, 2.0[

ii. does not belong to the correct object class:
→ no actions/miss, reward r ∈ [0.0, 1.0[

If the state is none of the terminal states above, the reinforcement learning
agent continues with step 3.

9. If the learning rate α > 0 the Q-value is updated.

The cases (b).i, (c), and (d).i are the three cases that would lead to a correct
classification.

Subsequently, four different graphs visualize the course of the learning phase:

• The first graph illustrates the number of states stored in the Q-table. This
value is mainly of interest because it reflects the real number of different
states inspected by the reinforcement learning framework, since, as already
mentioned, the theoretical number of states is magnitudes larger (251 · 2n,
where n is the number of actions).

• The second graph shows the average Q-value over all state-action-pairs.
This value indicates if the Q-table is becoming stable, and thereby roughly
the number of episodes after which the learning rate α and the ε-value can
be lowered.

• The third graph shows the classification rates throughout the entire process.
Strictly speaking, the graph shows the percentage of the 6 possible terminal
states (see above) over time.

• The last graph shows the percentage of the number of actions used in each
episode until the terminal was reached.

In all graphs the dotted blue line illustrates the learning rate α, while the dashed
blue line corresponds to the ε-value.

136 CHAPTER 9. ADAPTIVE 3-D OBJECT CLASSIFICATION

episodes
0 20 40 60 80 100

6
10×

n
u

m
 o

f
st

at
es

100

200

300

400

500

3
10×

number of states

episodes
0 20 40 60 80 100

6
10×

al
p

h
a

/
ep

si
lo

n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 num of states
alpha
epsilon

(a)

0 20 40 60 80 100

6
10×

av
g

.
Q

v
al

u
es

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

average Qvalues

episodes
0 20 40 60 80 100

6
10×

al
p

h
a

/
ep

si
lo

n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 average Qvalue
alpha
epsilon

(b)

Figure 9.2: These two figures show the number of states (a) and the average Q-value
(b) – both are depicted by the continuous black line and their axes on the right side.
The blue lines show the values of the learning rate α (dotted) and the ε-value (dashed)
with the axes on the left side.

In the following subsections the results of different configurations will be com-
pared:

1. The use of all object classes and the use of 3 different algorithms in config-
urations with two different limits. To be precise:
PFH/0.0, PFH/2.0, SHOT/0.0, SHOT/5.0, USC/0.0, USC/8.0.

2. The use of 10 object classes and the use of 3 different algorithms in config-
urations with two different limits. To be precise:
PFH/0.0, PFH/2.0, SHOT/0.0, SHOT/5.0, USC/0.0, USC/8.0.

3. The use of all object classes and the use of 6 different algorithms with a
prediction value limit of 0.0:
3DSC, FPFH, PFH, SHOT, SI, USC.

4. The use of 10 object classes and the use of 6 different algorithms with a
prediction value limit of 0.0:
3DSC, FPFH, PFH, SHOT, SI, USC.

9.1.1 Results for all Object Classes – Different Limits

The following results illustrate the classification results that can be achieved
without the use of global information in the initial state.

9.1. FUSION WITH REINFORCEMENT LEARNING 137

80 85 90 95 100

6
10×

%
 o

f
st

at
es

10

20

30

40

50

60

70

80

90

100

ratio of terminal states

episodes
80 85 90 95 100

6
10×

al
p

h
a

/
ep

si
lo

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 fail state
overtime/match
overtime/miss
exact match
no actions/match
no actions/miss
sum positive

(a)

80 85 90 95 100

6
10×

%
 a

ct
io

n
s

u
se

d

10

20

30

40

50

60

70

80

90

100

number of actions applied

episodes
80 85 90 95 100

6
10×

al
p

h
a

/
ep

si
lo

n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Terminal state after ...
1 actions
2 actions
3 actions
4 actions
5 actions
6 actions

(b)

Figure 9.3: Influence of the learned Q-values on the classification results. Sub-figure
(a) shows the proportion of the 6 different terminal states (the colored lines) and the
sum of positive states (black line). Sub-figure (b) shows the number of actions that have
been applied until a terminal state was reached.

Figure 9.2 illustrates the number of states stored in the Q-table and the aver-
age Q-value for a single state during the initial learning phase of the reinforcement
learning framework. The set of algorithms available consists of PFH, SHOT and
USC with 2 different limits for the prediction values each.

Referring to Figure 9.2 (a) it can clearly be seen that the real number of states
(in this case ≈ 450000) is several orders of magnitude smaller than the theoretical
number of states, i. e., all possible subsets of the object classes times all possible
subsets of already applied algorithms: 251 · 26. The reason for this is that there
are de facto no larger subsets with more than 10 class candidates. Actually, this
leads to a fast saturation of the number of states after an acceptable number
of about 50 million episodes. These 50 million episodes take approximately 30
seconds to compute.

The second figure (Figure 9.2 (b)) shows the change of the mean Q-values
over all state-action pairs. The stagnation of these values means, that the Q-
values alter slightly. Therefore, this is the point (after 60 million episodes) where
the learning rate α is continuously reduced (the blue dotted line). The slight
reduction of the average Q-value shows that the Q-values were a little bit over
fitted. But they keep stable with a decreasing learning rate. Finally, when the
learning rate is zero (after 90 million episodes) the ε-value, i. e., the ratio of
randomly selected actions is reduced from 1.0 (random-policy) to 0.0 (maxQ-
policy).

138 CHAPTER 9. ADAPTIVE 3-D OBJECT CLASSIFICATION

The classification results that can be achieved with this reinforcement learning
model are illustrated in Figure 9.3. Only the episodes from 80 to 100 million are
shown, since the classification results of a purely random selection (< 90 million
episodes) are all identical. Figure 9.3 (a) shows the six different terminal states.
One can see, that the classification results increase with a decreasing ε-value. To
get a better picture, all relevant values are shown in Table 9.1.

Table 9.1: This table shows the change of the classification results in relation to Fig-
ure 9.3. The first column corresponds to episode 90 million, i. e., the last episode with
100% randomly selected actions (ε = 1.0). The second column corresponds to episode
100 million, where a maxQ-policy is used (ε = 0.0).

random maxQ change
episodes 90 M 100 M (rel.)
fail state 63.4% 52.2% −17.6%
overtime/match 3.8% 7.8% 102.4%
overtime/miss 15.6% 22.4% 44.2%
exact match 0.6% 1.0% 56.4%
no actions/match 0.4% 0.4% −0.6%
no actions/miss 16.2% 16.1% −0.1%
sum of positive results 4.8% 9.2% 87.3%

The combination of the three different algorithms leads to a higher classifi-
cation rate in each case (PFH = 6.0%/5.8%, SHOT = 3.6%/3.8%, and USC =
8.5%/8.7%). Moreover, for the first time within this work it is possible to achieve
exact assignments. However, the improvement over the best single algorithm
(USC) can be referred to as marginal.

Looking at Figure 9.3 (b) shows that the distribution of the number of termi-
nal states is relatively uniform, and that the two cases, where the reinforcement
learning frameworks stops after the first action (red) and all actions (cyan) have
the largest share.

In the latter case several situations may have occurred. The most common
case is the situation that the slowest algorithm (here PFH) was carried out at the
end. In most cases this led to an overtime terminal state. This shows that the
choice of the time limit is relatively well suited. Therefore, it makes only sense
to reduce the time limit if necessary.

9.1. FUSION WITH REINFORCEMENT LEARNING 139

episodes
0 20 40 60 80 100

6
10×

n
u

m
 o

f
st

at
es

100

200

300

400

500

number of states

episodes
0 20 40 60 80 100

6
10×

al
p

h
a

/
ep

si
lo

n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 num of states
alpha
epsilon

(a)

0 20 40 60 80 100

6
10×

av
g

.
Q

v
al

u
es

0.005

0.01

0.015

0.02

0.025

average Qvalues

episodes
0 20 40 60 80 100

6
10×

al
p

h
a

/
ep

si
lo

n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 average Qvalue
alpha
epsilon

(b)

Figure 9.4: These two figures show the number of states (a) and the average Q-value
for a single state (b) for a smaller number of 10 object classes.

More interestingly, however, is the interpretation of the first case. This case
can be achieved only if the result is an exact match of the object class or a
fail state. In addition, the amount of these cases is drastically decreasing while
reducing ε, which means randomly chosen fail states dominate.

9.1.2 Results for 10 Object Classes – Different Limits

In this section the results which can be achieved without the use of global infor-
mation in the initial state are considered in the same manner. The only difference
is, that not all but only 10 object classes are used (see Section 8.5.6).

Figure 9.4 shows the number of states and the average Q-value per state.
During this experiment, deliberately the same number of episodes was used, to
make a direct comparison of the learning curve. It turns out that the small
number of 443 states means that the learning curves converge much faster, i. e.,
within 5 million episodes.

Analogously, the classification results that can be achieved with this rein-
forcement learning model are illustrated in Figure 9.5. Here, the classification
rates are expected to be significantly higher. However, the ≈ 65% positive termi-
nal states are similar to the best individual results of the algorithms used (PFH
achieved classification rates of 62.9% and 61.4%).

To get here a better overview, all relevant values are shown in Table 9.2.

140 CHAPTER 9. ADAPTIVE 3-D OBJECT CLASSIFICATION

80 85 90 95 100

6
10×

%
 o

f
st

at
es

10

20

30

40

50

60

70

80

90

100

ratio of terminal states

episodes
80 85 90 95 100

6
10×

al
p

h
a

/
ep

si
lo

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 fail state
overtime/match
overtime/miss
exact match
no actions/match
no actions/miss
sum positive

(a)

80 85 90 95 100

6
10×

%
 a

ct
io

n
s

u
se

d

10

20

30

40

50

60

70

80

90

100

number of actions applied

episodes
80 85 90 95 100

6
10×

al
p

h
a

/
ep

si
lo

n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Terminal state after ...
1 actions
2 actions
3 actions
4 actions
5 actions
6 actions

(b)

Figure 9.5: These two figures show the classification results when using only 10 object
classes.

Table 9.2: This table shows the change of the classification results in relation to Fig-
ure 9.5. The first column corresponds to episode 90 million, i. e., the last episode with
100% randomly selected actions (ε = 1.0). The second column corresponds to episode
100 million, where a maxQ-policy is used (ε = 0.0).

random maxQ change
episodes 90 M 100 M (rel.)
fail state 46.6% 20.6% −55.8%
overtime/match 32.1% 54.4% 69.6%
overtime/miss 13.0% 14.4% 11.0%
exact match 8.3% 10.6% 26.6%
no actions/match 0.0% 0.0% 0.0%
no actions/miss 0.0% 0.0% 0.0%
sum of positive results 40.4% 65.0% 60.8%

But there is a major difference in comparison to the results from the previous
section: the distribution of the number of actions. Almost all episodes end after
using 2 or 3 actions. Together, the two cases arise approximately 90%. In fact,
the action which is always selected in the first state is USC performed with a
limit of 0.0. According to Table 8.21 this is precisely the algorithm that achieves
by far the smallest percentage of fail states: 3.6%. This corresponds exactly to
the value of the graph in Figure 9.5 for a single action. And it shows that the
reinforcement learning agent was able to make an optimal decision.

9.1. FUSION WITH REINFORCEMENT LEARNING 141

episodes
0 20 40 60 80 100

6
10×

n
u

m
 o

f
st

at
es

200

400

600

800

1000

1200

1400

1600

1800

3
10×

number of states

episodes
0 20 40 60 80 100

6
10×

al
p

h
a

/
ep

si
lo

n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 num of states
alpha
epsilon

(a)

0 20 40 60 80 100

6
10×

av
g

.
Q

v
al

u
es

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

average Qvalues

episodes
0 20 40 60 80 100

6
10×

al
p

h
a

/
ep

si
lo

n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 average Qvalue
alpha
epsilon

(b)

Figure 9.6: These graphs show the number of states (a) and the average Q-value during
the reinforcement learning. All 6 algorithms are available as possible actions that can
be selected by the reinforcement learning agent. During classification only the standard
limit of 0.0 is used.

9.1.3 Results for all Object Classes – Unique Limits

The classification results that can be achieved without the use of global informa-
tion in the initial state and with a “normal” usage of support vector machines,
i. e., with the separation of the classes at a prediction value of 0.0 are shown in
the following sections. Instead of three algorithms with two configurations, all
six algorithms will be used.

The comparison begins in an analogous manner as in the previous sections
with the figures of the number of states (Figure 9.6 (a)) and the average Q-value
(Figure 9.6 (b)).

At first it can be noticed, that the number of 1640769 actual states is almost
four times as high as shown in Figure 9.2 (a). This can be explained as follows:
While the set of the class candidates for an algorithm with a higher prediction
limit must always be a subset of the class candidates of the same algorithm with a
limit of zero, there isn’t a similar relationship between the 6 different algorithms in
the current case. Thus, the variety of permutations within the class candidates is
correspondingly higher. Apart from that, the graphs differ only marginally from
those in Figure 9.2.

In principle, the same applies also for the classification rates, which are shown
in Figure 9.7. However, it turns out, that the classification rates that can be
achieved with the approach proposed in this section can be clearly distinguished

142 CHAPTER 9. ADAPTIVE 3-D OBJECT CLASSIFICATION

80 85 90 95 100

6
10×

%
 o

f
st

at
es

10

20

30

40

50

60

70

80

90

100

ratio of terminal states

episodes
80 85 90 95 100

6
10×

al
p

h
a

/
ep

si
lo

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 fail state
overtime/match
overtime/miss
exact match
no actions/match
no actions/miss
sum positive

(a)

80 85 90 95 100

6
10×

%
 a

ct
io

n
s

u
se

d

10

20

30

40

50

60

70

80

90

100

number of actions applied

episodes
80 85 90 95 100

6
10×

al
p

h
a

/
ep

si
lo

n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Terminal state after ...
1 actions
2 actions
3 actions
4 actions
5 actions
6 actions

(b)

Figure 9.7: Influence of the learned Q-values on the classification results. Sub-figure
(a) shows the proportion of the 6 different terminal states (the colored lines) and the
sum of positive states (black line). Sub-figure (b) shows the number of actions that
have been applied until a terminal state was reached. The actions that have been used
by the reinforcement learning agent correspond to the 6 available algorithms while the
classification was done at the standard limit of 0.0 only.

from the classification rates of individual algorithms or the approach introduced
in Section 9.1.1. While the best individual algorithm (FPFH with a limit of 0.0)
achieves a classification rate with 9.4% positive terminal states and the result
from Section 9.1.1 reaches only 9.2%, the rate of nearly 22% positive terminal
states that can be achieved here is almost 2.5 times higher. The only negative
aspect might be the number of exact matches, since this value is still zero.

