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Preface

In 1948 Edward Tolman [164] reported on a series of behavioral experiments with
rats that led him to hypothesize that the animals had to make use of an internal,
map-like representation of the environment. This idea, which came to be known
as the cognitive map hypothesis, was highly controversial at the time. Accordingly,
the discovery of hippocampal place cells by O’Keefe and Dostrovsky [119, 121]
in the 1970s was met with much excitement as place cells were the first possible
direct evidence for such a representation of the environment in the brain [120].
Since then a variety of neurons that exhibit spatially correlated activity were
found in the parahippocampal-hippocampal region [163, 79, 45, 62, 152]. In
particular the recent discovery of grid cells [45, 62] in the entorhinal cortex of
rat strengthened the idea that the involved neuronal structures constitute a kind
of metric for space [112]. Grid cells are neurons that exhibit spatially correlated
activity possessing multiple, discrete firing fields that are arranged in a regular,
hexagonal grid that spans the entire environment. Located just one synapse
upstream of the hippocampus grid cells are assumed to be an important source of
spatial information to place cells [153, 135]. In particular, grid cells are generally
considered to be a central part of a path integration system as pointed out by
Burgess [19]:

There has been a surprising rapid and general agreement that the
computational problem to which grid cells provide a solution is “path
integration” within an allocentric reference frame.

Although existing computational models cover a wide range of possible mecha-
nisms and focus on different aspects of grid cell activity [112, 170, 55, 2, 13, 114],
the models share the common approach of explaining grid cells and their behavior
as functional components within the cognitive map hypothesis. Complementary
to this common approach this thesis presents an alternative grid cell model
that treats the observed grid cell behavior as an instance of a more abstract,
general principle by which neurons in the higher-order parts of the cortex process
information.

The first two chapters provide a brief neurobiological background on grid
cells. Chapter 1 introduces their “cortical neighborhood”. It describes the
parahippocampal-hippocampal region and its major internal connectivity. Fur-
thermore, it summarizes the findings on neurons from this region that, like
grid cells, exhibit a spatially correlated firing behavior. Chapter 2 focuses then
on the particular properties of grid cells and introduces the basic measures
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that are used throughout the literature to characterize them: grid spacing, grid
orientation, grid field size, grid phase, and most importantly the gridness score.
In addition to findings on specific properties of the grid cell firing behavior, the
chapter also provides information on the possible neural substrate of grid cells.
This information is used later in chapter 5 to derive a biologically plausible
parametrization of the grid cell model.

Following this introduction of grid cells and their properties the third chapter
presents an extensive overview on existing computational models of grid cells.
The overview is structured by the commonly used classification of grid cell models
into either oscillatory interference models, continuous attractor network models,
or models based on mechanisms of self-organization. The chapter illustrates
that, despite the diversity in the proposed mechanisms, essentially all existing
computational models are grounded in the cognitive map hypothesis assuming
that grid cells are a specialized, functional part of a system that supports
navigation and self-localization.

The next three chapters constitute the main part of this thesis. Chapter 4
introduces and defines a novel grid cell model that is not grounded in the
cognitive map hypothesis. Instead, it is based on the core assumption that the
behavior of grid cells is just one instance of a general processing scheme in which
the specific behavior of a group of neurons is defined by two factors: the general
characteristics of this common processing scheme and the specific properties
of the particular input space. In chapter 4 this putative general processing
scheme is formally defined by a novel algorithm called the recursive growing
neural gas (RGNG), which extends the original growing neural gas algorithm
introduced by Bernd Fritzke in 1995 [41]. The RGNG algorithm describes the
behavior of a whole group of cells that can replicate the behavior of a grid cell
group given an input space with suitable properties. In chapter 5 the RGNG
model is extensively tested and characterized with respect to a wide range of
key parameters. As its main result the chapter demonstrates that the RGNG
is indeed able to replicate the core properties of grid cell behavior based on a
minimal set of assumptions regarding the properties of the used input space.
Having established the viability of the RGNG model chapter 6 focuses on the
influence of changes to the input space on the resulting RGNG behavior. It
shows that the RGNG can handle sequential input that reveals the input space
structure only over a longer timescale and it demonstrates the robustness of
the RGNG model towards noisy inputs. Furthermore, the chapter investigates
two alternative input spaces that illustrate the broad applicability of the RGNG
model with respect to other types of input.

Finally, chapter 7 outlines the broader implications of the presented general
processing scheme. It highlights the exponential encoding capacity of the RGNG
model and provides a basic mechanism that shows how this capacity can be
utilized in a hierarchical, autoassociative memory that has the ability to store
an exponential number of entities without the need to represent these explicitly.
Based on the ideas presented in this last chapter it is likely that the RGNG-model
may find uses outside of its main neuroscientific objective, e.g., as a potential
object of research in the area of machine learning.



Spatial Representation in

the Brain

Beginning with the discovery of place cells in the CA1 area of the hippocampus
by O’Keefe and Dostrovsky [119, 121] in the 1970s, increasing evidence [163, 79,
45, 62, 152] indicates that the parahippocampal-hippocampal region of the brain
is vital to the representation of spatial, allocentric information in the brain. In
particular the recent discovery of grid cells in the entorhinal cortex by the Moser
group [45, 62] and their subsequent investigation led to the hypothesis that the
involved neuronal structures constitute a kind of metric for space [112, 111]. This
chapter provides an overview of the structures found in the parahippocampal-
hippocampal region of the brain and summarizes the types of neurons that were
found to exhibit spatially correlated activity. If not stated otherwise the neuronal
structures reported here refer to the rat brain.

1.1 The Parahippocampal-Hippocampal Region

The parahippocampal-hippocampal region consists of the parahippocampal
region (PHR) and the hippocampal formation (HF). Figure 1.1 shows the
position of all areas that comprise this region and provides details on their
layered cortical structure.

The PHR is subdivided into five main areas: the perirhinal cortex (PER; con-
sisting of Brodmann areas A35 and A36), the postrhinal cortex (POR), the
presubiculum (PrS), the parasubiculum (PaS), and the entorhinal cortex (EC;
consisting of a lateral (LEA) and medial (MEA) part). The areas of the PHR
have a layered structure and exhibit, similar to the neocortex [155], six distinct
layers which are typically denoted with the roman numerals I to VI. Layers
II/III and layers V/VI are principal cell layers containing the soma of different
types of pyramidal neurons as well as interneurons. Layers I and IV are plex-
iform layers that contain dendrites of principal cells and interneurons. Layer
IV, which separates the principal cell layers is also referred to as lamina dis-
secans [175, 154, 166, 160]. In case of PER and POR layer IV is “variably
developed” [166], i.e., the layer is not always clearly identifiable between layer
III and layer V.

Rapp et al. [131] provide an estimate of the number of neurons in the PHR of
rat based on measurements in six animals. Per hemisphere, the perirhinal cortex

11



12 CHAPTER 1. SPATIAL REPRESENTATION IN THE BRAIN

Figure 1.1: Overview of the parahippocampal-hippocampal region in the rat
brain. (A) Schematic views (lateral and caudal) on the PHR and HF within the
rat brain. (B) Nissl-stained slices through the PHR and HF with color-coded
and labeled subfields. (C) Enlarged version of the horizontal cross-section Bb
with labeled cortical layers of most PHR and HF subareas (POR not visible).
Reproduced from van Strien et al. [166].

contains about 2.8× 105 neurons, the postrhinal cortex contains about 1.1× 105

neurons, the medial entorhinal cortex contains about 2.6× 105 neurons, and the
lateral entorhinal cortex contains about 3.7× 105 neurons.

The HF is subdivided into four main areas: the dentate gyrus (DG), the cornu
ammonis 3 (CA3), the cornu ammonis 1 (CA1), and the subiculum (Sub). The
border region between CA3 and CA1 is referred to as cornu ammonis 2 (CA2).
As CA2 is small and under-investigated in the rat it is often not discussed in
depth in the literature [166]. The hilus (see below) of DG is sometimes referred
to as cornu ammonis 4 (CA4) when it is treated as a part of the hippocampus
rather then the dentate gyrus. The areas of the HF have a three-layered structure.
They have a deep, polymorphic layer containing afferent and efferent fibers as
well as a variety of interneurons, a central layer containing the soma of principal
neurons and interneurons, and a superficial layer containing afferent fibers and
dendrites of principal neurons [175, 154, 166, 160].
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In the DG the deepest layer is called the hilus or stratum multiforme. Among
other types of neurons this layer contains mossy cells which project their char-
acteristic, unmyelinated axons to CA3. The principle cell layer of DG is called
the granular layer (stratum granulare) and contains the somas of granule cells.
The dendrites of these cells extend into the superficial layer, called the molecular
layer (stratum moleculare). Depending on the afferent fibers that contact the
dendrites the molecular layer is further subdivided into inner, middle, and outer
molecular layer [166, 160].

In the CA areas the principle cell layer (stratum pyramidale) is dominated by the
soma of pyramidal neurons. Below this layer lies stratum oriens which contains
the basal dendrites of the pyramidal cells. Above the principal cell layer lies the
molecular layer which is subdivided into stratum lucidum, stratum radiatum, and
stratum lacunosum moleculare. Stratum lucidum receives input from DG and is
missing in CA2 and CA1. Stratum radiatum contains the apical dendrites of
the pyramidal cells and stratum lacunosum moleculare contains the apical tufts
of those apical dendrites [166, 160].

The Subiculum has a very broad principle cell layer containing large soma of
pyramidal neurons and a variety of smaller interneurons. The polymorphic
layer below the principle layer is very thin and therefore usually neglected.
The molecular layer above the principle cell layer is subdivided into deep and
superficial sublayers. The deep sublayer aligns with the stratum radiatum of
CA1, whereas the superficial sublayer corresponds to the stratum lacunosum
moleculare [166, 160].

West et al. [171] provide an estimate of the number of neurons in the HF of
rat based on measurements in five animals. Per hemisphere, the granular layer
of the DG contains on average 1.2 × 106 neurons, the hilus contains about
5.3× 104 neurons, the principle layer of CA3 contains about 2.5× 105 neurons,
the principle layer of CA1 contains about 3.8× 105 neurons, and the subiculum
contains about 2.8× 105 neurons.

1.1.1 Standard View of the PHR-HF Network

According to a recent review of van Strien et al. [166] the various circuitry
models of the PHR-HF network that can be found in current literature can be
aggregated into a standard view of the PHR-HF network. This standard view
is depicted in figure 1.2. It shows that neocortical input to the HF as well as
hippocampal output to the neocortex is mediated by the PHR. Within the PHR
two main projection streams are distinguished. The PER is considered to provide
the main input to the LEA, whereas the POR provides the main input to the
MEA. In both cases backprojections from LEA to PER and MEA to POR exist.
In addition, the PrS provides input to the EC as well. Originating from the EC
the perforant pathway projects to all subareas of the HF. The perforant pathway
consists of axons from EC layer II neurons projecting to the DG and CA3 as
well as axons from EC layer III neurons projecting to CA1 and the subiculum.
Within the HF the subregions are connected sequentially from the DG via CA3
and CA1 to the subiculum. Finally, output of the HF projects from CA1 and
the subiculum back to the deep layers V and VI of the EC.
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Figure 1.2: The standard view of the parahippocampal-hippocampal network
based on the review by van Strien et al. [166].

In contrast to this standard view the connections between different areas of the
PHR-HF region are much more intricate. Based on data compiled by van Strien
et al. [166] figure 1.3 depicts the PHR-HF network as an adjacency matrix. This
more detailed view shows that the perirhinal cortex (PER) projects also to the
MEA and that the postrhinal cortex (POR) projects also to the LEA. In addition,
the input to the HF is not restricted to originate only from the EC. All subareas
of the HF receive projections from the presubiculum (PrS), the parasubiculum
(PaS), the perirhinal (PER) and postrhinal (POR) cortices. Furthermore, the
detailed view shows that the seemingly sequential connection of areas in HF is
more complicated. CA3 and CA1 have backprojections to the DG; CA1 has
backprojections to CA3; and CA3 has projections to the subiculum. The output
of the HF is more diverse as well. CA1 and the subiculum have projections to
the presubiculum (PrS) and parasubiculum (PaS); CA1 has projections to the
postrhinal cortex (POR); and all subareas of the HF have projections to the
perirhinal cortex (PER).

The adjacency matrix in figure 1.3 provides also some insight into intra-area
networks. For example, in the HF the principle cells of areas CA3, CA1, and the
subiculum all project into other layers of the particular regions. However, in the
dentate gyrus (DG) this is not the case. In the DG the cells of the hilus and not
the principle granule cells are those that project within the area. This raises the
interesting question where the numerous granule cells of the DG actually project
to. Based on the data compiled by van Strien et al. [166] possible targets are
only the stratum lucidum of CA3 or the perirhinal cortex (PER). Comparing
the HF with the PHR the increase in intra-area connectivity of the particular
regions is striking. Especially the entorhinal cortex (EC) and the presubiculum
(PrS) stand out in this regard. The latter receiving substantial input from CA1
and the subiculum across all layers and thus, as the presubiculum also acts as
input to the entorhinal cortex, establishing an additional, indirect feedback path
from the HF to the EC.
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Figure 1.3: Adjacency matrix of the parahippocampal-hippocampal network
based on data compiled by van Strien et al. [166]. Columns and rows representing
areas of the hippocampal formation (HF) are marked green. Columns and rows
representing areas of the parahippocampal region (PHR) are marked red. Blue
colored cells containing a “1” represent connections with known source and
destination layers. Olive shaded cells represent connections with unknown
source and/or destination layers. Violet shades represent connections within an
area. Cells that represent connections which constitute the standard view of the
parahippocampal-hippocampal network are tinted green within HF, tinted red
within PHR, and are tinted yellow if they connect PHR with HF or vice versa.
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(a) (b)

Figure 1.4: Examples of activity in a single place cell (a) and a single grid
cell (b). Black lines represent the trajectory of a rat in a square environment.
Red dots represent the locations where the observed place cell or grid cell fired.
Figure from Moser et al. [111].

External input to the parahippocampal-hippocampal region from unimodal and
polymodal associational areas is received predominantly by the perirhinal and
postrhinal cortices. The perirhinal cortex receives about 48% olfactory, 19.5% au-
ditory, 12% somatosensory, 10% visuospatial, 7.5% visual, and 3% gustatory
inputs. Area 35 of the perirhinal cortex receives almost exclusively the olfactory
inputs whereas all other inputs are received primarily in area 36. The postrhinal
cortex receives about 62% visual, 30% visuospatial, 5% auditory, 2% somatosen-
sory, and 1% gustatory inputs. Although to a lesser extent the entorhinal cortex
itself receives some external inputs from associational areas. For the LEA the
distribution of input modalities is similar to that of the perirhinal cortex. In
case of the MEA the distribution of input modalities is similar to that of the
postrhinal cortex [24].

It should be noted that the preceding description of the PHR and the HF is
to some degree an oversimplification. It only outlines the coarse structure and
circuitry of the particular areas. Detailed examinations of, e.g., anatomical
structures, existing neuron types, or biochemical properties exist for many areas
in the PHR-HF region, e.g., for the entorhinal cortex [92, 68, 110, 17].

1.2 Place Cells

In the 1970s O’Keefe and Dostrovsky were the first to discover neurons in the CA1
region of the hippocampus that exhibit spatially correlated activity [119, 121].
They termed these neurons place cells as their firing pattern correlated strongly
with specific places – the cells’ place fields – in the environment. Figure 1.4a
shows such a place field of a single neuron. The majority of place cells O’Keefe
and Dostrovsky found were “plain” place cells with single place fields1 of sizes
ranging from 10cm2 to half the recording environment2 and a firing pattern

1A few place cells had two or more place fields.
2A circular platform with a diameter of 35cm and three radiating arms of 38cm in length

and 15cm in width [121].
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correlated solely to the rat’s allocentric position. Besides these “plain” place
cells, the activity of some cells appeared to be modulated by additional factors
like the current behavior, e.g., sniffing or eating, and the rat’s orientation.

The activity of place cells appears to be determined by external cues, e.g., distant
visual cues as well as internal cues, e.g., information about locomotion [121]. For
example, if a rat is placed on a platform surrounded by curtains that provide a
stable, visual environment a rotation of the platform does not cause a rotation
of the place fields’ locations. They appear fixed with respect to the visual
cues provided by the curtains. As expected, the place fields do rotate if the
surrounding curtains are rotated instead of the platform. However, if the lights
are switched off and the rat moves in the dark, the position of the rat as indicated
by the activity of corresponding place cells is updated nevertheless, i.e., the
activity of place cells is not exclusively determined by external cues but relies
also on internal cues about the animal’s locomotion.

Further investigation of the influence of distant visual cues on place cell activity
revealed the phenomenon of remapping [118, 115]. For a given environment a
certain set of place cells represents this particular environment. When the envi-
ronment changes, e.g., when a rat is placed from one experimental environment
into another, a different set of place cells gets recruited to represent the new
environment. This switch from one set of place cells to another is termed global
remapping [97, 75] and it only occurs if the environment changes significantly. If,
in contrast, the environment changes only slightly, the same set of place cells
is used but the maximum intensity with which individual place cells are active
changes. This change of maximum activity is termed rate remapping [97].

The discovery of place cells raised much excitement as these cells were the first
possible evidence on the neuronal level for the cognitive map hypothesis stated
by Tolman back in 1948 [164]. Based on the observations made in a series of
behavioral experiments with rats Tolman concluded that the observed behavior
would require a map-like, allocentric representation of the environment in the
rat’s brain. Some of the observed, prominent features of place cells support
this hypothesis. As such, many researchers interpret the results of place cell
experiments from the perspective of this hypothesis [120]. However, more recent
work on place cells challenges this view. For example, Eichenbaum et al. [34] point
out that “non-plain” place cells, i.e., place cells that are modulated by behavior, or
more generally by context, may be underrepresented in most experiments. They
argue that the typical setup of most place cell experiments3 results in an unusual
high proportion of detected “plain” place cells. In contrast, if the experiment
contains a behaviorally more demanding task and a richer environment, the
proportion of “plain” place cells is typically much lower. Eichenbaum et al.
suggest that place cell is possibly a misnomer and that place cells are more likely
to be cells that generally identify significant combinations of high-level, multi-
modal signals. From that perspective, the cells in the hippocampus are more
likely to encode a form of episodic, contextual memory instead of a predominantly
spatial map. This view is supported by findings in the human hippocampus

3The typical setup of a place cell experiment consists of a single rat within a small (0.5 to
1m2) circular or rectangular environment performing the random foraging task, i.e., the rat
searches for food pellets thrown randomly in the environment.
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where especially the left hippocampus is primarily involved in storing linguistic
relationships and narratives rather than spatial relationships [22].

Another indication that the interpretation of experimental results regarding place
cells may have been biased by the experimental setup that is commonly used is
given by Fenton et al. [37]. They measured and compared the activity of CA1
place cells in a standard cylinder environment and in a chamber environment
approximately six times larger. The cylinder environment was placed in the
chamber environment to allow for a transition between the two environments
by simply removing the wall of the cylinder environment. Within the standard
cylinder the cells’ activity patterns corresponded to typical place cell activity as
it is reported in the literature, i.e., the majority of place cells had a single place
field. In contrast, within the larger chamber environment the majority of place
cells had multiple, irregularly spaced, and enlarged place fields. In addition, the
switch between the two environments caused a global remapping of those place
cells that were active in both environments. These results show that individual
place cells do not primarily encode single spatial locations but rather use some
form of ensemble encoding to disambiguate among the multiple spatial locations
represented by individual cells.

This new perspective on place cells suggests that the spatial information contained
in the place cell signal may not originate in the hippocampus but is generated
somewhere upstream [98]. A good candidate region in this regard is the entorhinal
cortex with its population of grid cells which are described in detail in section 1.4.

1.3 Head-Direction Cells

A different form of spatial signal is encoded by so-called head-direction cells (HD
cells) first described by Taube et al. in 1990 [163]. In contrast to place cells
the firing pattern of HD cells correlates with the allocentric head direction of
the animal, i.e., the peak firing rate of a HD cell is reached when the animal’s
head points in the preferred spatial direction of that cell. Centered around this
preferred direction is the cell’s directional firing range in which the firing rate
is above the cell’s baseline firing rate. Firing ranges can vary between 60◦ and
150◦. For most cells the average directional firing range is about 90◦ [161].

The preferred spatial direction of HD cells is influenced by external cues in a way
similar to that of place cells. If a prominent visual cue in a circular environment
is rotated, the preferred spatial directions of HD cells shift correspondingly [162].
In addition, if a novel prominent visual cue is introduced it gradually takes
control of the cell’s preferred spatial direction within minutes, i.e., rotation of
the novel cue leads to a corresponding rotation of the cell’s preferred spatial
directions. In contrast, the removal of visual cues, e.g., by turning the lights
off, affects the firing behavior of HD cells just minimally in that the preferred
spatial direction of the cells may drift by an unpredictable amount after some
time [57]. While running in the dark, the firing behavior of the animal’s HD
cells can be maintained by idothetic information like proprioceptive or vestibular
signals alone.

In addition to their directional tuning some HD cells are also modulated by the
animal’s angular head velocity, i.e., their peak firing rate increases proportional
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Figure 1.5: Typical visualization of a grid cell’s firing pattern as introduced by
Hafting et al. [62]. Left: trajectory (black lines) of a rat in a circular environment
with marked locations (red dots) where the observed grid cell fired. Middle:
color-coded firing rate map of a single grid cell ranging from dark blue (no
activity) to red (maximum activity). Right: color-coded spatial autocorrelation
of the firing rate map ranging from blue (negative correlation, -1) to red (positive
correlation, +1). Figure from Moser et al. [112].

to the velocity with which the animal is turning its head across the cell’s preferred
spatial direction. Similarly, there exist plain angular head velocity cells (AHV
cells) that encode just the angular head velocity independent of the absolute
head direction. AHV cells can be further divided into symmetric and asymmetric
AHV cells. Symmetric AHV cells fire proportional to the angular head velocity
irrespective of the turning direction whereas asymmetric AHV cells fire only
when the head turns either clockwise or counter-clockwise [161].

HD cells can be found in a variety of areas in the brain including the parahip-
pocampal region (pre- and parasubiculum, entorhinal cortex), the retrosplenial
cortex neighboring the PHR and several thalamic nuclei. AHV cells are predom-
inantly found in areas of the brainstem like dorsal tegmental nucleus, nucleus
prepositus, or medial vestibular nucleus [161, 9].

1.4 Grid Cells

The notion that place cells in the hippocampus may rather represent context-
specific information than mainly location-specific information suggests that
context-independent position information could be computed by cells in areas
preceding the hippocampus. The recent discovery of grid cells by Fyhn et
al. supports this hypothesis [45, 62, 112, 111]. Grid cells are neurons that
exhibit spatially correlated activity similar to that of place cells with the distinct
difference that grid cells possess not just one but multiple, discrete firing fields
that are arranged in a regular, hexagonal grid that spans the entire environment.
Examples for this peculiar firing pattern of grid cells are given in figures 1.4b
and 1.5, which show the firing fields of a single grid cell.

In order to characterize grid cells based upon their particular firing patterns
Hafting et al. [62] introduced four measures to describe the spatial properties
of the grid structure: spacing, orientation, field size, and phase. Three of
these measures (spacing, orientation, and field size) are calculated using the
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autocorrelogram of the grid cell’s firing rate map (fig. 1.5)4. The spacing of
a grid cell is defined as the median distance between the central peak of the
autocorrelogram and its six surrounding peaks. The orientation of a grid cell
is defined as the angle between a fixed reference line (0 degrees) going through
the central peak of the autocorrelogram and a vector from the central peak to
the surrounding peak on the right side that is nearest to the reference line in
counterclockwise direction. The field size of a grid cell refers to the size of the
individual firing fields. It is estimated as the area occupied by the central peak
in the autocorrelogram. The phase of a grid cell refers to the position of the
cell’s firing fields, i.e., their grid vertices, with respect to the firing fields of other
cells with similar spacing and orientation. If the rate maps of two grid cells are
cross-correlated, the resulting cross-correlogram resembles the autocorrelogram
of a single grid cell but the central peak will be off center. The distance from the
center to this displaced central peak is defined as the phase difference between
the two grid cells. These four measures are widely adopted and used throughout
the grid cell literature.

In addition to these measures Sargolini et al. introduced a gridness score which
allows to quantify how well an observed cell qualifies as being a grid cell [141].
The gridness score is based on the autocorrelogram of the cell’s firing rate map.
To calculate the score only the six peaks surrounding the central peak in the
autocorrelogram are taken into account. All other regions of the autocorrelogram
including the central peak are masked out. Then, the correlation values between
the masked autocorrelogram and rotated versions of itself at 30◦, 60◦, 90◦, 120◦,
and 150◦ are computed. Finally, the gridness score is defined as the difference
between the lowest correlation value at 60◦ and 120◦ and the highest correlation
value at 30◦, 90◦, and 150◦. Typically, a cell is classified as grid cell if its gridness
score is positive.

Grid cells were found in the medial entorhinal cortex as well as recently in the
pre- and parasubiculum [62, 141, 9]. In the MEA grid cells are most abundant in
layers II and III. They make up about 50% of all neurons in layer II and about
40% of all neurons in layer III. In layers V and VI of the MEA grid cells are
less frequent (about 20% to 25%). Grid cells in layers III, V, and VI of MEA
are colocated with head direction cells and conjunctive grid × head direction
cells5. The latter are cells with a grid cell like firing pattern modulated by head
direction. In the pre- and parasubiculum grid cells are uniformly distributed
across all layers, albeit with a significantly lower proportion compared to the
MEA (about 13% in PrS and 20% in PaS). Similar to the deep layers of MEA
the grid cells in PrS and PaS are colocated with head direction and conjunctive
cells [141, 9].

In the MEA grid cells are topographically organized. Neighboring grid cells
share similar spacing, orientation, and field size, but have typically dissimilar
phases. With distance from the postrhinal border spacing and field size of grid
cells increase along the dorsoventral axis of the entorhinal cortex [62]. In a
recent study Stensola et al. showed that this increase in spacing and field size is
discretized [156]. They estimate that the MEA contains less than ten distinct

4A detailed account how the firing rate map and the autocorrelogram are calculated is
given in chapter 2.

5Sometimes conjunctive grid × head direction cells are just referred to as conjunctive cells.
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clusters of grid cells or grid modules and that each cluster contains grid cells
with specific spacing and field size. Moreover, Stensola et al. could also show
that the cells in each grid module share a common orientation.

Orientation and phase of grid cells is controlled by external cues. The phase of a
grid cell in a given environment stays constant across successive exposures to this
environment. This stability suggests, that the phase is anchored to some external
cues of the environment rather than being based on idiothetic cues. In case
of the grid cell’s orientation it can be shown, that the rotation of a prominent
visual cue in a circular environment leads to a corresponding rotation of the grid
cell’s orientation. Removal of external cues, e.g., by switching of the light, does
not affect the firing patterns of grid cells indicating that the grid structure itself
is not dependent on external cues [62]. Under conditions that would lead to a
remapping of place cells, i.e., a complete or partial recruitment of a different set
of place cells to represent the new environmental conditions, grid cells undergo a
realignment: the same set of grid cells stays active but orientation and phase of
the grid cells may change [44]. A detailed account of these and further grid cell
properties is given in chapter 2.

1.5 Further Cell Types

In addition to the three kinds of spatial representations described above there are
further, but less investigated neurons with spatially correlated activity. Among
those cells are border cells in the medial entorhinal cortex [152, 142] and pre-
and parasubiculum [9], boundary vector cells in the subiculum [99, 158], and
cells with spatial selectivity in the dentate gyrus [79]. Furthermore, there are
reports on cells with place-cell-like and grid cell like firing behavior in the primate
hippocampus and entorhinal cortex, respectively [49, 83]. In contrast to the
corresponding cells in the rat the cells in the primate do not encode the animals
position but rather a position in the allocentric view of the environment.

1.5.1 Border Cells

Cells in the entorhinal cortex as well as the pre- and parasubiculum possess firing
fields that appear to represent borders or barriers in the immediate environment
of the animal [152, 142, 9]. Such border cells fire whenever the animal is close to
a border of its environment that lies in a certain, allocentric direction, e.g., a
cell may just be responsive to eastern borders of the environment. Border cells
are typically colocated with grid cells and head direction cells and make up only
a small percentage (< 10%) of the local cell population. They were found in all
layers of MEA and PrS/PaS. 75% of the border cells observed in the MEA had
firing fields along a single wall whereas the rest had firing fields at up to four
walls [152].

Figure 1.6 illustrates the typical firing behavior of a single border cell within
different environments (A vs. B/C) and under different environmental config-
urations. The activity of the border cell persists across various manipulations
of the environment that would commonly trigger a remapping of place cells
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Figure 1.6: Firing rate maps of a single border cell in different environments (A
vs. B/C) with changing environmental configurations. Dark blue color equals
zero, red color equals peak firing rate, which is indicated above each panel.
A: When a square environment is stretched into a rectangular environment
the firing field of the border cell stays attached to “its” border. B: When a
new border is introduced to the environment (middle panel) a corresponding
new firing field of the border cell appears. C: When the walls surrounding an
environment are removed (middle panel) – resulting in a drop at the platform
edges of about 60cm – the firing field of the border cell is preserved. Figure
adapted from Solstad et al. [152].

and a realignment of grid cells, respectively. If the environment is suddenly
expanded (A) the firing field of the border cell sticks to the border corresponding
to its preferred border direction. If a new border is introduced (B) a firing field
instantaneously emerges along the new border. If the walls of an environment
are removed (C) resulting in a platform environment with a 60cm drop along its
edges, the activity of the border cell still persists. These properties of border cell
activity suggest, that border cells encode proximal obstacles in the environment
of the animal that lie in a certain, allocentric direction. This direction can be
controlled by external cues similarly to place cells and grid cells. The rotation
of a cue card in the environment leads to a corresponding rotation of the border
cell’s firing field. During such an environmental change the relative border
directions within a group of border cells are retained, e.g., two border cells
with firing fields at opposite walls in one environment fire at opposite walls in a
different environment [152, 142].

As border cells provide information about obstacles and borders of the environ-
ment it is hypothesized [152] that border cells may provide a reference frame for
other forms of spatial representation like place cells and grid cells by anchoring
the firing positions of those cells to the geometric properties of the particular
environment.

1.5.2 Boundary Vector Cells

In 1996 O’Keefe and Burgess discovered that the geometry of place fields would
change in response to transformations of the environment, e.g., if a square
environment is transformed into a rectangular environment, the firing fields of
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Figure 1.7: Illustration of the boundary vector cell (BVC) model. A: A BVC
has a receptive field which is located at a fixed, small distance relative to the
animal’s position but always oriented in a fixed, allocentric direction. B: With
increasing distance the receptive field of a BVC gets broader and the resulting
firing rate map exhibits a stripe-like pattern parallel to the particular boundary.
C: Example of a BVC firing rate map resulting from a receptive field with short
distance and eastward direction. D: Resulting firing rate maps of the BVC from
(C) in different environment configurations. Figure from Lever et al. [99].

place cells stretch correspondingly [122]. In order to explain this phenomenon
they developed a computational model of place cells that predicted the existence
of boundary vector cells (BVCs) to provide the necessary input to the place cells
in their model [122, 21, 63]. According to this model the receptive field of a BVC
is located at a fixed, small distance relative to the animal’s position but always
oriented in a fixed, allocentric direction (fig. 1.7A). The BVC fires whenever its
receptive field is intersected by a boundary of the environment. Figures 1.7C and
1.7D illustrate the resulting firing rate maps of a BVC for different environment
geometries. In case the receptive field of a BVC lies at a greater distance from
the animal (fig. 1.7B) the resulting firing rate map is broader and may exhibit a
region of low firing rates close to the boundary the cell is responding to, i.e., the
firing rate map would have a stripe-like appearance parallel to the particular
boundary.

In 2009 Lever et al. reported the existence of cells in the subiculum that possess
the properties of boundary vector cells [99]. They estimate that up to 24%
of subicular cells are putative BVCs. The putative BVCs that they analyzed
had similar properties to the previously described border cells in the MEA and
PrS/PaS. The activity of BVCs is stable across a wide variety of environment
configurations and BVCs react not only to walls but also to drops, as well as
gaps traversable by the animal. Insertion of additional boundaries results in
the appearance of corresponding firing fields in the rate maps of the BVCs as
predicted by the BVC model. In complete darkness BVCs retained their firing
fields suggesting that visual input is not essential for BVC operation. A recent
study by Stewart et al. confirms these properties of subicular BVCs [158]. Both
studies indicate that the tuning of BVCs to different relative distances and
allocentric directions varies continuously among the cell population.

Whether or not subicular BVCs and entorhinal border cells are functionally
different or not is open to debate. There are three main differences between
entorhinal border cells and subicular BVCs. First, the firing fields of subicular
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BVCs exhibit a much wider range of tuning towards the borders of the environ-
ment than entorhinal border cells. Second, there are entorhinal border cells that
fire at three and more borders of an environment whereas subicular BVCs are
active at two borders at most. Third, subicular BVCs appear to be less likely
to remap their orientation in new environments or under conditions where the
walls of an environment are removed. It remains unclear if these difference are
just regional variations of the same theme or if border cells and boundary vector
cells are functionally separate entities.

1.5.3 DG granule cells

Granule cells in the dentate gyrus exhibit spatial firing characteristics that are
similar to those of place cells in CA3 to which DG granule cells project [79, 96].
However, there are also a number of differences between DG granule cells and
CA3 place cells. Granule cells commonly possess a greater number of place fields
which are smaller in size and irregularly distributed across the environment.
The study of Jung and McNaughton [79] reports DG granule cells with up
to six place fields (1.79 ± 1.40)6 whereas CA3 place cells had at most two
(1.15 ± 0.7). The mean area covered by single place fields of the granule cells
was measured as 173.09± 66.43 cm2 whereas the place fields of CA3 place cells
covered 288.58 ± 168.96 cm2. These numbers match those reported in later
studies [96, 117].

Granule cells display a high sensitivity with respect to changes of the environment.
As demonstrated by Leutgeb et al. [96] even slight changes of an environment
can cause significant rate remapping of individual place fields in granule cells.
In case of large environment changes granule cells undergo a form of global
remapping. In contrast to place cells, the subset of granule cells that is active in
one environment will also be active in the other but the place fields exhibited by
each granule cell will generally have no similarity to the place fields exhibited in
the previous environment.

One important aspect to note is the role of the dentate gyrus in adult neurogenesis.
The dentate gyrus is one of the few brain areas were new neurons are produced
throughout adulthood. In case of the rat, about 9000 granule cells are produced
every 25 hours in the DG. The survival rate of these newly born granule cells
depends to a large extend on environmental factors like exposure to novel objects
and other rats, as well as certain kinds of learning tasks. If the cells are not
“needed”, e.g., under normal laboratory conditions, the newly produced cells
typically die within two weeks [26]. In a recent study Neunuebel and Knierim [117]
tried to differentiate the population of granule cells in their measurement into
mature and newly born granule cells. They come to the conclusion, that the
granule cells with multiple firing fields observed in previous studies were most
likely newly born granule cells and that those cells that exhibited just one place
field were mature granule cells. However, this result needs further investigation
as it is based purely on circumstantial evidence.
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Figure 1.8: Firing activity of a single view cell in the primate hippocampus. The
inner square of each panel is a top view of the environment in which the monkey
could freely move around (A) or was positioned at fixed locations (B). Triangles
indicate the animals location and head direction. The surrounding rectangles
depict the four walls of the environment in a profile view with each wall’s base
oriented towards the center. The inner rectangles contain the positions of tracked
eye fixations on the walls. The outer rectangles contain those fixation positions
where the view cell fired. A: Trial where the monkey could freely move around.
The view cell fired predominantly when the monkey looked at a central spot on
wall 3 independent of the monkey’s location, head direction, and eye position. B:
Trial where the monkey was positioned at several fixed locations. The firing field
of the view cell (same as in A) is still located at the center of wall 3. In addition
to the animal’s location the lines of sight are drawn in the central square. Figure
adapted from Georges-François et al. [49].

1.5.4 Spatial Representation in the Primate Brain

The spatial representations in the brain described so far refer to the rat brain as
most work in this area is conducted using this animal. Whether or not these
spatial representations are also present in the corresponding brain structures of
primates is a question of ongoing research. For instance, Rolls et al. investigated
in a series of studies if place cells were present in the hippocampus of rhesus
macaque monkeys [134, 133, 49, 136]. Using experimental conditions that
commonly favor the detection of place cells in the rat, they did not find any cells
in the primate hippocampus that would fire in relation to the animal’s location
so far. However, among the cells they did find were neurons that respond to
certain objects independently of their location (10% of the local cell population),
neurons that only respond to certain objects when these objects are in certain
locations (12%), and neurons that fire when the monkey looks at a particular
place in the environment independently of any object in that place (13%). The
latter type of neurons was termed spatial view cell or just view cell.

Figure 1.8 illustrates the firing activity of a single view cell found in CA3 while the
monkey could either freely move around in a square lab environment (fig. 1.8A)
or was positioned at fixed locations with a fixed head direction (fig. 1.8B). As the
monkey’s location, head direction, and eye position were tracked the animal’s
line of sight and its intersection with one of the surrounding walls could be
calculated (black dots in the inner, blue rectangles). Whenever the view cell
fired, the corresponding intersection was marked in the outer, yellow rectangles
in figure 1.8. As can be seen, the view cell fires predominantly when the monkey

6Data expressed as mean ± SD.
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Figure 1.9: Firing activity of a single cell in the primate entorhinal cortex
exhibiting a grid-like firing pattern. A: Example of tracked eye fixations (yellow
path) for a 10 second duration. B: Firing pattern of a single entorhinal cell.
Left panel shows eye positions in grey with superimposed spikes (red). Middle
panel shows the firing rate map with multiple distinct firing fields (blue = low
firing rate, red = high firing rate, peak firing rate 1.1Hz). Right panel shows
the autocorrelogram of the firing rate map (blue = -1, green = 0, red = +1)
revealing a grid-like firing pattern (gridness score of 1.6). Scale in degrees of
visual angle (d.v.a.). Figure adapted from Killian et al. [83].

is looking at the center of wall 3, independently of the monkey’s location, head
direction, and eye position [134].

The firing behavior of view cells is maintained in darkness or when the view is
blocked by a curtain. Under such circumstances the firing field may slightly drift
and the firing rate typically decreases. Interestingly, the decrease in firing rate
is different for view cells found in CA3 and CA1. Whereas view cells in CA3
reduce their firing rate on average to 27% of their previous rate, view cells in
CA1 reduce their firing rate to only 80% on average [133]. The strong reduction
in firing rate of CA3 cells is seen as an indication that there is a strong visual
sensory drive of CA3 view cells. In contrast, the only small reduction in firing
rate of CA1 cells could indicate that those cells reflect rather some form of
memory function [136].

Rolls et al. hypothesize that both view cells in the primate and place cells in
the rat share a common neuronal mechanism which is predominantly driven by
visual input [136]. In case of the primate simultaneous, visual information about
the environment is perceived within a viewing angle of 10 to 20 degrees due to
foveal vision. This limited field of view is reflected in view cells, which respond
to sets of constant visual features, i.e., places in the environment “out there”.
In case of the rat, which has no foveal vision and a field of view of almost 300
degrees [69], the surrounding environment is perceived almost entirely leading
to a corresponding place cell activity that responds to a specific set of features
surrounding the animal, i.e., encoding the allocentric location of the animal.

The recent discovery of neurons with a grid cell like firing pattern in the primate
MEA by Killian et al. supports this hypothesis [83]. The particular neurons
fired in response to the eye positions of head-fixed monkeys during saccades and
exhibited firing fields with a triangular, periodic pattern across the entire field
of view. Figure 1.9A displays an example 10 second scan path of eye movement
for a test image shown to the monkey. Figure 1.9B shows the accumulated
response of a single primate “grid cell” over several test images. The neurons
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found in the primate EC did not only exhibit a grid cell like firing pattern but
also showed an increase in firing field spacing with distance from the rhinal
sulcus comparable to the topographic organization of grid cells in the rat EC. In
addition the particular neurons were found in all layers of the primate EC. If
neurons in the lower layers were also modulated by head direction as it is the
case in the rat could not be verified because the monkeys’ heads were restrained.
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Grid Cell Properties

The previous chapter provided a summary of neuronal structures in the para-
hippocampal-hippocampal region that contribute to representations of space in
the brain. This chapter concentrates on the specific properties of one of these
neuronal structures: the entorhinal grid cell.

Since their recent discovery [45, 62] grid cells attracted considerable attention
resulting in further studies that characterize grid cell properties. In addition,
the neuronal structure of the entorhinal cortex has been investigated before as
the EC is part of the prominent perforant pathway that projects from the EC to
all subareas of the HF.

2.1 Grid Measures

Grid cells stand out from other neurons in the parahippocampal-hippocampal
region by their triangular, grid-like firing patterns. To characterize the spatial
properties of this grid structure Hafting et al. [62] established four measures
that are used throughout the grid cell literature: spacing, orientation, field size,
and phase of a grid cell. In addition, Sargolini et al. [141] introduced a gridness
score which quantifies the degree of spatial periodicity of a cell’s firing pattern.

The basis of all five measures is the firing rate map of the grid cell in question. The
firing rate map of a cell is typically constructed by discretizing the environment
into bins of equal size (e.g. 3cm× 3cm) and determining the spatially smoothed,
average firing rate for each bin. For instance, Sargolini et al. [141] estimate the
average firing rate λ (x) of the bin centered on position x as:

λ(x) =

n
∑

i=1

g

(

si − x

h

)/
∫ T

0

g

(

y (t)− x

h

)

dt

with a Gaussian kernel g, a smoothing factor h = 3, the number of spikes n,
the location si of the i-th spike, the location y (t) of the rat at time t, and the
recording period [0, T ]. To avoid extrapolation errors bins further than the bin
width apart from the tracked path of the animal are considered as unvisited. In
a more recent publication, Stensola et al. [156] use a 5×5 boxcar average instead
of a Gaussian kernel for smoothing. The use of this boxcar average results in
firing fields that appear more accentuated and crisp compared to the Gaussian
smoothing.

29
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(a) (b)

Figure 2.1: Grid cell spacing and orientation.(a) The spacing of a grid cell is
defined as the median distance between the center peak and the six surrounding
peaks in the autocorrelogram. (b) The orientation of a grid cell is defined as
the angle α between a fixed reference line (dashed) going through the central
peak and the closest of the three main diagonals of the grid cell hexagon in
counterclockwise direction. Figures based on autocorrelogram from Sargolini et
al. [141].

Figure 2.2: Gridness scores of two grid cells. The shown autocorrelograms
include only the area containing the six peaks surrounding the center that was
used for the calculation of the gridness scores. The graph to the right of each
autocorrelogram shows the correlation of the particular autocorrelogram with a
rotated version of itself in 6◦ steps. Gridness scores are given to the left of each
autocorrelogram. Figure adapted from Sargolini et al. [141].

Four of the five grid measures, i.e., spacing, orientation, field size, and gridness
require the calculation of a spatial autocorrelogram of the grid cell’s firing rate
map. Sargolini et al. [141] construct this autocorrelogram using the Pearson
product-moment correlation coefficient r(τx, τy) to calculate the autocorrelation
between rate map bins λ separated by (τx, τy):

n
∑

λ(x, y)λ(x− τx, y − τy)−
∑

λ(x, y)
∑

λ(x− τx, y − τy)
√

n
∑

λ(x, y)
2 − (

∑

λ(x, y))
2
√

n
∑

λ(x− τx, y − τy)
2 − (

∑

λ(x− τx, y − τy))
2

where the summation is over all n bins for which both λ(x, y) and λ(x− τx, y − τy)
have valid entries in the firing rate map. Autocorrelations for shifts where n < 20
are not included in the resulting autocorrelogram.

Based on the autocorrelogram of the grid cell’s firing rate map spacing, ori-
entation, field size, and gridness are defined as follows. The spacing of a grid
cell (fig. 2.1a) is defined as the median distance between the central peak of
the autocorrelogram and its six surrounding peaks. The orientation of a grid
cell (fig. 2.1b) is defined as the angle between a fixed reference line (0 degrees)
going through the central peak of the autocorrelogram and the closest of the
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three main diagonals of the surrounding hexagon in counterclockwise direction.
The field size of a grid cell refers to the size of the individual firing fields. It
is estimated as the area occupied by the central peak in the autocorrelogram
with respect to a fixed threshold, e.g., r = 0.2 as used by Hafting et al. [62]. To
calculate the gridness score of a grid cell only the six peaks surrounding the
central peak in the autocorrelogram are taken into account. All other regions
of the autocorrelogram including the central peak are masked out. Then, the
correlation values between the masked autocorrelogram and rotated versions of
itself at 30◦, 60◦, 90◦, 120◦, and 150◦ are computed. The gridness score is then
calculated as the difference between the lowest correlation value at 60◦ and 120◦

and the highest correlation value at 30◦, 90◦, and 150◦. Figure 2.2 illustrates
the underlying motivation for this measure. The two graphs show the results for
successive correlations between the masked autocorrelogram of a grid cell with
rotated versions of itself in 6◦ steps. The graph shown on the right of figure 2.2
is an example for a grid cell with a highly periodic, triangular firing pattern
resulting in high correlation values at multiples of 60◦ and low correlation values
in between. In contrast, the graph on the left is an example for a grid cell
with a less regular firing pattern resulting in a much weaker difference between
the expected correlation maxima at 60◦ and 120◦ and the expected correlation
minima at 30◦, 90◦, and 150◦. Thus, the difference between the lowest of the
expected correlation maxima and the highest of the expected correlation minima
provides a suitable measure of a grid cells triangular periodicity. Sargolini et
al. [141] classify all cells with a gridness score greater zero as grid cells. Others,
e.g., Wills et al. [172] use thresholds determined by the 95th percentile of a
shuffled distribution. Typically, the shuffled distribution is obtained by randomly
shifting the spike times of each cell by more than 20 seconds and less than trial
duration minus 20 seconds to break the correlation with the animal’s position
while preserving the temporal firing characteristics. In case of Wills et al. [172]
the resulting threshold was 0.27. Hence, unlike Sargolini et al. [141] Wills et
al. [172] would not classify the cell shown in figure 2.2 on the left as grid cell.

In contrast to the measures described so far, the phase of a grid cell is not
an absolute measure. It describes the relative displacement between the firing
grids of two co-located grid cells, i.e, grid cells with similar spacing, orientation,
and field size. The relative displacement is determined by calculating the cross-
correlation between the firing rate maps of the particular grid cells. Due to
the cells’ similarity in spacing, orientation, and field size the resulting cross-
correlogram looks similar to the autocorrelogram of a single grid cell, with the
main difference that the central peak is offset from the cross-correlogram’s center.
This offset is the relative phase between the two grid cells.

The previously described measures are well established and widely used across
the grid cell literature. An alternative approach to characterize the periodicity of
firing patterns was introduced by Krupic et al. [91]. They use a two-dimensional
Fourier transform to identify the main plane waves that constitute the firing
pattern of a cell. In this manner they could not only identify grid cells but could
also show that many cells in the MEA have firing patterns that do not exhibit
the clean, triangular grid pattern but are periodic nonetheless. Their results (see
section 2.8) indicate, that grid cells with their precise, triangular firing pattern
may be a member of a more general class of cells that exhibits a much wider
variety of periodic firing patterns.
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dorsal intermediate ventral

mean number of fields 8.4 ± 0.3 5.9 ± 0.4 4.6 ± 0.4

mean field width 56.0 ± 1.0 cm 92.0 ± 6.0 cm 119.0 ± 7.0 cm

largest field width 90.0 ± 4.0 cm 129.0 ± 8.0 cm 190.0 ± 13.0 cm

minimum spacing 91.0 ± 12.0 cm 202.0 ± 24.0 cm 269.0 ± 47.0 cm

median spacing 171.0 ± 13.0 cm 301.0 ± 23.0 cm 370.0 ± 46.0 cm

mean firing rate 3.6 ± 0.2 Hz 4.5 ± 0.4 Hz 2.0 ± 0.2 Hz

peak firing rate 21.3 ± 0.9 Hz 17.4 ± 1.1 Hz 11.4 ± 0.9 Hz

Table 2.1: Summary of grid cell properties obtained by Brun et al. [11] for 143
grid cells in 15 rats. Cells were partitioned into dorsal, intermediate, and ventral
groups according to their position along the dorsoventral axis of the MEA.

2.2 Topographical Organization

Grid cells in the MEA are topographically organized. Neighboring grid cells
exhibit similar grid spacing, field size and grid orientation, but have dissimilar
phases. Starting from the postrhinal border grid spacing and field size increase
along the dorsoventral axis of the MEA. A similar, systematic change of grid
orientation along this axis could not be observed [62].

In order to determine the range of grid spacings and field sizes present in the
MEA Brun et al. [11] recorded 143 grid cells in 15 rats that shuttled back and
forth on a 18m long, linear track. The cells were sampled from all entorhinal
cell layers with an emphasis on the superficial layers (layer II: 26, layer III: 35,
layer II or III: 40, layers V and VI: 42) and their locations were distributed
between 1% and 75% along the dorsoventral axis. To compare grid spacing and
field size with respect to the cells’ position the cells were grouped into a dorsal
(0% - 25%, 55 cells), intermediate (25% - 50%, 59 cells), and ventral group (50%
- 75%, 29 cells). Table 2.1 summarizes the obtained results. Grid spacing as well
as field size increase from dorsal to ventral positions and, correspondingly, the
number of firing fields along the 18m track decreases. In addition, an increase in
field size appears to be accompanied by a reduction in peak firing rate. Grid
spacing is characterized not only by median values but also by minimum values.
The minimum values were provided as the algorithm used to detect the firing
fields missed a substantial number of visually discernable fields due to low firing
rates. Thus, the median values may overestimate the true grid spacing.

Using the same experimental setup as Brun et al. [11] Kjelstrup et al. [84] could
show, that the increase in grid spacing and field size along the dorsoventral axis
of the MEA is reflected in the field sizes of place cells in CA3 which receive input
from the MEA. The width of the place fields ranged from 1.41m in the dorsal
region up to 13.59m in the ventral region of CA3.

In a recent study Stensola et al. [156] examined the topographic organization
of MEA grid cells in more detail. In particular, they investigated whether the
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increase in grid spacing and field size along the dorsoventral axis is continuous
or modular, the latter option being indicated by earlier experiments [173, 6]
and theoretical considerations [105, 42]. In total 968 grid cells from 15 animals
were recorded while the animals foraged in 100cm to 220cm wide, square boxes.
The high number of recorded cells per animal (up to 186 grid cells) and the
use of two sampling strategies that covered large parts of the MEA were key to
enable the determination whether the topographic organization of grid cells is
continuous or modular. In every single animal a modular organization could be
observed. Grid cells within a module share similar grid spacing, field size, and
grid orientation. Modules with increasing grid spacing and field size along the
dorsoventral axis overlap in their extent, i.e., the positions of grid cells belonging
to different modules are not separated and may interleave. Across all animals the
distribution of mean grid spacing values covers a wide range with no apparent
peaks. However, within animals the scale relation between grid spacings of
successive modules is governed by a fixed factor of approximately 1.42 (

√
2)

leading to a doubling of the area covered by each grid hexagon between modules.
The circumstance that the same scale ratio was found in all animals despite
different, absolute values for the grid spacings implies that a genetic mechanism
is responsible for the scale relation while the different absolute values may be
influenced or determined by external factors.

Many of the hexagonal grid patterns observed by Stensola et al. were elongated
in one direction and it could be shown that grid cells sharing the same distortion
also shared grid spacing, field size, and orientation, i.e., belonged to the same
module. By exploiting an experimental paradigm that provokes a rescaling of the
hexagonal pattern in grid cells (see section 2.4), it could also be shown that grid
cell modules are functionally independent. Each grid cell module exhibited the
induced rescaling phenomena independent from each other, i.e., some modules
exhibited rescaling while others did not. This indicates that inputs based on the
same environment are processed independently by each module.

Stensola et al. found a maximum of five grid scale modules per animal and they
estimate that the total number of grid cell modules in the MEA is in the upper
single digit range.

2.3 Realignment

The phenomenon of remapping [118, 115] was introduced in the previous chapter.
It refers to the sudden change in the set of active place cells during the transition
from one environment to another. Fyhn et al. [44] investigated the behavior of
grid cells during environment changes that reliably induce either global remapping
or rate remapping [97] in hippocampal place cells. Global remapping was induced
by three protocols: switching between a square and a circular environment at
a fixed location in one room, switching between similar square environments
in two rooms with different background cues, and switching between light and
darkness in a single, square environment. Rate remapping was induced by a
single protocol in which the colors of the walls of a single, square environment
were changed. Neuronal activity was recorded in dorsocaudal MEA and/or
dorsal CA3 in 19 rats. The protocols reliably induced global and rate remapping
in all trials in which CA3 place cells were recorded.



34 CHAPTER 2. GRID CELL PROPERTIES

Figure 2.3: Illustration of grid cell realignment. The maps show cross-correlations
of firing rate maps for small populations of grid cells (5 to 9 cells) in individual
animals (5-digit numbers). A: Switching between a square and circular environ-
ment causes a shift of the grid pattern while spacing, orientation, and relative
phases are preserved. B: Switching between square environments located in dif-
ferent rooms causes not only a shift of the grid pattern but also a rotation of the
pattern. The angle of rotation was determined by successively rotating the firing
rate maps of environment B until the resulting pattern in the cross-correlogram
had maximal grid structure. Figure adapted from Fyhn et al. [44].

Global remapping induced by the first protocol, i.e., alternating between square
and circular environments, led to an absolute shift of the grid up to one-half
grid spacing while the distributions of grid spacing, grid orientation, and relative
phases were preserved (fig. 2.3A). The directions of the grid shifts were uniformly
distributed across experiments. However, for individual cells that were recorded
over several days the direction and magnitude of the grid shift remained constant.
The second protocol, constituting a stronger environment change, led not only to
a shift of the grid pattern but also to a grid rotation (fig. 2.3B). Additionally, in
some cases (three out of seven for the first protocol, five out of eight for the second
protocol) the overall grid spacing slightly scaled between environments. These
results indicate that grid cell ensembles do not change during global remapping
and instead perform a realignment of grid orientation and position. They further
suggest, that the relative phases of grid cells within a local ensemble may be
in a rigid relationship. The third global remapping protocol was used with two
rats that had electrodes in MEA as well as CA3 to determine whether grid
cell realignment and place cell remapping are coincident. In one animal global
remapping of place cells coincided with an equally fast grid cell realignment,
whereas in the second rat place cells and grid cells maintained their firing fields
after a switch from the dark to the light condition. In the latter case, global
remapping and realignment could be triggered by temporarily interrupting the
movement of the rat by placing it for one minute on a pedestal. Fyhn et al.
argue that this delayed remapping reflects a continued influence of self-motion
information on the location of place cell and grid cell firing fields.
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Figure 2.4: Illustration of grid cell rescaling. A,B: Firing events (green and red
dots) of single grid cells superimposed on the path (black lines) of two rats in
scaled environments. Trials 1 and 5 took place in the environment to which the
rats were accustomed to (red outline). C,E: Color-coded (blue: low, red: high)
firing rate maps. Grid scaling for each dimension indicated by numeric labels.
D,F: Color-coded autocorrelograms of the firing rate maps. Peaks of the central
hexagons are marked with black crosses. Figure adapted from Barry et al. [6].

Contrary to the global remapping condition no change of grid cell activity could
be observed during rate remapping.

The results obtained by Fyhn et al. suggest two main implications. First, as
the ensemble of grid cells and their relative, spatial relationship does not change
across environments, similar paths of an animal in different environments are
mapped onto similar sequences of grid cells supporting the hypothesis that
grid cells are part of an universal metric for path-integration-based navigation.
Second, as hippocampal CA3 receives both direct and indirect input from the
MEA the realignment of grid cells could serve as a basis for the remapping
occurring in hippocampal place cells [109].

2.4 Rescaling

The slight scaling effects observed by Fyhn et al. [44] during realignment can have
a much large magnitude under certain circumstances. Barry et al. discovered and
investigated these stronger rescaling phenomena in two different contexts [6, 5].

The first context in which a significant rescaling of grid cell firing patterns can
be observed is the geometric deformation of a known environment [6]. Barry et
al. trained six rats to be accustomed to either a square (1m × 1m, 3 rats) or
a rectangular (0.7m× 1m, 3 rats) environment. Subsequently, the trained rats
were exposed to scaled versions of these environments while the activity of MEA
grid cells was recorded. The square (s) and rectangular (r) environments were
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scaled horizontally (s : 0.7m× 1m | r : 1m× 1m), vertically (s : 1m× 0.7m | r :
0.7m× 0.7m), and in both directions (s : 0.7m× 0.7m | r : 1m× 0.7m). In all
cases the recorded firing patterns of the grid cells showed strong rescaling in the
direction in which the particular environment was scaled, though with a lesser
magnitude (fig. 2.4). On average grid patterns rescaled by 47.9% with respect to
the change of the environment. In addition, cases of uni-directional scaling, i.e.,
in either horizontal or vertical direction, were accompanied by a small, opposite
rescaling (7.9% on average) of the grid patterns in a direction orthogonal to the
change of the environment.

Barry et al. hypothesize that environmental features like boundaries become
associated with the grid pattern over time, such that a sudden deformation of the
environment causes a corresponding deformation of the grid pattern. However,
with an increasing number of trials, grid patterns in the changed environment
rescaled with lower and lower magnitude indicating that rescaling is not solely
a reflection of the environment’s changed geometry but also a reflection of the
animal’s increasing familiarity with the modified environment. Barry et al.
suggest that this reduction in rescaling reflects a tendency of the grid cells to
revert to an intrinsic grid scale.

The second context in which rescaling of grid cell firing patterns was observed is
exposure to novel environments [5]. In the corresponding study MEA grid cells of
eight rats were recorded while the animals foraged in 1m×1m environments. The
rats underwent five trials (20 minutes each) per day for up to seven consecutive
days. Each day, the rats were first exposed to a familiar1 environment, followed
by three novel environments, and finally the familiar environment again. Novel
environments differed in texture, visual appearance, and odor. Exposure to
the first novel environment on the first day caused realignment (rotation and
shift) as well as rescaling of all recorded grid patterns. On average the grid
patterns scaled up by 37.3% (min.: 10.5%; max.: 71.1%). In addition, the average
gridness score dropped from 0.65 in the familiar environment to 0.04 in the novel
environment as the hexagons of the grid patterns were less circular in the novel
environment. Exposure to the second and third novel environment resulted in
rescaling with less magnitude, i.e., grid patterns in the fourth trial scaled up
21.3% on average. This trend continued over subsequent days. On the second
day the average increase was 16.2% and on day five no grid cell showed any
discernable rescaling. In some cases the firing pattern of individual grid cells
already showed no apparent rescaling after three days.

In order to examine if place cell remapping co-occurs with grid cell rescaling
another seven rats were implanted with electrodes recording simultaneously
in MEA and CA1. The rats were tested by a similar protocol as described
before, yet the environments used were not identical. Upon first exposure to
a novel environment the firing patterns of the recorded grid cells scaled up
by 33.9% on average, and the average gridness score decreased from 0.96 to
0.31. Simultaneously recorded place cells showed an immediate and complete
remapping and the average size of place fields in the novel environment increased
by 28.8%. Furthermore place fields in the novel environment appeared to be less
stable and more fraying. A subsequent weakening of grid pattern rescaling in the
second and third novel environment could be observed as well (trial 3: 14.6%;

1familiar := a minimum of 100 minutes of prior exposure



2.5. FRAGMENTATION 37

Figure 2.5: Firing rate maps of three grid cells (rows A, B, C). Firing rates are
represented by blue (low) to red (high) colors. Peak firing rates are given below
the maps. The first and last columns show the firing rate maps in the open-field,
while the second and third columns show the firing rate maps in the hairpin
maze according to the animal’s running direction (indicated by black arrows).
Figure adapted from Derdikman et al. [32].

trial 4: 16.8%) and was accompanied by a similar, though smaller decrease of
place field scaling (trial 3: 11.3%; trial 4: 7.6%2).

In summary these results show that in novel environments the firing patterns of
grid cells as well as place cells expand and become less regular. With increasing
exposure to the new environments the firing fields of grid cells and place cells
reacquire the properties seen in familiar environments, i.e., they become more
regular and smaller in spatial scale. As a further mechanism that may underlie
these rescaling phenomena Barry et al. propose a possible influence of the
neuromodulator acetylcholin (ACh) which is implicated in novelty detection.
This hypothesis is supported by the fact that co-recorded grid cell patterns scale
up by similar amounts.

2.5 Fragmentation

The phenomena of realignment and rescaling of grid cell firing patterns were
observed and examined in rectangular or circular environments in which the rats
could move around freely without encountering any obstacles. However, real
environments are more likely to consist of multiple, connected subenvironments.
To investigate whether grid cells exhibit a continuous or fragmented firing pattern
across such subdivided environments Derdikman et al. [32] recorded MEA grid

2This measurement did not reach a significance level of 0.05 (0.07).
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Figure 2.6: Modified hairpin maze with two arms shortened by 50cm. A,B:
Firing rate maps of two grid cells recorded in a modified hairpin maze. Firing
rates are represented by blue (low) to red (high) colors. Peak firing rates are
given below the maps. The animal’s running direction is indicated by black
arrows. C: Correlation between the activity (10cm bins) in a short arm with the
mean activity (10cm bins) in the corresponding long arms. Figure adapted from
Derdikman et al. [32].

cells of rats that ran through a hairpin maze. The experimental protocol consisted
of four consecutive, twenty minute trials per day. In the first and last trial each
rat foraged in an open-field box (1.5m× 1.5m). In between, i.e., in the second
and third trial, each rat ran back and forth in a hairpin maze which was inserted
into the open-field box. A total of 105 MEA grid cells in 16 rats were recorded.

Within this experimental setup grid cells showed the expected triangular firing
pattern in the open-field box and lost this pattern in the hairpin environment
(fig. 2.5). In the hairpin environment the firing fields of grid cells were located at
similar positions in individual maze arms relative to the rats running direction,
i.e., firing fields in maze arms with equal running directions had similar positions
while firing fields in maze arms with opposite running directions had differing
positions in general. This result suggests that grid cell firing patterns reset at
the turning points of the hairpin maze. To test whether the firing fields were
anchored to the preceding or upcoming turning point, two arms of the hairpin
maze were shortened by 50cm (fig. 2.6). The resulting firing activity of each
shortened arm was correlated with the activity of all corresponding long arms
using 10cm wide bins and a progressive shift of the short arm to cover any
possible alignment. Figure 2.6C shows exemplarly the correlogram of one short
arm with the mean activity of all corresponding long arms. In general, the short
arm correlates more strongly with the longer arms if it is aligned to the preceding
wall. However, the end of the short arm also correlates to some degree with the
end of the long arms, i.e., when aligned to the upcoming wall. Together, these
results indicate that the location of the firing fields is possibly determined by
two mechanisms: in part by a form of path integration after a turning point, and
in part by some form of environment-based alignment towards the upcoming
turning point.

To exclude the possibility that the observed firing patterns could be caused by
the running pattern of the animals, the rats were trained to run the path of the
hairpin maze in the open-field environment without the presence of the maze
walls. The observed grid cell firing pattern matched the firing pattern during
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the random foraging task in the open-field box. Thus, excluding a behavioral
cause for the fragmentation seen in the hairpin maze.

Derdikman et al. examined also whether the observed resetting of the grid cell
firing fields would influence hippocampal place fields. They recorded 111 place
cells in CA3 (4 rats) and 47 place cells in CA1 (3 rats) and recorded their activity
using the same experimental protocol as above. Place cells recorded while the
animal was in the hairpin environment showed a fragmentation of their firing
fields similar to that of grid cells. Place fields in arms with the same running
direction were highly correlated, whereas place fields in arms with different
running direction were only weakly correlated. This co-occurring fragmentation
of MEA grid cell firing fields and CA1/CA3 place fields is another indication
for a possible coupling between the spatial representations in the MEA and the
hippocampus.

2.6 Development

The development of spatial representations, i.e., head direction cells, place
cells, and grid cells in the parahippocampal-hippocampal region of young rats
was recently investigated by Wills et al. [172] and Langston et al. [94]. Both
teams used comparable experimental procedures and obtained consistent results.
However, the teams differ slightly in their respective interpretations of the results.

Wills et al. [172] recorded putative place cells from CA1, as well as putative grid
and head direction cells from MEA in rats between the ages of P16 (postnatal
day 16) and P30. During recording the rats foraged for food in a 62cm× 62cm
box. Head direction cells exhibited strong directional tuning and were found in
adult-like proportion right from age P16, i.e., during the rat’s first exploration
of its environment3. Similarly, place cells could also be observed in a significant
proportion from day P16 with adult-like stability and quality in their firing
pattern. Throughout the observed development period the number of place cells
increased steadily towards adult-like levels. In case of grid cells, putative grid cells
with multi-peaked firing fields could also be observed from day P16. However,
the recorded firing patterns were irregular at first. Significant proportions of cells
with adult-like, hexagonal firing patterns emerged around P20 and increased fast
to near-adult proportions by P22. Based on these results Wills et al. question
the hypothesis that MEA grid cells provide the only spatial input to place cells.
They point out that the observed differential developmental time course suggest
that the interconnectivity between grid cells and place cells develops only after
the pups begin to explore their environment.

Langston et al. [94] recorded putative place cells from CA1, putative grid cells
from MEA, as well as putative head direction cells from pre- and parasubiculum
in rats between the ages P16 and P35. In addition they recorded cells from an
adult control group. During recording the rats foraged for food in a 50cm×50cm
box. In essence, their observations are consistent with the results obtained by
Wills et al. [172]. 61.9% of all cells recorded in the pre- and parasubiculum in
rats of age P15 and P16 could be classified as head direction cells showing strong

3The rat’s eyelids unseal at around P14 to P15.
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Figure 2.7: Firing rate maps and their autocorrelations of grid cells in rats of
ages between P16 and P33. Color scale from blue (low values) to red (high
values). Peak firing rates and gridness scores indicated above each rate map.
Figure from Langston et al. [94].

directional tuning. This proportion of HD cells was similar to the proportion
found in the adult control group (64.0%). 41.4% of the recorded cells in CA1
could be classified as place cells in rats of age P16 to P18. This proportion
continued to increase steadily throughout development to adult-like levels at
around 60%. During development the stability of the firing fields generally
increased within as well as between trials. This finding matches earlier reports
on the development of place cells by Martin et al. [102]. In the MEA putative
grid cells recorded in rats of age P16 to P18 showed multi-peaked, irregular
firing fields. Yet, 12.8% of the cells recorded at age P16 to P18 could already
be classified as grid cells. The proportion of cells passing the grid cell criterion
increased slightly during development to about 17.5% in rats of age P31 to P34
being substantially lower than the proportion of grid cells measured in the adult
control group (∼ 30%). However, the periodic properties of cells classified as
grid cells increased noticeably during development reaching gridness scores of
near-adult levels at age P34. Figure 2.7 illustrates this development showing
the firing rate maps and their autocorrelograms of several grid cells in rats of
increasing age. In contrast to Wills et al. [172] Langston et al. suggest that the
three observed cell types (HD cells, place cells, and grid cells) may interact from
the outset of exploration. They hypothesize that the observed, rudimentary grid
cells provide a sufficiently patterned input to CA1 cells to enable the generation
of place-specific firing fields in the hippocampus.

2.7 Phase Precession

The phenomenon of phase precession refers to a specific relation between the
firing behavior of an individual neuron and the overall, extracellular activity, the
electroencephalogram (EEG), of a brain region. In case of the rat hippocampus
two major classes of overall, extracellular activity can be observed. Behaviors
like walking, running, swimming, rearing, or jumping are accompanied by a
characteristic, sinusoidal 7Hz to 12Hz activity called theta activity or just theta
for short. Other behaviors like eating, drinking, or grooming, i.e., behaviors that
do not change the location of the animal, correlate with large irregular activity
covering a broad spectrum of frequencies. During theta activity place cells fire in
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bursts at specific points of the theta phase, e.g., at the trough. When an animal
crosses the firing field of a place cell the point of the theta phase at which the
cell fires shifts with the animal‘s relative position within the place field. This
shift in the timing of the place cell’s activity relative to the overall theta activity
is called phase precession [124].