The exact values are as usual summarized in Table 9.3.

9.1.4 Results for 10 Object Classes – Unique Limits

Consequently, the consideration of the results for 10 object classes follows the
same scheme. Accordingly, the section starts with the graphs on the number of
states (Figure 9.8 (a)), and the average Q-value (Figure 9.8 (b)).

Figure 9.8 (a) clearly shows how quickly the number of states converges to a
value of 571. In addition, the Q-values converge fairly quick. However, since the
number of states is relatively low, the values fluctuate slightly with the results of
each episode. With a learning rate of 1.0 that was to be expected and decreases
parallel to the reduction of the α-value.

9.1. FUSION WITH REINFORCEMENT LEARNING 143

Table 9.3: This table shows the change of the classification results in relation to Fig-
ure 9.7. The first column corresponds to episode 90 million, i. e., the last episode with
100% randomly selected actions (ε = 1.0). The second column corresponds to episode
100 million, where a maxQ-policy is used (ε = 0.0). The actions that have been used
by the reinforcement learning agent correspond to the 6 available algorithms while the
classification was done at the standard limit of 0.0 only.

random maxQ change
episodes 90 M 100 M (rel.)
fail state 62.7% 55.9% −10.9%
overtime/match 6.3% 16.8% 168.3%
overtime/miss 15.1% 11.4% −24.6%
exact match 0.0% 0.0% 0.0%
no actions/match 4.9% 4.9% 0.4%
no actions/miss 11.0% 10.9% −0.2%
sum of positive results 11.2% 21.7% 94.9%

episodes
0 20 40 60 80 100

6
10×

n
u

m
 o

f
st

at
es

100

200

300

400

500

600

number of states

episodes
0 20 40 60 80 100

6
10×

al
p

h
a

/
ep

si
lo

n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 num of states
alpha
epsilon

(a)

0 20 40 60 80 100

6
10×

av
g

.
Q

v
al

u
es

0

0.01

0.02

0.03

0.04

0.05

0.06

average Qvalues

episodes
0 20 40 60 80 100

6
10×

al
p

h
a

/
ep

si
lo

n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 average Qvalue
alpha
epsilon

(b)

Figure 9.8: These two figures show the number of states (a) and the average Q-value
for a single state (b) for a smaller number of 10 object classes. The actions that have
been used by the reinforcement learning agent correspond to the 6 available algorithms
while the classification was done only at the standard limit of 0.0.

Quite positive results can be found in the classification results shown in Fig-
ure 9.9. Using the current method it is possible to raise the rate of positive
terminal states to over 73%. In addition, the proportion of exact assignments is
over 15% – and that, although it was not possible to get a single exact match
with each individual algorithm on the reduced set of 10 object classes.

144 CHAPTER 9. ADAPTIVE 3-D OBJECT CLASSIFICATION

80 85 90 95 100

6
10×

%
 o

f
st

at
es

10

20

30

40

50

60

70

80

90

100

ratio of terminal states

episodes
80 85 90 95 100

6
10×

al
p

h
a

/
ep

si
lo

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 fail state
overtime/match
overtime/miss
exact match
no actions/match
no actions/miss
sum positive

(a)

80 85 90 95 100

6
10×

%
 a

ct
io

n
s

u
se

d

10

20

30

40

50

60

70

80

90

100

number of actions applied

episodes
80 85 90 95 100

6
10×

al
p

h
a

/
ep

si
lo

n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Terminal state after ...
1 actions
2 actions
3 actions
4 actions
5 actions
6 actions

(b)

Figure 9.9: These two figures show the classification results when using only 10 object
classes. The actions that have been used by the reinforcement learning agent correspond
to the 6 available algorithms while the classification was done at the standard limit of
0.0 only.

A close look at the data also shows that the 17.9% remaining fail states are
broadly caused by false negatives after the first action. It remains to be seen
whether it is possible to reduce this rate by the use of global properties. The
results are summarized in Table 9.4.

Table 9.4: This table shows the change of the classification results in relation to Fig-
ure 9.9. The first column corresponds to episode 90 million, i. e., the last episode with
100% randomly selected actions (ε = 1.0). The second column corresponds to episode
100 million, where a maxQ-policy is used (ε = 0.0).

random maxQ change
episodes 90 M 100 M (rel.)
fail state 28.7% 17.9% −37.7%
overtime/match 41.4% 57.8% 39.5%
overtime/miss 25.7% 8.5% −67.0%
exact match 3.6% 15.3% 322.8%
no actions/match 0.4% 0.4% −2.3%
no actions/miss 0.2% 0.2% −9.1%
sum of positive results 45.4% 73.5% 61.8%

9.2. DIFFERENTIATION OF THE FIRST STATE 145

9.1.5 Interim Conclusion on Fusion with Reinforcement
Learning

The conclusions arising from the results of this section can be summarized as
follows:

• It is possible to increase the classification rate by a skillfully selection and
combination of algorithms for local 3-D feature description. If all object
classes are used, the improvement in comparison to the best single algorithm
(FPFH with 9.4%) is more than 230%. If the reduced set of object classes
is used, the classification rate still increases at least from 65% to 73.5%.
However, it must be emphasized that the rate of exact matches increases
from 0% to 15.3%.

• Trying to increase the classification rate using different limits during clas-
sification is not effective. This has the following reason: on the one hand
the increase of the limit leads to a smaller number of class candidates, but
on the other hand it results in a higher number of false negative results and
thus in a higher rate of fail states.

9.2 Differentiation of the First State

Global parameters of the point cloud are required to differentiate the first state
of the reinforcement learning framework. Therefore, Figure 9.10 illustrates the
corresponding model again. The model differs from the model used until now
only in the extension of the state with global properties of the point cloud.

These global properties are:

1. The number of keypoints determined for the point cloud.
This value is divided in 3 intervals, [0, 37[, [38, 148[, and [149,∞] as intro-
duced in Section 7.2.3.

2. The ratios of the expansion of the point cloud along the principal axes.
This is done by the eigenvalues e1 ≥ e2 ≥ e3 of the covariance matrix of the
point cloud. The 4 possible states correspond to the cases where e1/e2 ≤ 3.0
and e2/e3 ≤ 3.0 are true or false, respectively.

146 CHAPTER 9. ADAPTIVE 3-D OBJECT CLASSIFICATION

Keypoint

Detection
Point Cloud

Feature

Description

Bag of

Features

Classifica-

tion

Environment

Agent
State

Actions

Descriptor

Algorithms
Class-Candidates

Cloud-Properties

Policy

Q-Table Update Q-Table

rew
a
rd

 -1
,[0

,3
[

n
ew

 sta
te

a
ctio

n

Class-Candidates

Cloud-Properties
Compute

Properties
Vocabulary SVMs

!

Figure 9.10: Model II: extending Model I by a differentiation of the first state. The
previously used model is extended by global properties of the input point cloud. This
enables the reinforcement learning framework to select different local 3-D feature descrip-
tion algorithms at the beginning.

80 85 90 95 100

6
10×

%
 o

f
st

at
es

10

20

30

40

50

60

70

80

90

100

ratio of terminal states

episodes
80 85 90 95 100

6
10×

al
p

h
a

/
ep

si
lo

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 fail state
overtime/match
overtime/miss
exact match
no actions/match
no actions/miss
sum positive

(a)

80 85 90 95 100

6
10×

%
 a

ct
io

n
s

u
se

d

10

20

30

40

50

60

70

80

90

100

number of actions applied

episodes
80 85 90 95 100

6
10×

al
p

h
a

/
ep

si
lo

n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Terminal state after ...
1 actions
2 actions
3 actions
4 actions
5 actions
6 actions

(b)

Figure 9.11: These two figures show the classification results when using global prop-
erties to distinguish the first state on all object classes.

9.2.1 Results

Following the previous sections, the graphs with the number of states and the
course of the Q-values would be shown here. But since the shape of the curves
don’t change significantly, they are not relevant. For all object classes the final
number of states is 2056005, while it is 3030 for 10 object classes.

9.2. DIFFERENTIATION OF THE FIRST STATE 147

80 85 90 95 100

6
10×

%
 o

f
st

at
es

10

20

30

40

50

60

70

80

90

100

ratio of terminal states

episodes
80 85 90 95 100

6
10×

al
p

h
a

/
ep

si
lo

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 fail state
overtime/match
overtime/miss
exact match
no actions/match
no actions/miss
sum positive

(a)

80 85 90 95 100

6
10×

%
 a

ct
io

n
s

u
se

d

10

20

30

40

50

60

70

80

90

100

number of actions applied

episodes
80 85 90 95 100

6
10×

al
p

h
a

/
ep

si
lo

n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Terminal state after ...
1 actions
2 actions
3 actions
4 actions
5 actions
6 actions

(b)

Figure 9.12: These two figures show the classification results when using global prop-
erties to distinguish the first state on 10 object classes.

More exciting, however, is the question of whether an improvement of the
classification results can be achieved using these two simple global properties.
Figure 9.11 shows the results for all object classes, while Table 9.5 contributes
the corresponding values.

Table 9.5: Classification results when using global properties to distinguish the first
state on all object classes.

random maxQ change
episodes 90 M 100 M (rel.)
fail state 62.8% 55.9% −10.3%
overtime/match 6.3% 16.1% 147.9%
overtime/miss 15.1% 11.6% −19.2%
exact match 0.0% 0.0% 0.0%
no actions/match 4.9% 5.4% 0.0%
no actions/miss 10.9% 11.0% 0.5%
sum of positive results 11.2% 21.5% 83.1%

At a first glance, it becomes clear that an improvement in the sum of positive
results could not be achieved when using all 51 object classes (21.5% vs. 21.7%).
The same applies to the fail states, where the results are completely identical.

On the other hand taking a look at Figure 9.12 of the results corresponding
to 10 object classes, it seems that the approach tends to works.

148 CHAPTER 9. ADAPTIVE 3-D OBJECT CLASSIFICATION

Table 9.6: Classification results when using global properties to distinguish the first
state on 10 object classes.

random maxQ change
episodes 90 M 100 M (rel.)
fail state 28.7% 16.3% −41.5%
overtime/match 41.5% 58.6% 41.3%
overtime/miss 25.7% 8.5% −66.6%
exact match 3.6% 16.0% 326.3%
no actions/match 0.4% 0.4% −0.1%
no actions/miss 0.2% 0.2% 1.3%
sum of positive results 45.5% 75.0% 63.7%

The corresponding values of Table 9.6 show, that the number of fail states
could be reduced from 17.9% to 16.3% while the number of exact matches could
be increased from 15.3% to 16.0%. All in all the sum of positive results increased
from 73.5% to 75.0%.

How strongly the learning process is influenced can be better explained with
Table 9.7 and Table 9.8 shown below.

Table 9.7: Distribution of algorithms applied in each step of an episode without the
influence of global properties.

step 3DSC FPFH PFH SHOT SI USC final state
1 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 13.90%
2 15.23% 0.00% 35.35% 10.02% 12.00% 13.51% 45.83%
3 12.53% 0.00% 9.51% 10.21% 3.43% 4.59% 26.98%
4 2.74% 0.00% 4.38% 1.44% 1.10% 3.63% 6.93%
5 0.64% 0.00% 2.69% 1.30% 1.47% 0.26% 3.31%
6 0.95% 0.00% 1.76% 0.04% 0.20% 0.11% 3.05%

Table 9.7 shows the distribution of algorithms that have been applied at each
step of an episodes. Because no global properties have been used in this case,
one can see that FPFH is always selected in the first step of each episode. The
proportion of episodes, which are terminated after this first step is 13.9%.

The second Table 9.8 shows the same values with the use of global properties.
On the one hand one can see that different algorithms will be used in first step

9.3. ADAPTIVE LEARNING 149

Table 9.8: Distribution of algorithms applied in each step of an episode with the influ-
ence of global properties.

step 3DSC FPFH PFH SHOT SI USC final state
1 0.00% 80.55% 0.00% 0.00% 1.02% 18.44% 6.16%
2 12.57% 5.02% 25.99% 21.25% 10.59% 18.42% 33.45%
3 21.10% 2.42% 14.25% 8.36% 11.20% 3.07% 38.38%
4 8.66% 2.71% 5.53% 1.56% 1.56% 1.98% 10.94%
5 0.88% 1.21% 6.23% 0.86% 0.71% 1.18% 8.17%
6 0.60% 0.09% 1.85% 0.13% 0.13% 0.08% 2.89%

of each episode, and on the other hand the proportion of episodes, which are
terminated after this first step is with a value of 6.16% only half of the previous
value. This is a quite satisfactory result, even if it is not reflected in the overall
result.

9.2.2 Conclusion

The enhancement of the overall results that can be achieved using the global
properties are quite small, but show that the method basically works. However,
the significance of the simple global parameters used here is higher than expected.
It could be shown that the fail states subsequent to the first applied algorithm
could be more than halved using the global properties.

All in all, it must be assumed that better results can only be expected with
a larger variety of local 3-D feature description algorithms and/or a more infor-
mative global description. The latter could be, for example, a very simple global
descriptor, like the rotation invariant shape descriptor of Suzuki et al. [85], where
they fit the point cloud into a unit cube, divide the cube into a coarse grid and
count the points in each grid cell.

9.3 Adaptive Learning

As introduced in Section 7.2.4 adaptive learning means the ability to respond to
future changes, without having to discard and relearn previously learned struc-
tures. In context of reinforcement learning this is typically done by means of an
ε-greedy policy. As motivated in the same context in Section 7.2.4 an ε-greedy

150 CHAPTER 9. ADAPTIVE 3-D OBJECT CLASSIFICATION

policy does not make sense, because for unknown point clouds it can not be as-
sessed if a classification was successful or not. Accordingly, during an episode no
rewards can be propagated to randomly selected actions.

Therefore, the method is adapted as follows:

• With a probability of ε an episode called random episode is applied.

• During a random episode one of the known object with a known class is
selected randomly. This enables the reinforcement learning framework to
asses the classification result and to give an appropriate reward.

• During a random episode all actions will be selected randomly, too. This
enables the reinforcement learning agent to select a previously unknown
action from time to time.

• Otherwise, during a regular, non-random episode, any object can be classi-
fied. Here, the maxQ-policy is always used.

• Additionally, the Q-values of the Q-table will not be updated in regular
episodes.

Subsequently, the reinforcement learning framework is initially trained with
5 of the 6 available algorithms on the dataset of 10 object classes. During an
initial exploration phase both values α and ε are 1.0. After 25M episodes, i. e.,
after the Q-values have stabilized, the learning rate α is reduced to a value of
0.1. In this way, an eventual overfitting is compensated. At 45M episodes ε is
also reduced to a value of 0.1. From this episode on the reinforcement learning
is in an exploitation mode, even if 10% of the episodes are performed as random
episodes. In this mode the reinforcement learning framework can be used for
classification tasks of 3-D point clouds, even if they are new and their classes are
previously unknown.