Hafting et al. [61] investigated whether entorhinal grid cells exhibit phase preces-
sion as well. They recorded 174 MEA grid cells from 23 rats while the rats ran
back and forth on two linear tracks (235cm and 320cm, both 10cm wide). The
grid cells were identified in a two-dimensional open field environment in which
grid spacings ranged from 30cm to 70cm.

Grid cells in MEA layer II exhibited clear phase precession. On average grid cells
started to fire at 222±62◦ when the animal entered a grid field and stopped firing
at 59± 78◦ on exit labeling the peak of the theta phase with 0◦ and the trough
with 180◦. The mean slope of a best fit linear regression line on the individual
firing events of each cell was −2.77± 0.31◦ cm−1. In layer III of MEA 25% of
all recorded grid cells showed phase precession over the complete theta cycle,
another 25% showed phase precession limited to the trough of the theta-phase,
and 50% exhibited no phase precession at all. On average layer III grid cells
started to fire at 195± 81◦ and stopped firing at 192± 123◦ of the theta-phase.
The mean slope of the linear regression line was −0.078± 0.283◦ cm−1.

In order to test whether the observed phase precession of grid cells is independent
of signals from the hippocampus the firing phases of grid cells were recorded
after inactivation of the hippocampus. This inactivation was achieved by a local
infusion of muscimol4, a GABAA receptor agonist. After inactivation, the firing
fields of layer II grid cells remained spatially confined, albeit the firing fields of
the grid cells became wider and less stable. Theta activity and grid cell phase
precession was unaffected by the inactivation of the hippocampus as well.

2.8 Grid Cell Identification

The gridness score introduced by Sargolini et al. [141] is the primary measure
to identify neurons as grid cells across the grid cell literature. As a result, cells
with a gridness score below the respective threshold used in a study are typically
not included in the analysis. In a recent study Krupic et al. [91] introduced a
different approach to characterize the firing pattern’s periodicity of cells in the
MEA and adjacent PaS. They calculated the Fourier power spectrum of each
cell’s firing rate map to identify the main plane waves that give rise to the firing
pattern. To reduce the effects of noise they further filtered the power spectrum
by subtracting the 50th percentile value of the power spectrum generated from
a shuffled version of the data and setting negative values to zero. Furthermore,
main peaks in the vicinity of a higher peak were treated as local maxima and
ignored in the subsequent analysis. To qualify as a cell with a spatially periodic
firing pattern the maximal component of the Fourier power spectrum had to
exceed 95% of all components in the power spectrum of spatially shuffled data.

45-aminomethyl-3-hydroxyisoxazole



42 CHAPTER 2. GRID CELL PROPERTIES

Figure 2.8: Examples of three spatially periodic (A-C) and one non-periodic cell
(D). Data for two successive trials per cell are shown: unsmoothed firing rate
maps (first row), autocorrelograms of the firing rate maps (middle row), and
filtered Fourier power spectrograms (last row). Stability of the firing patterns
across trials is given as Pearson product-moment correlation coefficient between
the firing rate maps. Peak firing rate, gridness score, and maximum Fourier
power are indicated above the particular maps. Figure adapted from Krupic et
al. [91].

Krupic et al. recorded 351 cells in seven rats from layers II and III of the MEA
and adjacent PaS. 65% of all recorded cells in MEA and 79% of all recorded cells
in PaS were classified as spatially periodic cells. Of these 48% in MEA and 18%
in PaS were classified as grid cells based on their gridness score. As expected
grid cells exhibited three main components in the Fourier power spectrum which
were separated by multiples of 60°. The other, non-grid cells had one to four
main components with varying relative orientations and wavelengths. Figure 2.8
shows examples of firing rate maps, autocorrelograms, and Fourier power spectra
for cells with periodic and non-periodic firing patterns.

The firing patterns of all cells classified as spatially periodic were more stable
than chance within as well as across days. Of these patterns the firing patterns
of grid cells were the most stable. However, the number and relative orientation
of the main Fourier components of some cells changed gradually over time such
that, e.g., cells classified as grid cells became non-grid cells or vice versa. This
change could be observed for trials within the same environment (11% of spatially
periodic cells changed) as well as across different environments (32% of spatially
periodic cells changed).

The main Fourier components of all spatially periodic cells were clustered around
a limited number of orientations and wavelengths confirming the findings of
Stensola et al. [156] on the topographical organization of grid cells in MEA. In
addition, the use of the Fourier spectrum revealed that the orientations of the
main Fourier components of spatially periodic non-grid cells were similar to
the orientations of grid cells as well and only differed in a wider distribution of
relative orientations within the non-grid cells.
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These results suggest, that grid cells may be just one instance in a continuum
of spatially periodic cells. This hypothesis could, e.g., provide an explanation
for the multi-peaked, irregular firing patterns of early, putative grid cells in
developing rats observed by Wills et al. [172] and Langston et al. [94].

2.9 Neuronal Structure

Neurons with grid-like firing patterns were found in all populated layers of the
MEA [62, 141] as well as the PrS and PaS [9]. Interestingly, the subsequently
described morphology of neurons found in these layers is not homogeneous, i.e.,
grid-like firing patterns are exhibited by cells with varying morphologies. It is
an open question whether grid patterns are generated independently by various
types of cells or by just a single cell type which then projects a grid signal to
other cells that merely forward the signal.

2.9.1 Neuron Morphology in the Entorhinal Cortex

The entorhinal cortex is the origin of a prominent pathway, the perforant path,
that connects the EC with all regions of the hippocampus. In addition, the EC
receives inputs from various regions of the brain including the neocortex [174].
As a consequence, the EC is commonly thought of as the gateway to the
hippocampus. As such the neuronal structure of the EC has been extensively
studied even before the discovery of grid cells. If not noted otherwise the
neuronal structures reported below refer to the rat brain. As the PHR-HF
is constantly present in all mammalian species with little variation during its
phylogenetic development, insights into the neuronal structures of rat EC can be
generalized to other mammalian species, e.g., humans to a certain degree [71].
The following paragraphs will briefly summarize the key morphological properties
of principal neurons found in the EC layer by layer and provide an overview of
other structural properties like local microcircuits and indications of a possible
columnar organization of the EC.

The overall structure of the EC comprises six layers. Layers I to III are referred
to as superficial layers whereas layers IV to VI are referred to as deep layers.
Layer I contains only few neuron soma and is mainly occupied by dendritic
and axonal processes originating from cells located in lower layers. Layer II is
densely populated by stellate cells and small pyramidal cells as its principal
neurons [100]. In LEA layer II splits into Layers IIa and IIb. Layer IIb is a
continuation of MEA layer II whereas layer IIa is located more superficially and
consists of stellate cells forming local clusters or “islands” [92]. The principal
cells of layer III are mostly pyramidal cells. Layer III is relatively thick and is
followed by cell poor layer IV which contains only sparsely scattered pyramidal
cells. The relatively thick layer V hosts mostly small pyramidal neurons [100].
Both layer IV and layer V are thicker in LEA than in MEA due to a higher
neuron count and a less dense packaging of the cells in LEA [92]. The principal
cells of layer VI are mainly globular and polygonal cells [100].
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Figure 2.9: Photomicrograph of a stellate cell in layer II of the MEA. (left) The
numerous primary dendrites taper gently and remain relatively thick far from
the soma. (right) Image section showing thick dendrites covered evenly with
spines. Figure adapted from Klink and Alonso [85].

Layer II The principal neurons in EC layer II are of stellate and pyramidal
morphology. In addition, small numbers of neurons with fusiform, horizontal
tripolar, and bipolar shapes were found. The distribution of the two main neuron
types, stellate cells and pyramidal cells, is not uniform between LEA and MEA.
In the latter stellate cells are more abundant and pyramidal cells are mostly
found near the layer III border [85].

The stellate neurons in layer II have triangular, rectangular, or trapezoidal
cell bodies [100]. They possess several thick, primary dendrites which decrease
in numbers dorsoventrally from an average of ten down to seven (max. 14,
min. 5) [46]. The average ratio of primary dendrites to the number of dendritic
endpoints is about 1:15 (min. 1:10.8, max. 1:24.7) and measurements of the
overall dendritic length range from 12.8mm to 18.1mm [100]. Reports on the
shape of the dendritic domain vary. Lingenhöhl and Finch [100] report a spectrum
of shapes from circular domains with centrally located soma to broad, ellipsoidal
domains with marginally located soma. Klink and Alonso [85] describe double
V-shaped, bi-triangular dendritic domains. Others refrain from characterizing
the overall, general shape of the dendritic domain [50, 130, 16]. In general the
apical dendrites of stellate cells branch profusely in layer II and layer I and
reach up to the pial surface [50, 100, 85, 130]. The basal dendrites extend within
layer II and superficial regions of layer III [85, 130]. In some cases basal dendrites
extend down to layer IV [100]. The entire dendritic tree of the stellate cells in
layer II is evenly covered by dendritic spines (fig. 2.9) with an estimated 0.5
to 1 spines per 1µm [100]. Considering an overall dendritic length of about
15mm leads to an estimate of 7500 to 15000 spines per stellate cell where each
spine can host one or more synaptic connections. The stellate cell’s axon gives
rise to about three to five axon collaterals within its first 400µm. The axon
collaterals are oriented towards the superficial layers, branch repeatedly, and
form a “delicate net over the entire dendritic domain” [85]. A number of long
axons branches extend parallel within layer I in mediolateral direction beyond
the cell’s dendritic field [85, 130]. Additionally, axon collaterals spawning in
deep portions of layer III and in layers IV to VI were also observed [85].
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Pyramidal neurons in layer II have one or two apical dendrites that start to
branch at the border between layer II and layer I. Secondary dendrites appear
to branch off almost perpendicular resulting in a bitufted appearance of the
dendritic arbor [50, 85]. The basal dendrites of layer II pyramidal cells branch
extensively around the soma and are confined to layer II and the upper parts of
layer III. The density of dendritic spines is higher in comparison to stellate cells,
especially in case of the apical dendrites [85]. The ratio of primary dendrites to
the number of dendritic end points was measured in one case to be 1:9.4 [100].
The axon of layer II pyramidal cells is thin and meanders through layer II,III,
and IV giving off several, mainly horizontal collaterals that branch multiple
times. Some collaterals ascend to upper layers [50, 85]. The main axon continues
on a radial path towards the angular bundle5 (AB) [85].

Layer III The principal neurons of EC layer III are pyramidal cells with a
prominent, triangular cell body and radially extending primary dendrites. The
apical dendrites of large pyramidal cells bifurcate in layer III and extend further
into layer II and layer I where they continue to branch. Smaller pyramidal cells
do not bifurcate but still extend into layer II and layer I. Basal dendrites branch
extensively in layer III, but extend to deep layers as well. All dendrites of layer III
pyramidal cells are densely covered with spines [100, 130]. Lingenhöhl and Finch
report of up to five primary dendrites with an average ratio between primary
dendrites and the number of dendritic endpoints of about 1:12 (min. 1:11.2,
max. 1:15.5) [100]. In the same study the total dendritic length of a big pyramidal
neuron was measured to be 11.3mm and the corresponding length of a small
pyramidal neuron was measured to be 6.6mm. The axon of layer III pyramidal
cells gives off several collaterals already within layer III which either extend
parallel to the layer along the anteposterior axis or extend towards the superficial
layers where they stay restricted to the region occupied by the dendritic domain
of the cell. Further collaterals of the axon branch off in layer V. Compared to
the axons of layer II neurons, the axonal branches of layer III pyramidal cells
appear to be distributed more evenly [130].

Layer IV Layer IV of the EC is commonly regarded as virtually devoid of
neurons. However, Lingenhöhl and Finch [100] managed to sample a number
of sparsely scattered regular-sized and large-sized pyramidal cells as well as
one spindle cell in this layer. The larger pyramidal cells and the spindle cell
were located at the border to layer V. The regular-sized pyramidal cells (n = 3)
had between six and eleven primary dendrites with an average ratio between
primary dendrites and the number of dendritic endpoints of about 1:9 (min. 1:7.4,
max. 1:10.1). The total dendritic length of one cell was estimated to be 8.3mm.
The basal dendrites branched predominantly in layer IV and layer V with a
few dendrites reaching up to deep portions of layer III. The apical dendrites
extended into layer II and layer I where they ramified. On their way up they
bifurcated already in layer IV without any further bifurcation in layer III, leaving
the latter essentially free of layer IV dendrites. Spines were present on all parts
of the dendritic tree. The larger pyramidal cells (n = 2) at the border to layer V
had five and eight primary dendrites, respectively with ratios between primary

5The angular bundle lies below layer VI.
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dendrites and the number of dendritic endpoints of 1:11.2 and 1:8.8. The total
dendritic length was measured as 13.0mm and 13.3mm. In general the dendritic
domains were similar to that of the regular-sized pyramidal cells. Yet, spines
were present only after the first or second dendritic bifurcation. The spindle cell
had only 3 primary dendrites and a ratio between primary dendrites and the
number of dendritic endpoints of 1:13.6. The total length of the dendritic domain
was estimated to be 8.7mm. A single apical dendrite extended into layer II and
layer I where it branched extensively. The two basal dendrites extended towards
the subiculum.

Layer V/VI The principal neurons of EC layer V and layer VI are pyramidal
cells with an average of 5.4 primary dendrites (min. 3, max. 7) and an average
ratio between primary dendrites and the number of dendritic endpoints of 1:5.6
(min. 1:4, max. 1:8.7). This ratio is significantly lower compared to the ratios of
neurons in the upper layers [100]. The basal dendrites distribute horizontally
in layer V and layer VI where they branch sparsely or not at all. In one cell
the basal dendrites extended into layer IV. The apical dendrites either bifurcate
in layer IV and deep layer III or they bifurcate in layer III. In the former case
the dendrites branch extensively in layer IIa and layer I. In the latter case the
dendrites branch only sparsely until they reach layer I. Spines were present on all
segments of the dendritic domain. The average dendritic length was estimated to
be 6.2mm (min. 4.8mm, max. 7.2mm) [100, 130]. Axonal branches were evenly
distributed in layer V (66.1%) as well as in layer III (33.3%) [130].

Interneurons In a recent publication Buetfering et al. [12] were able to shed
some light on the properties of interneurons in layer II of the MEA with the help
of optogenetics. They used an adeno-associated virus to deliver and selectively
incorporate channelrhodopsin-2, i.e., a light-activated ion channel into approxi-
mately 50% of the population of GABAergic6 interneurons in the MEA of mice.
This enables the external activation of the interneurons by locally applying pulses
of blue laser light through an optic fiber implanted parallel to the common set
of tetrodes used for recording the electrical activity of the neurons.

The targeted interneurons control the activity of principal neurons in layer II
by local GABAergic connections. The axons of the interneurons extend and
branch widely within layer II where they form basket-like complexes around
other neurons. Their dendritic trees are mainly located in layer I and only
sparsely covered with spines receiving excitatory (fast AMPA-mediated and slow
NMDA-mediated) as well as inhibitory (GABAergic) input [78]. A part of this
input comes from grid cells with various phases. As a consequence the firing
pattern of interneurons is not grid-like. Like many other cells of the MEA the
firing rate of interneurons is modulated by running speed [12].

Collective activation of the interneurons via the light-activated ion channels
silenced neurons of all cell types reliably. The delay (< 5ms) between the onset of
the laser pulse and the following inhibition of postsynaptic cells is indicative of a
monosynaptic connection between interneurons and principal cells. The recovery

6inhibitory
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(a) (b)

Figure 2.10: Two reconstructions of neuronal morphologies in the MEA. (a) Re-
construction of axons (blue) and dendrites (red) of a layer II stellate cell. Light
brown regions indicate small layer II patches of cytochrome oxidase activity.
Dark brown regions indicate large patches of cytochrome oxidase activity at the
border of the MEA. D: dorsal, V: ventral, P: posterior, A: anterior, RS ctx: ret-
rosplenial cortex. (b) Reconstruction of axons (green) and dendrites (red) of a
cell located in a border patch identified by cytochrome oxidase activity. Left:
parasagittal section, right: tangential section. L: lateral, M: medial, other labels
as in (a). Figure adapted from Burgalossi et al. [17].

of inhibited, postsynaptic cells after the laser was switched off took 25ms. This
duration is consistent with the dynamic properties of GABAA receptors [12].

Based on their results Buetfering et al. [12] speculate that interneurons may
control the gain of the grid cells rather than being essential for the generation of
the grid pattern.

Topographical Organization and Microcircuits The topographical and
modular organization (sec. 2.2) of grid cells on a functional level raises the ques-
tion whether this organization is reflected in the underlying neuronal structure.
Within the last three decades a number of studies [92, 70, 100, 68, 173, 46, 130,
17, 10, 16] have identified several anatomical properties of neurons in the MEA
that exhibit a dorsoventral gradient and/or a modular organization. However, it
is yet unknown if these anatomical properties are causally related to the observed
functional organization of grid cells [16].

Many of the anatomical properties reported below were identified by histochemi-
cal methods, i.e., the selective staining of cell parts by exploiting unique chemical
properties of those parts [93]. This includes direct binding of dyes to negatively
charged nucleic acids (e.g., Nissl staining using cresyl violet [17]), incorporating
dyes in the process of enzyme catalysis (e.g., cytochrome oxidase [176, 68, 17]),
or utilizing the selectivity of exogenous antibodies towards antigens present in
the cells (e.g., reelin immunoreactivity [16]).

The layers of the MEA contain regularly distributed clusters of neurons, which are
sometimes referred to as islands. Staining for the enzymes glycogen phosphorylase
and cytochrome oxidase reveals these clusters in layer I and layer III as well as in
layer II (fig. 2.10), respectively. Both enzymes are part of metabolic processes and
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(a) (b)

Figure 2.11: Large-scale overview of MEA layer I axons. (a) Reconstruction of
MEA based on tangential sections. The sections were stained for myelin. Light
brown patches are cell clusters in layer II identified in the sections as clusters of
white somata surrounded by myelin. Dark brown patches are identified indirectly
by extensive axon bundles on the dorsal surface of each patch. Bundles of
putative centrifugal axons (blue) densely populate layer I with about twice as
many bundles as small patches. Axons of cells within one large patch are drawn
in green. D: dorsal, V: ventral, L: lateral, M: medial. (b). Reconstruction of the
MEA patches superimposed on a posteriorlateral view of the rat brain. Figure
adapted from Burgalossi et al. [17].

the intensity of the resulting stain reflects the metabolic activity in the particular
region [68, 17, 16]. The presence of cell clusters in layer II is also indicated
by staining for myelin (fig. 2.11) [17] and by staining for immunoreactivity to
the calcium-binding phosphoprotein R2D5. In the latter case layer III cells are
predominantly R2D5 positive while layer II cells are R2D5 negative resulting
in a pattern of interweaved, separate columns [70]. Within these columns the
dendritic fields of layer II and layer III neurons receive separate projections from
different brain areas [68]. The cell clusters in layer II are locally uniform in
size and are surrounded by myelinated fibers. Along the dorsoventral axis the
average size of the clusters increases while the average cell size and the degree
of myelination decreases. Adjacent to these cell clusters lies a series of larger
clusters along the dorsal and medial borders of the MEA (fig. 2.10 and 2.11) [17].

The variation of cluster size, cell size, and degree of myelination along the
dorsoventral axis is accompanied by further variations on the level of individual
cell properties. Garden et al. [46] studied these variations in MEA layer II stellate
cells in detail. Morphologically layer II stellate cells show a dorsoventral decrease
in cell body perimeter, cell body cross sectional area, and dendritic surface area.
The latter is not caused by any changes to the surface area of individual dendritic
branches, but by an overall reduction in the number of primary dendrites from
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Figure 2.12: Variation of morphological properties of MEA layer II stellate
cells along the dorsoventral axis. The plots show (from left to right) the cross
sectional soma area, total dendritic surface area, average dendritic surface area,
and number of primary dendrites of reconstructed stellate cells plotted against the
soma’s distance from the dorsal pole. Open and closed circles refer to two different
recording conditions used to measure the cell’s electrotonic properties. Both
conditions did not influence the measurement of the morphological properties
shown here. Figure adapted from Garden et al. [46].

an average of ten primary dendrites at the dorsal pole to an average of seven
primary dendrites at more ventral locations (fig. 2.12). Furthermore, the total
number of dendritic branch points also decreases dorsoventrally. In addition
to these morphological changes the electrotonic properties of layer II stellate
cells change too along the dorsoventral axis. In particular, the input resistance
and the membrane time constant increase dorsoventrally. As a consequence the
current threshold to trigger action potentials (APs) decreases 4-fold along the
dorsoventral axis, i.e., the amplitude of positive current required to trigger an
AP is much larger at dorsal neuron locations. Moreover, the time window for the
detection of coincident inputs also varies in dorsoventral direction. It is about
three times wider in the most ventral locations than it is in the most dorsal ones.

Information about the microcircuitry within the EC is incomplete and commonly
based just on information about the coarse morphology of principal neurons.
Potential connections between neurons are extrapolated based on overlapping
input and output regions which are deduced from the neurons’ dendritic and
axonal domains. Although such piecewise and tentative information does only
provide limited insight into the actual neuronal circuitry it does provide a
set of constraints to which computational models have to adhere. To this
end, the following paragraphs summarize the available, but rather fragmentary
information about EC microcircuitry.

The intra-EC projections of principal neurons can be described by their horizontal
extent parallel to the layers of the EC and their longitudinal extent in the
orthogonal direction. In general, neurons in layer III are more restricted in their
horizontal and longitudinal extent than neurons in layer II. Together they are
both more restricted in their extent than neurons in layers IV to VI [92]. In
all layers, the majority of projections are oriented longitudinally and distribute
between the respective layer of origin and the layers above, i.e., cells in layer V
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project to layers V, IV, and III; cells in layer III project to layers III, II, and I;
and cells in layer II project within layer II as well as adjacent parts of layers I
and III [173]. In addition, minor projections in the opposite direction were
also observed, i.e., from layer II cells to layers IV, V, and VI [85, 173]; and
from layer III cells to layer V [130]. By comparison layer V neurons contribute
three times more intrinsic connections than neurons in layer II and five times
more than neurons in layer III. The axonal arbor of layer V neurons is cone
shaped with its base in layer V and its peak in layer II. This suggests that
layer V cells predominantly interact with each other via their basal dendrites.
In contrast, the axonal domain of layer II neurons forms an inverted cone with
its base in layer I and its peak between layers III and V. This allows layer II
cells to communicate with a wide range of neurons in layers II, III, and V. Layer
III neurons may represent some form of bidirectional link between deep and
superficial layers as they can receive input from all layers and possess axons
that converge on smaller subsets of layer II and/or layer V cells [130]. Local
excitatory connections between principal cells were observed in layer III and
layer V [173], but none [173, 16] or few [130] in layer II. The latter may arise
from pyramidal neurons [16].

Neurons in the larger clusters at the EC border are targeted by axons of layer
II stellate cells (fig. 2.10a) as well as layer III pyramidal cells. The so called
centrifugal axons appear to be bundled and oriented in dorsomedial direction
(fig. 2.11a). The targeted cells in the large clusters differ in their morphology
from all other neurons in the MEA. Their dendritic trees are small and extend not
beyond their home cluster. They possess three main axons: one axon descending
towards the presubiculum, one circumcurrent axon targeting many other large
clusters along the EC border, and one centripetal axon specifically targeting one
to two small layer II clusters in which it arborizes. In addition, a number of axons
branch locally within the home cluster (fig. 2.10b). The firing characteristics
of large cluster cells range from spatially multi-peaked firing to spatially broad
tuning, all with a high degree of modulation by head direction [17].

A more detailed view on the microcircuitry of MEA layer II was recently provided
by Varga et al. [167]. They identified two major, non-overlapping cell groups
in layer II by utilizing the cells’ immunoreactivity to either reelin (53 ± 2.6%
of all cells) or calbindin (44 ± 2.2% of all cells). Only 2.8 ± 1.1% of all cells
were reelin and calbindin double positive7. More importantly, injection of the
retrograde tracer biotinylated dextrane amine (BDA) into the ipsilateral dentate
gyrus labeled predominantly (98.5 ± 0.5%) the reelin positive principal cells
indicating that only these cells project to the dentate gyrus. In contrast, the
calbindin-expressing principal cells were found to project extra-hippocampally to
the contralateral entorhinal cortex. In addition, Varga et al. were able to show
that reelin positive and calbindin positive cells each interact with a different
population of inhibitory interneurons. Reelin-expressing principal cells interact
with fast-spiking interneurons, whereas calbindin-expressing cells interact with
interneurons that form basket-like axonal domains surrounding the principle
cells providing perisomatic inhibition.

Regarding projections into the EC Lingenhöhl and Finch [100] as well as Bonnevie
et al. [10] could make interesting, and to some degree contradicting observations.

7Total number of cells analyzed in 3 rats: 1152
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Lingenhöhl and Finch [100] investigated projections from the hippocampal area
to the EC in vitro. In response to electrical stimulation of either the DG,
CA1 or CA3 all cells that were observed in the EC showed synaptic responses
in form of inhibitory postsynaptic potentials (IPSPs). No clear excitatory
postsynaptic potentials (EPSPs) could be identified indicating that projections
from hippocampal areas to the EC are predominantly inhibitory. However,
Bonnevie et al. [10] investigated projections from the hippocampus to the MEA
in vivo on a functional level. They observed grid cells in the MEA before and
after the inactivation of the hippocampus. In the latter case grid cells lost
their grid-like firing pattern and became direction sensitive. Based on these
results Bonnevie et al. concluded that grid cells require excitatory drive from
the hippocampus. The results of Lingenhöhl and Finch and Bonnevie et al. do
not necessarily contradict each other. The postulated excitatory drive could
reach the EC on an indirect route, e.g., via the subiculum or the pre- and
parasubiculum.

2.9.2 Neuron Morphology in the Pre- and Parasubiculum

Funahashi and Stewart [43] investigated the morphology of neurons in the pre-
and parasubiculum. In all layers they found pyramidal and stellate cells. In
the presubiculum they identified two slightly spiny and two fully spiny stellate
neurons in layer II, two slightly spiny and one fully spiny pyramidal neuron in
layer III, and one non-spiny stellate neuron as well as two non-spiny pyramidal
neurons in layer V. In the parasubiculum they found one spiny stellate neuron
and one non-spiny, two slightly spiny, and four fully spiny pyramidal neurons
in layer II, and two non-spiny stellate neurons as well as four non-spiny, one
slightly spiny, and one fully spiny pyramidal neuron in layer V.

Stellate cells in the superficial layers had multiple primary dendrites and each
primary dendrite split into several branches. Pyramidal cells in the superficial
layers had short basal dendrites and one apical dendrite extending to layer I
where it arborized. The apical dendrites of smaller pyramidal cells in the deep
layers reached into layer II and branched there.
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Computational Models of

Grid Cells

The discovery of place cells by O’Keefe and Dostrovsky [119, 121] in the 1970s
was met with much excitement as place cells were the first possible direct evidence
for a map-like, allocentric representation of the environment in the brain [120].
The existence of such a representation was hypothesized in 1948 by Edward
Tolman [164] and came to be known as the cognitive map hypothesis. A basic
requirement for this kind of map-like, allocentric representation of space is the
ability to integrate idiothetic cues like running speed and running direction in
order to update the animals location in this map during times when external
cues are limited, e.g., in darkness [104, 140]. Although some computational
models [140, 28] based on continuous attractor networks were proposed that
perform this path integration within the hippocampal place cell population
a growing amount of evidence indicated that path integration is most likely
performed outside the hippocampus [34, 35, 62, 105, 173]. Entorhinal grid cells
with their peculiar geometric properties were hence immediately recognized [45,
62] as potential part of a path integration system located just one synapse
upstream of hippocampal place cells. As a consequence all computational models
of grid cells proposed so far are grounded in the cognitive map hypothesis and
incorporate mechanisms of path integration (except [89]) as integral parts to
explain the hexagonal firing patterns of grid cells. This focus on path integration
was explicitly pointed out by Burgess [19]:

There has been a surprising rapid and general agreement that the
computational problem to which grid cells provide a solution is “path
integration” within an allocentric reference frame.

Most commonly, computational models of grid cells are classified into either
oscillatory interference (OI) or continuous attractor network (CAN) models [112,
111, 170, 55, 2, 13, 114], but see Zilli [179] for a different form of classification.
Both model classes refer to respective core ideas that were originally proposed in
the context of place cells and were later adapted to model the behavior of grid
cells. The mechanism of oscillatory interference was originally used to explain
place cell firing and the phenomenon of phase precession in the one-dimensional
case [124]. Continuous attractor networks were first used to model head direction
cells [178] and later adapted to model place cell firing [104, 140]. In addition

53
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to pure OI or CAN models a small number of hybrid OI/CAN models were
proposed [66, 25]. More recently, a third class of models has emerged. These
models, which can neither be classified as OI or CAN, utilize mechanisms of
self-organization [89, 108, 127, 150, 128, 59].

The following sections provide an overview of existing computational models for
grid cells. Section 3.1 introduces the general idea of oscillatory interference and
reviews different variations of this idea and their implementation in particular
computational models. Section 3.2 describes the core mechanisms of continuous
attractor networks and discusses different variations thereof used in the context
of modeling grid cells. The subsequent section 3.3 presents the small number of
hybrid modeling approaches that combine oscillatory interference and continuous
attractor dynamics. Section 3.4 addresses models based on self-organization and
section 3.5 describes a model utilizing spatial interference. Finally, section 3.6
summarizes common strengths and weaknesses of existing computational models.

3.1 Oscillatory Interference Models

As stated above the mechanism of oscillatory interference was originally used by
O’Keefe and Recce [124] to model place cell firing and the phenomenon of phase
precession in a restricted, one-dimensional domain. Shortly after the discovery
of grid cells O’Keefe and Burgess [123] reintroduced the idea and suggested that
grid cells might be formed by an interference process. Finally, Burgess et al. [20]
presented the first complete oscillatory interference model that could reproduce
the firing pattern of grid cells in two dimensions (see below).

The basic phenomenon underlying all oscillatory interference models is well known
in the field of acoustics and called beat. It is the interference of two oscillations
with slightly different frequencies ω1 and ω2 which results in a periodic variation
of the amplitude of the composite oscillation (cos(ω1t) + cos(ω2t), t being time).
The frequency of this variation, the beat frequency, is equal to the frequency
of the upper or lower envelope of the composite oscillation and is given by the
absolute difference of the input frequencies, i.e., |ω1 − ω2|. An example of a beat
is illustrated in figure 3.1.

In order to use this temporal phenomenon as a mechanism for path integration
in one dimension Burgess et al. [20] propose to use a base (soma) oscillation at a
fixed frequency ωs and a speed modulated (dendritic) oscillation with frequency
ωd = ωs + βs, β being a positive constant and s the current speed of the animal.
The resulting composite oscillation is used to determine the firing rate of a
putative, one-dimensional grid cell by Θ (cos(ωst) + cos(ωdt)) with Θ (x) = x if
x > 0, Θ (x) = 0 otherwise1. When the animal runs with a constant speed the
amplitude of the composite oscillation varies periodically with the location of
the animal creating one-dimensional, periodic firing fields. If both oscillations
are in phase, the firing rate is high. If the oscillations are out of phase, the
firing rate is low. As the speed with which the two oscillations alternate between
being in phase and out of phase depends linearly on the speed of the animal

1Burgess et al. [20] refer to Θ (x) as the Heaviside function but their definition differs from
the common definition of the Heaviside function as a step function. Thus, the use of the term
“Heaviside function” for Θ (x) is avoided here.
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Figure 3.1: Basic example of oscillatory interference. When two oscillations with
slightly different frequencies (ω1 = 10.0Hz and ω2 = 11.5Hz) are added, the
resulting interference exhibits a beat with a beat frequency of |ω1 − ω2| = 1.5Hz.
The beat frequency is equal to the frequency of the envelope (upper envelope
drawn in blue).

the resulting locations of the firing fields are stable. In other words: the phase
difference between the two oscillations represents the integral of the animal’s
speed and corresponds to the relative position of the animal between two firing
fields. This basic mechanism of path integration is the defining characteristic
of all oscillatory interference models. The models typically differ regarding the
types of oscillators used.

3.1.1 Dendritic Oscillator Model

Burgess et al. [20, 19] were the first to propose an oscillatory interference model
of grid cell firing that could reproduce the hexagonal firing pattern in two
dimensions. Their model uses a somatic oscillation with a fixed frequency
ωs and several dendritic oscillations with frequencies ωd. In addition to the
one-dimensional case outlined above, each dendritic oscillator has a “preferred
direction” φd such that the frequency is not only modulated by the animal’s
running speed s but also by its running direction φ:

ωd = ωs + βs cos(φ− φd) .

This modification results in a stripe-like activity pattern with stripes perpendic-
ular to the preferred direction when a single dendritic oscillation interferes with
the somatic oscillation. Multiplying two or more of these pairwise interference
patterns results in hexagonal firing fields if the preferred directions are multiples
of 60◦ (figure 3.2). If the preferred directions are not multiples of 60◦ different
periodic patterns arise [67], non of which were observed experimentally yet [91].
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Figure 3.2: Firing patterns produced by the oscillatory interference model of
Burgess et al. [20]. Interference patterns for one (A), two (B), three (C), and
six (D) dendritic oscillators with preferred directions differing by multiples of 60◦

are shown. Patterns in row (i) are the results of straight runs from the bottom
left corner to each location with constant speed. Row (ii) displays the average
activity at each location of a rat’s actual trajectory within a 78 cm diameter
environment while the rat foraged for food (unvisited locations marked white).
Row (iii) shows the data from (ii) with a 5 cm boxcar filter applied. Figure from
Burgess et al. [20].

Given that the preferred directions are multiples of 60◦ the firing rate f of a
grid cell at time t with n dendritic oscillators can be described as:

f (t) = Θ

(

n
∏

i=1

cos((ωs + βs cos(φ− φi)) t+ ϕi) + cos(ωst)

)

,

with ωs the fixed somatic frequency, β a positive constant, s the running speed,
φ the current running direction, φi the preferred direction and ϕi an optional
phase offset of the ith dendritic oscillator, and Θ (x) as defined above.