9.3.1 Results

To demonstrate the adaptability of the reinforcement learning framework, the
respective missing algorithm is provided again with episode 50M. The courses
of the classification curves as they are given in Figure 9.13 illustrate that the
classification rates decrease a little bit first, while the Q-values are adjusted.
Subsequently, the values increase in most cases to a higher value than before.

9.3. ADAPTIVE LEARNING 151

0 20 40 60 80 100

6
10×

%
 o

f
st

at
es

10

20

30

40

50

60

70

80
ratio of terminal states

episodes
0 20 40 60 80 100

6
10×

al
p

h
a

/
ep

si
lo

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fail state
overtime/match
overtime/miss
exact match
no actions/match
no actions/miss
sum positive

(a) 3DSC

0 20 40 60 80 100

6
10×

%
 o

f
st

at
es

10

20

30

40

50

60

70

80
ratio of terminal states

episodes
0 20 40 60 80 100

6
10×

al
p

h
a

/
ep

si
lo

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fail state
overtime/match
overtime/miss
exact match
no actions/match
no actions/miss
sum positive

(b) FPFH

0 20 40 60 80 100

6
10×

%
 o

f
st

at
es

10

20

30

40

50

60

70

80
ratio of terminal states

episodes
0 20 40 60 80 100

6
10×

al
p

h
a

/
ep

si
lo

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fail state
overtime/match
overtime/miss
exact match
no actions/match
no actions/miss
sum positive

(c) PFH

0 20 40 60 80 100

6
10×

%
 o

f
st

at
es

10

20

30

40

50

60

70

80
ratio of terminal states

episodes
0 20 40 60 80 100

6
10×

al
p

h
a

/
ep

si
lo

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fail state
overtime/match
overtime/miss
exact match
no actions/match
no actions/miss
sum positive

(d) SHOT

0 20 40 60 80 100

6
10×

%
 o

f
st

at
es

10

20

30

40

50

60

70

80
ratio of terminal states

episodes
0 20 40 60 80 100

6
10×

al
p

h
a

/
ep

si
lo

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fail state
overtime/match
overtime/miss
exact match
no actions/match
no actions/miss
sum positive

(e) SI

0 20 40 60 80 100

6
10×

%
 o

f
st

at
es

10

20

30

40

50

60

70

80
ratio of terminal states

episodes
0 20 40 60 80 100

6
10×

al
p

h
a

/
ep

si
lo

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fail state
overtime/match
overtime/miss
exact match
no actions/match
no actions/miss
sum positive

(f) USC

Figure 9.13: These 6 graphs illustrate the abilities of adaptive learning. The reinforce-
ment learning environment starts with a pure exploration phase where α and ε have a
value of 1.0, i. e., full learning rate with a completely randomly selection of actions. At
25M episodes the learning rate α is reduced from 1.0 to 0.1 (the blue dotted line), and at
45M episodes ε is reduced, from 1.0 to 0.1. From this moment the reinforcement learn-
ing framework does 90% exploitation and 10% exploration, i. e., 10% random episodes.
Before reaching 50M episodes the agent has only 5 of 6 algorithm at his disposal. At
50M, marked with the red dashed line, the 6th algorithm which is specified under the
respective graphs is added to the framework.

152 CHAPTER 9. ADAPTIVE 3-D OBJECT CLASSIFICATION

80 85 90 95 100

6
10×

%
 o

f
st

at
es

10

20

30

40

50

60

70

80

90

100

ratio of terminal states

episodes
80 85 90 95 100

6
10×

al
p
h
a

/
ep

si
lo

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 fail state
overtime/match
overtime/miss
exact match
no actions/match
no actions/miss
sum positive

(a) w/o SHOT
80 85 90 95 100

6
10×

%
 o

f
st

at
es

10

20

30

40

50

60

70

80

90

100

ratio of terminal states

episodes
80 85 90 95 100

6
10×

al
p
h
a

/
ep

si
lo

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 fail state
overtime/match
overtime/miss
exact match
no actions/match
no actions/miss
sum positive

(b) w/o SI
80 85 90 95 100

6
10×

%
 o

f
st

at
es

10

20

30

40

50

60

70

80

90

100

ratio of terminal states

episodes
80 85 90 95 100

6
10×

al
p
h
a

/
ep

si
lo

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 fail state
overtime/match
overtime/miss
exact match
no actions/match
no actions/miss
sum positive

(c) w/o SHOT and SI

Figure 9.14: These three graphs show the classification results using the reinforcement
learning framework without the algorithms SHOT and SI.

Upon closer examination of the graph two questions arise:

1. Why is the sum of the positive states (black line) despite the use of all 6
algorithms not as expected at a level of about 75%?

2. Why is the classification rate of the two cases where the algorithms SHOT
and SI are initially excluded higher than with their use?

Both questions have the same cause: the random episodes. In a purely random
selection of algorithms, a positive terminal state is achieved in 45.5% of all cases
(see Table 9.6). The combination with the classification rate of the maxQ-policy
results arithmetically in: 0.9 · 75.0% + 0.1 · 45.5% = 72.0%

Because of a learning rate of α = 0.1 these values could not entirely be reached
within the 100M episodes shown. However, a close look at the values shows that
they change until the last episode shown.

If, in context of question two, one assumes that the two above-mentioned al-
gorithms are "bad" for the learner, one would have to conclude that the overall
results turn out better without the two algorithms. But this is not the case:
Figure 9.14 reveals that the sum of positive terminal states keeps stable at ap-
proximately 75%. Instead, the exact matches drop slightly for the cases shown in
Figure 9.14 (a) and (b) and reach a value close to zero in the third case shown in
Figure 9.14 (c). Therefore, the random selection of the algorithms is also respon-
sible for the behavior here. This implies that SHOT and SI will be used only in
a particular order in relation to the other algorithms. However, this order will
depend individually on the state of the reinforcement learning framework.

9.3. ADAPTIVE LEARNING 153

9.3.2 Conclusion

The analysis of the results clearly shows that the adaptive approach works very
well. It shows that the classification rate converges very quickly even with a
learning rate of α = 0.1. Therefore in principle, a smaller value of ε is conceivable,
so that the positive results classification can be maximized.

154 CHAPTER 9. ADAPTIVE 3-D OBJECT CLASSIFICATION

10 Comparative Evaluation of Results

The last three chapters have shown that it is possible to increase the classification
results by a skillfully combination of several local 3-D feature description algo-
rithms, without exceeding a defined time limit. The results show on the one hand
how difficult a classification of noisy low-resolution 3-D point clouds is. But they
also show that it is generally possible, and that proper classification rates can be
reached for object classes which are to a certain degree disjoint. Therefore, the
results are summarized in the following sections.

10.1 Initial Situation

The set of point clouds has been deliberately chosen to address the problems of a
general realizable object classification in diverse environments. That means, that
in addition to the technical characteristics such as the assignment of an object
to an object class as listed in Section 7.3.1 some general characteristics of a data
set influenced its choice:

• The data set should contain everyday objects.

• The objects should have been recorded by a 3-D capture device and should
not have been created by a synthetic method such as CAD.

• Since in robotics low cost 3-D depth cameras, which operate on the principle
of structured light have been used in recent years more frequently, it was
also optimal that the point clouds of the chosen data set were created in
the same manner.

155

156 CHAPTER 10. COMPARATIVE EVALUATION OF RESULTS

However, the last item means that the point clouds have a relatively small
size. With an average number of ≈ 5900 3-D points per object, the information
content of the point cloud corresponds approximately to a 77×77-pixel sized gray-
scale image – but unstructured. So one has to make it clear that a classification
task based solely on this small amount of information is a challenging task. An
additional challenge is also the similarity of many object classes such as apple,
onion, orange, peach, potato, and tomato.

For this reason, all experiments were carried out not only on the complete
data set, which consists of 51 object classes, 300 distinct objects and 207481 low
resolution depth scans (3-D point clouds) of different poses, but also on a reduced
data set with 10 object classes and 53 distinct objects, whereby the latter still
contains a considerable number of 37735 different 3-D point clouds.

10.2 Classification Results

To achieve a maximum classification rate for every single 3-D local feature de-
scription algorithms as well as for the reinforcement learning framework, the basic
classification pipeline was analyzed and evaluated in a comprehensive examina-
tion of numerous parameters. Besides the optimization of various parameters
of the entire classification pipeline, the classification rate of the support vector
machines has been maximized. This step should especially reduce the number
of false-negative results, i. e., the results that exclude an object from an object
class, although the object belongs to the object class. Due to the design of the
system this is crucial, since it is not possible to revise an exclusion.

The latter leads more or less inevitably to low precision values, i. e., a high
number of false-positive results. In many cases, even when combining multiple
algorithms, this does not lead to a unique assignment, but to a set of class
candidate. In order to be still able to evaluate the result, the prediction values
are summed up for each object class that remains in the set of class candidates.
Finally, this sum is used to identify the object class with the highest sum of
prediction values, which is then used for a mapping between the object and
an object class. The latter leads to significantly weaker classification results of
individual local 3-D feature descriptors in comparison to the results of ≈ 95%
reached during the training of the support vector machines, where only the cases

10.2. CLASSIFICATION RESULTS 157

were taken into account in which an object could or couldn’t be assigned to an
object class.

The application of a single 3-D local feature description algorithm within
the optimized basic classification pipeline lead to the following results: Exact
classification results were neither possible with all object classes nor with the
reduced set of 10 object classes. The algorithm, which assigns the most correct
classes due to the prediction values of its support vector machines is in both cases
the fast point feature histogram (FPFH) by Rusu et al. [71]. In case of all object
classes a rate of 9.4% could be achieved, while a rate of 65.0% could be achieved
for the reduced set of object classes.

Following the experiments of the basic classification pipeline the results of
the reinforcement learning frameworks were determined. For this purpose, it
was first examined whether an increase of the classification limit and thereby
the prediction value of a support vector machine leads to better classification
results. However, the analysis showed that an increase of the classification limit
precisely had the opposite effect, because the increase of the classification limit
led to an increased number of false-negative results, which should be avoided as
noted above. For this reason, this approach was rejected.

But even without changing the classification limits it was possible to increase
the rate of positive terminal states which would allow a correct assignment to
the object class. While this classification rate for 10 object classes increased
slightly from 65.0% for FPFH to 73.5% for the learned combination of different
algorithms, the rate increased considerably from 9.4% to 21.7% for all object
classes. Additionally, the rate of exactly assigned object classes could be increased
from 0.0% to 15.3% and 4.9% respectively. This is a substantial improvement
especially for the large data set.

Since the first state of the reinforcement learning framework in the approaches
so far always was the state in which the set of class candidates consists of all
object classes, the reinforcement learning agent was not able to select different
algorithms in a first step. Therefore, a differentiation of the first state based
on a few global properties of a point cloud was introduced. This approach was
especially intended to reduce the relatively large number of fail states after the
application of the first algorithm. Even if the reduction of the amount of fail
states from 17.9% to 16.3% is relatively low, it has been shown that the basic
principle works. In addition, it was shown that the amount of fail states after

158 CHAPTER 10. COMPARATIVE EVALUATION OF RESULTS

the first applied algorithm could be more than halved using the global properties.
This is quite a satisfactory result, even if it is not reflected in the overall result.
In addition, the classification rate increased from 73.5% to 75% in the case of 10
object classes.

10.3 Adaptivity

One of the essential features of a reinforcement learning frameworks is the con-
tinuous adaptability to a changing environment. While other machine learning
methods usually need to be retrained due to changes of the environment and
the parameters, a reinforcement learning framework usually reacts on changes in
an ongoing process, which affects the actual task of the reinforcement learning
framework only slightly.

With an adaptive, randomized choice between ε-greedy and random episodes
the proposed reinforcement learning framework demonstrated impressively how
effectively this approach works. This enables the framework to successively add
or remove local 3-D feature descriptors or to modify their parameters, e. g., the
classification limits to observe the influence of the changes directly on the running
system.

10.4 Computation Time

One topic that has not even been discussed yet is the computation time. In
Section 7.3.2, the choice of the time limit was discussed, justified and specified to
10 seconds. An interesting final question is, how long does it really take to do a
classification using this time limit and how many algorithms will be used within
this time?

While in the case where global properties are not used each episode takes
an average computation time of 4.4 seconds to apply 2.49 algorithms, the use
of global properties increases the computation time slightly to 4.6 seconds. But
within this time 2.9 algorithms are applied on average.

11 Conclusion and Outlook

11.1 Conclusion

This thesis has made novel contributions to the area of object classification based
on 3-D point clouds. A reliable classification of objects is an essential milestone
on the way to well-functioning scene understanding. However, object classifica-
tion solely on the basis 2-D information, i. e., color images is often insufficient.
Accordingly, in recent years much effort has gone into the development of local
3-D feature descriptions that allow for a robust classification. Nevertheless, a
large-scale classification of objects based on 3-D point cloud data is still a major
challenge.

This thesis could demonstrate how a reinforcement learning approach in the
field of computer vision can improve the results of individual 3-D object classifi-
cation approaches by learning strategies for a selection and successive application
of different 3-D point cloud descriptors. It has been shown how a reinforcement
learning framework can be put into position to find a good balance between the
available time given and the classification abilities of individual algorithms. In
concrete terms this means that the reinforcement learning framework learned to
select individual sequences of local 3-D feature description algorithms, depending
on the point cloud at hand, to get the best possible classification results. Further-
more, the usage of an on-line learning method such as the reinforcement learning
method Q-learning provides a distinct advantage over off-line learning methods
because of its flexibility under changing conditions. For example, it allows the
adaptive integration of new algorithms into the classification process, while the
system is on duty.

159

160 CHAPTER 11. CONCLUSION AND OUTLOOK

In summary, besides the described contributions to the field of machine learn-
ing this thesis has introduced a new concept to improve the classification rates in
the area of 3-D object classification, of which a further investigation is considered
to be desirable.

11.2 Future Work

While working on this thesis some new questions arose on different parts of the
examined methods and models which are worth taking a closer look at. One
of the first questions which arose was how the system scales using additional
algorithms for local 3-D feature descriptions. This implies the question whether
the classification rates continue to grow or stagnate at some point.

Furthermore, additional options for the selection of the first local 3-D feature
description algorithm should be examined. As part of this thesis it was shown,
that simple global properties of point clouds can be utilized to reduce the number
of false classifications of the local 3-D feature description algorithm selected first.
However, with the long-term aim of achieving a result close to 100% correct
classifications, the errors caused by an unfavorable selection of the first algorithm
have to be minimized. This could be done, for example, by using further global
properties or by using additional global point cloud descriptors like the viewpoint
feature histogram.

The investigations concerning the initial algorithm lead to a further question.
Is there a potential correlation between specific global properties of a point cloud
and the algorithms used at first? Or in other words: is it possible to identify
certain characteristics of local 3-D feature description algorithms, which lead
precisely to this differentiation? This information could possibly help to improve
individual algorithms.

Finally, if it would be possible to achieve almost 100% correct classification
results, the reinforcement learning framework could also be used to create new
object classes, i. e., to autonomously learn the assignment of objects to classes
it has not been exposed to before. Under the assumption that a classification
is usually correct, it could also be assumed that an unsuccessful assignment of
an object to a class means that this object does not belong to any of the known
classes. If, in such a case, all available algorithms would be applied to the object
and it would still be impossible to assign the object to an existing class, the object

11.2. FUTURE WORK 161

would be regarded as a first instance of a new yet unnamed object class. In this
way, new object classes could arise nearly automatically. In that case, new object
classes have, of course, to be evaluated and labeled by a human observer from
time to time.

162 CHAPTER 11. CONCLUSION AND OUTLOOK

A Software

The following sections describe the software components, libraries, and the de-
velopment environment used to develop all programs and tools.

A.1 System

Basis of all calculations are workstations from DELL with the following hardware
specifications:

Parameter Value
System Dell Precision WorkStation T3500
CPU Intel Xeon E5630 @2.53GHz
Memory 12GB DDR3 @1066MHz
GPU NVIDIA GeForce GTX 670

The system used has the following configuration:

Parameter Value
OS Debian 8.0 (Jessie) GNU/Linux 64bit
Kernel 3.16.7 amd64
GNU C Library 2.19-18

A.2 Development Environment

The development environment consists of the following components:

Parameter Value
Compiler GNU Compiler Collection 4.8.4-1
Build Tools GNU Make 4.0-8.1

CMake 3.0.2-1
IDE KDevelop 4.7.0-1

163

164 APPENDIX A. SOFTWARE

A.3 Libraries

The following libraries are required to compile the programs:

Library Note
libstdc++ GNU Standard C++ Library v3 4.8.4-1
OpenCV 3.0.0 *) Open Source Computer Vision
PCL 1.8.0 *) Point Cloud Library
ROOT 6.04/02 *) Cern’s modular scientific software toolkit
VTK v6.2.0 *) The Visualization Toolkit

Note: all software tools marked with *) are compiled from source. Details can
be found in the following sections.

A.3.1 VTK

The Visualization Toolkit (VTK) is an open-source, freely available software sys-
tem for 3-D computer graphics, image processing, and visualization. It consists
of a C++ class library and several interpreted interface layers including Tcl/Tk,
Java, and Python. Version 6.2.0 of VTK (http://www.vtk.org/) is required to
avoid a conflict with a simultaneous use of OpenCV and PCL, since the available
VTK library included with the installed Debian version (libvtk5.8) is linked with
Qt4, while Qt5 is required.

To compile the version used within this thesis (v6.2.0), the following commands
can be used:

$ g i t c l o n e h t t p s : // g i t l a b . k i t w a r e . com/ vtk / vtk . g i t
$ cd vtk
$ g i t checkout t ag s /v6 . 2 . 0
$ mkdir −p b u i l d
$ cd b u i l d
$ cmake \

−DCMAKE_BUILD_TYPE=R e l e a s e \
−DCMAKE_CXX_COMPILER=/u s r / b i n /g++−4.8 \
−DCMAKE_C_COMPILER=/u s r / b i n /gcc −4.8 \
−DVTK_QT_VERSION: STRING=5 \
−DVTK_Group_Qt=ON \
. .

$ make − j 4
$ make i n s t a l l
$ l d c o n f i g

A.3. LIBRARIES 165

A.3.2 OpenCV

OpenCV (Open Source Computer Vision Library) available at http://opencv.

org is an open-source BSD-licensed library that includes several hundreds of
computer vision algorithms.

To compile the version used within this thesis (3.0.0), the following commands
can be used:

$ g i t c l o n e h t t p s : // g i t hub . com/ I t s e e z / opencv . g i t
$ cd opencv
$ g i t checkout t ag s / 3 . 0 . 0
$ mkdir −p b u i l d
$ cd b u i l d
$ cmake −Wno−dev \

−DCMAKE_BUILD_TYPE=R e l e a s e \
−DCMAKE_CXX_COMPILER=/u s r / b i n /g++−4.8 \
−DCMAKE_C_COMPILER=/u s r / b i n /gcc −4.8 \
−DBUILD_DOCS=On \
−DBUILD_EXAMPLES=On \
−DWITH_OPENGL=On \
−DWITH_QT=5 \
−DWITH_VTK=On \
−DWITH_OPENMP=On \
. .

$ make − j 4 && make doxygen && make i n s t a l l && l d c o n f i g

A.3.3 PCL

The Point Cloud Library (http://pointclouds.org) is a large open source li-
brary for 3-D point cloud processing.

To compile the version used within this thesis (1.8.0), the following commands
can be used:

$ g i t c l o n e h t t p s : // g i t hub . com/ P o i n t C l o u d L i b r a r y / p c l . g i t
$ cd p c l
$ mkdir −p b u i l d
$ cd b u i l d
$ cmake −Wno−dev \

−DCMAKE_BUILD_TYPE=R e l e a s e \
−DCMAKE_CXX_COMPILER=/u s r / b i n /g++−4.8 \

166 APPENDIX A. SOFTWARE

−DCMAKE_C_COMPILER=/u s r / b i n /gcc −4.8 \
−DBUILD_CUDA=ON \
−DBUILD_cuda_apps=ON \
−DBUILD_cuda_io=ON \
−DBUILD_GPU=ON \
−DBUILD_apps=ON \
−DBUILD_apps_cloud_composer=ON \
−DBUILD_apps_modeler=ON \
−DBUILD_apps_point_cloud_editor=ON \
−DBUILD_examples=ON \
−DWITH_DOCS=ON \
−DWITH_TUTORIALS=ON \
. .

$ make − j 3 && make i n s t a l l && l d c o n f i g

A.3.4 ROOT

ROOT is a framework for data processing, developed at CERN. The ROOT
system (http://root.cern.ch/) is used to handle, store and analyze the data.
The experiments store both their raw data and intermediate, processed results
using ROOT. Especially, all of the graphs and histograms in this thesis are created
with ROOT.

To compile the version used within this thesis (v6.04/02), the following commands
can be used:

$ g i t c l o n e h t tp : // r o o t . c e rn . ch/ g i t / r o o t . g i t
$ cd r o o t
$ g i t checkout t ag s /v6−04−02
$. / c o n f i g u r e −−p r e f i x =/u s r / l o c a l
$ make − j 3 && make i n s t a l l && l d c o n f i g && make i n s t a l l
$ l d c o n f i g

B Datasets

This appendix provides an overview of the data sets used.

B.1 The Stanford 3-D Scanning Repository

The Stanford 3-D Scanning Repository is a set of computer graphics test models
for 3-D graphics. The data was collected by using a technique called range scan
that was developed by Greg Turk of Georgia Institute of Technology and Marc
Levoy of Stanford University. It consists of the following objects:

filename: bun_zipper.ply
description: ’Stanford Bunny’ in 4 resolutions:
number of vertices: 35947 8171 1889 453
unique vertices: 35947 8171 1889 453
number of faces: 69451 16301 3851 948
unique faces: 69451 16214 3768 908
unique edges: 104288 24363 5661 1363

filename: dragon_vrip.ply
description: ’Dragon’ in 4 resolutions:
number of vertices: 437645 100250 22998 5205
unique vertices: 435545 100250 22998 5205
number of faces: 871414 202520 47794 11102
unique faces: 871414 201031 46540 10600
unique edges: 1307004 301207 69509 15796

filename: happy_vrip.ply
description: ’Happy Buddha’ in 4 resolutions:
number of vertices: 543652 144647 32328 7108
unique vertices: 543524 144647 32328 7108
number of faces: 1087716 293232 67240 15536
unique faces: 1087693 290633 65590 14765
unique edges: 1631286 435252 97945 21852

167

168 APPENDIX B. DATASETS

filename: lucy.ply
description: Lucy
number of vertices: 14027872
unique vertices: 14027870
number of faces: 28055742
unique faces: 28055728
unique edges: 42083637

These models are used to approximate the mesh resolution.

B.2. 3-D SHAPE RETRIEVAL CONTEST 2013 169

B.2 Dataset from the
3-D Shape Retrieval Contest 2013

The objects of the following dataset from the “3-D shape Retrieval Contest 2013”
[76] were captured with the Microsoft Kinect camera. In addition to the Stanford
models mentioned above, these models are also used to approximate the mesh
resolution.

filename: 22.ply
description: teddy bear
number of vertices: 71403
unique vertices: 11903
number of faces: 23808
unique faces: 23808
unique edges: 35712

filename: 29.ply
description: finger puppet
number of vertices: 126734
unique vertices: 21128
number of faces: 42260
unique faces: 42260
unique edges: 63390

filename: 49.ply
description: clock
number of vertices: 207990
unique vertices: 34670
number of faces: 69348
unique faces: 69348
unique edges: 104022

filename: 56.ply
description: rugby ball
number of vertices: 144563
unique vertices: 24112
number of faces: 48220
unique faces: 48220
unique edges: 72330

filename: 57.ply
description: alien rat
number of vertices: 105383
unique vertices: 17572
number of faces: 35140
unique faces: 35140
unique edges: 52710

170 APPENDIX B. DATASETS

filename: 141.ply
description: cow
number of vertices: 67910
unique vertices: 11322
number of faces: 22640
unique faces: 22640
unique edges: 33960

filename: 144.ply
description: santa claus
number of vertices: 139024
unique vertices: 23177
number of faces: 46366
unique faces: 46366
unique edges: 69549

filename: 146.ply
description: wooden air plane
number of vertices: 129027
unique vertices: 21496
number of faces: 43020
unique faces: 43020
unique edges: 64530

filename: 205.ply
description: castle clock
number of vertices: 92920
unique vertices: 15491
number of faces: 30978
unique faces: 30978
unique edges: 46467

filename: 210.ply
description: LEGO crane
number of vertices: 64978
unique vertices: 10835
number of faces: 21670
unique faces: 21670
unique edges: 32505

B.3. RGB-D OBJECT DATASET 171

B.3 RGB-D Object Dataset from the
University of Washington

The dataset contains 300 objects in 51 categories. Cropped photos from the
objects that were used within each of the 51 categories are shown on the next
pages. The crop masks used in these images correspond to the 3-D data that was
used in this thesis. The latter is characterized by the fact that areas covered by
glossy reflections are missing. In the same areas also no depth values could be
determined due to the reflection. In addition, it can be seen at objects with thin
parts such as pliers or scissors that also the x- and y-resolution of 3-D cameras
that work with structured light is limited.

apple

ball

banana

bell pepper

binder

bowl

calculator

172 APPENDIX B. DATASETS

camera

cap

cell phone

cereal box

coffee mug

comb

dry battery

flashlight

food bag

food box

food can

B.3. RGB-D OBJECT DATASET 173

food cup

food jar

garlic

glue stick

greens

hand towel

instant
noodles

keyboard

kleenex

174 APPENDIX B. DATASETS

lemon

lightbulb

lime

marker

mushroom

notebook

onion

orange

peach

pear

pitcher

B.3. RGB-D OBJECT DATASET 175

plate

pliers

potato

rubber eraser

scissors

shampoo

soda can

sponge

stapler

tomato

176 APPENDIX B. DATASETS

toothbrush

toothpaste

water bottle

C Extended Results

This chapter provides the full results of those experiments and evaluations, which
could be given only in extracts in the evaluation.

C.1 Approximation of the Mesh Resolution

The figures below show all histograms of differences between the mesh resolution
and the mean Euclidean distances calculated for n nearest neighbors. In each
histogram the x-axis shows the difference to the corresponding mesh resolution
and the y-axis shows the number of randomly selected points which have been
used to calculate the mean point distance to the n nearest neighbors.

The tables show all results of approximations of mesh resolutions for a sample
size of 50 randomly selected 3D points. The n.n. column show the number
nearest neighbors used to calculate the mean. The columns app. mean and mean
diff. show the approximation results and the differences to the mesh resolution
based on edge lengths. The column diff. (%) is the mean difference divided by
the mesh resolution. The highlighted rows show the results with the smallest
difference between the mesh resolution and the approximated values.