Burgess et al. suggest the somatic and dendritic oscillations are implemented on
the neuronal level as subthreshold membrane potential oscillations (MPOs) at
theta frequency (7Hz to 12Hz). It has been shown that MEA layer II stellate
cells exhibit such subthreshold MPOs when they are depolarized near firing
threshold [67]. Furthermore, Giocomo et al. [53] found a dorsoventral gradient
in the frequencies of subthreshold MPOs in these cells in vitro. The frequencies
decrease from dorsal to ventral. In the proposed model such a decrease in
MPO frequency results in an increased grid spacing. This is to some degree
consistent with the observed increase in grid spacing along the dorsoventral
axis of MEA [67]. Yet, the lowest observed MPO frequency cannot produce
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sufficiently large grid spacings to be in accordance with the largest observed grid
spacings in real grid cells [51].

The proposed model requires the ability to maintain the relative phases of the
oscillators in the presence of noise. Even small amounts of uniform frequency
change added to the dendritic oscillators can disturb or even disrupt the grid
pattern. A change as small as 0.001Hz will cause the grid pattern to drift and a
change of 0.003Hz or more will cause the grid pattern to disintegrate [51]. To
compensate for this susceptibility to noise Burgess et al. propose a feedback
mechanism from place cells to grid cells that would regularly reset the phases of
the oscillators whenever a grid cell firing field and a corresponding place field
coincide. As place cell firing is aligned to sensory cues from the environment,
this mechanism would also anchor the grid cell firing pattern to those sensory
cues. However, as Welinder et al. [170] point out, this mechanism does neither
explain the alignment of grid orientations nor the fixed phase relations within a
grid cell population.

The results of a more recent study by Zilli et al. [181] raise the question, if an
MPO-based oscillatory interference model can function at all if realistic levels of
noise in MPOs are considered. They estimate that in the best case MPO-based
grid cell firing would be stable for no more than 35 milliseconds.

A second requirement of this single cell model is the existence of two or more
stable, independent dendritic oscillators. Burges et al. argue that the prominent,
thick dendrites of MEA layer II stellate cells may allow for such independent
oscillations. However, Remme et al. [132] demonstrated that this assumption
is biologically not plausible. If realistic assumptions about cellular membrane
potential dynamics are made, dendritic and somatic oscillators tend to phase
lock, i.e., synchronize with each other. As a consequence, the cells act as single
oscillators and the grid pattern disintegrates. In addition, Blair et al. [7] note
that MPOs are generated by voltage-sensitive currents. As a result, the phases
of MPOs are easily disturbed by changes in the overall membrane potential, e.g.,
during an action potential. Thus, it is highly unlikely that MPOs possess the
stability required by the proposed oscillator model.

Another, biologically implausible assumption made by this model is the use of
perfect sinusoidal oscillations which contrast the high degree of noise, variance
in frequency, and significant attenuation in high-conductance conditions present
in intracellular oscillations recorded in vitro [53, 170, 55]. Additionally, the
model assumes that the activity of head direction cells is determined by a cosine
function of actual head direction. In most cases this assumption is not valid.
Typically, actual head direction cells fire in a range of about 90◦ with a triangular
tuning curve. They also lack the negative part of the cosine function [64].

Furthermore, two recent, independent studies recorded intracellular activity
of grid cells in vivo in mice that navigated in a virtual environment [33, 143].
Both studies report that the membrane potential of MEA layer II stellate cells
exhibited slow, large, and reproducible ramps of depolarization when the animal
crossed a grid cell firing field contrary to what would be expected if the firing
was determined by theta oscillations. Nevertheless, the cells also exhibited
subthreshold theta oscillations, but these oscillations were only weakly correlated
with grid cell activity.
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Finally, Yartsev et al. [177] found grid cell activity in crawling bats without
measuring any theta oscillations suggesting that theta oscillations are not neces-
sary to generate grid cell firing patterns (but see Barry et al. [3] for a different
interpretation of these results). Interestingly, non-stellate cells in rodent MEA
layer II and III also lack subthreshold theta oscillations but were observed to
exhibit grid cell firing [144].

3.1.2 Persistent Spiking Model

One major drawback of the previously described model is the biologically im-
plausible use of MPOs as independent oscillators. To alleviate this drawback
Hasselmo [64, 65] proposes that persistent spiking neurons could be an alternative
source of oscillation. Under some circumstances in vitro pyramidal neurons in the
MEA show persistent firing, i.e., they continue to fire at stable frequencies after
the initial stimulus is removed. Persistent spiking neurons were found in layers
II, III, and V of MEA. In layer II the firing has a periodic on/off characteristic.
In layer III the firing is continuous and the firing frequency is cell specific. In
layer V the firing is continuous as well, but the firing frequency depends on the
integral of prior input.

Hasselmo [64] hypothesizes that a grid cell could receive input from several,
separate populations of such persistent spiking neurons and would fire when
the firing of all populations is in phase. In the absence of any input, all neuron
populations in the model exhibit persistent firing at a common, stable baseline
frequency with potentially different relative phases. Within each population the
persistent spiking neurons fire in near synchrony. The phases of each population’s
firing frequency change due to transient frequency changes caused by selective,
speed-modulated head direction input. Formally, the activity g(t) of a grid cell
over time t can be described as:

g(t) =
∏

i

[

cos

(

2π

(

ft+ P (z)

∫ t

0

hi(τ) dτ

)

+ ϕi

)]

H

.

The input to this grid cell consists of several persistent spiking neurons i sharing
a common baseline frequency f . Each persistent spiking neuron has an initial
phase ϕi and receives speed-modulated head direction input hi restricted to a
preferred head direction. As a consequence, the frequency of each persistent
spiking neuron transiently deviates from the baseline frequency in proportion
to the speed-modulated head-direction input. The factor P (z) controls the
magnitude of this deviation as a function of the grid cell’s dorsoventral position z.
The spiking of each persistent firing neuron is modeled by a thresholded Heaviside
function [·]H .

Although this model avoids phase locking of its individual oscillators, most of the
criticisms stated above remain valid. As in the MPO-based model the preferred
directions of the individual persistent spiking neurons must be multiples of 60◦.
Likewise, the persistent spiking model does neither explain the alignment of
grid orientations nor the fixed phase relations within a grid cell population.
Furthermore, it is almost as sensitive to noise as the MPO-based model. Zilli et
al. [181] estimate a best-case stability of the grid cell pattern of 3.1 seconds in
case of MEA layer V persistent spiking neurons.
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(a) (b)

Figure 3.3: Examples of one-dimensional ring attractor models. In both models
a set of neurons (outer circles) is circularly connected by local, center-surround
connectivity that excites neighboring cells (small angle |δ|) and inhibits cells that
are further apart (large angle |δ|). In the absence of input the cell network forms
a single, local bump of activity (cell activity indicated by yellow color). (a) In
the model proposed by Zhang [178] this bump of activity can be moved in either
direction when the symmetric weights ω(δ) = ω(−δ) between the neurons are
modified in such a way that the symmetry is broken. (b) In the model described
by McNaughton et al. [105] the connection weights ω(δ) remain fixed and the
bump of activity is moved by a second layer of asymmetrically connected inputs
(blue- and sepia-colored cells) that “nudge” the bump in the particular direction.

Despite being a spiking neuron model, the model relies internally on the assump-
tion of perfect sinusoidal oscillations and cosine-like head direction cell activity
in much the same way as the previously described MPO-based model. Moreover,
the observations regarding characteristics of intracellular activity and missing
theta oscillations in bats challenge the persistent spiking model as well.

3.1.3 Ring Attractor Model

Blair et al. [7] propose another possible source and location of oscillations. They
argue that path integration is not implemented within the hippocampus or the
entorhinal cortex, but is instead realized by central pattern generators (CPGs)
located in subcortical structures that are assumed to be one possible origin
of the theta rythm [168, 145]. Blair et al. suggest that the circuit of these
subcortical CPGs may be functionally similar to the continuous ring attractor
circuits proposed for head direction cells.

Continuous, one-dimensional ring attractor networks (figure 3.3) consist of a set
of neurons which are circularly connected by local, center-surround connectivity.
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Located on an imaginary circle the connection weights between the different
neurons can be described as a function ω of their relative angle δ to each other.
Neurons have a positive (excitatory) connection if their relative angle |δ| is small,
and they have a negative (inhibitory) connection if their relative angle |δ| is large.
If the connection weights are symmetric, i.e., ω(δ) = ω(−δ), a stable bump of
activity will form in such a network. In case the symmetry of the connection
weights is disturbed, i.e., ω(δ) 6= ω(−δ), the bump of activity will start to move
in either direction.

Zhang [178] uses a continuous attractor network to model the activity of head
direction cells. In his model the symmetry of the connection weights is influenced
by angular velocity signals in such a way that the continuous attractor effectively
integrates the angular velocity into an absolute head direction represented by the
bump of activity in the network. McNaughton et al. [105] describe a variation of
this mechanism in which the bump of activity is moved by a secondary layer of
asymmetrically connected neurons (fig. 3.3b) keeping the connection weights of
the entire network fixed.

Blair et al. reason that continuous, one-dimensional attractor networks can
operate as oscillators if the connection weights ω(δ) between the neurons in the
network are already asymmetric by default. In that case the bump of activity
would rotate around the network with a constant velocity that is determined by
the strength of the weight asymmetry and the speed with which the individual
neurons in the network can change their activity. In such a ring oscillator all
neurons fire with the same frequency but differ in their relative phases. If the
asymmetric connection weights are modulated, e.g., by the running speed of the
animal, the resulting frequency will change accordingly. Blair et al. demonstrate
that the neurons of the described ring oscillators can fire at frequencies in the
theta range. Correspondingly, they call these neurons theta cells. Furthermore,
they demonstrate for the one-dimensional case, how input from a baseline ring
oscillator and a speed-modulated ring oscillator can produce regular firing fields
of various frequencies depending on the degree of speed modulation. However,
they do not actually simulate the proposed ring oscillators, but instead use a
regular cosine function to generate the proclaimed oscillations. Hence, in their
simulation results they merely reproduce the results of the original oscillator
interference model presented by O’Keefe and Recce [124].

Welday et al. [169] follow up on the ideas of Blair et al. and present a more
sophisticated model based on theta cell activity. Their model postulates a
population of theta cells, that are modulated by running speed and running
direction with varying degree. Depending on which subset of these cells converge
on a given target cell, the activity of that target cell resembles the firing pattern
of either a place, grid, or border cell (figure 3.4). Interference of many theta
cells with an equal degree of speed modulation but varying preferred running
directions results in putative place cell activity. If the number of interfering
theta cells is smaller, and the preferred running directions are multiples of 60◦ a
grid cell firing pattern emerges. In contrast, if the theta cells share a common
preferred direction but vary in their degree of speed modulation the resulting
interference pattern resembles the activity of a putative border cell. Similar to
Blair et al. [7] the activity of theta cells is simulated by using a cosine function
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Figure 3.4: Generation of place, grid, and border cell firing based on theta cell
activity. Place cell firing results from the interference of many theta oscillators
with various preferred directions. In contrast, grid cell firing results from the
interference of only few theta oscillators whose preferred directions are multiples
of 60◦. Place cell and grid cell spacing is determined by the amount of speed
modulation that the particular set of theta oscillators experience. Putative
border cell firing results from the interference of oscillations with equal preferred
direction but different amounts of speed modulation. Figure from Welday et
al. [169].

rather than actually simulating the theta cells as part of velocity controlled ring
oscillators.

Welday et al. support their theoretical model by providing experimental evidence
of neurons in the medial septum, hippocampus, and anterior thalamus in vivo
that fire in the theta frequency range and modulate their firing frequency by the
rat’s running direction with a cosine-like tuning. However, the reported variation
of theta frequency depending on movement direction is on the order of 0.1Hz.
Significant (p < 0.05) modulation by running direction was only present in 14 of
45 recording sessions. The determination of a cosine-like tuning was performed
by fitting a cosine function to the values of 8 histogram bins representing 45◦

each.

Regarding the initial criticisms of oscillatory interference models the ring attractor
model of Welday et al. is comparable to the previously described persistent spiking
model. However, with respect to the question on how the alignment of grid
orientations and the fixed phase relations within a grid cell population arise, the
model does provide a possible explanation. If all grid cells within a population
receive input from the same subset of ring attractors, but from theta cells with
different phases, the grid orientation and the relative grid phases would be stable
in the particular grid cell population.

3.1.4 Coupled Neuron Models

Zilli et al. [181] analyzed the variability of biological oscillators in the context
of oscillatory interference. They came to the conclusion that even in a best
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case scenario the resulting spatial firing patterns would only be stable for a few
seconds. To overcome this susceptibility to noise the phase of the oscillators could
be regularly reset by signals from external sensory cues as proposed by Burgess et
al. [20]. Alternatively, coupling of individual, noisy oscillators into synchronized,
oscillating networks may result in a more stable overall oscillation [181]. Zilli and
Hasselmo [180] analyzed the latter hypothesis by means of numerical simulation.
Their basic model consist of a single grid cell which receives equally weighted
input from typically three, structurally identical oscillator networks. Each
oscillator network consists of cells that are fully connected to each other with
equal strength. The individual cells are modeled as simple model neurons [72]
and receive identical external input or noise. Fed with a constant current the cells
in such a network begin to discharge periodically in a phase-locked, synchronous
fashion where the frequency of this periodic firing can be controlled by the
amount of input current. Zilli and Hasselmo use this relation between input
current and frequency to control the oscillator networks in such a way that
one network operates as a baseline oscillator with a fixed frequency while the
other networks operate as velocity controlled oscillators (VCOs) with different
preferred directions at multiples of 60◦. Based on recorded trajectory data from
a rat moving in a circular environment, running speed and running direction are
transformed into corresponding input currents for the oscillator networks.

Using this basic setup Zilli and Hasselmo modeled the receiving grid cell as
either leaky integrate and fire neuron [23], resonate and fire neuron [73], or
simple model neuron [72]. In all three cases the oscillator networks consisted of
250 noisy, simple model cells. Stable grid cell patterns were generated by all
grid cell variants demonstrating that coupling of noisy oscillators can mitigate
the susceptibility to noise in oscillatory interference models. However, the
demonstrated solution requires that the noise in the input is uncorrelated. Even
5% correlation in the noise results in a loss of stability of the grid cell firing
pattern. Furthermore, the high number of cells required per oscillator network
places a rather low upper limit on the number of oscillators that can plausibly
exist in, e.g., the hippocampal-parahippocampal region of a rat.

Whereas the approach of Zilli and Hasselmo utilizes coupling of neurons within
the individual oscillators Burgess and Burgess [18] propose an alternative solution
which uses coupling across oscillators. Their model uses four ring oscillators as
described by Blair et al. [7]. Three of these ring oscillators operate as VCOs with
preferred directions at multiples of 120◦. The remaining ring oscillator is not
modulated by running speed and provides a baseline oscillation. However, this
baseline oscillation is not independent of the VCOs. Instead, the VCOs and the
baseline oscillator are coupled in such a way that the baseline oscillator always
operates at the mean frequency of the VCOs. As a consequence, integration errors
occurring in the VCOs are “followed” by the baseline oscillator and effectively
cancel out as the integration manifests itself as the relative phase offset between
the VCOs and the baseline oscillator. Burgess and Burgess demonstrate that
this entrainment of the baseline oscillator leads to stable grid cell firing for
durations between three seconds and two minutes depending on the level of noise.
They suggest that this short term stability may then be supplemented by reset
mechanisms based on signals from external sensory cues to achieve long term
stability.
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Figure 3.5: Illustration of the attractor network proposed by McNaughton et
al. [104, 140]. A stable bump of activity in a two-dimensional, continuous
attractor network (CAN,top layer) represents the current location of the rat.
Several, two-dimensional sub-layers receive the activity of the top layer and feed
it back slightly shifted towards a particular preferred direction. This feedback is
controlled by speed modulated head direction cell input (1D ring attractor on
the left) which effectively selects the particular sub-layer that is active at a time.
When the rat is moving, the asymmetric feedback of the sub-layers causes the
bump of activity in the CAN to follow that movement. If the rat is not moving,
no sub-layer is active and hence the bump of activity in the CAN does not move
either. Figure adapted from McNaughton et al. [105].

3.2 Continuous Attractor Network Models

Continuous attractor network (CAN) models represent the second major class
of grid cell models. Similar to the concept of oscillatory interference the core
ideas of CAN models were originally introduced in the context of place cells.
McNaughton et al. [104, 140] describe a place cell model based on a CAN that
is commonly regarded as the precursor to most CAN-based grid cell models.
Figure 3.5 illustrates the key components of their model. It consists of multiple,
two-dimensional layers of neurons. The top layer contains place cells which
exhibit local, excitatory connectivity that reduces exponentially in strength
with distance forming a continuous attractor network that is able to maintain
a single, stable bump of activity. Several sub-layers receive the activity of the
top layer and feed it back slightly shifted towards a layer-specific, preferred
direction. This feedback is modulated by running speed and running direction,
i.e., speed modulated head direction cells (the 1D ring attractor in fig. 3.5) select
the feedback layer that has a matching preferred direction. Thus, if the rat is
moving in a certain direction, the corresponding asymmetric feedback causes the
bump of activity in the top layer to follow that movement. Conversely, if the rat
is not moving, no feedback layer is active and the bump of activity in the top
layer does not move either.

McNaughton et al. demonstrate that the described model is able to successfully
integrate speed and direction information into a representation of the rat’s
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(a) (b)

Figure 3.6: Neurons in a continuous attractor network (CAN) have local, excita-
tory connectivity that reduces in strength with distance (red arrows). (a) At the
boundaries of a CAN this center-surround connectivity cannot be maintained.
(b) One solution to this boundary problem is the use of periodic boundaries
resulting in a toroidal topology of the CAN. Figure adapted from McNaughton
et al. [105].

location. However, a problem arises if the bump of activity reaches the edges
of the CAN and is unable to follow the rat’s movement beyond the particular
boundary (figure 3.6a). One solution to this problem consists of using a toroidal
topology, i.e., letting the edges of the CAN wrap around (figure 3.6b). This
topology avoids the boundary problem but results in a periodic, rectangular
repetition of the place field. Although place cells are known to exhibit multiple
firing fields, the latter do not occur in such regular patterns [37]. This “bug” of
the model in the context of place cells suddenly became a “feature” when viewed
as a potential model for grid cell firing. The only difference between the regular
firing patterns generated by the place cell model and the firing patterns exhibited
by grid cells is that the former are rectangular and the latter hexagonal. As
pointed out by Guanella et al. [60] (sec 3.2.1) this difference can be compensated
for by twisting the toroidal topology along its axis of revolution. Adding this
minor modification transforms the proposed place cell model into a proper model
of grid cell firing.

The model matches well with a number of experimental observations. For
instance, grid spacing and orientation are organized in discrete modules along
the dorsoventral axis of the MEA [156]. Each of these modules could correspond
to an independent CAN [55, 13]. Similarly, grid cells within such a module
exhibit similar spacing and orientation as well as stable relative spatial phases [62],
and distortions of the grid structure, e.g., during rescaling phenomena [6, 5],
are shared by all cells of a module. These properties, too, map well onto
the properties of the CAN model [13]. Furthermore, conjunctive grid × head
direction cells found in layers III to VI of the MEA [141] appear to correspond to
the direction-modulated feedback layers of the model [55]. On a cellular level two
recent studies [33, 143] conducted intracellular recordings of grid cells in mice
while the animals navigated in virtual environments. Both studies found that
slow modulation of the membrane potential is the determining factor for grid
cell activity. This slow modulation is in accordance with the slow, asynchronous
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modulation of synaptic input on which most CAN models rely to maintain their
attractor state [13].

In contrast, various aspects of the network topology required by the CAN
model of McNaughton et al. are objects of criticism. For example, Conklin and
Eliasmith [28] point out that the feedback layers require much more neurons than
the actual CAN layer, with 6 to 200 feedback layers and 30000 to 300000 neurons
per layer being reported in the literature. In addition to these size requirements,
there exists no straight forward explanation of how the overall connectivity
required by the model could arise. McNaughton et al. [105] offer a rather
speculative solution to this problem. They hypothesize that a temporary, self-
organized teacher layer could provide pseudo grid cell activity during development
and guide the connectivity of the real grid and feedback layers by means of
Hebbian learning. However, experimental evidence supporting this hypothesis
has not turned up yet [172, 94].

Regardless of how the overall connectivity arises, the local connectivity of a
CAN is determined by the distance between neurons within a 2D topology
implying that neighboring grid cells should have similar grid phases [55, 13]. Yet,
experimental evidence [62, 156] shows that grid phases of nearby grid cells vary
widely challenging this prediction of CAN-based models.

Another implication of CAN-based connectivity is described by Burak and
Fiete [15]. They point out, that in a CAN model any reproducible irregularity in
the firing pattern of an individual grid cell must also be exhibited (up to a shift
in phase) by all other cells in the network. This appears to be in contradiction
to the various degrees of spatial periodicity observed in the firing patterns of
non-grid cells by Krupic et al. [91] and the occasional individual transformation
of the firing patterns of these cells back and forth between grid and non-grid
patterns.

Furthermore, recent studies [29, 16, 12] have shown that grid cells in MEA layer
II are connected by almost purely inhibitory connections. This questions many
CAN-based models as they rely on excitatory connections. However, there are
a number of attractor models using only inhibitory connections [15, 29, 126]
(sec. 3.2.2).

Finally, it is criticized [55] that most CAN-based models, except the model
proposed by Navratilova et al.[116], do not account for temporal phenomena like
phase precession.

3.2.1 Dynamic Connection Model

Guanella et al. [60] describe an alternative CAN model of grid cell firing that
consists of a single two-dimensional layer of neurons arranged in a twisted
toroidal topology. The connection strength wij between any two cells i and j is
determined by a Gaussian function of toral distance ‖·‖tri between the two cells
and an additional modulation by the current velocity v = (vx, vy) of the animal:

wij = I exp

(

−‖ci − cj + αRβv‖2tri
σ2

)

− T,
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Figure 3.7: Left, illustration of the symmetric connections between cell ci and
its neighbors. Dark and light arrows represent strong and weak connections
respectively. Right, the connections are modulated by running speed and running
direction, i.e., connections along the running direction are strengthened and
opposite connections are weakened. Figure adapted from Guanella et al. [60].

with I representing the overall synaptic strength, ci =
(

cix , ciy
)

the normalized
position of cell i, σ defining the size of the Gaussian, and T determining the
transition point between local excitatory and surrounding inhibitory connections.
The parameter α and the rotation matrix Rβ specify the resulting grid scale and
grid orientation. The norm ‖·‖tri is defined as:

‖ci − cj‖tri = min
k

‖ci − cj + sk‖,
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and ‖·‖ the Euclidean norm. Figure 3.7 illustrates the effect of the velocity
modulation on the connections of a single cell.

Initially, each cell ci in the network has a random activity Ai(0). The subsequent
activity Ai(t+ 1) of each cell is determined by the linear combination of a
weighted sum of incoming activity from other cells and a normalization term
based on the overall activity of the network. The resulting attractor network
forms a single, stable bump of activity which changes its locus consistent with
the animal’s running speed and direction. Yet, if noise is added to the ideothetic
input, i.e., to the velocity signal v, the simulated grid cells no longer exhibit
their characteristic hexagonal firing pattern. To ameliorate this susceptibility
to noise Guanella et al. propose a calibration mechanism based on place cell
feedback. They could demonstrate that the mechanism is able to restore the
hexagonal firing patterns under certain noise conditions. However, the noise
was added in proportion to the speed’s magnitude. Thus, when the animal was
moving slowly or not at all, only small or no amounts of noise were added to the
speed signal respectively.

3.2.2 Fixed Connection Models

Fuhs and Touretzky [42] present a CAN model of grid cells that uses neither
the sub-layers nor the toroidal topology of the previously described model
by McNaughton et al. Instead, grid cells are arranged on a two-dimensional,
circular sheet and interact with one another only within a constrained, local



3.2. CONTINUOUS ATTRACTOR NETWORK MODELS 67

(a) (b)

Figure 3.8: (a) Local output (left) and input (right) connection weights of a
single simulated grid cell in the grid cell model by Fuhs and Touretzky [42]. The
weights are color coded (see scale) and arranged according to the two-dimensional
positions of the corresponding cells relative to the reference cell located at the
center. (b) Multiple bumps of activity form on the circular, two-dimensional
sheet of simulated grid cells. New bumps form and existing bumps disappear
respectively when the activity is shifted across the sheet. Figure adapted from
Fuhs and Touretzky [42].

neighborhood. The strength of a connection between any two cells on the sheet
is governed by two components. The first component is an attenuated, periodic
function of the distance between the two particular cells on the sheet, leading to
mutual support between cells of similar spatial phases and competition otherwise.
Figure 3.8a (left) illustrates the resulting periodic weight distribution for a
single cell in relation to its neighbors. Using only this first weight component
and providing a constant input to all cells, the circular sheet of grid cells will
settle into an attractor state with multiple bumps of activity arranged in a
hexagonal pattern as shown in figure 3.8b. To facilitate path integration a
second weight component is required. This second component is an asymmetric
accumulation of inhibition towards neighboring cells that lie opposite to a
preferred direction φi of the particular grid cell (blue spot in fig. 3.8a, left). This
selective, asymmetric inhibition allows to move the bumps of activity on the
sheet in a particular direction Φ by increasing the velocity-dependent input vi
for cells whose preferred direction φi is close to Φ and decreasing the input for
cells with preferred directions almost opposite to Φ, i.e.:

vi =
1

2
+ 2s

(

exp

(

− sin2
(

Φ− φi

2

)

/σ2
hd

)

− 1

4

)

,

with s the normalized current running speed, Φ the current running direction,
and σhd = 0.245 a constant determining the broadness of the head direction
tuning. If the current running speed is 0, vi has a value of 0.5, i.e., all grid
cells receive the same, external input and the recurrent input from other grid
cells irrespective of their particular preferred directions is balanced in such a
way (fig. 3.8a, right) that the bumps of activity do not move. If, on the other
hand, the current running speed is not 0, the increased input to grid cells with
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(a) (b)

Figure 3.9: The CAN model of Burak and Fiete [15] consists of a two-dimensional
sheet of cells with local center-surround connectivity. (a) Left, the outgoing
weights W (x) of a cell are described by a difference of Gaussians (DoG). The
parameters of the DoG are chosen such that W (0) = 0, i.e., all connections
are inhibitory. Right, if the entire network receives broad-field feedforward
excitation and the local inhibition is sufficiently strong, a regular hexagonal
activity pattern emerges. (b) To facilitate the integration of velocity signals by a
corresponding displacement of the activity pattern, each cell receives additional
input from speed-modulated head direction cells of a preferred direction (color
coded) and the cell’s output weights are shifted slightly along that particular
direction. Figure adapted from Burak and Fiete [15].

a preferred direction similar to the running direction will inhibit one flank of
the bumps and push them in the opposite direction. As a result the bumps of
activity follow the movements of the animal.

As the described model does not use a toroidal topology, the boundaries of the
circular sheet of grid cells require particular attention. Since the cells near a
boundary receive no symmetric input from other cells, the connection weights
must be scaled appropriately. Without proper scaling bumps of activity tend to
unevenly distribute across the sheet and when bumps are moved, they tend to
accumulate at the edges instead of smoothly sliding off destroying the hexagonal
pattern in the process.

Burak and Fiete [14] criticize the model of Fuhs and Touretzky as they were
not able to replicate the expected model behavior. They observed that the
claimed “velocity response is neither purely translational nor linear” and that
the single-neuron responses in their replicated model had “no coherent grid
structure”. They come to the conclusion that the translation of the grid pattern
shown by Fuhs and Touretzky was the result of a brief 300ms pulse of directional
activity. When the activity of a single cell in the model is tracked for longer
periods of time, i.e., for a simulated rat that explores a 1m2 enclosure, the
grid structure of the cell’s firing pattern disintegrates. However, based on the
ideas of Fuhs and Touretzky Burak and Fiete present a similar, working model
in a later publication [15]. Their model uses a difference of Gaussians (DoG)
as simplified version of the attenuated, periodic weight distribution and the
parameters of the DoG are chosen such that all outgoing, local connections of a
cell are inhibitory (fig. 3.9a). As a consequence, the sheet of grid cells requires
a constant external excitatory input to exhibit a hexagonal firing pattern. To
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incorporate path integration into the model, each cell receives additional input
from speed-modulated head directions cells of a particular preferred direction. In
addition, the outgoing weights of each cell are shifted slightly along the respective
preferred direction (fig. 3.9b).

Burak and Fiete tested two versions of this model with 20 minutes of recorded
rat trajectory. The first version used a toroidal topology. The second version
had an aperiodic topology. Both version were able to produce stable hexagonal
firing fields. Yet, the aperiodic version required “attention to details and tuning”
and a minimum of 104 neurons to work properly. Furthermore, the aperiodic
version experienced unwanted rotations of the hexagonal grid pattern whereas
the toroidal version did not.

Recently, Si et al. [149] presented a variation of the model by Burak and Fiete
which does not only attribute preferred directions to each grid cell but also
preferred speeds. Si et al. argue that their modification allows to use more
realistic neurons with stronger non-linear firing characteristics. However, they
tested their model only with simulated, sinusoidal movement data that did not
contain any abrupt changes in movement direction. Thus, it is uncertain if the
presented model would work with realistic trajectory data.

Couey et al. [29] investigated the local microcircuitry of MEA layer II stellate
cells in an extensive study of more than 600 neuron pairs covering the complete
dorsoventral axis. They found that layer II stellate cells are mainly interconnected
via inhibitory interneurons following a bimodal distribution, i.e., connections
are either absent or have similar strength. Based on these findings Couey et al.
present a simplification of the model by Burak and Fiete in which local inhibitory
connections between grid cells are of equal strength within a local radius and
absent otherwise. Their simulation results indicate that even with this coarse
bimodal distribution of inhibitory connections a stable hexagonal firing pattern
can emerge. A more detailed model that implements the inhibition between
stellate cells via interneurons explicitly is presented by Pastoll et al. [126].

As pointed out by Schmidt-Hieber and Häusser [144], the previously described
CAN models that use purely inhibitory connections make the implicit prediction
that at least some of the interneurons that mediate the inhibition should also
exhibit hexagonal, spatial firing patterns. In this regard Roudi and Moser [138]
note, that the study of Buetfering et al. [12] did not discover any interneurons
with such firing properties. Hence, the coupling between grid cells with similar
phases via inhibitory interneurons as required by inhibitory CAN models is in
disagreement with current experimental evidence.

3.3 Hybrid OI/CAN Models

More recently two models that combine ideas from the OI and CAN models were
presented [66, 25]. The model by Hasselmo and Brandon [66] uses a large number
of oscillating neurons that interfere in such a way that the resulting activity
patterns correspond to standing waves that exhibit attractor dynamics on a
macroscopic level. The model by Bush and Burgess [25] is more conventional.
It resembles the OI models presented by Blair and Welday et al. [7, 169] and
essentially uses attractor dynamics to make the path integration more robust.
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Figure 3.10: Partial illustration of model components for a single spatial phase
in the model by Hasselmo and Brandon. The figure shows 3 out of 24 groups of
a single heading angle cell subpopulation. (A1-A3) show 6 of 10 signals from
individual heading angle cells with varying temporal phase. (B1-B3) show the
corresponding projections of the cells in A onto the grid cell layer. (C1-C3)
show the combined, oscillating activity of a single heading angle cell group.
The resulting stripes move along the particular preferred direction as waves of
activity (D1-D3). Combining all 24 groups results in a standing wave pattern
of periodic, concentric circles of activity (E) and (F). Figure from Hasselmo and
Brandon [66].

3.3.1 Standing Wave Model

Hasselmo and Brandon [66] describe a model that combines the basic idea of
concentric, periodic activation proposed by Fuhs and Touretzky (fig. 3.8a) with an
oscillatory mechanism that generates the required activity patterns. The model
consists of two cell populations with reciprocal connections. One population
consists of a two-dimensional layer of 30× 30 = 900 grid cells where each grid
cell represents a particular spatial phase (x, y) , x = [1 . . . 30] , y = [1 . . . 30]. The
other population consists of putative heading angle cells. These cells fire at a
constant frequency with a background level amplitude that increases when the
rat is moving in a preferred direction. In addition, the amplitude is modulated
by feedback connections from the grid cell layer to avoid runaway or dying out
effects in the overall activity. The population of heading angle cells is divided
into 30 × 30 = 900 subpopulations. Each subpopulation is associated with a
particular spatial phase offset (px, py) and consists of 24 groups representing
heading angles φ at 15◦ intervals. Finally, each heading angle group consists of 10
heading angle cells each oscillating at a different temporal phase ϕ (fig. 3.10A).

The connections between heading angle cells and grid cells are binary. Each
heading angle cell projects to a subset of grid cells that lie within small bands
spanning the grid cell layer. These bands have a spatial phase offset (px, py),
an angle φ and a local phase offset proportional to the temporal phase ϕ
of the particular heading angle cell (fig. 3.10B). The oscillating activity of
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a single group of head angle cells combines into stripes of higher amplitude
perpendicular to the heading angle associated with the group (fig. 3.10C). Over
time these stripes move along the particular preferred direction as waves of
activity (fig. 3.10D). Combining the activity of all 24 groups of a single heading
angle cell subpopulation results in a standing wave pattern of periodic, concentric
circles of activity (fig. 3.10E and 3.10 F). Eventually, the standing wave patterns
of all subpopulations add up to induce a pattern of hexagonal activity in the
grid cell layer. Yet, as each standing wave pattern oscillates itself, i.e., regions
of high and low activity invert periodically over time, the resulting hexagonal
activity pattern is not stable. As a solution, Hasselmo and Brandon propose to
use another population of heading angle cells that operates with an additional
phase shift of π and periodically switch between the two populations of heading
angle cells in such a way that the input to the grid cell population is stable with
respect to the activity pattern of the standing waves.

Hasselmo and Brandon demonstrate, that their proposed model does generate
hexagonal firing patterns in the grid cell population and that speed modulation
of the heading angle cells’ activity can successfully move the hexagonal firing
pattern across the grid cell layer. However, they did not test their model with
realistic movement data and provided no mapping of a single grid cell’s activity
onto a map of the particular environment. Furthermore, their final model
requires 432900 neurons for a single grid cell module which already outnumbers
the estimated total number of neurons in the rat MEA [131]. As the number
of grid cell modules in the MEA is estimated to be in the upper single digit
range [156], the model requires a magnitude more neurons than are presumably
available.