’Lucy’ in full resolution

n.n. app. mean mean diff. mean error deviation diff.(%)

2 0.35137881 −0.13625415 ±0.00620694 0.03876232 −38.78

3 0.35517195 −0.13246101 ±0.00063321 0.01964994 −37.29

4 0.39458594 −0.09304702 ±0.00059109 0.01869189 −23.58

5 0.42821923 −0.05941373 ±0.00057295 0.01811828 −13.87

6 0.45372069 −0.03391227 ±0.00040262 0.01270632 −7.47

7 0.47769997 −0.00993299 ±0.00039771 0.01255136 −2.08

8 0.50063982 0.01300686 ±0.00036343 0.01146380 2.60

9 0.52433377 0.03670081 ±0.00033833 0.01066691 7.00

10 0.54622912 0.05859617 ±0.00034288 0.01081029 10.73

177

178 APPENDIX C. EXTENDED RESULTS

’Stanford Bunny’ in full resolution (resolution 1)

n.n. app. mean mean diff. mean error deviation diff.(%)

2 0.00104699 −0.00042363 ±0.00000061 0.00001940 −40.46

3 0.00118107 −0.00028955 ±0.00000058 0.00001843 −24.52

4 0.00126949 −0.00020113 ±0.00000059 0.00001868 −15.84

5 0.00136226 −0.00010836 ±0.00000058 0.00001833 −7.95

6 0.00143414 −0.00003648 ±0.00000057 0.00001813 −2.54

7 0.00149832 0.00002769 ±0.00000059 0.00001860 1.85

8 0.00155601 0.00008539 ±0.00000061 0.00001934 5.49

9 0.00161863 0.00014801 ±0.00000062 0.00001968 9.14

10 0.00167703 0.00020641 ±0.00000064 0.00002029 12.31

’Stanford Bunny’ in reduced resolution (resolution 2)

n.n. app. mean mean diff. mean error deviation diff.(%)

2 0.00229368 −0.00075488 ±0.00000159 0.00005030 −32.91

3 0.00245835 −0.00059020 ±0.00000143 0.00004510 −24.01

4 0.00261149 −0.00043707 ±0.00000132 0.00004162 −16.74

5 0.00277767 −0.00027089 ±0.00000129 0.00004091 −9.75

6 0.00293929 −0.00010926 ±0.00000124 0.00003933 −3.72

7 0.00308892 0.00004036 ±0.00000118 0.00003743 1.31

8 0.00322700 0.00017844 ±0.00000114 0.00003604 5.53

9 0.00336415 0.00031559 ±0.00000114 0.00003617 9.38

10 0.00350144 0.00045288 ±0.00000117 0.00003694 12.93

’Stanford Bunny’ in reduced resolution (resolution 3)

n.n. app. mean mean diff. mean error deviation diff.(%)

2 0.00470970 −0.00157311 ±0.00000318 0.00010063 −33.40

3 0.00504578 −0.00123703 ±0.00000282 0.00008930 −24.52

4 0.00536204 −0.00092077 ±0.00000256 0.00008089 −17.17

5 0.00569007 −0.00059274 ±0.00000249 0.00007871 −10.42

6 0.00601250 −0.00027031 ±0.00000243 0.00007673 −4.50

7 0.00631754 0.00003474 ±0.00000232 0.00007326 0.55

8 0.00660285 0.00032004 ±0.00000226 0.00007155 4.85

9 0.00688427 0.00060146 ±0.00000228 0.00007219 8.74

10 0.00716248 0.00087967 ±0.00000232 0.00007334 12.28

’Stanford Bunny’ in reduced resolution (resolution 4)

n.n. app. mean mean diff. mean error deviation diff.(%)

2 0.00923791 −0.00336723 ±0.00000671 0.00021233 −36.45

3 0.00993927 −0.00266586 ±0.00000611 0.00019335 −26.82

4 0.01060562 −0.00199952 ±0.00000572 0.00018086 −18.85

5 0.01126143 −0.00134370 ±0.00000551 0.00017411 −11.93

6 0.01188754 −0.00071759 ±0.00000540 0.00017065 −6.04

7 0.01248901 −0.00011612 ±0.00000526 0.00016623 −0.93

8 0.01307578 0.00047065 ±0.00000505 0.00015977 3.60

9 0.01363637 0.00103124 ±0.00000494 0.00015633 7.56

10 0.01418421 0.00157907 ±0.00000492 0.00015571 11.13

C.1. APPROXIMATION OF THE MESH RESOLUTION 179

’Dragon’ in full resolution (resolution 1)

n.n. app. mean mean diff. mean error deviation diff.(%)

2 0.00031057 −0.00014285 ±0.00000171 0.00000640 −46.00

3 0.00031809 −0.00013533 ±0.00000049 0.00001170 −42.54

4 0.00034077 −0.00011265 ±0.00000053 0.00001684 −33.06

5 0.00036981 −0.00008362 ±0.00000055 0.00001726 −22.61

6 0.00039672 −0.00005671 ±0.00000056 0.00001764 −14.29

7 0.00042213 −0.00003129 ±0.00000057 0.00001813 −7.41

8 0.00044624 −0.00000719 ±0.00000059 0.00001864 −1.61

9 0.00046935 0.00001592 ±0.00000060 0.00001912 3.39

10 0.00049155 0.00003813 ±0.00000062 0.00001962 7.76

’Dragon’ in reduced resolution (resolution 2)

n.n. app. mean mean diff. mean error deviation diff.(%)

2 0.00069644 −0.00029282 ±0.00000053 0.00001670 −42.05

3 0.00075913 −0.00023014 ±0.00000050 0.00001594 −30.32

4 0.00081769 −0.00017158 ±0.00000049 0.00001553 −20.98

5 0.00087362 −0.00011564 ±0.00000049 0.00001540 −13.24

6 0.00092701 −0.00006225 ±0.00000048 0.00001525 −6.72

7 0.00097762 −0.00001164 ±0.00000048 0.00001513 −1.19

8 0.00102583 0.00003656 ±0.00000048 0.00001518 3.56

9 0.00107247 0.00008320 ±0.00000048 0.00001534 7.76

10 0.00111782 0.00012856 ±0.00000049 0.00001554 11.50

’Dragon’ in reduced resolution (resolution 3)

n.n. app. mean mean diff. mean error deviation diff.(%)

2 0.00150494 −0.00054663 ±0.00000104 0.00003304 −36.32

3 0.00162169 −0.00042988 ±0.00000093 0.00002941 −26.51

4 0.00173019 −0.00032137 ±0.00000086 0.00002730 −18.57

5 0.00183875 −0.00021281 ±0.00000084 0.00002663 −11.57

6 0.00194520 −0.00010637 ±0.00000082 0.00002589 −5.47

7 0.00204684 −0.00000473 ±0.00000078 0.00002476 −0.23

8 0.00214213 0.00009057 ±0.00000076 0.00002415 4.23

9 0.00223468 0.00018311 ±0.00000076 0.00002408 8.19

10 0.00232518 0.00027361 ±0.00000077 0.00002431 11.77

’Dragon’ in reduced resolution (resolution 4)

n.n. app. mean mean diff. mean error deviation diff.(%)

2 0.00311774 −0.00111048 ±0.00000219 0.00006915 −35.62

3 0.00335064 −0.00087757 ±0.00000194 0.00006126 −26.19

4 0.00357117 −0.00065704 ±0.00000177 0.00005592 −18.40

5 0.00379464 −0.00043357 ±0.00000171 0.00005414 −11.43

6 0.00401105 −0.00021716 ±0.00000167 0.00005278 −5.41

7 0.00421530 −0.00001291 ±0.00000160 0.00005074 −0.31

8 0.00440744 0.00017923 ±0.00000156 0.00004927 4.07

9 0.00459447 0.00036626 ±0.00000156 0.00004941 7.97

10 0.00477788 0.00054966 ±0.00000160 0.00005056 11.50

180 APPENDIX C. EXTENDED RESULTS

’Happy Buddha’ in full resolution (resolution 1)

n.n. app. mean mean diff. mean error deviation diff.(%)

2 0.00023908 −0.00010609 ±0.00000282 0.00000846 −44.37

3 0.00024274 −0.00010244 ±0.00000048 0.00000951 −42.20

4 0.00025438 −0.00009079 ±0.00000049 0.00001489 −35.69

5 0.00027373 −0.00007144 ±0.00000055 0.00001729 −26.10

6 0.00029401 −0.00005116 ±0.00000057 0.00001811 −17.40

7 0.00031331 −0.00003186 ±0.00000060 0.00001884 −10.17

8 0.00033166 −0.00001351 ±0.00000062 0.00001955 −4.07

9 0.00034918 0.00000401 ±0.00000064 0.00002023 1.15

10 0.00036598 0.00002080 ±0.00000066 0.00002091 5.68

’Happy Buddha’ in reduced resolution (resolution 2)

n.n. app. mean mean diff. mean error deviation diff.(%)

2 0.00050599 −0.00021803 ±0.00000045 0.00001368 −43.09

3 0.00055032 −0.00017369 ±0.00000049 0.00001546 −31.56

4 0.00059319 −0.00013082 ±0.00000050 0.00001566 −22.05

5 0.00063382 −0.00009020 ±0.00000051 0.00001608 −14.23

6 0.00067256 −0.00005146 ±0.00000052 0.00001650 −7.65

7 0.00070928 −0.00001473 ±0.00000054 0.00001698 −2.08

8 0.00074425 0.00002023 ±0.00000055 0.00001752 2.72

9 0.00077813 0.00005412 ±0.00000057 0.00001806 6.96

10 0.00081107 0.00008705 ±0.00000059 0.00001861 10.73

’Happy Buddha’ in reduced resolution (resolution 3)

n.n. app. mean mean diff. mean error deviation diff.(%)

2 0.00111400 −0.00040115 ±0.00000079 0.00002498 −36.01

3 0.00120051 −0.00031464 ±0.00000072 0.00002285 −26.21

4 0.00128028 −0.00023487 ±0.00000068 0.00002164 −18.35

5 0.00135871 −0.00015643 ±0.00000066 0.00002099 −11.51

6 0.00143529 −0.00007986 ±0.00000065 0.00002053 −5.56

7 0.00150868 −0.00000646 ±0.00000063 0.00002004 −0.43

8 0.00157839 0.00006325 ±0.00000063 0.00001987 4.01

9 0.00164632 0.00013118 ±0.00000064 0.00002009 7.97

10 0.00171296 0.00019781 ±0.00000065 0.00002041 11.55

’Happy Buddha’ in reduced resolution (resolution 4)

n.n. app. mean mean diff. mean error deviation diff.(%)

2 0.00232557 −0.00080491 ±0.00000159 0.00005036 −34.61

3 0.00249375 −0.00063674 ±0.00000141 0.00004468 −25.53

4 0.00265049 −0.00047999 ±0.00000129 0.00004085 −18.11

5 0.00280961 −0.00032087 ±0.00000126 0.00003986 −11.42

6 0.00296176 −0.00016873 ±0.00000124 0.00003915 −5.70

7 0.00310749 −0.00002299 ±0.00000122 0.00003844 −0.74

8 0.00324530 0.00011482 ±0.00000120 0.00003781 3.54

9 0.00338383 0.00025335 ±0.00000123 0.00003900 7.49

10 0.00351897 0.00038848 ±0.00000128 0.00004055 11.04

C.1. APPROXIMATION OF THE MESH RESOLUTION 181

SHREC’13 object 22

n.n. app. mean mean diff. mean error deviation diff.(%)

2 1.09857595 −0.51206929 ±0.00383148 0.02453344 −46.61

3 1.15788835 −0.45275689 ±0.00145183 0.04488957 −39.10

4 1.28734788 −0.32329736 ±0.00125921 0.03981984 −25.11

5 1.39938945 −0.21125578 ±0.00108751 0.03439017 −15.10

6 1.49075900 −0.11988623 ±0.00097743 0.03090919 −8.04

7 1.57352661 −0.03711863 ±0.00090484 0.02861369 −2.36

8 1.65140697 0.04076174 ±0.00085199 0.02694224 2.47

9 1.72742225 0.11677702 ±0.00081681 0.02582983 6.76

10 1.79912839 0.18848315 ±0.00079355 0.02509431 10.48

SHREC’13 object 29

n.n. app. mean mean diff. mean error deviation diff.(%)

2 1.09087494 −0.50806699 ±0.00251479 0.02502181 −46.57

3 1.16974167 −0.42920025 ±0.00144296 0.04526382 −36.69

4 1.29046851 −0.30847342 ±0.00124660 0.03942090 −23.90

5 1.39761496 −0.20132697 ±0.00110836 0.03504949 −14.41

6 1.48519538 −0.11374654 ±0.00102160 0.03230577 −7.66

7 1.56539965 −0.03354228 ±0.00095677 0.03025567 −2.14

8 1.64167482 0.04273289 ±0.00090659 0.02866880 2.60

9 1.71851877 0.11957684 ±0.00088180 0.02788494 6.96

10 1.79091594 0.19197402 ±0.00086694 0.02741498 10.72

SHREC’13 object 49

n.n. app. mean mean diff. mean error deviation diff.(%)

2 1.11304506 −0.50650715 ±0.00219400 0.02877403 −45.51

3 1.20232242 −0.41722979 ±0.00150374 0.04740949 −34.70

4 1.32206149 −0.29749072 ±0.00127658 0.04036889 −22.50

5 1.42579193 −0.19376028 ±0.00113422 0.03586719 −13.59

6 1.51214879 −0.10740342 ±0.00106044 0.03353415 −7.10

7 1.59634297 −0.02320924 ±0.00101488 0.03209331 −1.45

8 1.67625568 0.05670347 ±0.00098079 0.03101521 3.38

9 1.75530689 0.13575467 ±0.00096144 0.03040352 7.73

10 1.82959042 0.21003821 ±0.00094980 0.03003521 11.48

SHREC’13 object 56

n.n. app. mean mean diff. mean error deviation diff.(%)

2 1.11131837 −0.51756655 ±0.00436794 0.02796849 −46.57

3 1.17909399 −0.44979094 ±0.00140886 0.04378810 −38.15

4 1.30758114 −0.32130379 ±0.00125779 0.03977479 −24.57

5 1.42097886 −0.20790606 ±0.00111112 0.03513680 −14.63

6 1.51268232 −0.11620260 ±0.00102263 0.03233830 −7.68

7 1.59552272 −0.03336221 ±0.00096106 0.03039137 −2.09

8 1.67340803 0.04452311 ±0.00091293 0.02886928 2.66

9 1.75195075 0.12306583 ±0.00088954 0.02812962 7.02

10 1.82526099 0.19637606 ±0.00087548 0.02768513 10.76

182 APPENDIX C. EXTENDED RESULTS

SHREC’13 object 57

n.n. app. mean mean diff. mean error deviation diff.(%)

2 1.10649059 −0.51696524 ±0.00257846 0.02172647 −46.72

3 1.18631620 −0.43713963 ±0.00137661 0.04307260 −36.85

4 1.30862864 −0.31482719 ±0.00121328 0.03836734 −24.06

5 1.41734444 −0.20611139 ±0.00108048 0.03416764 −14.54

6 1.50576873 −0.11768710 ±0.00099913 0.03159514 −7.82

7 1.58644845 −0.03700738 ±0.00094638 0.02992731 −2.33

8 1.66332667 0.03987084 ±0.00090344 0.02856938 2.40

9 1.74048209 0.11702626 ±0.00088134 0.02787032 6.72

10 1.81363690 0.19018107 ±0.00086914 0.02748452 10.49

SHREC’13 object 141

n.n. app. mean mean diff. mean error deviation diff.(%)

2 1.10842467 −0.51649310 ±0.00260938 0.01629555 −46.60

3 1.17230545 −0.45261232 ±0.00142741 0.04418067 −38.61

4 1.29930401 −0.32561376 ±0.00127353 0.04027254 −25.06

5 1.41189311 −0.21302466 ±0.00110857 0.03505619 −15.09

6 1.50570396 −0.11921381 ±0.00100312 0.03172154 −7.92

7 1.59172876 −0.03318901 ±0.00093044 0.02942320 −2.09

8 1.67249761 0.04757984 ±0.00088021 0.02783460 2.84

9 1.75097263 0.12605486 ±0.00084711 0.02678790 7.20

10 1.82496473 0.20004696 ±0.00082381 0.02605125 10.96

SHREC’13 object 144

n.n. app. mean mean diff. mean error deviation diff.(%)

2 1.09090189 −0.50703346 ±0.00218180 0.02115329 −46.48

3 1.16660151 −0.43133384 ±0.00145638 0.04559202 −36.97

4 1.28763404 −0.31030131 ±0.00128611 0.04067025 −24.10

5 1.39412711 −0.20380824 ±0.00114103 0.03608260 −14.62

6 1.48245410 −0.11548125 ±0.00105712 0.03342901 −7.79

7 1.56492910 −0.03300625 ±0.00100340 0.03173018 −2.11

8 1.64288338 0.04494803 ±0.00096563 0.03053598 2.74

9 1.71990361 0.12196826 ±0.00094701 0.02994712 7.09

10 1.79227413 0.19433878 ±0.00093591 0.02959616 10.84

SHREC’13 object 146

n.n. app. mean mean diff. mean error deviation diff.(%)

2 1.17765633 −0.53707191 ±0.00200317 0.02627137 −45.61

3 1.26456878 −0.45015945 ±0.00154017 0.04853367 −35.60

4 1.38826967 −0.32645857 ±0.00133771 0.04230206 −23.52

5 1.50365237 −0.21107586 ±0.00124401 0.03933891 −14.04

6 1.59723832 −0.11748991 ±0.00117551 0.03717277 −7.36

7 1.68091940 −0.03380884 ±0.00112022 0.03542443 −2.01

8 1.75864098 0.04391275 ±0.00106408 0.03364913 2.50

9 1.83903435 0.12430612 ±0.00104420 0.03302056 6.76

10 1.91401893 0.19929070 ±0.00102743 0.03249025 10.41

C.1. APPROXIMATION OF THE MESH RESOLUTION 183

SHREC’13 object 205

n.n. app. mean mean diff. mean error deviation diff.(%)

2 1.10146738 −0.50880970 ±0.00317991 0.02772183 −46.19

3 1.17698369 −0.43329339 ±0.00145466 0.04553801 −36.81

4 1.30149223 −0.30878485 ±0.00126841 0.04011067 −23.73

5 1.40873444 −0.20154264 ±0.00110314 0.03488444 −14.31

6 1.49864524 −0.11163184 ±0.00100471 0.03177172 −7.45

7 1.58350502 −0.02677207 ±0.00094614 0.02991970 −1.69

8 1.66422949 0.05395240 ±0.00090713 0.02868590 3.24

9 1.74287693 0.13259985 ±0.00087674 0.02772484 7.61

10 1.81695637 0.20667929 ±0.00085632 0.02707935 11.38

SHREC’13 object 210

n.n. app. mean mean diff. mean error deviation diff.(%)

2 1.12197939 −0.51011305 ±0.00190770 0.02751331 −45.47

3 1.20519327 −0.42689918 ±0.00155335 0.04872675 −35.42

4 1.31960687 −0.31248558 ±0.00133274 0.04214492 −23.68

5 1.42565696 −0.20643549 ±0.00119045 0.03764535 −14.48

6 1.51214232 −0.11995013 ±0.00110590 0.03497155 −7.93

7 1.59129154 −0.04080090 ±0.00104614 0.03308190 −2.56

8 1.66709094 0.03499849 ±0.00099471 0.03145546 2.10

9 1.74407467 0.11198222 ±0.00096867 0.03063199 6.42

10 1.81726071 0.18516826 ±0.00095025 0.03004961 10.19

184 APPENDIX C. EXTENDED RESULTS

C.2 Parameter Optimization of the
Basic Classification Pipeline

C.2.1 3-D Shape Context

The labels and axes of all histograms concerning the parameter optimization of
the basic classification pipeline are shown below. All these histograms have the
same axes and labels. To save space the axes and labels are depicted separately
and only once. The values of C increase from left to right, while the values of γ
increase from top to bottom.

C
1 5 25 125

γ

0.0001

0.0008

0.0064

0.0512

Mean classification rate of binary classifier support vector machines:
histogram size

keypoints dictionary 10 20 50 100 200 500 1000

intrinsic
shape
signature

apple-
cellphone

intrinsic
shape
signature

apple-
foodjar

intrinsic
shape
signature all

sparse
sampling

apple-
cellphone

sparse
sampling

apple-
foodjar

sparse
sampling all

80% 90% 95% 100%≤

C.2. PARAMETER OPTIMIZATION 185

Number of of object classes where the combination of C and γ leads to the best
classification rate of binary classifier support vector machines:

histogram size
keypoints dictionary 10 20 50 100 200 500 1000

intrinsic
shape
signature

apple-
cellphone

intrinsic
shape
signature

apple-
foodjar

intrinsic
shape
signature all

sparse
sampling

apple-
cellphone

sparse
sampling

apple-
foodjar

sparse
sampling all

0 5 10 20 51

Training times of the support vector machines using different combinations of C
and γ:

histogram size
keypoints dictionary 10 20 50 100 200 500 1000

intrinsic
shape
signature

apple-
cellphone

intrinsic
shape
signature

apple-
foodjar

intrinsic
shape
signature all

186 APPENDIX C. EXTENDED RESULTS

sparse
sampling

apple-
cellphone

sparse
sampling

apple-
foodjar

sparse
sampling all

0s 5s 10s 30s ≥120s

Prediction times of the support vector machines using different combinations of
C and γ:

histogram size
keypoints dictionary 10 20 50 100 200 500 1000

intrinsic
shape
signature

apple-
cellphone

intrinsic
shape
signature

apple-
foodjar

intrinsic
shape
signature all

sparse
sampling

apple-
cellphone

sparse
sampling

apple-
foodjar

sparse
sampling all

0s 1s 2.5s 5s ≥20s10s
(
≈
2
0
m

s *
)

(
≈
5
0
m

s *
)

(
≈
1
0
0
m

s *
)

(
≈
2
0
0
m

s *
)

C.2. PARAMETER OPTIMIZATION 187

C.2.2 Fast Point Feature Histogram

The labels and axes of all histograms concerning the parameter optimization of
the basic classification pipeline are shown below. All these histograms have the
same axes and labels. To save space the axes and labels are depicted separately
and only once. The values of C increase from left to right, while the values of γ
increase from top to bottom.

C
1 5 25 125

γ

0.0001

0.0008

0.0064

0.0512

Mean classification rate of binary classifier support vector machines:

histogram size
keypoints dictionary 10 20 50 100 200 500 1000

intrinsic
shape
signature

apple-
cellphone

intrinsic
shape
signature

apple-
foodjar

intrinsic
shape
signature all

sparse
sampling

apple-
cellphone

sparse
sampling

apple-
foodjar

sparse
sampling all

80% 90% 95% 100%≤

188 APPENDIX C. EXTENDED RESULTS

Number of of object classes where the combination of C and γ leads to the best
classification rate of binary classifier support vector machines:

histogram size
keypoints dictionary 10 20 50 100 200 500 1000

intrinsic
shape
signature

apple-
cellphone

intrinsic
shape
signature

apple-
foodjar

intrinsic
shape
signature all

sparse
sampling

apple-
cellphone

sparse
sampling

apple-
foodjar

sparse
sampling all

0 5 10 20 51

Training times of the support vector machines using different combinations of C
and γ:

histogram size
keypoints dictionary 10 20 50 100 200 500 1000

intrinsic
shape
signature

apple-
cellphone

intrinsic
shape
signature

apple-
foodjar

intrinsic
shape
signature all

C.2. PARAMETER OPTIMIZATION 189

sparse
sampling

apple-
cellphone

sparse
sampling

apple-
foodjar

sparse
sampling all

0s 5s 10s 30s ≥120s

Prediction times of the support vector machines using different combinations of
C and γ:

histogram size
keypoints dictionary 10 20 50 100 200 500 1000

intrinsic
shape
signature

apple-
cellphone

intrinsic
shape
signature

apple-
foodjar

intrinsic
shape
signature all

sparse
sampling

apple-
cellphone

sparse
sampling

apple-
foodjar

sparse
sampling all

0s 1s 2.5s 5s ≥20s10s
(
≈
2
0
m

s *
)

(
≈
5
0
m

s *
)

(
≈
1
0
0
m

s *
)

(
≈
2
0
0
m

s *
)

190 APPENDIX C. EXTENDED RESULTS

C.2.3 Point Feature Histogram

The labels and axes of all histograms concerning the parameter optimization of
the basic classification pipeline are shown below. All these histograms have the
same axes and labels. To save space the axes and labels are depicted separately
and only once. The values of C increase from left to right, while the values of γ
increase from top to bottom.

C
1 5 25 125

γ

0.0001

0.0008

0.0064

0.0512

Mean classification rate of binary classifier support vector machines:

histogram size
keypoints dictionary 10 20 50 100 200 500 1000

intrinsic
shape
signature

apple-
cellphone

intrinsic
shape
signature

apple-
foodjar

intrinsic
shape
signature all

sparse
sampling

apple-
cellphone

sparse
sampling

apple-
foodjar

sparse
sampling all

80% 90% 95% 100%≤

C.2. PARAMETER OPTIMIZATION 191

Number of of object classes where the combination of C and γ leads to the best
classification rate of binary classifier support vector machines:

histogram size
keypoints dictionary 10 20 50 100 200 500 1000

intrinsic
shape
signature

apple-
cellphone

intrinsic
shape
signature

apple-
foodjar

intrinsic
shape
signature all

sparse
sampling

apple-
cellphone

sparse
sampling

apple-
foodjar

sparse
sampling all

0 5 10 20 51

Training times of the support vector machines using different combinations of C
and γ:

histogram size
keypoints dictionary 10 20 50 100 200 500 1000

intrinsic
shape
signature

apple-
cellphone

intrinsic
shape
signature

apple-
foodjar

intrinsic
shape
signature all

192 APPENDIX C. EXTENDED RESULTS

sparse
sampling

apple-
cellphone

sparse
sampling

apple-
foodjar

sparse
sampling all

0s 5s 10s 30s ≥120s

Prediction times of the support vector machines using different combinations of
C and γ:

histogram size
keypoints dictionary 10 20 50 100 200 500 1000

intrinsic
shape
signature

apple-
cellphone

intrinsic
shape
signature

apple-
foodjar

intrinsic
shape
signature all

sparse
sampling

apple-
cellphone

sparse
sampling

apple-
foodjar

sparse
sampling all

0s 1s 2.5s 5s ≥20s10s
(
≈
2
0
m

s *
)

(
≈
5
0
m

s *
)

(
≈
1
0
0
m

s *
)

(
≈
2
0
0
m

s *
)

C.2. PARAMETER OPTIMIZATION 193

C.2.4 Signature of Histograms of Orientations

The labels and axes of all histograms concerning the parameter optimization of
the basic classification pipeline are shown below. All these histograms have the
same axes and labels. To save space the axes and labels are depicted separately
and only once. The values of C increase from left to right, while the values of γ
increase from top to bottom.

C
1 5 25 125

γ

0.0001

0.0008

0.0064

0.0512

Mean classification rate of binary classifier support vector machines:

histogram size
keypoints dictionary 10 20 50 100 200 500 1000

intrinsic
shape
signature

apple-
cellphone

intrinsic
shape
signature

apple-
foodjar

intrinsic
shape
signature all

sparse
sampling

apple-
cellphone

sparse
sampling

apple-
foodjar

sparse
sampling all

80% 90% 95% 100%≤

194 APPENDIX C. EXTENDED RESULTS

Number of of object classes where the combination of C and γ leads to the best
classification rate of binary classifier support vector machines:

histogram size
keypoints dictionary 10 20 50 100 200 500 1000

intrinsic
shape
signature

apple-
cellphone

intrinsic
shape
signature

apple-
foodjar

intrinsic
shape
signature all

sparse
sampling

apple-
cellphone

sparse
sampling

apple-
foodjar

sparse
sampling all

0 5 10 20 51

Training times of the support vector machines using different combinations of C
and γ:

histogram size
keypoints dictionary 10 20 50 100 200 500 1000

intrinsic
shape
signature

apple-
cellphone

intrinsic
shape
signature

apple-
foodjar

intrinsic
shape
signature all

C.2. PARAMETER OPTIMIZATION 195

sparse
sampling

apple-
cellphone

sparse
sampling

apple-
foodjar

sparse
sampling all

0s 5s 10s 30s ≥120s

Prediction times of the support vector machines using different combinations of
C and γ:

histogram size
keypoints dictionary 10 20 50 100 200 500 1000

intrinsic
shape
signature

apple-
cellphone

intrinsic
shape
signature

apple-
foodjar

intrinsic
shape
signature all

sparse
sampling

apple-
cellphone

sparse
sampling

apple-
foodjar

sparse
sampling all

0s 1s 2.5s 5s ≥20s10s
(
≈
2
0
m

s *
)

(
≈
5
0
m

s *
)

(
≈
1
0
0
m

s *
)

(
≈
2
0
0
m

s *
)

196 APPENDIX C. EXTENDED RESULTS

C.2.5 Spin Images

The labels and axes of all histograms concerning the parameter optimization of
the basic classification pipeline are shown below. All these histograms have the
same axes and labels. To save space the axes and labels are depicted separately
and only once. The values of C increase from left to right, while the values of γ
increase from top to bottom.

C
1 5 25 125

γ

0.0001

0.0008

0.0064

0.0512

Mean classification rate of binary classifier support vector machines:

histogram size
keypoints dictionary 10 20 50 100 200 500 1000

intrinsic
shape
signature

apple-
cellphone

intrinsic
shape
signature

apple-
foodjar

intrinsic
shape
signature all

sparse
sampling

apple-
cellphone

sparse
sampling

apple-
foodjar

sparse
sampling all

80% 90% 95% 100%≤

C.2. PARAMETER OPTIMIZATION 197

Number of of object classes where the combination of C and γ leads to the best
classification rate of binary classifier support vector machines:

histogram size
keypoints dictionary 10 20 50 100 200 500 1000

intrinsic
shape
signature

apple-
cellphone

intrinsic
shape
signature

apple-
foodjar

intrinsic
shape
signature all

sparse
sampling

apple-
cellphone

sparse
sampling

apple-
foodjar

sparse
sampling all

0 5 10 20 51

Training times of the support vector machines using different combinations of C
and γ:

histogram size
keypoints dictionary 10 20 50 100 200 500 1000

intrinsic
shape
signature

apple-
cellphone

intrinsic
shape
signature

apple-
foodjar

intrinsic
shape
signature all

198 APPENDIX C. EXTENDED RESULTS

sparse
sampling

apple-
cellphone

sparse
sampling

apple-
foodjar

sparse
sampling all

0s 5s 10s 30s ≥120s

Prediction times of the support vector machines using different combinations of
C and γ:

histogram size
keypoints dictionary 10 20 50 100 200 500 1000

intrinsic
shape
signature

apple-
cellphone

intrinsic
shape
signature

apple-
foodjar

intrinsic
shape
signature all

sparse
sampling

apple-
cellphone

sparse
sampling

apple-
foodjar

sparse
sampling all

0s 1s 2.5s 5s ≥20s10s
(
≈
2
0
m

s *
)

(
≈
5
0
m

s *
)

(
≈
1
0
0
m

s *
)

(
≈
2
0
0
m

s *
)

C.2. PARAMETER OPTIMIZATION 199

C.2.6 Unique Shape Context

The labels and axes of all histograms concerning the parameter optimization of
the basic classification pipeline are shown below. All these histograms have the
same axes and labels. To save space the axes and labels are depicted separately
and only once. The values of C increase from left to right, while the values of γ
increase from top to bottom.