3.3.2 VCO-driven Attractor Model

Bush and Burgess [25] present a hybrid model in which they extend an OI
model based on velocity controlled oscillators (VCOs) with inhibitory continuous
attractor dynamics. The model consists of a grid cell layer where each grid cell
receives inhibitory input from two sources as well as some form of excitatory
input. The first source of inhibitory input are six VCOs with preferred directions
at multiples of 60◦. The VCOs are ring oscillators like those proposed by Blair
and Welday et al. [7, 169]. The second source of inhibitory input are interneurons
that receive excitatory input from grid cells with similar spatial phase and project
to the surrounding grid cells in such a way that the resulting inhibitory attractor
network has a twisted, toroidal topology that forms a single bump of activity
when it receives sufficient external excitation.

In its basic form the model uses attractor dynamics to maintain a direct repre-
sentation of the animal’s position and it updates this position based on signals
from OI-based directional velocity integrators. Bush and Burgess propose several
extensions to this basic model in order to make it more robust against noise and
to facilitate anchoring of the grid cell firing pattern to external sensory cues. The
former is achieved by Hebbian learning of feedback connections from active grid
cells to simultaneously active theta cells in the ring oscillators. If the phase of a
ring oscillator begins to drift, e.g., due to noisy idiothetic input, the feedback
signal from the grid cell layer will reset the oscillator to the learned correct phase.
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In a similar way anchoring to external sensory cues is achieved. Here, excitatory
feedback connections from place cells to grid cells are learned that supplement
or even substitute the otherwise uniform excitatory input. In this context it is
assumed that place cell activity is not determined predominantly by grid cell
input but rather by signals based on environmental landmarks. If this is the
case, the chain of feedback from place cells to grid cells to theta cells indirectly
anchors the phases of the ring oscillators to external sensory cues increasing
the robustness against integration errors. In addition, deformations of the place
cells’ firing patterns, e.g., due to rescaling phenomena, result in a corresponding
deformation of the grid cells’ firing patterns as their activity is guided by the
learned feedback connections.

As with the previously described inhibitory CAN models, this model, too, predicts
that inhibitory interneurons exhibit hexagonal spatial activity patterns. This
prediction is challenged by current experimental evidence [12]. Furthermore,
Bush and Burgess point out that it is unclear how the required connectivity
could arise.

3.4 Models Based On Self-Organization

In addition to the dominant OI and CAN models of grid cell activity, a number
of models based on principles of self-organization have been proposed as well in
recent years [48, 89, 150, 108, 127, 128].

3.4.1 Long-distance Path Integration Model

Gaussier et al. [48] hypothesize that grid cell activity results from self-organized
learning of long-distance path integration signals originating, e.g., in the ret-
rosplenial cortex. In their model, path integration is performed in a uniform,
circular neural map covering 360◦. Each neuron in this map is associated with a
particular allocentric direction φi and encodes the distance traveled recently in
this direction by its activity ri, i.e.:

ri = α

tc
∑

t=tr

s(t) cos(Φ(t)− φi) ,

with α a constant scaling factor, tr the time of the last reset of the integrator, tc
the current time, s(t) the running speed at time t, and Φ(t) the running direction
at time t. Each neuron on this circular map has a partner neuron associated
with its orthogonal direction. Together the activities of such a pair represent
the relative distances traveled in (x, y)-direction since the last reset relative to a
particular absolute orientation.

Gaussier et al. propose that the rate signals of such a neuron pair are first
independently discretized by two sets of neurons. In each set only one neuron is
active at a time representing the particular activity of the corresponding path
integration neuron. Next, these two sets of neurons are mapped still separately
onto two further, smaller sets of neurons in a modulo fashion. Finally, the activity
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Figure 3.11: The activities V 1 and V 2 of a pair of path integration neurons
with associated directions φ1 and φ2 (top row) are discretized onto two separate
sets of neurons (left), then projected onto two further, smaller sets of neurons
(middle) in a modulo fashion, and finally quantized together by a SOM (right).
Figure adapted from Gaussier et al. [48].

of the latter two sets of neurons are quantized by a form of self-organized map
(SOM) whose units represent the grid cells of the model. Figure 3.11 illustrates
the described mapping process. The resulting firing pattern of the grid cells
depends on the relative angle between the pair of path integration neurons.
If their orientation is orthogonal, the resulting firing pattern is rectangular.
Yet, if the relative angle is 60◦ the rectangular firing pattern is skewed into a
rhomboid pattern similar to the hexagonal firing pattern of real grid cells. In this
regard the model shares a problem common to oscillatory interference models
as it provides no intrinsic explanation of why the relative angle between two
path integrators should be 60◦. Furthermore, the described path integrators
are sensitive to noise. To ameliorate this susceptibility to noise Gaussier et al.
suggest a reset mechanism based on environmental cues mediated by place cell
signals to periodically recalibrate the path integrator neurons.

3.4.2 Neuronal Fatigue Models

Kropff and Treves [89] utilize a combination of global competition and local
fatigue dynamics to model neurons that exhibit hexagonal firing patterns when
fed with spatially modulated input, e.g., from place cells. Their model is
recognized in the literature as being currently the only model that does not rely
on path integration [170, 55].

The basic model consists of a population of grid cells and a population of
spatially modulated input neurons, e.g., place cells. The grid cells are modeled
as threshold-linear neurons with saturation resulting in the transfer function:

Ψ(h) = Ψsat
2

π
atan(g (h− θ)) Θ(h− θ) ,

with saturation rate Ψsat, total synaptic input h, threshold θ, gain g, and the
Heaviside function Θ. The latter ensures that Ψ(h) is positive if h > θ, and zero
otherwise. This transfer function is not applied directly to the total synaptic
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input h, though. It is used in combination with two intermediate activation
variables rtact and rtinact that model neuronal fatigue dynamics:

rt+1
act = rtact + b1 (h

t − rtinact − rtact) ,

rt+1
inact = rtinact + b2 (h

t − rtinact) ,

with parameters b1 > b2 defining the speed with which the activity of a neuron
that receives strong input rises or falls. The firing rate of the neuron is then
determined by Ψ(rtact).

Global competition among N grid cells is achieved by fixing mean activity a and
sparseness s:

a =
1

N

N
∑

k=1

Ψk, s =

(

∑N

k=1 Ψk

)2

∑N

k=1 Ψ
2
k

by dynamically adjusting the firing threshold θ and gain g of all neurons at every
time step using an iterative approach. The connection weights between the input
cells and the grid cells are adapted by a Hebbian learning rule that resembles
a high-pass filter emphasizing connections during transient changes of grid cell
and input cell activity.

Kropff and Treves demonstrate that the grid cells in their model reliably develop
hexagonal firing patterns when fed with place cell input derived from simulated
trajectories using constant as well as varying speed. Even in case of heterogeneous
spatial input, which was generated by randomly distributing 20 small Gaussians
across the environment, a significant number of grid cells developed hexagonal
firing patterns with grid scores greater than 0.75. The population of grid cells
shows a common grid spacing that is determined by the average running speed
and the parameters b1 and b2 which control the time course of the neuronal
fatigue. A common grid orientation is not shared by the grid cells in this model in
contradiction to experimental findings [62, 55]. Furthermore, the model requires
a rather small learning rate resulting in a long training time corresponding to
a distance run by the simulated rat of 104 times the length of the particular
environment. This property of the model is challenged, too, by experimental
findings that show near instant grid cell firing patterns when a rat explores a
novel environment [62, 179].

In a recent publication Si and Treves [150] present an extended version of this
model. They added a population of conjunctive grid × head direction cells
that receive input from place cells and project onto the grid cell population. In
addition, the population of conjunctive cells is interconnected through collaterals.
Using this more elaborate setup, Si and Treves are able to show that both the
conjunctive cell population and the grid cell population develop a common grid
orientation, thereby providing a solution for the lack of a shared grid orientation
in the earlier model.

3.4.3 Stripe Cell Models

It has been shown by Gorchetchnikov and Grossberg [58] that place cell firing
patterns can be derived from grid cell activity by a process of self-organized map
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Figure 3.12: A two-level hierarchy of self-organizing maps (SOMs) transforms
stripe cell signals (bottom) into grid cell activity (middle) which is then trans-
formed into place cell activity (top). Figure adapted from Pilly and Gross-
berg [127].

learning. Encouraged by these results Mhatre et al. [108] investigate whether
the hexagonal firing pattern of grid cells could arise from self-organized learning,
too. If true, grid cells and place cells could be modeled within a single, two-
level hierarchy of self-organizing maps (SOMs) (fig. 3.12). As input to such a
model, Mhatre et al. introduce the hypothetical stripe cell (fig. 3.12, bottom). A
stripe cell is a single cell that is part of a one-dimensional ring attractor that
integrates the distance traveled by an animal in a particular, preferred direction.
In contrast to the similar one-dimensional attractors proposed by Blair et al. [7]
(sec. 3.1.3) the bump of activity in the stripe cell attractor is moved by an
input that is proportional to the running speed projected onto the particular
preferred direction. Such a signal could be derived, e.g., from a thresholded
speed-modulated head direction cell. The activity of a stripe cell forms a periodic
spatial firing pattern of parallel stripes that are oriented perpendicular to the
preferred direction of the corresponding ring attractor. The stripe cells of a
single ring attractor share common stripe spacing and orientation, but differ in
spatial phase. Mhatre et al. point out that just by their geometric relationship
co-occurring activity between stripe cells of different directions happens most
often if the directions differ by 60◦. Hence, they suggest that this relationship
can be learned by a SOM resulting in a hexagonal firing pattern of individual
SOM neurons, i.e., putative grid cells.

To test this hypothesis seven simulations were conducted in which between
36 and 104 stripe cells projected onto a SOM of five putative grid cells. The
simulations covered spatial scales of 20 cm, 30 cm, and 40 cm as well as varying
orientations at resolutions of 7◦, 10◦, 15◦, and 20◦. In one simulation the
orientations were chosen at multiples of 20◦ with a random offset of ±8◦. Only
at the smallest spatial scale of 20 cm and the largest directional resolution of
20◦ were a hexagonal firing pattern detectable in all five putative grid cells.
Random variation of the preferred direction as well as increase in the spatial
scale and directional resolution lead to a significant reduction in the number of
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cells with a clear hexagonal firing pattern. In case of a spatial scale of 40 cm and
a directional resolution of 20◦ only faint tendencies towards a grid-like pattern
could be observed. The same holds true for a trial with 30 cm spatial scale and
7◦ directional resolution. In summary, the results presented by Mhatre et al.
demonstrate that the proposed model works in principle, but that it is unable to
provide convincing results at biologically plausible spatial scales and orientations.

Pilly and Grossberg [127] modified the model of Mhatre et al. to solve many of the
problems of the earlier model. First, they improved the SOM by using a learning
rule that is more similar to commonly known SOM approaches [87, 103, 41].
Second, they reduced the width of the stripe cell’s firing fields to 7% of the
particular stripe spacing to achieve very narrow stripes of activity. Third,
they increased the population size to 200 putative grid cells. And fourth, they
increased the time resolution of the simulation from 20ms to 2ms and used for
every learning trial a novel input trajectory. Pilly and Grossberg demonstrate
that these modifications lead to a significant increase in cells with clear hexagonal
firing patterns. Recently, Pilly and Grossberg [128, 59] presented a version of
their stripe cell model implemented with spiking leaky integrate and fire neurons.

3.5 Spatial Interference Model

Unlike the previously described models, the model by Blair et al. [8] cannot be
classified as either OI, CAN, hybrid, or self-organized model. Their model of
grid cell firing is based on spatial interference. Blair et al. hypothesize that the
hexagonal firing pattern of grid cells is a moiré interference pattern resulting
from the interaction of two smaller scale theta grids, which are supposed to
be the primary source of the theta rythm present in the local EEG of the
parahippocampal-hippocampal region. Like grid cells the hypothetical theta
grid cells exhibit a hexagonal firing pattern. Yet, unlike grid cells the theta grid
spacing is much smaller and it is proportional to the running speed of the animal,
i.e., if the animal runs fast the theta grid spacing widens and if the animal moves
slowly the theta grid spacing shrinks. As a consequence, the theta grid cell fires
at a constant, velocity-independent frequency while the animal moves. Given
the right ratio between speed and theta grid spacing the resulting frequency can
lie in the theta rythm range of 6Hz to 8Hz.

If the activities of two such theta grid cells with slightly varying grid spacings
λ and λ+ αλ interfere, a moiré pattern emerges which resembles a hexagonal
firing pattern with a larger grid spacing Sλ where

S =
1 + α

|α| .

Figure 3.13 illustrates this moiré interference for two simplified examples where
a constant running speed was assumed. However, if the running speed varies,
the theta grid spacings vary and, as a consequence, the grid spacing of the
interference pattern varies, too. This would contradict experimental findings as
grid cells exhibit stable grid spacings independent of running speed. To achieve
a stable grid spacing in the interference pattern while the grid spacings of the
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(a) (b)

Figure 3.13: Spatial interference of two small scale grids with slightly varying
spacings λ (red) and λ+ αλ (green) results in a larger scale grid with a spatial
scale of Sλ. The subfigures (a) and (b) show examples for two different variations
α and the resulting factors S. Figure adapted from Blair et al. [8].

underlying theta grids remain velocity-modulated the variation α between these
grid spacings must itself be modulated by running speed V :

α(V ) = − 1

1 + f1λM/V
,

where f1 is the fixed firing frequency of the first theta grid, and λM is the
constant grid spacing of the interference pattern. As a consequence, the firing
frequency f2 of the second theta grid cannot be constant any more:

f2 ≈ f1 + V/λM .

Yet, considering the relatively large grid spacings λM of typical grid cells and
typical running speeds V the change in the firing frequency f2 of the second
theta grid would be rather gentle (< 1Hz) and biologically plausible.

Although the general viability of the model is demonstrated by a number of
simulations and further details like relative theta grid orientations are integrated
into the model, no further explanation of how theta grid cells could actually
be implemented on a neuronal level is given. In the presented simulations the
activity of the postulated theta grid cells is simulated by summation of three
cosine waves that are 60◦ apart. Blair et al. speculate that “the biological
network for generating theta grids is likely to incorporate an attractor network
for path integration [..]”. In this regard, the described theta grid cell model just
defers the question of how the firing pattern of grid cells arises to the question
of how the firing pattern of theta grid cells arises.

3.6 Summary

Existing computational models of grid cells cover a wide range of possible
mechanisms and focus on different aspects of grid cell activity, e.g., temporal
dynamics (OI), spatial relations (CAN), or pattern formation (Self-Organization).
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The particular assumptions underlying individual models vary in their extent
and their support by experimental evidence. In two very recent reviews Moser
et al. [113, 114] evaluate the existing modeling approaches with respect to the
experimental evidence available so far. Regarding the oscillatory interference
approach they come to the conclusion that, taken together, the theoretical
limitations of the interference models and contradicting experimental observations
“invalidate oscillatory interference as a mechanism for spatial periodicity in grid
cells” [114] (but see [3, 4] for a contrary opinion). Their verdict regarding the
validity of continuous attractor models is more optimistic. They point out that
in spite of many open questions that require further experimental investigation,
“it may be fair to conclude that the available evidence speaks in favor of some sort
of attractor mechanism, but the detailed implementation is certainly not well
understood” [113]. This assessment is shared for the most part by other recent
reviews, e.g., Giocomo et al. [55], Zilli [179], Burak [13], as well as Schmidt-Hieber
and Häusser [144]. Models based on self-organization are commonly recognized
as possible alternatives, but still lead a niche existence.



A Computational Model

based on Dendritic

Capabilities

The previous chapter gave an overview of current computational models of grid
cells. These models cover a wide range of possible mechanisms for grid cell
activity. Despite this diversity essentially all models are grounded in the cognitive
map hypothesis. As a result, concepts intrinsic to this hypothesis such as the
explicit representation of the animal’s two-dimensional position or various forms
of path integration are integral parts of existing computational models of grid
cells. On the one hand this grounding facilitates an intuitive explanation for the
observed correlation between the animal’s position and grid cell firing patterns.
On the other hand it makes it more difficult to explain similar phenomena in
a different domain with the same models, e.g., the grid-like firing patterns in
response to saccade movements (sec. 1.5.4). In this case the fixation points
“jump” across the field of view and do not form a sequence of smoothly changing
position inputs. The latter is an implicit assumption made by all current grid
cell models. Another example would be a prediction of how the activity of grid
cells in animals that move in three dimensions, e.g., flying bats would look like.
For most current models it is not obvious how they could be extended to reflect
three-dimensional positions.

The following sections describe a new, complementary computational model of
grid cells that is not grounded in the cognitive map hypothesis. The model treats
the observed grid cell behavior as an instance of a more abstract, general principle
by which neurons in the higher-order parts of the cortex process information.

Section 4.1 introduces the basic concepts and intuitions underlying the model.
A formal definition of the model is given in section 4.2. Finally, section 4.3
examines the biological plausibility of the proposed hypotheses. A detailed
characterization of the model and its parameters will be conducted in chapter 5.

4.1 Model Intuition

The periodic, triangular firing pattern of grid cells is certainly their most intrigu-
ing feature. In light of the cognitive map hypothesis the regular firing pattern
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(a) (b) (c)

Figure 4.1: Examples of growing neural gas (GNG) networks with 50 units. In
all three examples a GNG was fed with 2 million inputs, i.e., points that were
randomly sampled from uniformly distributed, two-dimensional input spaces
shaped as either square (a), circle (b), or the letter α (c). In all cases the
resulting networks form induced Delaunay triangulations of the respective input
spaces.

appears to be a promising candidate to constitute some form of coordinate
system for the representation of space in the brain [112, 38]. However, beyond
this immediate purpose of grid cells the structure of their firing pattern may also
provide a rare view on the general principles by which neurons in the higher-order
parts of the cortex process information [113]. To discover such principles it may
be beneficial to view the activity of grid cells in a more abstract way. To this end
a computational model is needed that is agnostic to the semantic interpretation
of its own state and its respective input space such that the model can provide an
explanation of the cell’s behavior that does not rely on assumptions based on the
putative purpose of that cell, e.g., performing path integration or representing a
coordinate system. This way, the observed behavior of grid cells can be treated
as just one instance of a more general information processing scheme.

In the context of such an abstract model the input signals that a grid cell
receives within a small time window can be interpreted as a single sample from a
high-dimensional input space. This input space represents all possible inputs to
the grid cell and for a certain subset of these inputs, i.e., for inputs from certain
regions of that input space the grid cell will fire. The problem of modeling
grid cell behavior can then be split into two independent sub-problems. The
first problem addresses the question how a cell, given an arbitrary input space,
chooses the regions of input space for which it will fire. The second problem
addresses the question how a specific input space has to be structured in order to
evoke the actual firing pattern observed in, e.g, grid cells. The following sections
focus on the first problem by deriving a computational model that describes
the behavior of putative grid cells for arbitrary input spaces. Subsequently, the
output of this model for specific input spaces will be investigated in chapter 6.

The most salient feature of grid cells is their firing pattern. Its regular structure
may provide a rare view on the underlying processing scheme as the triangular
pattern resembles the outcome of a number of processes that typically perform
some form of error minimization, e.g., the hexagonal packing of circles [165],
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the Delaunay triangulation [31, 30], or certain kinds of topology representing
networks [103]. The latter are artificial neural networks that employ forms of
unsupervised competitive learning to discover the structure of an underlying input
space. Among those networks the growing neural gas (GNG) introduced by
Fritzke [41, 40] stands out as it does not use a predetermined and fixed network
topology like, e.g., the well-known self-organizing map (SOM) [87] does. Instead,
the GNG uses a data-driven growth process to approximate the topology of
the underlying input space resulting in an induced Delaunay triangulation of
that space. Figure 4.1 shows three examples of GNG networks where each
approximated a differently shaped, two-dimensional input space. It will be
shown below that the standard GNG can be extended in such a way that it is
able to model the behavior of a group of grid cells. Before, the next section
will summarize the standard GNG algorithm and its common usage providing a
context for the extensions presented later on.

4.1.1 GNG revisited

A standard GNG g as proposed by Fritzke [40] can be described by a tuple1:

g := (U,C, θ) ∈ G,

with a set U of units, a set C of edges, and a set θ of parameters. Each unit u is
described by a tuple:

u := (w, e) ∈ U, w ∈ R
n, e ∈ R,

with the n-dimensional prototype w, and the accumulated error e. Each edge c is
described by a tuple:

c := (V, t) ∈ C, V ⊆ U ∧ |V | = 2, t ∈ N,

with the units v ∈ V connected by the edge and the age t of the edge. The direct
neighborhood Eu of a unit u ∈ U is defined as:

Eu := {k|∃ (V, t) ∈ C, V = {u, k} , t ∈ N} .
The set θ of parameters consists of:

θ := {ǫb, ǫn, λ, τ, α, β} .

A standard GNG network is initialized with two units. Each unit has a different,
randomly chosen prototype vector and the accumulated error variable is set to
zero. The network then grows by sequentially processing a series of n-dimensional
inputs ξ ∈ R

n:

• Acquire an input ξ from the input space.

• Find the two units s1 and s2 with the smallest distance to the input ξ:

s1 := argmin
u∈U

‖u�w − ξ‖, s2 := argmin
u∈U\{s1}

‖u�w − ξ‖,

with ‖·‖ the Euclidean norm. Units s1 and s2 are called the best matching
unit (BMU) and second best matching unit, respectively.

1The notation g�α is later used to reference the element α within the tuple.
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• Increment the age of all edges connected to s1:

∆c�t = 1, c ∈ C ∧ s1 ∈ c�V .

• If no edge between s1 and s2 exists, create one:

C ⇐ C ∪ {({s1, s2} , 0)} .

• Reset the age of the edge between s1 and s2 to zero:

c�t ⇐ 0, c ∈ C ∧ s1, s2 ∈ c�V .

• Add the squared distance between ξ and the prototype of s1 to the accu-
mulated error of s1:

∆s1�e = ‖s1�w − ξ‖2.

• Adapt the prototype of s1 and all prototypes of its direct neighbors:

∆s1�w = θ�ǫb (ξ − s1�w) , ∆sn�w = θ�ǫn (ξ − sn�w) , ∀sn ∈ Es1 .

• Remove all edges with an age above a given threshold τ and remove all
units that no longer have any edges connected to them:

C ⇐ C \ {c|c ∈ C ∧ c�t > θ�τ} ,
U ⇐ U \ {u|u ∈ U ∧ Eu = ∅} .

• If an integer-multiple of θ�λ inputs were presented to the GNG, add a
new unit u. The new unit is inserted “between” the unit j with the
largest accumulated error and the unit k with the largest accumulated
error among the direct neighbors of j. Thus, the prototype u�w of the new
unit is initialized as:

u�w :=
j�w + k�w

2
, j = argmax

l∈U

(l�e) , k = argmax
l∈Ej

(l�e) .

The existing edge between units j and k is removed and edges between
units j and u as well as units u and k are added:

C ⇐ C \ {c|c ∈ C ∧ j, k ∈ c�V } ,
C ⇐ C ∪ {({j, u} , 0) , ({u, k} , 0)} .

The accumulated errors of units j and k are decreased and the accumulated
error u�e of the new unit is set to the decreased accumulated error of unit j:

∆j�e = −θ�α · j�e, ∆k�e = −θ�α · k�e,
u�e := j�e .

• Finally, decrease the accumulated error of all units:

∆u�e = −θ�β · u�e, ∀u ∈ U .
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• If a stopping criterion, e.g., a maximum number of units, is not met, go to
the first step.

Fritzke [40] suggests the following parameter values:

θ :=

{

ǫb = 0.05, ǫn = 0.0006, τ = 88,
λ = 200, α = 0.5, β = 0.0005

}

.

Using this procedure iteratively over a representative sample of inputs the GNG
network gradually approximates the structure of the underlying input space.
Each GNG unit marks the center of a convex polyhedron representing a local
region of this input space. The relative size of this region is inversely proportional
to the probability of an input originating from that region, i.e., the local density
of the input space. In addition, the absolute size of each local region is determined
by the overall number of GNG units that are available to cover the whole input
space. The network structure of the GNG, which relates the respective local
regions to one another, represents the input space topology. Martinez and
Schulten [103] call the type of topology approximation performed by the GNG
competitive Hebbian learning. They interpret the first and second BMU as two
neurons which both react to an input signal forming or reinforcing a link between
each other. Hence, both “neurons” conform to Hebb’s postulate.

Typical applications of GNGs are clustering or prototype-based vector quantiza-
tion [40]. In the former case the GNG resembles a k-means clustering approach.
Here, each unit represents a cluster where the unit’s prototype is taken as the
cluster’s mean. In contrast to k-means clustering the GNG also provides infor-
mation on the neighborhood relations of the clusters by means of its network
topology. This additional information can be useful if the input space contains
clusters with more complex shapes that have to be approximated piecewise by
multiple, connected units [81, 82]. In case the GNG is used for vector quantiza-
tion the prototype of the BMU with respect to a particular input is taken as the
quantized version of this input vector. The GNG topology is usually not used in
this case.

4.1.2 Basic Grid Cell Model

Given the resemblance between the structure of grid cell firing patterns and the
structure of GNG networks for certain input spaces it is proposed that a single
grid cell performs an operation that is similar to that of a whole GNG, i.e., it is
proposed that the objective of a grid cell lies in the approximation of its entire
input space. This hypothesis differs strongly from the common interpretation
of GNGs where the GNG units correspond to individual neurons that each
specialize to represent a single, specific region of input space. In contrast, this
new hypothesis implies that a single neuron represents not only one but several,
distinct regions of input space. To accomplish this a single neuron would have to
recognize several different input patterns, i.e., prototypes with its dendritic tree
and would have to fire if it encountered any one of these patterns. Section 4.3
explores the biological plausibility of this assumption and provides some evidence
that this behavior can indeed be observed in certain types of cortical neurons.
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Figure 4.2: Illustration of a recursive growing neural gas (RGNG). The top layer
is represented by three units (red, green, blue) connected by dashed edges. The
prototypes of the top layer units are themselves GNGs. The units of these GNGs
are illustrated in the second layer by corresponding colors.

To generate a grid like firing pattern, cells modeled as a GNG require an input
space that is a uniformly distributed, two-dimensional, periodic representation
of possible (animal) locations. For now, the existence of such an input space
is assumed. Possible neuronal implementations of suitable input spaces will be
investigated in chapter 6.

Modeling individual grid cells by independent GNGs is, however, not sufficient.
As shown in section 2.2, grid cells exhibit a modular organization in which the
firing patterns of neighboring grid cells share a common orientation, spacing,
and field size. In addition, the distribution of relative grid phases is uniform
within each module. To account for these properties it is proposed to extend the
original GNG algorithm in such a way that the competitive learning of inputs
occurs not only among units within an individual GNG, but also across a set
of GNGs2. At its core, this extension is implemented in a recursive fashion
by allowing the prototypes of GNG units to be complete GNGs themselves
instead of being simple vectors. Figure 4.2 illustrates this basic idea. Here, three
units in the top layer (connected by dashed edges) have prototypes that are
GNGs themselves. Those GNGs build the second layer and are indicated by
corresponding colors. The prototypes in the units of the second layer GNGs are
regular vectors and can be interpreted as the leafs of this two-layer hierarchical
structure. Given a suitable parametrization (see chapter 5) the competition
among units within each second layer GNG (bottom layer competition) arranges
the units in a triangular pattern that covers the entire input space. In addition,
the competition of units across the second layer GNGs (top layer competition)
will arrange the different triangular patterns in such a way that they share a
common orientation and spacing. Furthermore, the top layer competition will
also spread the individual triangular patterns uniformly across the input space.

2A preliminary version of this idea was presented by Kerdels and Peters [80].
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(a) (b)

Figure 4.3: Comparison of input space partitions by “classic” perceptrons (a)
and top layer RGNG units (b).

In terms of a general processing scheme the behavior of the involved cells can be
characterized by a single, common principle:

Each neuron aspires to represent its input space as well as possible
while being in competition with its peers.

The extension of the common GNG proposed here is called recursive growing
neural gas or RGNG for short. A precise definition is provided in section 4.2. In
advance, it may prove to be insightful to compare the behavior of top layer RGNG
units, i.e., putative grid cells with the behavior of “classic” perceptrons [137].
Perceptrons are a commonly used abstraction for artificial neurons in which
the inputs to a neuron are combined as a weighted sum and passed through an
often non-linear activation function. A perceptron can be interpreted as a linear
classifier where the input weights define a hyperplane that divides the input space
into two regions. The output of the activation function then indicates from which
of the two regions the respective input pattern originated. Figure 4.3a illustrates
this linear partition of input space for three perceptrons. The hyperplanes of
these perceptrons are typically independent of each other and the corresponding
subregions of input space overlap. In contrast, top layer RGNG units compete
with each other and generate a tiled, periodic partition of the input space as
illustrated in figure 4.3b. As the RGNG units are not independent of each other
the corresponding subregions of input space do not overlap.

In both models multiple neurons can be combined to identify specific subregions
of the input space more precisely. In case of multiple perceptrons combining the
corresponding hyperplanes successively divides the input space into a smaller
and smaller region (fig. 4.4a). This strategy does not work for the RGNG
units. As the subregions associated with individual RGNG units do not overlap,
they could only be combined to increase rather than decrease the size of a
specific input space region. However, if RGNG units from separate RGNGs with
different spatial scales and/or orientations are combined, then they can identify
a specific, individual subregion of the input space by coinciding only in that
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(a) (b)

Figure 4.4: Comparison of strategies to identify specific subregions in input
space. (a) Multiple perceptrons successively partition the input space to identify
a specific subregion (the middle triangle). (b) Top layer RGNG units from
separate RGNGs with different spatial scales identify a specific subregion by
coinciding in that region.

region (fig. 4.4b). In case of grid cells, this mechanism was successfully used
to explain the formation of place cells from grid cell activity [135, 153, 39, 1].
Chapter 7 will point out further, potential benefits of this encoding.

The following section provides a formal definition of the proposed RGNG. Sub-
sequently, chapter 5 will explore the parameter space of the RGNG and provide
further details how grid like firing patterns arise in this model.

4.2 Model Definition

The recursive growing neural gas has essentially the same structure as the regular
GNG described above. Like a GNG an RGNG g can be described by a tuple:

g := (U,C, θ) ∈ G,

with a set U of units, a set C of edges, and a set θ of parameters. Each unit u is
described by a tuple:

u := (w, e) ∈ U, w ∈ W := R
n ∪G, e ∈ R,

with the prototype w, and the accumulated error e. Note that in contrast to the
regular GNG the prototype w of an RGNG unit can either be a n-dimensional
vector or another RGNG. Each edge c is described by a tuple:

c := (V, t) ∈ C, V ⊆ U ∧ |V | = 2, t ∈ N,

with the units v ∈ V connected by the edge and the age t of the edge. The direct
neighborhood Eu of a unit u ∈ U is defined as:

Eu := {k|∃ (V, t) ∈ C, V = {u, k} , t ∈ N} .
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The set θ of parameters consists of:

θ := {ǫb, ǫn, ǫr, λ, τ, α, β,M} .

Compared to the regular GNG the set of parameters has grown by θ�ǫr and θ�M .
The former parameter is a third learning rate used in the adaptation function A
(see below). The latter parameter is the maximum number of units in an RGNG.
This number refers only to the number of “direct” units in a particular RGNG
and does not include potential units present in RGNGs that are prototypes of
these direct units.

Like its structure the behavior of the RGNG is basically identical to that of a
regular GNG. However, since the prototypes of the units can either be vectors or
RGNGs themselves, the behavior is now defined by four functions. The distance
function

D(x, y) : W ×W → R

determines the distance either between two vectors, two RGNGs, or a vector
and a RGNG. The interpolation function

I(x, y) : (Rn × R
n) ∪ (G×G) → W

generates a new vector or new RGNG by interpolating between two vectors or
two RGNGs, respectively. The adaptation function

A(x, ξ, r) : W × R
n × R → W

adapts either a vector or RGNG towards the input vector ξ by a given fraction r.
Finally, the input function

F (g, ξ) : G× R
n → G× R

feeds an input vector ξ into the RGNG g and returns the modified RGNG as
well as the distance between ξ and the BMU of g. The input function F contains
the core of the RGNG’s behavior and utilizes the other three functions, but is
also used, in turn, by those functions introducing several recursive paths to the
program flow.

F (g, ξ) The input function F is a generalized version of the original GNG
algorithm described above that facilitates the use of prototypes other than
vectors. In particular, it allows to use RGNGs themselves as prototypes resulting
in a recursive structure. An input ξ ∈ R

n to the RGNG g is processed by the
input function F as follows:

• Find the two units s1 and s2 with the smallest distance to the input ξ
according to the distance function D:

s1 := argmin
u∈g�U

D(u�w, ξ) , s2 := argmin
u∈g�U\{s1}

D(u�w, ξ) .

• Increment the age of all edges connected to s1:

∆c�t = 1, c ∈ g�C ∧ s1 ∈ c�V .
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• If no edge between s1 and s2 exists, create one:

g�C ⇐ g�C ∪ {({s1, s2} , 0)} .

• Reset the age of the edge between s1 and s2 to zero:

c�t ⇐ 0, c ∈ g�C ∧ s1, s2 ∈ c�V .

• Add the squared distance between ξ and the prototype of s1 to the accu-
mulated error of s1:

∆s1�e = D(s1�w, ξ)
2
.

• Adapt the prototype of s1 and all prototypes of its direct neighbors:

s1�w ⇐ A(s1�w, ξ, g�θ�ǫb) , sn�w ⇐ A(sn�w, ξ, g�θ�ǫn) , ∀sn ∈ Es1 .

• Remove all edges with an age above a given threshold τ and remove all
units that no longer have any edges connected to them:

g�C ⇐ g�C \ {c|c ∈ g�C ∧ c�t > g�θ�τ} ,
g�U ⇐ g�U \ {u|u ∈ g�U ∧ Eu = ∅} .

• If an integer-multiple of g�θ�λ inputs was presented to the RGNG g and
|g�U | < g�θ�M , add a new unit u. The new unit is inserted “between”
the unit j with the largest accumulated error and the unit k with the
largest accumulated error among the direct neighbors of j. Thus, the
prototype u�w of the new unit is initialized as:

u�w := I(j�w, k�w) , j = argmax
l∈g�U

(l�e) , k = argmax
l∈Ej

(l�e) .