C
1 5 25 125

γ

0.0001

0.0008

0.0064

0.0512

Mean classification rate of binary classifier support vector machines:

histogram size
keypoints dictionary 10 20 50 100 200 500 1000

intrinsic
shape
signature

apple-
cellphone

intrinsic
shape
signature

apple-
foodjar

intrinsic
shape
signature all

sparse
sampling

apple-
cellphone

sparse
sampling

apple-
foodjar

sparse
sampling all

80% 90% 95% 100%≤

200 APPENDIX C. EXTENDED RESULTS

Number of of object classes where the combination of C and γ leads to the best
classification rate of binary classifier support vector machines:

histogram size
keypoints dictionary 10 20 50 100 200 500 1000

intrinsic
shape
signature

apple-
cellphone

intrinsic
shape
signature

apple-
foodjar

intrinsic
shape
signature all

sparse
sampling

apple-
cellphone

sparse
sampling

apple-
foodjar

sparse
sampling all

0 5 10 20 51

Training times of the support vector machines using different combinations of C
and γ:

histogram size
keypoints dictionary 10 20 50 100 200 500 1000

intrinsic
shape
signature

apple-
cellphone

intrinsic
shape
signature

apple-
foodjar

intrinsic
shape
signature all

C.2. PARAMETER OPTIMIZATION 201

sparse
sampling

apple-
cellphone

sparse
sampling

apple-
foodjar

sparse
sampling all

0s 5s 10s 30s ≥120s

Prediction times of the support vector machines using different combinations of
C and γ:

histogram size
keypoints dictionary 10 20 50 100 200 500 1000

intrinsic
shape
signature

apple-
cellphone

intrinsic
shape
signature

apple-
foodjar

intrinsic
shape
signature all

sparse
sampling

apple-
cellphone

sparse
sampling

apple-
foodjar

sparse
sampling all

0s 1s 2.5s 5s ≥20s10s
(
≈
2
0
m

s *
)

(
≈
5
0
m

s *
)

(
≈
1
0
0
m

s *
)

(
≈
2
0
0
m

s *
)

202 APPENDIX C. EXTENDED RESULTS

List of Figures

2.1 3-D classification pipeline . 7

2.2 Generic recognition pipeline . 9

2.3 Classification pipeline . 9

2.4 Viewpoint Component of VFH . 14

2.5 Viewpoint Feature Histogram . 15

3.1 3-D integral descriptor . 19

3.2 Values of normalized Vr(p) . 20

3.3 Extended Integral Volume Descriptors 22

3.4 Local surface patches . 24

3.5 NARF borders . 30

3.6 NARF border weight . 30

3.7 NARF keypoint . 31

4.1 Calculation of spin images . 36

4.2 Example of spin images . 37

4.3 3-D shape context . 38

4.4 Local surface patches . 39

4.5 Thrift . 40

4.6 PFH . 41

4.7 FPFH . 43

4.8 2.5-D SIFT . 45

203

204 LIST OF FIGURES

4.9 ISS . 46

4.10 NARF Descriptor . 47

4.11 Spherical signature of SHOT descriptor 50

4.12 SURE . 51

4.13 HONV descriptor . 53

5.1 SVM example 1 . 56

5.2 SVM example 2 . 56

5.3 SVM example 3 . 57

6.1 Reinforcement learning . 61

6.2 Markov Decision Process . 62

6.3 Exploration-Exploitation Example 1 67

6.4 Exploration-Exploitation Dilemma 68

6.5 Upper Confidence Bound . 69

7.1 Baseline experiment pipeline . 72

7.2 Construction of the of the reinforcement learning model - part 1 . 78

7.3 Construction of the of the reinforcement learning model - part 2 . 79

7.4 Construction of the of the reinforcement learning model - part 3 . 81

7.5 Construction of the of the reinforcement learning model - part 4 . 83

7.6 RGB-D Object Dataset . 85

7.7 RGB-D Object Dataset v.2 . 85

7.8 Distribution of Point Cloud Sizes 86

7.9 Distribution of Point Cloud Resolutions 87

8.1 Baseline experiment pipeline . 91

8.2 Point cloud resolution – different number of nearest neighbors . . . 95

8.3 Distribution of keypoints . 100

8.4 Computation times for a single keypoint 100

LIST OF FIGURES 205

8.5 Computation time for keypoint of an object 101

8.6 Relation between computation time and keypoints per object . . . 102

8.7 Different spin image placements . 103

8.8 Computation times for local 3-D feature descriptors 109

8.9 Computation times for bag of features vocabularies 111

8.10 Axes and labels of all SVM training histograms 113

8.11 Mean classification results for different SVM parameters 114

8.12 Classification results for different SVM parameters 115

8.13 Training times for different SVM parameters 116

8.14 Prediction times for different SVM parameters 116

8.15 Mean classification results – comparison of object classes used for
vocabularies . 118

8.16 Mean classification results – comparison of keypoints 119

8.17 Mean classification rates for different local 3-D feature descriptors 122

8.18 Prediction times for different local 3-D feature descriptors 123

8.19 Precision-recall graphs of all classifiers 125

8.20 Precision-recall graphs with different limits 127

9.1 Fusion with Reinforcement Learning 134

9.2 The number of states and Q-values during RL training – different
limits . 136

9.3 Influence of the learned Q-values on the classification results –
different limits . 137

9.4 The number of states and Q-values during RL training – different
limits . 139

9.5 Classification results using only 10 object classes – different limits . 140

9.6 The number of states and Q-values during RL training – unique
limits . 141

9.7 Influence of the learned Q-values on the classification results –
unique limits . 142

206 LIST OF FIGURES

9.8 The number of states and Q-values during RL training – unique
limits . 143

9.9 Classification results using only 10 object classes – unique limits . 144

9.10 Differentiation of the First State 146

9.11 Classification results with global properties – all classes 146

9.12 Classification results with global properties – 10 classes 147

9.13 Comparison of adaptive learning for different algorithms 151

9.14 Classification results without SHOT and SI 152

Bibliography

[1] Anders Adamson and Marc Alexa. Ray tracing point set surfaces. In Shape
Modeling International, pages 272–279. IEEE, 2003.

[2] A. Aldoma, Zoltan-Csaba Marton, F. Tombari, W. Wohlkinger, C. Pot-
thast, B. Zeisl, R.B. Rusu, S. Gedikli, and M. Vincze. Tutorial: Point cloud
library: Three-dimensional object recognition and 6 DOF pose estimation.
Robotics Automation Magazine, IEEE, 19(3):80–91, Sept 2012.

[3] Aitor Aldoma, Federico Tombari, Radu Bogdan Rusu, and Markus Vincze.
OUR-CVFH – oriented, unique and repeatable clustered viewpoint feature
histogram for object recognition and 6 DOF pose estimation. In Pattern
Recognition, pages 113–122. Springer, 2012.

[4] Luıs A Alexandre. 3D descriptors for object and category recognition: a
comparative evaluation. In Workshop on Color-Depth Camera Fusion in
Robotics at the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Vilamoura, Portugal, 2012.

[5] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of
careful seeding. In Proceedings of the eighteenth annual ACM-SIAM sym-
posium on Discrete algorithms, pages 1027–1035. Society for Industrial and
Applied Mathematics, 2007.

[6] Neslihan Bayramoglu and A Aydin Alatan. Shape index SIFT: Range image
recognition using local features. In Proceedings of the 20th International
Conference on Pattern Recognition (ICPR), pages 352–355. IEEE, 2010.

[7] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[8] Alexander M. Bronstein, Michael M. Bronstein, and Maks Ovsjanikov. 3D
Imaging, Analysis and Applications, chapter Feature-Based Methods in 3D
Shape Analysis, pages 185–219. Springer London, London, 2012.

207

208 BIBLIOGRAPHY

[9] Benjamin Bustos, Daniel Keim, Dietmar Saupe, Tobias Schreck, and De-
jan Vranić. An experimental effectiveness comparison of methods for 3D
similarity search. International Journal on Digital Libraries, 6(1):39–54,
2006.

[10] Hui Chen and Bir Bhanu. 3D free-form object recognition in range images
using local surface patches. Pattern Recognition Letters, 28(10):1252–1262,
2007.

[11] Flavio Chierichetti, Ravi Kumar, Sandeep Pandey, and Sergei Vassilvit-
skii. Finding the jaccard median. In Proceedings of the twenty-first annual
ACM-SIAM symposium on Discrete Algorithms, pages 293–311. Society for
Industrial and Applied Mathematics, 2010.

[12] Michal Cholewa and Przemyslaw Sporysz. Classification of dynamic se-
quences of 3D point clouds. In Artificial Intelligence and Soft Computing,
pages 672–683. Springer, 2014.

[13] Brian Curless and Marc Levoy. A volumetric method for building complex
models from range images. In Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques, pages 303–312. ACM, 1996.

[14] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human
detection. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), volume 1, pages 886–
893. IEEE, 2005.

[15] John D’Errico. Surface fitting using gridfit. MATLAB Central File Ex-
change, 2008.

[16] Chitra Dorai and Anil K Jain. Cosmos-a representation scheme for free-
form surfaces. In Proceedings of the Fifth International Conference on Com-
puter Vision, pages 1024–1029. IEEE, 1995.

[17] Bertram Drost, Markus Ulrich, Nassir Navab, and Slobodan Ilic. Model
globally, match locally: Efficient and robust 3D object recognition. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 998–1005. IEEE, 2010.

BIBLIOGRAPHY 209

[18] Helin Dutagaci, Chun Pan Cheung, and Afzal Godil. Evaluation of 3D
interest point detection techniques via human-generated ground truth. The
Visual Computer, 28(9):901–917, 2012.

[19] Silvio Filipe and Luís A. Alexandre. A comparative evaluation of 3D key-
point detectors. In Proceedings of the 9th Conference on Telecommunica-
tions, Conftele, 2013.

[20] Torsten Fiolka, Jörg Stückler, Dominik A Klein, Dirk Schulz, and Sven
Behnke. Sure: Surface entropy for distinctive 3D features. In Spatial Cog-
nition VIII, pages 74–93. Springer, 2012.

[21] Torsten Fiolka, Jorg Stuckler, Dominik A Klein, Dirk Schulz, and Sven
Behnke. Distinctive 3D surface entropy features for place recognition. In
Proceedings of the European Conference on Mobile Robots (ECMR), pages
204–209. IEEE, 2013.

[22] Alex Flint, Anthony Dick, and Anton van den Hengel. Thrift: Local 3D
structure recognition. In Proceedings of the 9th Biennial Conference of
the Australian Pattern Recognition Society on Digital Image Computing
Techniques and Applications, pages 182–188. IEEE, 2007.

[23] Andrea Frome, Daniel Huber, Ravi Kolluri, Thomas Bulow, and Jitendra
Malik. Recognizing objects in range data using regional point descriptors.
In Proceedings of the European Conference on Computer Vision (ECCV),
May 2004.

[24] Jens Garstka and Gabriele Peters. Learning Strategies to Select Point Cloud
Descriptors for 3D Object Classification: A Proposal. In Eurographics 2014
- Posters. The Eurographics Association, 2014.

[25] Jens Garstka and Gabriele Peters. Fast and robust keypoint detection in un-
structured 3-D point clouds. In Proceedings of the 12th International Con-
ference on Informatics in Control, Automation and Robotics (ICINCO),
July 2015.

[26] Natasha Gelfand, Niloy J Mitra, Leonidas J Guibas, and Helmut Pottmann.
Robust global registration. In Symposium on geometry processing, volume 2,
page 5, 2005.

210 BIBLIOGRAPHY

[27] Yulan Guo, Mohammed Bennamoun, Ferdous Sohel, Min Lu, and Jianwei
Wan. 3D object recognition in cluttered scenes with local surface features:
A survey. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 99(PrePrints):1, 2014.

[28] Chris Harris and Mike Stephens. A combined corner and edge detector. In
Proceedings of the Alvey vision conference, volume 15, page 50. Manchester,
UK, 1988.

[29] M. Heczko, D. Keim, D. Saupe, and D. Vranic. Methods for similarity
search on 3D databases. Datenbank-Spektrum (in German), 2(2):54–63,
2002.

[30] Paul Heider, Alain Pierre-Pierre, Ruosi Li, and Cindy Grimm. Local shape
descriptors, a survey and evaluation. In Proceedings of the 4th Eurographics
conference on 3D Object Retrieval, pages 49–56. Eurographics Association,
2011.

[31] Guenter Hetzel, Bastian Leibe, Paul Levi, and Bernt Schiele. 3D object
recognition from range images using local feature histograms. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), page 394–399, 2001.

[32] Michael Himmelsbach, Thorsten Luettel, and Hans-Joachim Wuensche.
Real-time object classification in 3D point clouds using point feature his-
tograms. In Proceedings of IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 994–1000, St. Louis, MO, USA,
October 2009. IEEE.

[33] Alexander Hornung and Leif Kobbelt. Robust reconstruction of watertight
3D models from non-uniformly sampled point clouds without normal infor-
mation. In Proceedings of the Fourth Eurographics Symposium on Geometry
Processing, SGP ’06, pages 41–50, Aire-la-Ville, Switzerland, Switzerland,
2006. Eurographics Association.

[34] Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin, et al. A practical guide
to support vector classification. Technical report, Department of Computer
Science, National Taiwan University, July 2003.

[35] Allison Janoch, Sergey Karayev, Yangqing Jia, Jonathan T Barron, Mario
Fritz, Kate Saenko, and Trevor Darrell. A category-level 3D object dataset:

BIBLIOGRAPHY 211

Putting the kinect to work. In Consumer Depth Cameras for Computer
Vision, pages 141–165. Springer, 2013.

[36] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Improving bag-of-
features for large scale image search. International Journal of Computer
Vision, 87(3):316–336, 2010.

[37] A.E. Johnson and M. Hebert. Using spin images for efficient object recog-
nition in cluttered 3D scenes. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 21(5):433–449, 1999.

[38] Andrew Edie Johnson and Martial Hebert. Surface matching for object
recognition in complex three-dimensional scenes. Image and Vision Com-
puting, 16(9):635–651, 1998.