The existing edge between units j and k is removed and edges between
units j and u as well as units u and k are added:

g�C ⇐ g�C \ {c|c ∈ g�C ∧ j, k ∈ c�V } ,
g�C ⇐ g�C ∪ {({j, u} , 0) , ({u, k} , 0)} .

The accumulated errors of units j and k are decreased and the accumulated
error u�e of the new unit is set to the decreased accumulated error of unit j:

∆j�e = −g�θ�α · j�e, ∆k�e = −g�θ�α · k�e,
u�e := j�e .

• Finally, decrease the accumulated error of all units:

∆u�e = −g�θ�β · u�e, ∀u ∈ g�U .

The function F returns the tuple (g, dmin) containing the now updated RGNG g
and the distance dmin := D(s1�w, ξ) between the prototype of unit s1 and input ξ.
Note that in contrast to the regular GNG there is no stopping criterion any more,
i.e., the RGNG operates explicitly in an online fashion by continuously integrating
new inputs. To prevent unbounded growth of the RGNG the maximum number
of units θ�M was introduced to the set of parameters.
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D(x, y) The distance function D determines the distance between two pro-
totypes x and y. The calculation of the actual distance depends on whether x
and y are both vectors, a combination of vector and RGNG, or both RGNGs:

D(x, y) :=























DRR(x, y) if x, y ∈ R
n,

DGR(x, y) if x ∈ G ∧ y ∈ R
n,

DRG(x, y) if x ∈ R
n ∧ y ∈ G,

DGG(x, y) if x, y ∈ G.

In case the arguments of D are both vectors, the Minkowski distance is used:

DRR(x, y) :=

(

n
∑

i=1

|xi − yi|p
)

1
p

, x = (x1, . . . , xn) , y = (y1, . . . , yn) , p ∈ N.

Using the Minkowski distance instead of the Euclidean distance allows to adjust
the distance measure with respect to certain types of inputs via the parameter p.
For example, setting p to higher values results in an emphasis of large changes
in individual dimensions of the input vector versus changes that are distributed
over many dimensions [82]. However, in the case of modeling the behavior of
grid cells the parameter is set to a fixed value of 2 which makes the Minkowski
distance equivalent to the Euclidean distance. The latter is required in this
context as only the Euclidean distance allows the GNG to form an induced
Delaunay triangulation of its input space.

In case the arguments of D are a combination of vector and RGNG, the vector
is fed into the RGNG using function F and the returned minimum distance is
taken as distance value:

DGR(x, y) := F (x, y)�dmin,

DRG(x, y) := DGR(y, x) .

In case the arguments of D are both RGNGs, the distance is defined to be the
pairwise minimum distance between the prototypes of the RGNGs’ units, i.e.,
single linkage distance between the sets of units is used:

DGG(x, y) := min
u∈x�U, k∈y�U

D(u�w, k�w) .

The latter case is used by the interpolation function if the recursive depth of an
RGNG is at least 2. As the grid cell model presented here has only a recursive
depth of 1, the case is considered for reasons of completeness rather than necessity.
Alternative measures to consider could be, e.g., average or complete linkage.

I(x, y) The interpolation function I returns a new prototype as a result from
interpolating between the prototypes x and y. The type of interpolation depends
on whether the arguments are both vectors or both RGNGs:

I(x, y) :=

{

IRR(x, y) if x, y ∈ R
n,

IGG(x, y) if x, y ∈ G.
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In case the arguments of I are both vectors, the resulting prototype is the
arithmetic mean of the arguments:

IRR(x, y) :=
x+ y

2
.

In case the arguments of I are both RGNGs, the resulting prototype is a
new RGNG a. Assuming w.l.o.g. that |x�U | ≥ |y�U | the components of the
interpolated RGNG a are defined as follows:

a := I(x, y) ,

a�U :=

{

(w, 0)

∣

∣

∣

∣

∣

w = I(u�w, k�w) , ∀u ∈ x�U, k = argmin
l∈y�U

D(u�w, l�w)

}

,

a�C :=











({l,m} , 0)

∣

∣

∣

∣

∣

∣

∣

∃c ∈ x�C ∧ u, k ∈ c�V

∧ l�w = I(u�w, ·)
∧ m�w = I(k�w, ·)











,

a�θ := x�θ .

The resulting RGNG a has the same number of units as RGNG x. Each unit of a
has a prototype that was interpolated between the prototype of the corresponding
unit in x and the nearest prototype found in the units of y. The edges and
parameters of a correspond to the edges and parameters of x.

A(x, ξ, r) The adaptation function A adapts a prototype x towards a vector ξ
by a given fraction r. The type of adaptation depends on whether the given
prototype is a vector or an RGNG:

A(x, ξ, r) :=

{

AR(x, ξ, r) if x ∈ R
n,

AG(x, ξ, r) if x ∈ G.

In case prototype x is a vector, the adaptation is performed as linear interpolation:

AR(x, ξ, r) := (1− r)x+ r ξ.

In case prototype x is an RGNG, the adaptation is performed by feeding ξ into
the RGNG. Importantly, the parameters ǫb and ǫn of the RGNG are temporarily
changed to take the fraction r into account:

θ∗ := ( r, r · x�θ�ǫr, x�θ�ǫr, x�θ�λ, x�θ�τ, x�θ�α, x�θ�β, x�θ�M) ,

x∗ := (x�U, x�C, θ∗) ,

AG(x, ξ, r) := F (x∗, ξ)�x .

Note that in this case the new parameter θ�ǫr is used to derive a temporary ǫn
from the fraction r.

This concludes the formal definition of an RGNG.
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Figure 4.5: Call graph for a single call to the input function F in an RGNG with
two layers (L1, L2). Executing F in layer L1 results in θ1�M (M1) calls to func-
tionD, a single call to function A with learning rate θ1�ǫb (eb1), and O (θ1�M − 1)
(M1’) calls to function A with learning rate θ1�ǫn (en1), where O (θ1�M − 1) is
the potential size of the direct neighborhood of the corresponding BMU. The
calls to D and A result in recursive calls to F on the next lower layer L2. Note
that functions A temporarily change the learning rates for their calls to F . The
recursion stops when a layer is reached where the prototypes are vectors.

4.2.1 Aspects of Recursion

The RGNG defined above introduces the concept of prototypes that can be
RGNGs themselves. This modification of the original GNG approach results
in a layered structure of interwoven GNGs that all operate on a shared input
space. The processing of inputs is divided into four functions that call themselves
reciprocally. As a consequence, each input causes a complex, recursive program
flow that manipulates the prototypes of the units at the lowest layer in a
non-trivial manner. Figures 4.5 and A.7 illustrate the call graphs for a single
call to the input function F at the topmost layer of a two- and three-layer
RGNG, respectively. In general, a call to the input function F at layer Li

results in θi�M calls to the distance function D, a single call to the adaptation
function A with learning rate θi�ǫb, and O (θi�M − 1) calls to the adaptation
function A with learning rate θi�ǫn, where O (θi�M − 1) is the potential number
of direct neighbors of the BMU with respect to the particular input. In addition,
the interpolation function I may be called if a new unit is added to layer Li

(not shown in fig. 4.5 and A.7). Function I in turn makes (θi+1�M)
2
calls to

function D. The calls to functions D and A result in recursive calls to F on the
next lower layer Li+1. Thus, each call to F at layer Li results in O (θi�M) calls
to F at Layer Li+1 as long as the prototypes in Layer Li are RGNGs, i.e., the
maximum number of calls TF to F in an RGNG with N layers is:

TF = O

(

N−1
∏

i=1

θi�M

)

.

At the bottom layer LN a call to F results in θN �M calls to the distance
function D, which in that case just returns the Minkowski distance, a single
call to the adaption function A, which draws the respective BMU towards the
input vector, and O (θN �M − 1) calls to function A drawing the neighbors of



92 CHAPTER 4. COMPUTATIONAL MODEL

the respective BMU towards the input. Note that the particular learning rates
used by function A depend on the actual path in the call graph that led to the
invocation of A. Upcoming chapter 5 will provide more intuition on how these
different learning rates influence the RGNG’s overall behavior.

Given that functionsD and A are linear in n, and function I is constant amortized
the computational cost to process a single, n-dimensional input by a N -layer
RGNG is approximately:

O

(

n

N
∏

i=1

θi�M

)

= O (n |LN |) ,

with |LN | the total number of units in the lowest layer. Thus, with respect
to the total number of units that contain vector prototypes the RGNG has
a computational complexity that is comparable to that of the original GNG.
However, the additional TF function calls per input in an RGNG raise the
computational cost of an actual implementation by a significant, but constant
factor.

4.3 Biological Plausibility

The proposed computational model deviates from the common idea that neurons
are essentially thresholded linear units as, e.g., modeled by a perceptron. The
latter considers the dendritic tree of a neuron to be just a form of input collecting
device without any computational capability other than to weigh the individual
input signals. In contrast, the model outlined above postulates that the dendritic
tree of a neuron is able to recognize multiple different input patterns whose
dendritic representations are formed by a process of competitive Hebbian learning.
Direct biological evidence that the dendritic tree of grid cells does perform
such operations is not available yet. It is therefore necessary to establish if
the presumed dendritic capabilities are at least plausible given the biological
evidence so far.

There exists a wide range of publications that address the (potential) compu-
tational capabilities of dendrites (e.g., [86, 147, 101, 159, 151, 77, 146]). For
instance, Christof Koch [86] provides a detailed account on the biophysical prop-
erties of dendrites and demonstrates how these properties lead to computational
capabilities such as signal attenuation and delay, frequency filtering, coincidence
detection, or the (putative) computation of arbitrary boolean functions. Besides
passive, electrotonic mechanisms there exist a number of active processes that are
regarded as key mechanisms for the processing of information within dendritic
trees, examples of which include action potential backpropagation, local dendritic
spikes, separate spike initiation zones in distal parts of the dendritic tree, or
clustering of input signals via voltage-gated NMDA receptors [101, 159, 151, 107].

With respect to the proposed grid cell model it is of particular interest if a neuron
is, in principle, able to recognize and represent multiple input patterns within its
dendritic tree. Bartlett Mel presents [107] a biophysical model that demonstrates
how a neuron equipped with voltage-gated NMDA receptors could achieve such
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Figure 4.6: Preferred directions for drifting gratings (solid) and moving bars
(hollow) of local regions in the dendritic tree of a starburst amacrine cell. Length
of the arrows corresponds to the directional preference index (DPI) of the
respective region. Figure adapted from Euler et al. [36].

a task. Based on this biophysical model Mel subsequently proposed [106] a sim-
plified version of the model called clusterion. In essence, a clusterion is a second
order perceptron that integrates the activity of local synaptic neighborhoods
to emulate NMDA sites rewarding the co-activation of neighboring synapses or
inputs. Clusterions employ a form of Hebbian learning in which inputs that
lie in synaptic neighborhoods with below average activation are “rewired” and
connected to other input regions. In a later analysis, Poirazi and Mel [129] argue,
that this form of local clustering improves the “storage capacity” of each neuron
by a factor of 40 compared to a classic perceptron.

Direct experimental evidence for a potential local representation and/or recogni-
tion of input patterns can be found in the retina and the visual cortex. Euler
et al. [36] present two-photon fluorescence measurements of calcium changes3

in starburst amacrine cells located in the retina. To a certain extent, starburst
amacrine cells represent a special case as they are non-spiking neurons with
no clear difference between axon and dendrites. They possess local dendritic
outputs that convey local information. Using drifting gratings and moving bars
in several directions as stimulus Euler et al. show that the local dendritic signals
have strong directional preference whereas the signal at the soma responds only
to the movement, but not the direction of the particular stimulus. Figure 4.6
shows examples for the preferred directions (arrows) of several dendritic sites.
The length of the arrows corresponds to the directional preference index DPI
([0 . . . 1]) – a measure of directional asymmetry – of the respective region.

More recently, Jia et al. [76] investigated the activity of layer II/III neurons in
the primary visual cortex of mice in vivo. They combine whole cell recording
with two-photon imaging of calcium flow to measure the activity of the cell’s

3In this context the inflow of calcium is used as a proxy for the local activity in parts of
the dendritic tree.
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(a) (b)

(c)

Figure 4.7: Reaction of a layer II/III neuron in the mouse primary visual cortex
to drifting gratings of eight directions. (a,b) Hyperpolarizing a highly tuned
cell evokes a broadly tuned subthreshold response. (c) Two-photon imaging of
calcium flow reveals specific directional preferences of local dendritic regions.
Figure adapted from Jia et al. [76].

soma as well as its dendritic tree in response to visual stimuli consisting of
drifting gratings oriented in eight discrete directions. They measured 17 cells of
which 6 where highly directionally tuned, 6 were poorly tuned, and 5 were not
responding at all to visual stimulation. Jia et al. discovered, that hyperpolarizing
a highly tuned cell evokes a broadly tuned subthreshold response (fig. 4.7a,b)
suggesting that the cell is able to recognizes stimuli of various directions. Using
two-photon calcium imaging of the dendritic tree they were able to confirm this
hypothesis. Figure 4.7c shows polar plots of calcium signal “hot spots” detected
at various points on the dendritic tree for different stimuli directions. The results
indicate, that local regions of the dendritic tree are highly tuned to recognize
stimuli of specific directions. Interestingly, Jia et al. found such highly tuned
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dendritic hot spots in all 17 cells, regardless of their overall output behavior,
suggesting that “these hotspots represent a general and highly reliable feature of
layer 2/3 neurons of the primary visual cortex.”

Another recent example of local dendritic pattern recognition is presented by
Chen et al. [27] as a case study to demonstrate the abilities of a new, highly
sensitive protein calcium sensor they developed. Figure 4.8 shows two examples
for calcium responses in the soma and dendritic tree of cells from layer II/III of
the visual cortex to different visual stimuli. One cell is a pyramidal cell (fig. 4.8a),
the other is a parvalbumin interneuron (fig. 4.8b). As before, moving gratings
in eight directions (color coded) were used as stimuli. In case of the pyramidal
cell its spines selectively respond to particular grating orientations covering all
eight directions. In contrast, the cell’s soma responds only to three of the eight
directions, which appear to be those that are represented by the highest number
of spines. Furthermore, the (colored) spines shown in the dendritic section
(fig. 4.8a.d) seem to exhibit no apparent order with respect to their particular
direction preference. In contrast, the interneuron shown in figure 4.8b exhibits
continuous dendritic subsections that selectively respond to a particular stimulus
direction and the interneuron’s soma responds equally to all stimuli without any
direction preference.

Beyond these examples for local representation and recognition of input patterns
in dendrites there is further experimental support for the proposed grid cell
model. As described in section 2.9.1, the dendritic surface area of MEA layer II
stellate cells decreases dorsoventrally due to an overall reduction in the number
of primary dendrites. In regard to the grid cell model, this reduction would
reduce the number of input patterns each grid cell could represent within its
dendritic tree resulting in a firing pattern with increased grid spacing matching
the actual, observed dorsoventral gradient (sec 2.2).

In summary, the presented experimental data suggest that the assumptions
made by the proposed grid cell model are, in general, biologically plausible.
More importantly, the method of two-photon calcium imaging used by Euler,
Jia, and Chen et al. appears suitable to directly test the model’s postulate in
future experiments, e.g., by using the setup of a virtual environment described
by Domnisoru et al. [33]. In such an experiment, the individual firing fields of a
grid cell should correlate with localized calcium signals in its dendritic tree.
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(a)

(b)

Figure 4.8: Calcium signal responses of a layer II/III pyramidal cell (a) and
an interneuron (b) to visual stimuli (gratings) moving in eight directions (color
coded). For both cell types the soma response (a.a, b.b) and local dendritic
responses (a.c, b.d) are given as well as reconstructions of the respective dendritic
arbors (a.b, b.c). Figure adapted from Chen et al. [27].



Model Characterization

This chapter will characterize the general behavior of an RGNG with respect to
its parameters and will determine parameter ranges that are suitable for modeling
grid cell behavior. Section 5.1 provides a general overview of all parameters and
describes how they influence the behavior of an RGNG in principle. Section 5.2
introduces the constraints used for modeling grid cells and outlines the measures
used to assess the similarity between the simulation results and existing empirical
data. The main part, section 5.3, presents the results of a series of baseline
experiments aimed to identify those regions of parameter space in which an
RGNG can behave like a group or module of grid cells. Finally, section 5.4
discusses the obtained results.

5.1 General Parameter Assessment

Due to their recursive nature RGNGs can have a varying number of parameters1

that depends on the number of layers chosen for a particular RGNG, i.e., each
layer Li of an RGNG has its own set of parameters θi. At first glance this may
seem counterintuitive as every RGNG prototype could, in principle, have its
own set of parameters. However, as new units and their RGNG prototypes are
created by the interpolation function I they inherit their parameters from the
RGNGs already existing in the particular layer. Hence, there can only be one
set of parameters θi per layer. A set θi, as described above, consists of the
parameters:

θi := {ǫb, ǫn, ǫr, λ, τ, α, β,M} .
Parameter ǫb is the main learning rate. It can be interpreted as the force with
which the BMU for a particular input is drawn towards that input. Similarly,
the secondary learning rate ǫn can be interpreted as the force with which the
neighboring units of a particular BMU are also drawn towards the input. In
combination, both parameters determine how fast an RGNG will allocate or
repurpose existing units to cover inputs from a previously unseen region of input
space. If ǫb and ǫn are high, the RGNG is agile and quickly adapts to inputs
from new input regions. However, it may also forget about old input regions if

1Note that in the context of artificial neural networks (ANN) the term “parameter” some-
times refers to the entities that are learned by the network (e.g. weights) and the parameters
that define the structure and behavior of the ANN are referred to as hyperparameters. In that
sense, the parameters discussed in this section are hyperparameters.

97
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the units representing those regions are repurposed. If ǫb and ǫn are low, the
RGNG becomes more rigid and representations of already seen input regions are
better preserved.

Parameter ǫr is used within the adaptation function A and determines the ratio
between temporary learning rates θ∗�ǫb and θ∗�ǫn. The use of temporary learning
rates in function A allows for the learning rates of upper layers to cascade
down to the bottom layer and influence specific units therein. For example, the
prototype vector of the bottom layer unit that is closest to a particular input
vector will be moved towards this vector by θ1�ǫb, the primary learning rate of
the topmost layer (fig. 4.5 and A.7).

Parameter λ sets the interval at which new units are added to an RGNG while
the RGNG has not yet reached its maximum number M of units. The interval
should be large enough such that the random prototypes of the initial two units
had time to “approach” a non-empty region of input space. As the speed with
which the prototypes are moving is mainly determined by the primary learning
rate, the interval should be at least 2/ǫb wide. In addition, the interval should
provide enough time for the units’ accumulated error variables to gather sufficient
information about where a new unit would be needed most. A conservative
choice for parameter λ is to use a relatively large value as the only consequence
is that the RGNG requires more inputs to reach its maximum size.

Parameter τ determines how fast the RGNG disposes of “unused” edges, poten-
tially removing isolated units in the process. If the input space is dynamic, i.e.,
the input space topology changes rather quickly over time, a small value for τ
can improve the RGNG’s ability to track such changes. However, a small value
for τ also reduces the RGNG’s ability to represent low-density input regions.
Thus, if the input space topology is rather stable, a larger value for τ is the more
conservative choice.

Parameter α reflects the ability of a newly added unit to reduce the local error of
the RGNG’s approximation of input space. If α is low, the RGNG will prioritize
regions with high accumulated errors when adding new units. Conversely, a
high value for α reduces the importance of the actual values of the accumulated
error variables resulting in a more even distribution of new units. Parameter β
complements parameter α as it allows to weigh the importance of errors over
time. Similar to parameter τ parameter β can be useful to improve the RGNG’s
ability to track a dynamic input space. In that case β should be high. Otherwise,
i.e., if the input space is not changing too much, parameter β should have a low
value.

Finally, parameter M sets the maximum number of units an RGNG is allowed to
have. In general, the more units an RGNG has the better it can approximate its
input space. However, with more units an RGNG becomes also more susceptible
to overfitting, i.e., to represent structures that are not actually present in the
input space but rather in the limited set of samples fed to the RGNG.
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Figure 5.1: The input signal for the baseline experiments is derived by encoding
a position (blue cross) in a periodic, two-dimensional input space (square) as the
activity (black = high, white = low) of two sets of cells (vertical and horizontal
groups of small boxes) that each are connected in a one-dimensional, periodic
fashion.

5.2 Modeling Grid Cells

The RGNG defined in the previous chapter can display a wide range of different
behaviors that depend on the particular configuration and input space that are
used. Given that the size of the RGNG parameter space as well as the number
of possible input spaces is infinite, finding a parameter range that is suitable to
model the behavior of grid cells can not be achieved by typical approaches to
model selection like exhaustive searching or random searching without a number
of initial constraints. Thus, some parameters of the RGNG grid cell model will
be determined apriori based on theoretical considerations and existing empirical
knowledge. The remaining parameters will be determined by a series of baseline
experiments that explore the parameter space within reasonable bounds.

5.2.1 Fixed Parameters

Based on the model outline given in section 4.1 the RGNG grid cell model has
two layers. The RGNG units in the top layer (TL) represent individual grid
cells. Each TL unit has an RGNG as prototype which represents the dendritic
tree of the corresponding grid cell. The RGNG prototypes of the TL units form
the second or bottom layer (BL) of the model. The units of these BL RGNGs
have vectors as prototypes and represent individual input patterns to which the
associated grid cells are tuned, i.e., BL units represent the centers of individual
firing fields.

The input space of the grid cell model has to be a uniformly distributed, two-
dimensional, periodic representation of possible (animal) locations (sec. 4.1).
Such an input space can be encoded by two vectors as shown in figure 5.1.
The two-dimensional position is represented by the activity of two sets of cells
that each are connected in a one-dimensional, periodic fashion like, e.g., a one-
dimensional ring attractor. Similar types of input signals for grid cell models
were proposed in the literature by, e.g., Mhatre et al. [108] as well as Pilly and
Grossberg [127].
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For the baseline experiments discussed below the input signal ξ := (vx, vy) is
implemented as two concatenated 50-dimensional vectors vx and vy. To produce
an input signal a random position (x, y) ∈ [0, 1]× [0, 1] is generated and mapped
onto the corresponding elements of vx and vy as follows:

vxi := max

(

1−
∣

∣

∣

∣

i− ⌊dx+ 0.5⌋
s

∣

∣

∣

∣
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)

,

vyi := max

(
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∣
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∣

∣

i− ⌊dy + 0.5⌋
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∣

∣

∣

∣

, 1−
∣

∣

∣

∣

d+ i− ⌊dy + 0.5⌋
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∣

∣

∣

∣

, 0

)

,

∀i ∈ {0 . . . d− 1} ,

with d = 50 and s = 8.

The baseline experiments use inputs that are sampled randomly from the input
space to avoid any bias in the input data during parameter search. The experi-
ments described in chapter 6 use sequential position data captured from actual
animals2.

For all layers the parameters ǫr, λ, τ , α, and β are fixed during the baseline
experiments. Parameter ǫr is set to 0.01, which is close to the ratio between
the primary and secondary learning rates originally proposed by Fritzke [40].
Parameter λ is set to 1000 in the top layer as well as the bottom layer. This
value is a conservative choice that is higher than the value proposed by Fritzke
resulting in a slower growth of the RGNG. Using a relatively high value for λ
ensures that the prototypes of the RGNG units can reach meaningful locations
in input space even if learning rates are potentially low during the parameter
search. Parameters τ , α, and β are set to 300, 0.5, and 0.0005, respectively.
These values, too, are close or equal to the values proposed by Fritzke [40]. In
case of a static input space that is randomly sampled the actual values of these
parameters are noncritical. Only parameter τ should not be significantly smaller,
e.g., by one magnitude, as such a small value would result in an unstable RGNG
network. Parameters α and β affect the RGNG only during its growth period.
Any suboptimal distribution of new units will eventually correct itself by the
adaptation that is ongoing after the RGNG has reached its maximum size.

5.2.2 Variable Parameters

In the proposed two-layer RGNG grid cell model the θ1�M TL units represent
putative grid cells. Each TL unit, i.e., grid cell has a corresponding set of
θ2�M BL units that represent the input space prototypes, i.e, input patterns that
are recognized by the dendritic tree of the respective grid cell. Assuming that a
majority of grid cells are MEA layer II stellate cells [53, 52] a reasonable range
of values for θ2�M can be estimated based on the morphology of those cells. As
described in section 2.9.1 the dendritic tree of a layer II stellate cell has about
7500 to 15000 spines, each hosting one or more synaptic connections. Estimating
that each grid cell receives input from hundreds to thousands of other neurons,
the number of input patterns (θ2�M) that could be encoded separately in the

2The position data is provided by the Moser laboratory. No animal trials were conducted
in the context of this work.
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dendritic tree of an average stellate cell ranges from less than 10 up to about
150 patterns.

Similarly, the magnitude of θ1�M , i.e., the number of TL units can be derived
from empirical data as well. Gatome et al. [47] report an average of 57900± 8700
neurons in MEA layer II of which about 66.7% or 38600 are stellate cells. This
proportion is in accordance with data provided by Krupic et al. [91] (see below).
They report that about 70% of observed cells in MEA and PaS have spatially
periodic firing patterns. Of these cells 35% can be classified as grid cells. Thus,
the number of grid cells in MEA layer II can be estimated to be around 14200
cells. Other reports [62, 141, 9] state that about 50% of all principle cells in
MEA layer II are gird cells. Principle cells in MEA layer II comprise stellate
cells (66.7%) and pyramidal cells (19.7%) [47]. Together these two types of cells
amount to about 50000 neurons, resulting in an estimate of 25000 grid cells in
MEA layer II. Given that Stensola et al. [156] estimate that there are up to 10
grid cell modules in MEA, the estimated maximum number of grid cells per
module ranges between 1420 and 2500 cells. This range represents the maximum
values the parameter θ1�M can take on while remaining biologically plausible.
However, estimating a lower bound of θ1�M based on empirical data is difficult,
as the number of observed grid cells belonging to individual modules is usually
very small (< 50 cells) per animal [156, 91]. Hence, it cannot be ruled out that
grid cell modules are potentially more numerous and contain fewer grid cells.

The learning rates θi�ǫb and θi�ǫn are specific to the RGNG algorithm and are
not directly related to some property of biological grid cells. Yet, the learning
rates have a strong influence on the temporal dynamic of the RGNG, i.e., they
determine how many inputs the RGNG requires to learn a representation of
the input space and they determine how stable this representation will be. To
estimate how much time a biological grid cell would require to process a given
number of inputs, the peak firing rate of the grid cell is taken as an approximation
of how many inputs the cell can process per second. Reported typical peak
firing rates of grid cells range from 1Hz up to 30Hz [91, 141]. Thus, if an
RGNG requires, e.g., 1000000 inputs to form the initial representation of its
input space, then this would translate to 18.5 hours of processing time in a
corresponding biological system assuming an average peak firing rate of 15Hz.
This type of rough estimate represents an upper bound as potential speedups
due to interleaved processing of inputs by alternating cells are not considered.

5.2.3 Grid Cell Measures

In order to assess the similarity between simulation results and existing empirical
data the grid cell measures used in the literature (sec. 2.1) have to be applied to
the simulation results. The predominant measure used in the grid cell literature
is the gridness score. It is the primary measure used to decide whether or not an
observed cell is considered to be a grid cell. Early publications [141] considered
all cells with positive gridness as grid cells, but meanwhile it has become
common practice to use the 95th or 99th percentile of a shuffled distribution as
threshold [9, 172, 94, 54, 177, 91, 33], which typically range between 0.2 and 0.4.

Krupic et al. [91] provide an analysis of cells observed in dorsal MEA and PaS.
About 70% of cells in those regions had spatially periodic firing patterns and
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(a) (b)

Figure 5.2: Distribution of cell types in dorsal MEA and PaS according to
Krupic et al. [91]. (a) left: About 70% of observed cells had spatially periodic
firing patterns (SPC, spatially periodic cell). (a) right: Among the SPCs about
35% of the cells were classified as grid cells having a gridness score greater 0.27.
(b) Distribution of gridness scores among the SPCs. 95th percentile of shuffled
data indicated by vertical red bar. Figures from Krupic et al. [91].

(a) (b) (c)

Figure 5.3: Firing rate map approximation of top layer units. (a) Geometric
interpretation of ratio r, which is used as basis for an approximation of the top
layer unit’s “activity”. (b,c) Examples of firing rate maps for top layer units
with 10 and 20 bottom layer units, respectively. Color indicates activity from
blue = low to red = high.

were classified as spatially periodic cells (SPCs). Among the SPCs about 35%
were classified as grid cells (fig. 5.2). The distribution of gridness scores among
SPCs shown in figure 5.2b is consistent with other gridness distributions found
in the literature (fig. A.1 and A.2). Furthermore, gridness distributions from
neurons in species other than rat appear to be similar as well (fig. A.3). It is
important to note that the gridness score of a cell can change over time. Krupic
et al. [91] report that about 11% of SPCs changed their firing pattern from
being classified as grid cell to being classified as non-grid cell or vice versa across
trials in the same environment. The number rose to 32% of SPCs when the
environments changed from trial to trial.



5.2. MODELING GRID CELLS 103

(a) (b)

Figure 5.4: Distributions of grid pattern orientations from grid cells within
a single module. Krupic et al. [91] (a) report pairwise, relative orientations
between grid cells of a single module in the range of ± 5 degrees. Consistent
with this finding, Stensola et al. [156] (b) report absolute orientations of grid
cells within a single module that span about 10 degrees.

To compare these empirical distributions with the distribution of gridness values
occurring in an RGNG, the gridness scores for all TL units of the RGNG have
to be calculated. As described in section 2.1 the gridness score is derived from
the firing rate map of a grid cell. Thus, for each TL unit an artificial firing rate
map has to be approximated. To this end the “activity” au of a TL unit u in
response to an input ξ is determined by:

au := e−
(1−r)2

2σ2 ,

with σ = 0.2 and ratio r:

r :=
D(s2�w, ξ)−D(s1�w, ξ)

D(s1�w, s2�w)
, s1, s2 ∈ u�w�U,

with BL units s1 and s2 being the BMU and second BMU in u�w�U with respect
to input ξ (fig. 5.3a). Typically, firing rate maps represent the average activity of
a grid cell during a single experimental session lasting between 10 and 20 minutes.
In case of the rat movement data provided by Sargolini et al. [141], which is
used in chapter 6, each recorded session provides 10 minutes of position data
sampled at 50 Hz. Correspondingly, the firing rate map of a top layer unit is
based on the unit’s activity with respect to 30000 inputs in order to integrate
over a comparable timescale. Smoothing and normalization of the approximated
firing rate map is done using a 5× 5 boxcar average as described by Stensola et
al. [156]. Figures 5.3b and 5.3c show examples of typical firing rate maps of two
top layer RGNG units.

Based on the artificial rate maps further grid cell measures like the grid spacing
and grid orientation (sec. 2.1) can be determined for TL RGNG units. As
outlined in section 2.2 grid cells show a topographical organization where distinct
modules of grid cells exist along the dorsoventral axis of MEA. Within each
module grid cells share a common spacing and orientation. Grid spacing varies
between 30cm and several meters depending on the dorsoventral location of the
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particular cell in the MEA and the type (e.g., box or linear track) of external
environment [141, 11, 156]. Precise distributions showing the variation of grid
spacing within a single grid cell module are not provided in the literature, but
data presented by Stensola et al. [156] suggest that spacing varies about ± 5cm
in modules with grid spacings below one meter. In contrast, variation of grid
orientation in individual modules is explicitly reported by Krupic et al. [91] as
well as Stensola et al. [156] to be in the range of ± 5 degrees (fig. 5.4). However,
more recent findings [90] indicate that the orientation of the grid cells within a
grid cell module could depend on characteristics of the particular input space
instead of being a general feature of the underlying information processing
scheme proposed here. The potential influence of particular input spaces on the
orientation of grid patterns will be addressed in chapter 6.

5.3 Baseline Experiments

This section presents the results of a series of baseline experiments aimed to
characterize the general behavior of an RGNG and to identify those regions of
parameter space in which an RGNG behaves like a module of grid cells. The
behavior of a two-layer RGNG is the result of two coupled competitive learning
processes. The competition among BL units associated with a single TL unit
represents the learning process by which a single putative grid cell forms a
representation of its input space. The competition among TL units models the
interaction between the grid cells of a single grid cell module. Setting either the
top layer learning rates θ1�ǫb and θ1�ǫn or the bottom layer learning rates θ2�ǫb
and θ2�ǫn to zero allows to observe these two processes in isolation providing a
better understanding of their individual characteristics. Therefore, the behavior
of a two-layer RGNG will be analyzed in three steps:

• Isolated Bottom Layer

• Isolated Top Layer

• Coupled Top and Bottom Layer

The first step allows to observe how TL units and their corresponding set of BL
units form a representation of their input space without interference from other
TL units. The second step focuses on the interaction between TL units and its
effects on their input space representation. Finally, the third step combines both
processes and allows to observe how different ratios between top and bottom
layer learning rates influence the behavior of the complete two-layer RGNG grid
cell model.

5.3.1 Isolated Bottom Layer

Setting the top layer learning rates θ1�ǫb and θ1�ǫn to zero allows to observe
how individual TL units, i.e., putative grid cells, form a representation of their
input space independent of any top layer competition. For each TL unit the
current input is fed to the corresponding set of BL units only via the distance
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Figure 5.5: Examples of artificial rate maps in 24 simulation runs with varying
number θ2�M of BL units (columns) and varying learning rates θ2�ǫb and θ2�ǫn
(rows). Each simulation run is represented by four representative artificial rate
maps.

function D (fig. 4.5), while the top layer competition mediated by calls to
adaptation function A has no effect since θ1�ǫb and θ1�ǫn are set to zero.

Primary Learning Rate

In a first set of 24 simulation runs the influence of the primary bottom layer learn-
ing rate θ2�ǫb ∈ {0.5, 0.05, 0.005, 0.0005} for varying number θ2�M ∈ {5, 10, 20, 40,
80, 160} of BL units was investigated. The secondary learning rate θ2�ǫn was kept
at a fixed ratio, i.e., θ2�ǫn := 0.01·θ2�ǫb. The other parameters were kept constant
as described above. Figure 5.5 shows for each simulation run four representative
artificial rate maps. The learning rate θ2�ǫb varies over four magnitudes (rows)
from 0.5 to 0.0005 and the number θ2�M of BL units (columns) ranges from 5 to
160 reflecting the considerations made above. In each simulation run 25 TL units
processed two million inputs drawn randomly from a uniform, 100-dimensional
input space (fig. 5.1). Artificial rate maps were generated for each TL unit by
integrating its activity over 30000 inputs beginning at t = 1800000. The assumed
environment size was set to 1.5m× 1.5m using 3cm× 3cm bins for the rate maps.
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(a) (b) (c) (d)

Figure 5.6: Stripe-like activity in real (a,b) and simulated (c,d) cells. Figures
a,b from Krupic et al. [91]. Figures c,d from a simulation run with θ2�ǫb = 0.005
and θ2�M = 5.

It is important to note that rate maps, both natural and artificial, do not
represent an instantaneous “snapshot” of the grid cell’s firing fields. Instead,
they integrate the activity of a grid cell in response to a sequence of inputs
over a given time window, e.g., over the duration of a single experimental trial.
Thus, if the regions of input space to which a cell is most sensitive to change
quickly, the rate map can show high activity for input space regions that are no
longer covered by the respective cell in its current state. An extreme example
of this effect can be observed in the first row of figure 5.5. As the learning
rate θ2�ǫb = 0.5 is very high, the prototypes of the BL units are drawn strongly
towards the particular inputs, which in turn causes the corresponding TL unit to
respond to almost any input with high activity. In addition to the learning rate
the number θ2�M of BL units itself influences the speed with which the units’
prototypes adapt to the input signals. The lower the number of BL units is, the
more frequent each BL unit will be selected as BMU and their prototype adapted
towards an input. The second row of figure 5.5 illustrates this effect. With
increasing number θ2�M of BL units the prototypes become increasingly stable
and form a regular, hexagonal pattern of firing fields. In case of θ2�ǫb = 0.05
and θ2�M = 10 the prototype movement during the integration of the rate maps
is especially visible as it forms light streaks of activity in the resulting map.

The last two rows in figure 5.5 show two interesting effects of low learning
rates θ2�ǫb. The first effect is prominently visible: some rate maps exhibit
stripe-like activity patterns. In these cases the BL units only managed to find a
stable partition for part of the input space, i.e., for the subspace that encodes
one of the two location coordinates. This semi-stable configuration represents a
local minimum that the BL units cannot leave due to the low learning rate θ2�ǫb.
As a consequence, the prototypes drift within the remaining part of the input
space resulting in a stripe-like pattern. Interestingly, Krupic et al. [91] observed
similar, stripe-like activity patterns in a number of entorhinal neurons (fig. 5.6).
The vertical or horizontal alignment of the stripe pattern seen in the simulated
rate maps is an artifact caused by the fixed but arbitrary alignment of the input
space coordinate system and the environment coordinate system. The second
effect of a low learning rate is similar to the first but more subtle. It is mostly
present in the last row of figure 5.5, which corresponds to the set of simulation
runs that used the lowest learning rate θ2�ǫb = 0.0005. In these cases the number
of firing fields present in a rate map is smaller than the number of BL units,
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(a) (b)

Figure 5.7: (a) Influence of primary learning rate θ2�ǫb on gridness scores for
varying number θ2�M of BL units. Shown gridness scores are the average gridness
scores of 25 TL units in each corresponding simulation run. Secondary learning
rate was kept at a fixed ratio, i.e., θ2�ǫn := 0.01 · θ2�ǫb. (b) Comparison of
gridness scores based on rate maps containing all, one-quarter, or one-sixteenth
of the corresponding TL unit’s firing fields. Fixed learning rates θ2�ǫb = 0.05
and θ2�ǫn = 0.0005 used in all three cases.

i.e., the prototypes of some BL units represent the same region of input space.
Again, the BL units are stuck in a local minimum that corresponds to a stable
partition of the input space that uses fewer prototypes than are available. As a
consequence, the resulting partition is suboptimal to the effect that the local
regions represented by the individual prototypes are larger than they would be
in the optimal case.

The influence of the primary learning rate θ2�ǫb on the average gridness scores
achieved in the different simulation runs is illustrated in figure 5.7a. It shows the
average gridness scores of 25 TL units per simulation run for varying learning
rates θ2�ǫb ∈ {0.5, 0.05, 0.005, 0.0005} and varying number of BL units θ2�M ∈
{5, 10, 20, 40, 80, 160}. Simulation runs using a very high learning rate of θ2�ǫb =
0.5 (blue curve) result in uniformly low gridness scores below 0 independent
of the number of BL units. Using a learning rate of θ2�ǫb = 0.05 (red curve),
which matches the learning rate proposed by Fritzke [40], results in high gridness
scores for 20, 40, and 80 BL units. Gridness scores for 5, 10, and 160 BL units
remain low. Reducing the learning rate further (θ2�ǫb = 0.005, orange curve)
increases the gridness score for 10 BL units, but shows also a decrease in gridness
scores for all higher number of BL units. Another reduction of the learning rate
(θ2�ǫb = 0.0005, green curve) provides no benefit in terms of gridness neither for
low nor high numbers of BL units.

Subset Rate Maps

The consistent low gridness values for simulation runs with 160 BL units shown
in figure 5.7a are independent of the particular learning rate. They are caused
by an excessive number of firing fields that is biologically implausible within
an assumed environment of only 1.5m × 1.5m leading to a loss of validity of
the gridness measure. Although some simulation runs of TL units with 40 or
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Figure 5.8: Examples of artificial rate maps for different subregions (rows) of the
TL units’ firing fields in 6 simulation runs with fixed learning rates (θ2�ǫb = 0.05
and θ2�ǫn = 0.0005) and varying number θ2�M of BL units (columns). Subregions
are indicated by red squares. Integration times (∆t) increase with decreasing
subregion size to obtain sufficiently dense rate maps. Gridness scores given above
and below each rate map.

80 BL units resulted in high gridness scores they, too, exhibit an unrealistic
density of firing fields that cannot be observed in the rate maps of biological grid
cells. However, this does not mean that 40 or more prototypes, i.e., individual
representations of input space subregions per cell are biologically implausible.
Instead, it is reasonable to assume that the firing fields of a grid cell observed
in a typical laboratory environment (about 1.5m × 1.5m) are just a subset of
all the cell’s firing fields which may span a much larger area. To investigate
this possibility firing rate maps of TL units were generated that cover only a
subset of the unit’s firing fields. Figure 5.8 shows rate maps covering either
one-quarter (second row) or one-sixteenth (third row) of the corresponding TL
unit’s firing fields (first row) obtained from simulation runs with fixed learning
rate θ2�ǫb = 0.05 and varying number θ2�M of BL units (columns). In order to
gather sufficiently dense rate maps the integration times (∆t) were increased to
60000 (one-quarter subset) or 90000 (one-sixteenth subset) steps, respectively.
The resulting average gridness values are shown in figure 5.7b.

The subset rate maps of simulations with θ2�M ≥ 20 BL units exhibit periodic,
hexagonal firing patterns with grid spacings as well as gridness scores (fig. 5.7b)
that are typical for natural grid cells reported in the literature [62, 156, 91].
Especially the subset rate maps containing one-sixteenth of the firing fields
(fig. 5.7b, orange curve) show significantly increased gridness values in case of
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Figure 5.9: Comparison of simulated (rows 1+3) and natural firing (rows 2+4)
rate maps across different grid spacings, number of firing fields, and overall visual
appearances. Natural rate maps derived from supplementary material provided
by Krupic et al. [91]. Gridness scores given above and below each rate map.

160 BL units compared to the rate maps containing all firing fields (fig. 5.7b,
blue curve). In contrast, the firing fields in the subset rate maps of simulations
with θ2�M < 20 BL units become to large to identify a clear hexagonal firing
pattern and do not improve the average gridness scores. Consequently, cells with
such firing patterns are generally not classified as grid cells and their firing rate
maps are typically not published. However, as a rare exception to this common
practice the supplementary material provided by Krupic et al. [91] contains the
firing rate maps of 245 cells that showed any spatially correlated activity in
their experiments. Comparing these rate maps with the subset rate maps of
fig. 5.8 allows to assess to what extent the simulated rate maps are biologically
plausible. Interestingly, for most of the simulated rate maps corresponding
natural counterparts could be found. Figure 5.9 shows a representative set of
matches between simulated (rows 1+3) and natural (rows 2+4) rate maps that
are similar with respect to their gridness score, number of firing fields, and overall
visual appearance. The matching rate maps were sorted according to the size
and number of their firing fields. For simulated rate maps with more than 20
firing fields no matching natural rate maps could be found, indicating an upper
limit of about 10 firing fields per square meter for biologically plausible firing
rate maps. Contrary to rate maps with a high number of firing fields, simulated
rate maps with few, large firing fields do have natural counterparts that match
their visual structure considerably well (first row in fig. 5.9). Although cells with
such rate maps are commonly not considered to be grid cells, their existence,
both in empirical data as well as simulation, supports the hypothesis that such
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Figure 5.10: Examples of artificial rate maps in 24 simulation runs with fixed
primary learning rate θ2�ǫb = 0.05, varying secondary learning rate θ2�ǫn (rows),
and varying number θ2�M of BL units (columns). Each simulation run is
illustrated by four representative artificial rate maps.

cells are in fact grid cells that possess large firing fields and cover an area much
larger than the typical laboratory environment.

Secondary Learning Rate

The previous simulation runs (fig. 5.8) used a fixed ratio between primary and
secondary learning rates, i.e., θ2�ǫn = 0.01 · θ2�ǫb. To investigate the influence
of the secondary learning rate θ2�ǫn a set of 24 simulations runs with fixed
primary learning rate θ2�ǫb = 0.05, varying secondary learning rate θ2�ǫn ∈
{0.00005, 0.0005, 0.005, 0.05}, and varying number θ2�M ∈ {5, 10, 20, 40, 80, 160}
of BL units was performed. In figure 5.10 the result of each run is illustrated
by four representative artificial rate maps. Correspondingly, figure 5.11 shows
the resulting average gridness scores based on rate maps containing either
all (fig. 5.11a) or one-sixteenth (fig. 5.11b) of the respective TL unit’s firing
fields. The results suggest that the secondary learning rate θ2�ǫn has, in general,
a rather gentle influence on the distribution of firing fields. A strong and notable
difference in the regularity of the firing patterns can only be observed in the
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(a) (b)

Figure 5.11: Influence of secondary learning rate θ2�ǫn on gridness scores for
varying number θ2�M of BL units based on rate maps containing either all (a)
or one-sixteenth (b) of the corresponding TL unit’s firing fields. Shown gridness
scores are the average gridness scores of 25 TL units. Primary learning rate was
set to θ2�ǫb = 0.05.

extreme case in which the secondary learning rate is equal to the primary learning
rate (θ2�ǫn = θ2�ǫb = 0.05, fig. 5.10, last row). The resulting average gridness
values (fig. 5.11, green curves) indicate a complete loss of the hexagonal firing
patterns for simulation runs with 5, 10, and 20 BL units. However, for runs
with 40 and 80 BL units the difference in average gridness to simulation runs
with lower secondary learning rates decreases, and in case of the run with 160
BL units the average gridness actually exceeds the gridness values of two other
simulation runs. The overall best results in terms of gridness scores were achieved
by a secondary learning rate of θ2�ǫn = 0.005 (fig. 5.11, orange curves), which is
about one magnitude larger than the value suggested by Fritzke [40]. Yet, the
difference to the results achieved by smaller secondary learning rates (fig. 5.11,
red and blue curves) is rather small. Qualitatively, the results suggest that a
higher secondary learning rate may be beneficial in case of a higher number θ2�M
of BL units (fig. 5.11b).

The preceding simulations demonstrate that individual TL units and their
corresponding set of BL units are able to form representations of their input
space that result in artificial rate maps that exhibit biologically plausible, grid-
like firing patterns. The resulting patterns do not only resemble their natural
counterparts based on their gridness value (fig. 5.7), but also in terms of their
overall visual appearance (fig. 5.9). In particular, the simulated firing patterns
do not only match the rate maps of cells with precise hexagonal firing fields,
but also of those cells that exhibit a wide spectrum of less structured, spatially
correlated firing patterns. This result suggests that the wide range of firing
patterns observed in natural cells [91] may originate from a single common
process based on dendritic, self-organized learning.

From a technical standpoint the preceding simulations show that the primary
and secondary learning rates proposed by Fritzke [40] for the original GNG are
also a good choice for the bottom layer units of the RGNG, though the secondary
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learning rate may be chosen one magnitude larger depending on the number of
BL units. In general, the behavior of the RGNG is robust over a wide range of
learning rates and number of BL units. However, learning rates that are either
too low or too high may lead to suboptimal or (partially) unstable solutions.

5.3.2 Isolated Top Layer

Analogous to the previous section the bottom layer learning rates θ2�ǫb and θ2�ǫn
can be set to zero to study how the competition among TL units influences
the behavior of their corresponding sets of BL units. However, interpreting the
behavior of an RGNG with an isolated top layer is less straightforward compared
to the isolated bottom layer case. In contrast to the latter, not all groups of BL
units receive an input at every time step. Instead, each input is fed via calls to
the adaptation function A to only those BL units that are associated with the
TL BMU at that time, as well as the BMU’s neighbors (fig. 4.5). In addition, the
top layer calls to the adaptation function A determine the particular learning
rates used in the subsequent bottom layer calls to A , i.e., the BL units of the TL
BMU process an input with θ2�ǫb = θ1�ǫb and θ2�ǫn = θ1�ǫb · θ1�ǫr, whereas the
BL units of the TL BMU’s neighbors process the same input with θ2�ǫb = θ1�ǫn
and θ2�ǫn = θ1�ǫn · θ1�ǫr.

As each input is only fed to the BL units of the particular TL BMU and of its
direct TL neighbors, each group of BL units perceives only parts of the input
space leading to a potentially incomplete and skewed representation. The part
of input space that is perceived by a specific group of BL units is determined by
the prototypes of these BL units themselves in a self-reinforcing fashion. In this
context three major mechanisms influence the way how and if prototypes converge
on particular regions of input space. First, if a prototype in the bottom layer
represents a region of input space slightly better than all other BL prototypes,
this prototype will “move” faster towards this region than its competitors, as its
associated TL unit will become the BMU for the particular inputs more often
than other TL units. Over time, the prototype and its corresponding BL unit will
own the region of input space that the prototype represents as other groups of BL
units are effectively prevented from seeing this part of the input space. Second,
if BL units within a BL unit group have prototypes that were not able to claim a
region of input space on their own, they will be drawn towards the prototypes of
those BL units in the group that were able to do so. As a result, the additional
BL units will reinforce ownership of the particular input space region against
competing TL units and their BL unit groups. Third, the input to TL BMU
neighbors establishes relations between those TL units that own neighboring
regions of input space. Initially, the relationship between two TL units may
be based on only one region of input space in which some of the respective BL
units’ prototypes lie close together. Over time the top level relationship will
favor the alignment of further prototypes in the corresponding groups of BL
units (fig. 5.12), which in turn reinforces the top layer connection leading to a
stronger alignment. The strength of this alignment process is controlled by the
top layer secondary learning rate θ1�ǫn. Eventually, the arrangement of the BL
units’ prototypes across BL unit groups will reflect the top layer neighborhood
relations, even though the particular BL units do not share any direct edges
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Figure 5.12: Illustration of BL unit alignment based on top layer neighborhood
relations. If BL units that are associated to different TL units lie close together
(1), they may become the two overall BMUs with respect to a particular input.
In this case an edge (2) between the corresponding TL units is created. If
one of the TL units (blue, top) becomes BMU for a later input, not only the
matching BL unit (blue, bottom right) of this TL unit will move towards the
input (controlled by θ1�ǫb), but also the matching BL unit (sepia, bottom right)
of the neighboring TL unit (sepia) will move (3) in that direction (controlled by
θ1�ǫn).

between themselves. As this arrangement extends throughout the network of top
layer units, it also facilitates the even distribution of the BL unit’s prototypes
across the entire input space.

Primary Learning Rate

In a first set of 40 simulation runs the influence of the primary top layer learning
rate θ1�ǫb ∈ {0.5, 0.05, 0.005, 0.0005} for varying number θ1�M ∈ {25, 50, 100,
500, 1000} of TL units, and varying number θ2�M ∈ {20, 80} of BL units per
TL unit was investigated. The secondary learning rate θ1�ǫn was kept at a fixed
ratio, i.e., θ1�ǫn := 0.01 · θ1�ǫb. The other parameters were kept constant as
described above. Figure 5.13 shows two representative artificial rate maps for
each simulation run. The primary learning rate θ1�ǫb varies across rows, the
number θ1�M of TL units varies across columns, and the number θ2�M of BL
units per TL unit alternates over the sub-columns. In each simulation run two
million inputs drawn randomly from a uniform, 100-dimensional input space
(fig. 5.1) were processed by the TL units. Artificial rate maps were generated
for each TL unit by integrating its activity over 30000 inputs beginning at
t = 1800000. The assumed environment size was set to 1.5m × 1.5m using
3cm× 3cm bins for the rate maps.

The resulting artificial rate maps shown in figure 5.13 indicate that the distri-
bution and number of firing fields is influenced by both the primary learning
rate θ1�ǫb and the number θ1�M of competing TL units. The average number of
firing fields per TL unit decreases with a decreasing learning rate θ1�ǫb (fig. 5.14).
In case of simulation runs using 20 BL units per TL unit this decrease is relatively
independent of the number θ1�M of TL units. In case of 80 BL units per TL
unit, the difference in the number of firing fields for learning rates θ1�ǫb between
0.05 and 0.0005 vanishes with increasing number θ1�M of TL units and appears
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Figure 5.13: Examples of artificial rate maps in 40 simulation runs with varying
number θ1�M of TL units (columns), varying learning rates θ1�ǫb and θ1�ǫn
(rows), and varying number θ2�M of BL units per TL unit (sub-columns). Each
simulation run is represented by two representative artificial rate maps.

to converge on 20 firing fields per TL unit. Only the simulation runs that use
a very high learning rate of θ1�ǫb = 0.5 stand out by retaining twice as many
firing fields. Besides the pure number of firing fields, the evenness of the firing
field distribution within the rate maps appears to change with learning rate and
number of TL units, too. Quantifying this evenness is nontrivial. One measure,
which is employed here, is the so-called earth mover’s distance (EMD) [139]. Fig-
uratively speaking, the EMD calculates the minimum amount of “work” needed
to transform one rate map into another by moving the bin contents of the first
map to match the bin contents of the second one. Here, the evenness of a firing
rate map is determined as the EMD between the particular (normalized) rate
map and an optimally even rate map, i.e., a rate map containing only a single,
constant value at every location. The smaller this distance becomes, the more
even the particular rate map is. Since the common EMD has a complexity of
O
(

n3 log n
)

, a linear-time approximation of the EMD proposed by Shirdhonkar
and Jacobs [148] is used. Based on this measure figures 5.14c,d show that in
general the relative average evenness of the firing rate maps increases with an
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(a) 20 BL units (b) 80 BL units

(c) 20 BL units (d) 80 BL units

Figure 5.14: Influence of primary learning rate θ1�ǫb ∈ {0.5, 0.05, 0.005, 0.0005}
and number θ1�M of TL units on the average number of firing fields per TL
unit (a,b) and the average evenness of the TL units’ firing rate maps (c,d).
The latter is determined using an approximated earth movers distance (EMD)
between each firing rate map and a uniform rate map (smaller distance = more
even distribution of firing fields). Graphs are shown for simulations using either
20 (a,c) or 80 (b,d) BL units per TL unit.

increasing learning rate, while the absolute average evenness decreases with
an increase in the number of competing TL units. Interestingly, this general
trend is almost inverted in case of simulations using the very low learning rate
of θ1�ǫb = 0.0005. Here, the evenness increases with the number of TL units,
especially in the case of simulations using 80 BL units.

Both observations, the change in distribution and the change in the number of
firing fields, can be explained by the influence of the primary learning rate θ1�ǫb
and the number θ1�M of TL units on two of the three mechanisms described
before. In general, the TL primary learning rate determines how strongly the
prototypes of BL units move towards a particular input. With an increasing
number of competing TL units the chance for an individual TL unit to become
BMU for an input decreases. As a consequence, the corresponding group of BL
units perceives overall fewer inputs, which in turn results in fewer inputs towards
which the BL prototypes within this group could move. In this case a higher
learning rate can mitigate the lower number of inputs as the BL prototypes
approach these fewer inputs faster allowing the prototypes to find regions of
input space that they can own nevertheless. However, if the number of competing
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TL units reaches a point where the overall number of BL units prevents more
and more prototypes from claiming an exclusive region of input space, the higher
learning rate causes these prototypes to rapidly converge towards prototypes
within their BL unit group that do own an input space region (blue and red
curves in fig. 5.14b). The average evenness of the firing rate maps is affected
by this process in a similar fashion (blue and red curves in fig. 5.14c,d). In
contrast, the behavior of the system changes significantly if the primary learning
rate θ1�ǫb is very low. In this case the BL units’ prototypes get easily stuck
in (semi-)stable local minima. As long as the number of TL units is low and,
correspondingly, the number of inputs perceived by each group of BL units is
high, the prototypes are likely to converge on those early local minima. Yet,
if the number of competing TL units increases and the number of inputs per
BL unit group decreases accordingly, the prototypes within groups of BL units
remain stuck in between local minima leading to an apparent increase in evenness
of the resulting rate maps (green curve in fig. 5.14d).

Alignment and Distribution

The analysis so far did not touch upon the influence of the primary learning
rate θ1�ǫb and the number θ1�M of TL units on the alignment and distribution
of rate maps among each other, i.e., on the third mechanism described above.
To investigate this relation the artificial rate maps of all TL units from each
simulation were merged into a single map using two different approaches: either
by summation (SUM) or by using the maximum value for each location (MAX).
Figure 5.15 shows the resulting maps for each of the 40 simulation runs. In case
of the SUM-approach the color gradient from dark blue to dark red represents
the interval [0..maxsum], where maxsum is the maximum value in each map. The
maps provide a relative measure indicating whether certain regions of input space
are overrepresented. In case of the MAX-approach the color gradient represents
the interval [0..1]. Here, the maps provide an absolute measure. They reveal
if a region of input space is covered by any BL prototype at all. To show the
detailed arrangement of the merged firing fields the maps shown in figure 5.15
contain only a subset of one-sixteenth of the TL units’ firing fields3.

If the firing fields of all TL units could be perfectly aligned and distributed, each
location in the input space would be represented by exactly one BL prototype.
In such a case, the merged rate maps (both SUM and MAX) would show a
similar, densely packed, uniform pattern of firing fields. To measure how close
the actual merged rate maps are to this optimal configuration, the previously
introduced measure of evenness can be used again. However, pure evenness
is only a necessary but not sufficient criterion, since a merged rate map could
be perfectly even with activity values of zero at every location. Thus, the
distribution of activity values must be taken into account as well. Accordingly,
the merged rate maps are assessed by either measure. While the SUM-based
maps are evaluated by their evenness, the MAX-based maps are used to derive
the activity distributions. In a sense, the evenness of a SUM-based map describes
how efficient a group of TL units represents the input space, i.e., how well the
group avoids the (relative) overrepresentation of any input space region. In

3Corresponding maps containing all firing fields are shown in figure A.4



5.3. BASELINE EXPERIMENTS 117

Figure 5.15: Merged artificial rate maps of 40 simulation runs with varying
number θ1�M of TL units (columns), varying learning rates θ1�ǫb and θ1�ǫn (rows),
and varying number θ2�M of BL units per TL unit (sub-columns) showing one-
sixteenth of the firing fields of the respective TL units. Artificial rate maps are
merged in two different ways (sub-rows): either by summation (SUM) or by
using the maximum value for each location (MAX). The color gradient from
dark blue to dark red represents the range 0 . . .maxsum in case of SUM, and
the range 0 . . . 1 in case of MAX.

contrast, the distribution of activity values within a MAX-based map indicates
how complete the representation of input space by a group of TL units is.
Figure 5.16 summarizes the results of these two measures. For all SUM-based
merged rate maps the evenness increases with an increasing learning rate θ1�ǫb
(fig. 5.16a, b). Except for the very low learning rate of θ1�ǫb = 0.0005, this
increase in evenness is essentially independent of the number θ1�M of TL units.
In case of θ1�ǫb = 0.0005 the evenness is also influenced by θ1�M . It decreases
with increasing θ1�M as the low learning rate causes an increasing number
of BL prototypes to “pile up” at few local minima, especially in the case of
θ2�M = 80 BL units per TL unit.
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(a) 20 BL units (b) 80 BL units

(c) 20 BL units (d) 80 BL units

Figure 5.16: Influence of primary learning rate θ1�ǫb ∈ {0.5, 0.05, 0.005, 0.0005}
and number θ1�M of TL units on the evenness (a,b) and activity distribution
(c,d) of the merged rate maps. The evenness is calculated as in fig. 5.14 using
the merged rate maps based on the SUM-approach. The distributions of activity
values are given for the merged rate maps based on the MAX-approach. Each
distribution is shown as a candle plot. Bottom and top of dashed lines represent
minimum and maximum values, bottom and top of each box represent lower and
upper quartiles, thick lines represent medians, and circles represent mean values
of the distributions. Plots are shown for simulations using either 20 (a,c) or 80
(b,d) BL units per TL unit.

The distributions of activity derived from the MAX-based merged rate maps
offer a more diverse picture (fig. 5.16c,d). In general, the mean activity increases
with the number θ1�M of TL units and is accompanied by a reduction in the
distributions’ variance. This change becomes more pronounced with increasing
learning rate θ1�ǫb. Interestingly, the number θ2�M of BL units has little to no
effect on the mean activity, except for simulations with 100 or less TL units
and a high learning rate of θ1�ǫb = 0.5. In these cases the maximum activity
reached was significantly lower for simulations using 20 instead of 80 BL units.
This is remarkable insofar as one would expect a merged rate map to contain
at least some regions with an activity close to one. However, this assumption
holds true only if the prototypes are relatively stable, which is not the case for
very high learning rates (see below). While the increase in mean activity and
the reduction in variance reflect an increase in prototype density for input space
regions that are already covered, the minimum values of the activity distributions
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indicate if there are any regions left that are not covered at all. In this regard,
the minimum activity values depend strongly on the learning rate θ1�ǫb. If the
learning rate is very low (θ1�ǫb = 0.0005), the representation of input space will
likely be incomplete regardless of the number of TL and BL units.

Dynamic Behavior

The simulation results presented so far are based on artificial rate maps that
were sampled at a single point in time near the end of each simulation run
(at time t = 1800000). However, the primary learning rate θ1�ǫb and the
number θ1�M of TL units may also influence how the input space representation
changes over time. For example, figure 5.17a shows the development of four
artificial rate maps over time sampled at intervals of 100000 time steps. While the
rate maps shown for medium and low learning rates θ1�ǫb (rows 2-4) exhibit only
minor changes, the rate maps shown for the very high learning rate (θ1�ǫb = 0.5,
row 1) display much greater variation. To quantify these changes the sum of
absolute differences (SAD) between consecutive rate maps sampled every 100000
time steps is used as a measure. The resulting distributions for all 40 simulation
runs are shown in figures 5.17b and 5.17c.

In case of simulations using 20 BL units (fig. 5.17b) the SAD distributions
for θ1�ǫb = 0.5 confirm the impression of figure 5.17a that a high learning rate
leads to relatively unstable rate maps, although this instability tapers off with
an increasing number θ1�M of TL units. This decrease is in line with a general,
learning rate independent decrease in rate map change with increasing θ1�M
(medians in fig. 5.17b). As mentioned before, the increase in TL units reduces
the number of inputs a BL unit group receives. As a consequence, each group
of BL units experiences fewer learning steps, which in turn reduces the overall
rate at which the corresponding rate map can change. However, this decrease
indicated by the medians of the distributions is accompanied by an increase of
the distributions’ means.

This divergence of median and mean indicates that a small, but increasing
proportion of rate maps becomes more unstable with an increasing number of
TL units. This assumption is supported, too, by an increase in the distributions’
maximum values beginning at 100 TL units. In essence, there are two possible
origins for these unstable rate maps. There is either a small number of TL units
whose rate maps change all the time, i.e., during the whole simulation run, or
there is a bigger number of TL units whose rate maps change only some of the
time. Figure 5.18 shows that the latter is the case. Especially in simulations with
500 and 1000 TL units there is a significant increase of unstable rate maps across
the majority of TL units. In addition, TL units that were added later during a
simulation, i.e., units that have a higher index, tend to exhibit stronger changes
in their rate maps. To determine when these changes happen in each simulation,
figure 5.19 shows the SAD distributions over time. In most cases the ratemaps
change more strongly during the beginning of a simulation than at its end.
Interestingly, in some simulations this decrease appears to happen in a strongly
non-linear fashion where the overall change in the rate maps suddenly drops to a
rather low level, suggesting that the ratemaps discovered a stable configuration.
In some instances of simulations using either 500 or 1000 TL units, reaching
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(a) rate maps over time

(b) 20 BL units (c) 80 BL units

Figure 5.17: Ratemaps over time. (a) Four examples how artificial rate maps
change over time (columns) for different learning rates θ1�ǫb and θ1�ǫn (rows),
fixed number θ1�M = 100 of TL units, and fixed number θ2�M = 20 of BL
units per TL unit. (b,c) Distributions for the sum of absolute differences
between consecutive rate maps that were sampled every 100000 time steps for
simulation runs with varying number θ1�M of TL units (column-groups), varying
learning rates θ1�ǫb (columns), and either 20 (b) or 80 (b) BL units per TL unit.
Distributions are drawn as candle plots like in fig. 5.16.
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Figure 5.18: Distributions for the sum of absolute differences (vertical axis in
plots) between consecutive rate maps in individual TL units (horizontal axis in
plots). The rate maps were sampled every 100000 time steps for simulation runs
with varying number θ1�M of TL units (columns), varying learning rates θ1�ǫb
(rows), and 20 BL units per TL unit. Individual units are sorted implicitly by
the time of their creation within the particular simulation run.

such a stable configuration requires more time and once a stable configuration is
reached it appears to break up for short periods of time afterwards. This may
indicate that the higher number of TL units makes it more difficult to find and
maintain a stable configuration of firing fields, i.e., ratemaps across all TL units.

In case of simulations using 80 BL units (fig. 5.17c) the SAD distributions are, in
general, similar to the distributions of simulations using 20 BL units (fig. 5.17b).
However, simulations that use a very high learning rate of θ1�ǫb = 0.5 differ
clearly. Comparing the first rows (θ1�ǫb = 0.5) of figures 5.18 (20 BL units)
and 5.20 (80 BL units) shows that for ≤ 100 TL units the change of ratemaps is
much smaller in case of 80 BL units. Having more BL units causes each individual
BL unit to receive fewer inputs on average, resulting in smaller changes of the
respective prototype. Yet, for the other learning rates shown in figures 5.18
and 5.20 no such significant drop in the change of ratemaps can be observed.
This apparent contradiction can be resolved by revisiting figure 5.14. In case of
the very high learning rate θ1�ǫb = 0.5 the actual number of firing fields increases
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Figure 5.19: Distributions for the sum of absolute differences (vertical axis in
plots) between consecutive rate maps over time (horizontal axis in plots). The
rate maps were sampled every 100000 time steps for simulation runs with varying
number θ1�M of TL units (columns), varying learning rates θ1�ǫb (rows), and 20
BL units per TL unit.

much more with a higher number of BL units than for all other learning rates
(fig. 5.14b). In addition, the firing fields are not only more numerous, but they
are also more evenly distributed (fig. 5.14d). Both factors contribute to the
reduction of ratemap change in case of θ1�ǫb = 0.5 and the lack thereof in the
other cases.

Figure 5.20 provides another interesting observation. The plot in the lower right
corner shows that the simulation using the very low learning rate of θ1�ǫb = 0.0005
was not able to either reach or maintain the number of 1000 TL units. After
about 800 TL units, no new units could be added without also loosing units due
to isolation. This behavior is most likely caused by an increased aggregation of
firing fields that prevents some TL units from receiving any inputs at all, i.e.,
these TL units become rarely or never the BMU or second BMU for an input.
An indication that such an increased aggregation does indeed occur at very low
learning rates is given by figure 5.16b, which shows that the evenness of the
merged rate maps for θ1�ǫb = 0.0005 decreases (increasing EMD) with increasing
number of TL units.
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Figure 5.20: Distributions for the sum of absolute differences (vertical axis in
plots) between consecutive rate maps in individual TL units (horizontal axis in
plots). The rate maps were sampled every 100000 time steps for simulation runs
with varying number θ1�M of TL units (columns), varying learning rates θ1�ǫb
(rows), and 80 BL units per TL unit. Individual units are sorted implicitly by
the time of their creation within the particular simulation run.

Finally, comparing the SAD distributions over time of simulations using 20 BL
units (fig. 5.19) and of those using 80 BL units (fig. 5.21) shows that the most
prominent differences occur at simulation runs with 500 or more TL units. In
these cases the data suggests that a higher number of BL units makes it more
difficult to arrive at and maintain a stable configuration of all rate maps. Among
the different primary learning rates simulations using θ1�ǫb = 0.05 appear to be
least affected by this difficulty.

Secondary Learning Rate

To complete the analysis of an RGNG with isolated top layer the influence of
the secondary learning rate θ1�ǫn remains to be examined. To this end a set
of 30 simulation runs with fixed primary learning rate θ1�ǫb = 0.05, varying
secondary learning rate θ1�ǫn ∈ {0.0005, 0.005, 0.05}, varying number θ1�M ∈
{25, 50, 100, 500, 1000} of TL units, and varying number θ2�M ∈ {20, 80} of BL
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Figure 5.21: Distributions for the sum of absolute differences (vertical axis in
plots) between consecutive rate maps over time (horizontal axis in plots). The
rate maps were sampled every 100000 time steps for simulation runs with varying
number θ1�M of TL units (columns), varying learning rates θ1�ǫb (rows), and 80
BL units per TL unit.

units per TL unit were conducted. The other parameters were kept constant
as described above. As in the previous simulation runs, two million inputs
drawn randomly from a uniform, 100-dimensional input space (fig. 5.1) were
processed and artificial rate maps were generated for each TL unit by integrating
its activity over 30000 inputs beginning at t = 1800000. The primary learning
rate θ1�ǫb = 0.05 was chosen as a moderate value that is neither very high
(θ1�ǫb = 0.5) nor very low (θ1�ǫb = 0.0005). Figure 5.22 shows two representative
artificial rate maps per simulation run (sub-rows) for varying secondary learning
rates θ1�ǫn (rows), varying number of TL units (columns), and varying number
of BL units per TL unit (sub-columns)4.