[39] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for gen-
erating image descriptions. arXiv preprint arXiv:1412.2306, 2014.

[40] Daniel A Keim. Efficient geometry-based similarity search of 3D spatial
databases, volume 28. ACM, 1999.

[41] Jan Knopp, Mukta Prasad, Geert Willems, Radu Timofte, and Luc
Van Gool. Hough transform and 3D SURF for robust three dimensional
classification. In Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 589–602. Springer, 2010.

[42] Vijay R Konda and John N Tsitsiklis. On actor-critic algorithms. SIAM
journal on Control and Optimization, 42(4):1143–1166, 2003.

[43] Shu Kong and Donghui Wang. A dictionary learning approach for clas-
sification: Separating the particularity and the commonality. In Andrew
Fitzgibbon, Svetlana Lazebnik, Pietro Perona, Yoichi Sato, and Cordelia
Schmid, editors, Proceedings of the European Conference on Computer Vi-
sion (ECCV), volume 7572 of Lecture Notes in Computer Science, pages
186–199. Springer Berlin Heidelberg, 2012.

[44] Kevin Lai, Liefeng Bo, and Dieter Fox. Unsupervised feature learning for
3D scene labeling. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), May 2014.

[45] Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. A large-scale hi-
erarchical multi-view RGB-D object dataset. In Proceedings of the IEEE

212 BIBLIOGRAPHY

International Conference on Robotics and Automation (ICRA), pages 1817–
1824. IEEE, 2011.

[46] Tony Lindeberg. Feature detection with automatic scale selection. Inter-
national journal of computer vision, 30(2):79–116, 1998.

[47] Stuart Lloyd. Least squares quantization in PCM. Information Theory,
IEEE Transactions on, 28(2):129–137, 1982.

[48] Tsz-Wai Rachel Lo and J. Paul Siebert. Local feature extraction and match-
ing on range images: 2.5D SIFT. Computer Vision and Image Understand-
ing, 113(12):1235 – 1250, 2009. Special issue on 3D Representation for
Object and Scene Recognition.

[49] David G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60:91–110, 2004.

[50] Luca Lucchese, Gianfranco Doretto, and Guido M. Cortelazzo. A frequency
domain technique for range data registration. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 24(11):1468–1484, 2002.

[51] Marianna Madry, Heydar Maboudi Afkham, Carl Henrik Ek, Stefan Carls-
son, and Danica Kragic. Extracting essential local object characteristics for
3D object categorization. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2240–2247.
IEEE, 2013.

[52] Marianna Madry, Carl Henrik Ek, Renaud Detry, Kaiyu Hang, and Dani-
caseib Kragic. Improving generalization for 3D object categorization with
global structure histograms. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 1379–1386.
IEEE, 2012.

[53] Siddharth Manay, Byung-Woo Hong, Anthony J Yezzi, and Stefano Soatto.
Integral invariant signatures. Springer, 2004.

[54] B. Matei, Ying Shan, H.S. Sawhney, Yi Tan, R. Kumar, Daniel Huber,
and Martial Hebert. Rapid object indexing using locality sensitive hashing
and joint 3D-signature space estimation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28(7):1111 – 1126, July 2006.

BIBLIOGRAPHY 213

[55] James Mercer. Functions of positive and negative type, and their connection
with the theory of integral equations. Philosophical transactions of the royal
society of London. Series A, containing papers of a mathematical or physical
character, pages 415–446, 1909.

[56] A. Mian, M. Bennamoun, and R. Owens. On the repeatability and quality of
keypoints for local feature-based 3D object retrieval from cluttered scenes.
International Journal of Computer Vision, 89(2-3):348–361, 2010.

[57] Ajmal S Mian, Mohammed Bennamoun, and Robyn Owens. Three-
dimensional model-based object recognition and segmentation in cluttered
scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence,
28(10):1584–1601, 2006.

[58] Eric Paquet and Marc Rioux. Nefertiti: a query by content system for
three-dimensional model and image databases management. Image and
Vision Computing, 17(2):157–166, 1999.

[59] Eric Paquet, Marc Rioux, Anil Murching, Thumpudi Naveen, and Ali
Tabatabai. Description of shape information for 2-D and 3-D objects. Signal
Processing: Image Communication, 16(1):103–122, 2000.

[60] Mark Pauly, Richard Keiser, and Markus Gross. Multi-scale feature extrac-
tion on point-sampled surfaces. In Computer graphics forum, volume 22,
pages 281–289. Wiley Online Library, 2003.

[61] Tahir Rabbani Shah. Automatic reconstruction of industrial installations:
Using point clouds and images. PhD thesis, TU Delft, 2006.

[62] C. J. Van Rijsbergen. Information Retrieval. Butterworth-Heinemann,
Newton, MA, USA, 2nd edition, 1979.

[63] Emanuele Rodolà, Andrea Albarelli, Filippo Bergamasco, and Andrea
Torsello. A scale independent selection process for 3D object recognition in
cluttered scenes. International Journal of Computer Vision, 102(1-3):129–
145, 2013.

[64] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Al-
ways learning. Pearson, 2013.

214 BIBLIOGRAPHY

[65] Radu Bogdan Rusu. Semantic 3D object maps for everyday manipulation
in human living environments. KI-Künstliche Intelligenz, 24(4):345–348,
2010.

[66] Radu Bogdan Rusu, Nico Blodow, Zoltan Csaba Marton, and Michael
Beetz. Aligning point cloud views using persistent feature histograms.
In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 3384–3391. IEEE, 2008.

[67] Radu Bogdan Rusu, Gary Bradski, Romain Thibaux, and John Hsu. Fast
3D recognition and pose using the viewpoint feature histogram. In Proceed-
ings of the 23rd IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 2155–2162. IEEE, 2010.

[68] Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud library
(PCL). In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), pages 1–4. IEEE, 2011.

[69] Radu Bogdan Rusu, Andreas Holzbach, Michael Beetz, and Gary Bradski.
Detecting and segmenting objects for mobile manipulation. In Proceedings
of the IEEE 12th International Conference on Computer Vision Workshops
(ICCV), pages 47–54. IEEE, 2009.

[70] Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow, and Michael
Beetz. Learning informative point classes for the acquisition of object model
maps. In Proceedings of the 10th International Conference on Control, Au-
tomation, Robotics and Vision (ICARCV), pages 643–650. IEEE, 2008.

[71] R.B. Rusu, N. Blodow, and M. Beetz. Fast point feature histograms (FPFH)
for 3D registration. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), pages 3212–3217, 2009.

[72] Samuele Salti, Federico Tombari, and Luigi Di Stefano. A performance
evaluation of 3D keypoint detectors. In Proceedings of the International
Conference on3D Imaging, Modeling, Processing, Visualization and Trans-
mission (3DIMPVT), pages 236–243. IEEE, 2011.

[73] Samuele Salti, Federico Tombari, and Luigi Di Stefano. SHOT: Unique
signatures of histograms for surface and texture description. Computer
Vision and Image Understanding, 125(0):251–264, 2014.

BIBLIOGRAPHY 215

[74] Dietmar Saupe and Dejan V Vranić. 3D model retrieval with spherical
harmonics and moments. In Pattern Recognition, pages 392–397. Springer,
2001.

[75] Viktor Seib, Susanne Christ-Friedmann, Susanne Thierfelder, and Dietrich
Paulus. Object class and instance recognition on RGB-D data. In Pro-
ceedings of the Sixth International Conference on Machine Vision (ICMV).
International Society for Optics and Photonics, 2013.

[76] SHREC’13 - 3D shape retrieval contest 2013. http://3dorus.ist.utl.

pt/research/BeKi/index.html.

[77] Stephen M Smith and J Michael Brady. SUSAN – a new approach to low
level image processing. International journal of computer vision, 23(1):45–
78, 1997.

[78] The stanford 3D scanning repository. http://graphics.stanford.edu/

data/3Dscanrep/.

[79] Bastian Steder, Radu Bogdan Rusu, Kurt Konolige, and Wolfram Burgard.
NARF: 3D range image features for object recognition. In Workshop on
Defining and Solving Realistic Perception Problems in Personal Robotics at
the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), volume 44, 2010.

[80] Bastian Steder, Radu Bogdan Rusu, Kurt Konolige, and Wolfram Bur-
gard. Point feature extraction on 3D range scans taking into account ob-
ject boundaries. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pages 2601–2608. IEEE, 2011.

[81] Hugo Steinhaus. Mathematical snapshots. Courier Corporation, 2012.

[82] J Stuckler and Sven Behnke. Interest point detection in depth images
through scale-space surface analysis. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 3568–3574.
IEEE, 2011.

[83] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-
duction, volume 1. Cambridge Univ Press, 1998.

[84] Richard Stuart Sutton. Temporal Credit Assignment in Reinforcement
Learning. PhD thesis, University of Massachusetts, 1984.

216 BIBLIOGRAPHY

[85] Motofumi T Suzuki, Toshikazu Kato, and Nobuyuki Otsu. A similarity
retrieval of 3D polygonal models using rotation invariant shape descriptors.
In Proceedings of the IEEE International Conference on Systems, Man, and
Cybernetics, volume 4, pages 2946–2952. IEEE, 2000.

[86] Chwen-Jye Sze, H-YM Liao, Hai-Lung Hung, Kuo-Chin Fan, and Jun-
Wei Hsieh. Multiscale edge detection on range images via normal changes.
IEEE Transactions on Circuits and Systems II: Analog and Digital Signal
Processing, 45(8):1087–1092, 1998.

[87] Csaba Szepesvári. Algorithms for Reinforcement Learning, volume 4. Mor-
gan & Claypool Publishers, 2010.

[88] Babak Taati, Michel Bondy, Piotr Jasiobedzki, and Michael Greenspan.
Variable dimensional local shape descriptors for object recognition in range
data. In Proceedings of the IEEE 11th International Conference on Com-
puter Vision (ICCV), pages 1–8. IEEE, 2007.

[89] Shuai Tang, XiaoyuWang, Xutao Lv, Tony X Han, James Keller, Zhihai He,
Marjorie Skubic, and Shihong Lao. Histogram of oriented normal vectors
for object recognition with a depth sensor. In Proceedings of the Asian
Conference on Computer Vision (ACCV), pages 525–538. Springer, 2013.

[90] Roberto Toldo, Umberto Castellani, and Andrea Fusiello. A bag of words
approach for 3d object categorization. In Computer Vision/Computer
Graphics Collaboration Techniques, pages 116–127. Springer, 2009.

[91] Roberto Toldo, Umberto Castellani, and Andrea Fusiello. The bag of words
approach for retrieval and categorization of 3D objects. The Visual Com-
puter, 26(10):1257–1268, 2010.

[92] Federico Tombari, Samuele Salti, and Luigi Di Stefano. Unique shape con-
text for 3D data description. In Proceedings of the ACM workshop on 3D
object retrieval, pages 57–62. ACM, 2010.

[93] Federico Tombari, Samuele Salti, and Luigi Di Stefano. Unique signatures
of histograms for local surface description. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 356–369. Springer, 2010.

[94] Federico Tombari, Samuele Salti, and Luigi Di Stefano. A combined texture-
shape descriptor for enhanced 3d feature matching. In Proceedings of the

BIBLIOGRAPHY 217

18th IEEE International Conference on Image Processing (ICIP), pages
809–812. IEEE, 2011.

[95] Ranjith Unnikrishnan and Martial Hebert. Multi-scale interest regions from
unorganized point clouds. In Proceedings of the IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 1–8. IEEE, 2008.

[96] Vladimir N Vapnik and A Ja Chervonenkis. Theory of pattern recognition.
Nauka, 1974.

[97] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan.
Show and tell: A neural image caption generator. arXiv preprint
arXiv:1411.4555, 2014.

[98] Dejan V Vranić and D Saupe. 3D shape descriptor based on 3D fourier
transform. In Proceedings of the EURASIP conference on digital signal pro-
cessing for multimedia communications and services (ECMCS), Budapest,
Hungary, 2001.

[99] Dejan V Vranic and Dietmar Saupe. Description of 3D-shape using a com-
plex function on the sphere. In Proceedings of the IEEE International Con-
ference on Multimedia and Expo (ICME), volume 1, pages 177–180. IEEE,
2002.

[100] ChristopherJ.C.H. Watkins and Peter Dayan. Q-learning. Machine Learn-
ing, 8(3-4):279–292, 1992.

[101] Marco Wiering and Martijn Van Otterlo. Reinforcement learning. In Adap-
tation, Learning, and Optimization, volume 12. Springer, 2012.

[102] Chin-Chia Wu and Sheng-Fuu Lin. Efficient model detection in point cloud
data based on bag of words classification. Journal of Computational Infor-
mation Systems, 7(12):4170–4177, 2011.

[103] Yang Yi, Yan Guang, Zhu Hao, Fu Meng-Yin, and Wang Mei-ling. Ob-
ject segmentation and recognition in 3D point cloud with language model.
In Proceedings of the International Conference on Multisensor Fusion and
Information Integration for Intelligent Systems (MFI), pages 1–6. IEEE,
2014.

218 BIBLIOGRAPHY

[104] Andrei Zaharescu, Edmond Boyer, Kiran Varanasi, and Radu Horaud. Sur-
face feature detection and description with applications to mesh matching.
In Proceedings of the IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 373–380. IEEE, 2009.

[105] Yu Zhong. Intrinsic shape signatures: A shape descriptor for 3D object
recognition. In Proceedings of the IEEE 12th International Conference on
Computer Vision Workshops (ICCV), pages 689–696. IEEE, 2009.

Lebenslauf

Persönliche Daten

Name Jens Garstka
Geburtsdatum 20.11.1975
Geburtsort Bochum
Staatsangehörigkeit deutsch
Eltern Reinhild und Günter
Familienstand verheiratet

Bildungsweg

Grundschule Witten-Herbede 08/1982 - 07/1986

Ruhr-Gymnasium Witten 08/1986 - 07/1995
Abschluß: Allgemeinen Hochschulreife

Studium der Informatik an der TU Dortmund 10/1996 - 07/2009
Abschluß: Diplom-Informatiker

Beruflicher Werdegang

Bundeswehr 10/1995 - 07/1996

Stud. Mitarbeiter, 1&1 ServiceLine 10/1996 - 08/2000

Stud. Mitarbeiter, AMG Consulting 09/2000 - 02/2001

Stud. Mitarbeiter, GETIT GmbH 03/2001 - 07/2009

Entwickler, GETIT GmbH 08/2009 - 04/2010

Wiss. Mitarbeiter, FernUniversität in Hagen, 05/2010 - heute
LG Mensch-Computer-Interaktion