The artificial rate maps shown in figure 5.22 indicate that the TL secondary
learning rate θ1�ǫn exerts a strong influence on the regularity of firing fields
within individual rate maps. With increasing learning rate θ1�ǫn the regularity
of the firing fields increases to such a degree that for low (≤ 100) numbers of

4Figure A.6 in the appendix shows corresponding artificial rate maps of 30 simulation runs
using a primary learning rate of θ1�ǫb = 0.005.



5.3. BASELINE EXPERIMENTS 125

Figure 5.22: Examples of artificial rate maps in 30 simulation runs with fixed
primary learning rate θ1�ǫb = 0.05, varying number θ1�M of TL units (columns),
varying secondary learning rate θ1�ǫn (rows), and varying number θ2�M of BL
units per TL unit (sub-columns). Each simulation run is represented by two
representative artificial rate maps.

TL units the firing fields exhibit grid-like patterns with average gridness scores
beyond 0.5 in case of θ1�ǫn = 0.05 (fig. 5.23). In terms of the average number of
firing fields (fig. 5.24a,b) an increase in the learning rate θ1�ǫn prevents (red and
orange curves) the previously observed drop (blue curve) in the number of firing
fields with an increasing number of TL and BL units. Similarly, the evenness
of the firing rate maps (fig. 5.24c,d) increases as well with an increase of θ1�ǫn,
especially in case of simulation runs using 80 BL units per TL unit (fig. 5.24d).
Interestingly, the influence of the learning rate θ1�ǫn on the regularity of the
rate maps appears to be highly non-linear. While the results in figure 5.24 for
θ1�ǫn = 0.0005 (blue curve) and θ1�ǫn = 0.005 (red curve) differ significantly,
the results for θ1�ǫn = 0.005 (red curve) and θ1�ǫn = 0.05 (orange curve) are
almost indistinguishable. This may suggest that the particular results saturated
at (locally) optimal values.

The influence of the secondary learning rate θ1�ǫn on the regularity of firing fields
within individual rate maps raises the question if it also influences the alignment
and distribution of firing fields across rate maps. To assess this question merged
rate maps of all 30 simulation runs based on the previously described SUM-
and MAX-approaches were created (fig. 5.25) and evaluated by their evenness
(SUM-based maps, fig. 5.26a,b) and their activity distributions (MAX-based
maps, fig. 5.26c,d). Surprisingly, the secondary learning rate θ1�ǫn has only
little influence on the alignment and distribution of firing fields across rate maps
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(a) 20 BL units (b) 80 BL units

Figure 5.23: Influence of secondary learning rate θ1�ǫn on average gridness scores
for varying number θ1�M of TL units with either 20 (a) or 80 (b) BL units per
TL unit and a primary learning rate of θ1�ǫb = 0.05.

compared to the primary learning rate (fig. 5.16). In terms of evenness the
results in figure 5.26a,b show a relatively consistent increase of evenness (decrease
of EMD) with increasing θ1�ǫn. Yet, this increase of evenness takes place on
an already high level. The influence of θ1�ǫn on the activity distributions of
the merged rate maps is similarly small, but less consistent. In case of 20 BL
units (fig. 5.26c) an increase of θ1�ǫn appears to correlate with an increase in
the minimum values and, to some degree, an increase in the median values of
the distributions. This would indicate an improved representation of the input
space by the group of TL units. In case of 80 BL units (fig. 5.26d) an increase of
θ1�ǫn appears to correlate with an decrease of the median values, which would
indicate a worsened representation of the input space. Hence, based on these
two measures, the influence of θ1�ǫn on the alignment and distribution of rate
maps among each other is rather inconclusive. However, resorting to a visual
judgment of the merged rate maps presented in figure 5.25 the MAX-based maps
of simulations using θ1�ǫn = 0.005 (middle row) seem to exhibit a more regular
alignment of firing fields than the maps of simulations using either a lower or a
higher value of θ1�ǫn.

At last, the influence of the secondary learning rate θ1�ǫn on the change of
artificial rate maps over time, as measured by the sum of absolute differences
(SAD) between consecutive rate maps, is investigated. Figures 5.27 and 5.29
show the SAD distributions (vertical axis in plots) in individual TL units
(horizontal axis in plots). The rate maps were sampled every 100000 time steps
in simulation runs with varying number θ1�M of TL units (columns), varying
secondary learning rates θ1�ǫn (rows), fixed primary learning rate θ1�ǫb = 0.05,
and either 20 (fig. 5.27) or 80 (fig. 5.29) BL units per TL unit. Figures 5.28
and 5.30 show the SAD distributions (vertical axis in plots) over time (horizontal
axis in plots) for the same set of simulation runs. The data indicates that the
influence of θ1�ǫn depends on the number θ1�M of TL units as well as on the
number θ2�M of BL units in a nontrivial manner. In case of 20 BL units (fig. 5.27)
an increase in θ1�ǫn causes an increase of higher SADs in the SAD distributions.
Additionally, the magnitude of this increase depends on the number θ1�M of
TL units, where a lower θ1�M correlates with stronger changes in the rate maps.
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(a) 20 BL units (b) 80 BL units

(c) 20 BL units (d) 80 BL units

Figure 5.24: Influence of secondary learning rate θ1�ǫn ∈ {0.0005, 0.005, 0.05}
and number θ1�M of TL units on the average number of firing fields per TL unit
(a,b) and the average evenness of the TL units’ firing rate maps (c,d). The
latter is determined as in fig. 5.14. Graphs are shown for simulations using either
20 (a,c) or 80 (b,d) BL units per TL unit, and a fixed primary learning rate
of θ1�ǫb = 0.05.

Similar to the influence of the primary learning rate θ1�ǫb the increase in rate
map changes affects all TL units and not just a small subset. Yet, in contrast to
the influence of θ1�ǫb the rate map changes are not concentrated at the beginning
of the simulations when viewed over time (fig. 5.28). Instead, the rate maps
remain more volatile over the whole duration of each simulation. In case of 80
BL units (fig. 5.29) the relation between the secondary learning rate θ1�ǫn and
changes in the SAD distributions is less straightforward. In simulations using
≤ 500 TL units rate maps change least when the secondary learning rate has a
medium value of θ1�ǫn = 0.005, whereas both lower and higher values of θ1�ǫn
caused an increase of higher SADs in the distributions. Surprisingly, this relation
appears to be inverted for simulations using 1000 TL units. Here, the change
of rate maps is most intense for θ1�ǫn = 0.005, and less so in both other cases.
The influence of the secondary learning rate on the SAD distributions over time
(fig. 5.30) is similar to the case of 20 BL units described above, i.e., the higher
SADs appear to be distributed over the whole duration.

The analysis of an RGNG with isolated top layer provided a view on the rather
intricate relations between TL primary learning rate θ1�ǫb, TL secondary learning
rate θ1�ǫn, the number θ1�M of TL units, and the number θ2�M of BL units.
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Figure 5.25: Merged artificial rate maps of 30 simulation runs with fixed primary
learning rate θ1�ǫb = 0.05, varying number θ1�M of TL units (columns), varying
secondary learning rate θ1�ǫn (rows), and varying number θ2�M of BL units per
TL unit (sub-columns) showing one-sixteenth of the firing fields of the respective
TL units. Artificial rate maps are merged in two different ways (sub-rows): either
by summation (SUM) or by using the maximum value for each location (MAX).
The color gradient from dark blue to dark red represents the range 0 . . .maxval
in case of SUM, and the range 0 . . . 1 in case of MAX.

In general, higher learning rates, both primary and secondary, facilitate the
alignment and distribution of firing fields within and across rate maps, especially
in simulations where the number of TL and BL units is large. On the downside,
higher learning rates may reduce the stability of rate maps over time making it
more difficult for the whole RGNG to find an overall stable representation of
input space.
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(a) 20 BL units (b) 80 BL units

(c) 20 BL units (d) 80 BL units

Figure 5.26: Influence of secondary learning rate θ1�ǫn ∈ {0.0005, 0.005, 0.05}
and number θ1�M of TL units on the evenness (a,b) and activity distribution
(c,d) of the merged rate maps. The evenness and activity distribution are
calculated and shown as in fig. 5.16. Plots are shown for simulations using either
20 (a,c) or 80 (b,d) BL units per TL unit, and a fixed primary learning rate
of θ1�ǫb = 0.05.
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Figure 5.27: Distributions for the sum of absolute differences (vertical axis in
plots) between consecutive rate maps in individual TL units (horizontal axis
in plots). The rate maps were sampled every 100000 time steps in simulation
runs with varying number θ1�M of TL units (columns), varying secondary
learning rates θ1�ǫn (rows), fixed primary learning rate θ1�ǫb = 0.05, and 20 BL
units per TL unit. Individual units are sorted implicitly by the time of their
creation within the particular simulation run.
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Figure 5.28: Distributions for the sum of absolute differences (vertical axis in
plots) between consecutive rate maps over time (horizontal axis in plots). The
rate maps were sampled every 100000 time steps in simulation runs with varying
number θ1�M of TL units (columns), varying secondary learning rates θ1�ǫn
(rows), fixed primary learning rate θ1�ǫb = 0.05, and 20 BL units per TL unit.
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Figure 5.29: Distributions for the sum of absolute differences (vertical axis in
plots) between consecutive rate maps in individual TL units (horizontal axis
in plots). The rate maps were sampled every 100000 time steps in simulation
runs with varying number θ1�M of TL units (columns), varying secondary
learning rates θ1�ǫn (rows), fixed primary learning rate θ1�ǫb = 0.05, and 80 BL
units per TL unit. Individual units are sorted implicitly by the time of their
creation within the particular simulation run.
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Figure 5.30: Distributions for the sum of absolute differences (vertical axis in
plots) between consecutive rate maps over time (horizontal axis in plots). The
rate maps were sampled every 100000 time steps in simulation runs with varying
number θ1�M of TL units (columns), varying secondary learning rates θ1�ǫn
(rows), fixed primary learning rate θ1�ǫb = 0.05, and 80 BL units per TL unit.
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5.3.3 Coupled Top and Bottom Layer

The last set of baseline experiments examines the full behavior of a two-layer
RGNG with both primary and secondary learning rates θ1�ǫb and θ2�ǫb as well
as θ1�ǫn and θ2�ǫn being nonzero. In this case the learning rates of the bottom
layer (θ2�ǫb and θ2�ǫn) determine the rate with which all TL units and their
corresponding sets of BL units adapt towards each input, whereas the learning
rates of the top layer (θ1�ǫb and θ1�ǫn) define an additional adaptation towards
each input that is only performed by the particular TL BMU and its neighbors.
Since the adaptation of the BL prototypes is linear, the changes per input ξ
within the RGNG can be summarized as follows:

• For each TL unit that is neither the TL BMU nor one of its neighbors
there exists a BL BMU u whose prototype u�w is adapted towards the
input by:

∆u�w := θ2�ǫb (ξ − u�w) ,

and the prototypes of all direct neighbors v ∈ Eu of u are adapted by:

∆v�w := θ2�ǫn (ξ − v�w) .

• In case of the TL BMU the prototype of its corresponding BL BMU ub is
adapted towards the input by:

∆ub�w := (θ1�ǫb + θ2�ǫb − θ1�ǫb θ2�ǫb) (ξ − ub�w) ,

and the prototypes of all direct neighbors vb ∈ Eub
of ub are adapted by:

∆vb�w := (θ1�ǫb θ1�ǫr + θ2�ǫn − θ1�ǫn θ1�ǫr θ2�ǫn) (ξ − vb�w) .

• Finally, in case of the TL BMU neighbors the prototypes of their corre-
sponding BL BMUs un are adapted towards the input by:

∆un�w := (θ1�ǫn + θ2�ǫb − θ1�ǫn θ2�ǫb) (ξ − un�w) ,

and the prototypes of all direct neighbors vn ∈ Eun
of un are adapted by:

∆vn�w := (θ1�ǫn θ1�ǫr + θ2�ǫn − θ1�ǫn θ1�ǫr θ2�ǫn) (ξ − vn�w) .

Apart from the small correction terms (products of the learning rates) that
account for the sequential adaptation of the respective BL prototypes, the TL
BMU and its neighbors adapt towards an input using the sum of the particular
top and bottom layer learning rates, while all other TL units use only the bottom
layer rates.

Primary Learning Rates

In a first set of simulation runs the relation between the top and bottom
layer primary learning rates θ1�ǫb and θ2�ǫb is investigated by keeping the
sum of the learning rates constant, but changing their relative ratio. To
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Figure 5.31: Examples of artificial rate maps in 120 simulation runs with varying
primary learning rates θ1�ǫb and θ2�ǫb (rows), varying number θ1�M of TL units
(columns), and varying number θ2�M of BL units (sub-rows and sub-columns).
Each simulation run is represented by one artificial rate map drawn randomly
from the respective set of TL units.
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Figure 5.32: Examples of artificial rate maps in 120 simulation runs with varying
primary learning rates θ1�ǫb and θ2�ǫb (rows), varying number θ1�M of TL units
(columns), and varying number θ2�M of BL units (sub-rows and sub-columns)
showing one-quarter of the firing fields of the respective TL units. Each
simulation run is represented by one artificial rate map drawn randomly from
the respective set of TL units.
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Figure 5.33: Examples of artificial rate maps in 120 simulation runs with varying
primary learning rates θ1�ǫb and θ2�ǫb (rows), varying number θ1�M of TL units
(columns), and varying number θ2�M of BL units (sub-rows and sub-columns)
showing one-sixteenth of the firing fields of the respective TL units. Each
simulation run is represented by one artificial rate map drawn randomly from
the respective set of TL units.
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this end a total of 120 simulation runs using four pairs of primary learn-
ing rates (θ1�ǫb, θ2�ǫb) ∈ {(0.04, 0.01) , (0.03, 0.02) , (0.02, 0.03) , (0.01, 0.04)} with
varying number θ1�M ∈ {25, 50, 100, 500, 1000} of TL units, and varying num-
ber θ1�M ∈ {5, 10, 20, 40, 80, 160} of BL units per TL unit were conducted.
The secondary learning rates θ1�ǫn and θ2�ǫn were kept at a fixed ratio, i.e.,
θ1�ǫn := 0.01 · θ1�ǫb and θ2�ǫn := 0.01 · θ2�ǫb. The other parameters were kept
constant as described above. In each simulation run three million inputs drawn
randomly from a uniform, 100-dimensional input space (fig. 5.1) were processed
and artificial rate maps were generated for each TL unit by integrating the unit’s
activity over 30000 inputs beginning at t = 2800000. Figure 5.31 shows one arti-
ficial rate map per simulation run that was drawn randomly from the respective
set of TL units. In addition, figures 5.32 and 5.33 show corresponding artificial
rate maps that contain only one-quarter and one-sixteenth of the particular TL
unit’s firing fields. Rate maps containing one-quarter of the firing fields were
sampled over 60000 inputs, while those containing one-sixteenth of the firing
fields were sampled over 90000 inputs.

Keeping the sum of the primary learning rates constant results in a fixed combined
learning rate for the respective TL BMU, and varying lower learning rates for all
other units depending on the actual ratio between θ1�ǫb and θ2�ǫb. The combined
primary learning rate of about 0.05 was chosen for the first set of simulation
runs as this value yielded good results in the isolated bottom layer as well as
the isolated top layer case with respect to the obtained gridness scores and the
even distribution of firing fields across TL units.

The artificial rate maps shown in figure 5.31 are surprisingly similar across the
different ratios of primary learning rates and appear to exhibit clear hexagonal
firing patterns in all simulations that use 20 to 80 BL units per TL unit. Simula-
tions using 5 or 10 BL units do not show a clear hexagonal pattern in accordance
with previous results obtained in the isolated bottom layer experiments (fig.5.7).
The same holds true for simulations using 160 BL units. However, in the latter
case the firing fields possess local hexagonal structures that become visible when
the rate maps contain only a fraction of the corresponding TL unit’s firing fields
(fig. 5.32 and 5.33). These observations are reflected by the average gridness
scores shown in figure 5.34. Here, simulations using 20 or 40 BL units have
essentially the same average gridness scores (fig. 5.34a-c) regardless of the actual
ratio between the primary learning rates. In case of 80 (fig. 5.34a-c) or 160
(fig. 5.34b-c) BL units the average gridness scores correlate with an increase in the
bottom layer primary learning rate indicating that the bottom layer competition
(sec. 4.1.2) is indeed the main driving force for the hexagonal pattern formation.
In addition, figures 5.34a to 5.34c show that the gridness scores also depend on
the number of BL units. In comparison, figure 5.34d shows that this is not the
case for the number of TL units.

Dynamic Behavior

The differences between the rate maps in figures 5.31, 5.32, and 5.33 are more
prominent in cases where only 5 or 10 BL units per TL unit were used in the
simulations. In these cases the increase of θ2�ǫb correlates with an increased
streakiness of the rate maps suggesting a stronger movement of the firing fields



5.3. BASELINE EXPERIMENTS 139

(a) 1/1 (b) 1/4

(c) 1/16 (d) 1/1 TL

Figure 5.34: Average gridness scores (vertical axis) of ratemaps showing all (a),
one-quarter (b), or one-sixteenth (c) of the firing fields in 120 simulation runs
with varying primary learning rates θ1�ǫb and θ2�ǫb (individual curves), varying
number θ1�M of TL units (averaged), and varying number θ2�M of BL units
(horizontal axis). (d) Gridness scores averaged over the number of BL units.

over time. Figure 5.35 shows the distributions for the sum of absolute differences
(SAD, vertical axis in plots) between consecutive rate maps over time (horizontal
axis in plots). The SAD distributions show an increase of change between rate
maps that correlates with a change in the ratio between top and bottom layer
learning rates. In contrast to the isolated top layer case (fig. 5.19 and 5.21) the
increase of change is not confined to a longer initial phase of alignment, but
is instead evenly distributed over the whole duration of each simulation. This
implies that the observed increase in change between consecutive rate maps
is more likely caused by the increase of the bottom layer learning rate rather
than the decrease of the top layer one. Further support for this assumption
is given by the observation that the increase in change shown in figure 5.35
is not affected by the number θ1�M of TL units. Yet, it is actually affected
by the number θ2�M of BL units as the increase in change decreases with an
increasing number of BL units. One may argue that the latter observation
could be an artifact resulting from an increased number of firing fields in the
constant-sized rate maps. In this case the observed decrease of rate map change
should disappear in rate maps that show only a subset of the corresponding
TL unit’s firing fields. Figure 5.36 shows SAD distributions over time based
on ratemaps that contain all, one-quarter, or one-sixteenth (sub-rows) of the
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Figure 5.35: Distributions for the sum of absolute differences (vertical axis in
plots) between consecutive rate maps over time (horizontal axis in plots). The
rate maps were sampled every 100000 time steps in simulation runs with varying
primary learning rates θ1�ǫb and θ2�ǫb (rows), varying number θ1�M of TL units
(columns), and varying number θ2�M of BL units (sub-rows and sub-columns).
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Figure 5.36: Comparison of distributions for the sum of absolute differences
(vertical axis in plots) between consecutive rate maps over time (horizontal
axis in plots) containing all, one-quarter, or one-sixteenth (sub-rows) of
the firing fields of the respective TL units. The rate maps were sampled every
100000 time steps in simulation runs with varying primary learning rates θ1�ǫb
and θ2�ǫb (rows), varying number θ1�M of TL units (columns), and either 80 or
160 BL units (sub-columns).
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corresponding TL unit’s firing fields for simulations using either 80 or 160 BL
units (sub-columns), varying number θ1�M of TL units (columns), and varying
ratios of primary learning rates (rows). Using the visual appearance of the rate
maps in figures 5.31 and 5.32 as reference, the rows in figure 5.36 that show the
SAD distributions of ratemaps containing one-quarter of the firing fields should
match the rows in figure 5.35 that show the SAD distributions of simulations
using 20 or 40 BL units if the decrease of change would be an artifact. Since the
rows do not match, the observed decrease of change actually does correlate with
the number of BL units as presumed.

Alignment and Distribution

So far, the analysis focused on properties of individual rate maps and their re-
spective TL units. To assess the RGNG behavior with respect to the competition
among TL units figures 5.37 and 5.38 show the merged rate maps of all 120
simulation runs based on either the SUM- (5.37) or the MAX-approach (5.38) in-
troduced above (sec. 5.3.2). Figure 5.39 shows the corresponding evenness scores
(a,b) and activity distributions (c,d) averaged over either the number θ1�M of TL
units (a,c) or the number θ2�M of BL units (b,d). While the latter indicates that
neither the evenness scores nor the activity distributions are strongly correlated
with the number of TL units, the former shows some relation between the number
of BL units and these measures. In case of the evenness score (fig. 5.39a) the
evenness increases with an increasing number of BL units except for simula-
tions using 5 or 10 BL units. In case of the activity distributions (fig. 5.39c)
an increasing number of BL units correlates with an increasing alignment of
the distributions that belong to simulations with different learning rate ratios.
Independent of the number of TL and BL units the ratio of learning rates is
itself correlated with both evenness scores and activity distributions. Here, ratios
with higher TL learning rates correlate with higher average activity values and
partially higher evenness scores in accordance to the behavior observed in the
isolated top layer case (sec. 5.3.2).

Evenness scores and activity distributions as well as the underlying merged rate
maps characterize the general distribution of firing fields across TL units. If the
corresponding rate maps exhibit hexagonal firing patterns, a further assessment
of the firing field’s alignment can be based on the orientation (sec. 2.1) of
these patterns. Figure 5.40 shows the distributions of grid orientations in 80
simulation runs with varying primary learning rates θ1�ǫb and θ2�ǫb (rows),
varying number θ1�M of TL units (columns), and varying number θ2�M of BL
units per TL unit (sub-rows and sub-columns). The distributions are based on
rate maps with a gridness score > 0.4 that contain either all or one-sixteenth of
the corresponding TL unit’s firing fields (sub-rows). The color of the distributions
indicates whether a distribution has one (green), two (orange), or three (blue)
major orientations. In this case the number of major orientations is defined as
the number of bins that are larger than 60% of the maximum bin. Accompanying
the orientation distributions figure 5.41 shows the distributions of gridness scores
for each of the 80 simulation runs. The gridness threshold of 0.4 is indicated by
a red mark. The color of the distributions match those in figure 5.40.
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Figure 5.37: Merged rate maps using the SUM-approach of 120 simulation runs
with varying primary learning rates θ1�ǫb and θ2�ǫb (rows), varying number θ1�M
of TL units (columns), and varying number θ2�M of BL units (sub-rows and
sub-columns) showing one-sixteenth of the firing fields of the respective TL units.
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Figure 5.38: Merged rate maps using theMAX-approach of 120 simulation runs
with varying primary learning rates θ1�ǫb and θ2�ǫb (rows), varying number θ1�M
of TL units (columns), and varying number θ2�M of BL units (sub-rows and
sub-columns) showing one-sixteenth of the firing fields of the respective TL units.
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(a) TL avg. (b) BL avg.

(c) TL avg. (d) BL avg.

Figure 5.39: Evenness (a,b) and activity distributions (c,d) of the merged rate
maps shown in fig. 5.37 and 5.38 averaged over either the number θ1�M of TL
units (a,c) or the number θ2�M of BL units (b,d). The evenness and activity
distributions are calculated and shown as in fig. 5.16.
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Figure 5.40: Distributions of grid pattern orientations in rate maps with gridness
scores > 0.4 for simulations with varying primary learning rates θ1�ǫb and θ2�ǫb
(rows), varying number θ1�M of TL units (columns), and varying number θ2�M
of BL units per TL unit (sub-rows and sub-columns). Orientation distributions
of simulations are based on rate maps containing either all or one-sixteenth of
the corresponding TL unit’s firing fields (sub-rows). Color of the distributions
indicates one (green), two (orange), or three (blue) major orientations (bin
height > 60% of max. bin height).
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Figure 5.41: Distributions of rate map gridness scores for simulations with
varying primary learning rates θ1�ǫb and θ2�ǫb (rows), varying number θ1�M
of TL units (columns), and varying number θ2�M of BL units per TL unit
(sub-rows and sub-columns). Gridness distributions of simulations are based on
rate maps containing either all or one-sixteenth of the corresponding TL unit’s
firing fields (sub-rows). Gridness threshold of 0.4 indicated by red marks. Color
of the distributions indicates number of major orientations carried over from
figure 5.40.
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Figure 5.42: Distributions of grid pattern spacings in rate maps with gridness
scores > 0.4 for simulations with varying primary learning rates θ1�ǫb and θ2�ǫb
(rows), varying number θ1�M of TL units (columns), and varying number θ2�M
of BL units per TL unit (sub-rows and sub-columns). Spacing distributions of
simulations are based on rate maps containing either all or one-sixteenth of the
corresponding TL unit’s firing fields (sub-rows).
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In general, the orientation distributions are characterized by a low (≤ 4) number
of major orientations that have low variance and are clearly isolated (bin width =
2◦) from each other. In addition, most distributions also contain sporadic
orientations of smaller magnitude, whose increase in numbers correlates with an
increase in the number θ2�M of BL units. Likewise, the occurrence of sporadic
orientations correlates also with the range of gridness values that are present in
a particular simulation (fig. 5.41). Furthermore, the strength of the alignment
appears to depend on the ratio between TL and BL learning rate. 30% of
simulations using a TL learning rate of θ1�ǫb = 0.04 have rate maps that align
towards a single orientation. This number drops to 15% of all simulations
when a TL learning rate of θ1�ǫb = 0.01 is used. Conversely, the proportion
of simulations with rate maps that align towards three orientation increases
from 25% (θ1�ǫb = 0.04) to 40% (θ1�ǫb = 0.01). Interestingly, the orientation
alignment appears to be independent from the number θ1�M of TL units.

In contrast to grid orientations, grid spacings (sec. 2.1) are much less varying.
Figure 5.42 shows the distributions of grid pattern spacings in the same 80
simulation that were evaluated with respect to grid orientations above. The
figure layout corresponds to that of figure 5.40. As before, the distributions
are based on rate maps with a gridness score > 0.4 that contain either all or
one-sixteenth of the corresponding TL unit’s firing fields. The results show
unambiguously that, for a given input space, grid spacing depends only on
two parameters: the number of BL units per TL unit and the proportion of
firing fields that is contained in the corresponding rate map. In cases where the
simulations exhibit only a small range of gridness values (fig. 5.41) the variation
of grid spacings is very low (bin width = 6cm). The variation increases slightly
in cases where simulations exhibit a wider range of gridness values.

BL Primary Learning Rate Influence

In general, the TL primary learning rate controls how well the RGNG can
distribute and align the firing fields of all TL units, while the BL primary
learning rate controls the formation of the hexagonal firing patterns themselves.
A reduction of either learning rate should be accompanied by a corresponding
reduction of the RGNG’s ability to arrange the TL units’ firing fields or its ability
to form hexagonal firing patterns. The former can be observed in figure 5.38,
which shows MAX-based merged rate maps for different ratios of TL and
BL learning rates. The latter, however, is only weakly visible in the average
gridness scores of simulations using 80 or 160 BL units per TL unit shown in
figure 5.34. To test at which point the BL primary learning rate is no longer
able to sustain the formation of hexagonal firing patterns 12 simulation runs
with varying BL learning rates θ2�ǫb ∈ {0.01, 0.001, 0.0001, 0.00001}, and varying
number θ2�M ∈ {20, 40, 80} of BL units per TL unit were conducted. All
simulation runs used a fixed TL primary learning rate of θ1�ǫb = 0.04, and a
fixed number θ1�M = 100 of TL units. All other parameters as well as the type
and number of inputs were kept equal to the previous simulations in this section.

Figure 5.43 summarizes the results of all 12 simulation runs. It shows that a
reduction of the BL learning rate by one magnitude (θ2�ǫb = 0.001) already
reduces the gridness scores of the respective rate maps significantly (red curve in
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(a)

(b) (c)

Figure 5.43: Simulation results for decreasing BL primary learning rate θ2�ǫb.
(a) Rate maps and merged rate maps of 12 simulation runs with varying BL
learning rate θ2�ǫb (columns), and varying number θ2�M of BL units per TL unit
(rows). All simulations use a fixed TL learning rate of θ1�ǫb = 0.04 and a fixed
number θ1�M = 100 of TL units. Merged rate maps are shown for the SUM-
and the MAX-approach (sub-columns) and are based on rate maps containing
one-sixteenth of the corresponding TL unit’s firing fields. (b) Gridness scores of
the rate maps shown in (a). (c) Activity distributions based on the MAX-based
merged rate maps.

fig. 5.43b). In case of simulations using 20 and 40 BL units the gridness scores
are just above the common threshold (0.3 – 0.4) to be considered grid cells, while
simulations with 80 BL units are already below it. Further reductions of the BL
learning rate (θ2�ǫb = 0.0001 and θ2�ǫb = 0.00001) do not yield any hexagonal
firing patterns. In addition to the reduction of gridness scores, the receding
influence of the BL learning rate θ2�ǫb allows the TL competition to distribute
and align the firing fields more freely. As a consequence, the average activity
present in the MAX-based merged rate maps increases (fig. 5.43a,c).
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TL Secondary Learning Rate

In the isolated top layer case (sec. 5.3.2) the TL secondary learning rate had a
strong impact on the evenness (fig. 5.24) of individual rate maps, but its influence
on the alignment and distribution (fig.5.26) of the rate maps themselves was
inconclusive. To assess the behavior of the full RGNG with different TL secondary
learning rates θ1�ǫn a set of 36 simulations runs were conducted using four pairs
of primary learning rates (θ1�ǫb, θ2�ǫb) ∈ {(0.04, 0.01) , (0.03, 0.02) , (0.02, 0.03) ,
(0.01, 0.04)} with varying number θ2�M ∈ {20, 40, 80} of BL units per TL
units, and varying TL secondary learning rates θ1�ǫn ∈ {0.01 · θ1�ǫb, 0.1 · θ1�ǫb,
1.0 · θ1�ǫb}. The BL secondary learning rate θ2�ǫn was kept at a fixed ratio, i.e.,
θ2�ǫn := 0.01 · θ2�ǫb and the number of TL units was set to θ1�M = 100. All
other parameters as well as the type and number of inputs were kept equal to
the previous simulations in this section. Figures 5.44 and 5.45 summarize the
results. For each simulation run the former shows one, randomly drawn, artificial
rate map, the MAX-based merged rate map, the distribution of gridness scores,
and the distribution of grid orientations. The latter shows one, randomly drawn,
artificial rate map containing one-sixteenth of the corresponding TL unit’s firing
fields, the SUM-based merged rate map, the distributions of summed absolute
differences (SAD) between consecutive rate maps over time, and the distribution
of grid spacings.

The results reveal an interesting, non-linear characteristic of RGNG behavior.
Increasing the TL secondary learning rate by one magnitude from θ1�ǫn =
0.01 · θ1�ǫb to θ1�ǫn = 0.1 · θ1�ǫb appears to have no significant impact on the
RGNG behavior apart from a minimal increase in evenness (fig. 5.46) of the
SUM-based merged rate maps (fig. 5.45). However, increasing the TL secondary
learning rate further to θ1�ǫn = 1.0 · θ1�ǫb yields a strong influence on the
alignment and distribution of firing fields both within and across ratemaps. Most
notably, the distributions of grid orientations indicate a much stronger alignment
of the grid patterns. In the majority of cases the patterns align to a single
orientation. In addition, the distribution of firing fields appears more even and
regular in the MAX-based and SUM-based merged rate maps. This impression
is supported by the corresponding evenness scores and activity distributions
shown in figure 5.46c,d. In consequence of this stronger alignment of firing fields,
the variation of gridness scores is reduced, especially in the case of simulations
using 80 BL units, leading to a slightly higher average gridness score (fig. 5.46a).
Likewise, the variation of grid spacings is reduced as well albeit on an already
low level. Lastly, a rather counterintuitive observation can be made with respect
to the average SAD between consecutive rate maps (fig. 5.46b). In three out of
four cases increasing the TL secondary learning rate actually reduces the average
movement of firing fields although an overall increase in the combined learning
rate would, in general, suggest otherwise.
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Figure 5.44: Artificial rate maps, MAX-based merged rate maps, gridness
distributions, and grid orientation distributions (sub-columns) of 36 simulation
runs with varying primary learning rates θ1�ǫb and θ2�ǫb (rows), varying secondary
learning rate θ1�ǫn (columns), and varying number θ2�M of BL units per TL
unit (sub-rows). All simulations use a fixed number θ1�M = 100 of TL units.
Each artificial rate map was chosen randomly from the particular set of rate
maps. Merged rate maps are based on rate maps containing one-sixteenth of the
corresponding TL unit’s firing fields. Gridness threshold of 0.4 indicated by red
marks. Color of the distributions indicates number of major orientations as in
figure 5.40. The empty gray-colored orientation distribution (top-right) results
from all grid orientations being just outside the 0 to 60◦ region.
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Figure 5.45: Artificial rate maps, SUM-based merged rate maps, summed
absolute differences (SAD) of consecutive rate maps over time, and grid spacing
distributions (sub-columns) of 36 simulation runs with varying primary learning
rates θ1�ǫb and θ2�ǫb (rows), varying secondary learning rate θ1�ǫn (columns),
and varying number θ2�M of BL units per TL unit (sub-rows). All simulations
use a fixed number θ1�M = 100 of TL units. Each artificial rate map shows one-
sixteenth of the corresponding TL unit’s firing fields and was chosen randomly
from the particular set of rate maps. The merged rate maps and distributions
are, too, based on rate maps containing one-sixteenth of the corresponding TL
unit’s firing fields.
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(a) (b)

(c) (d)

Figure 5.46: Influence of TL secondary learning rate θ1�ǫn on average gridness
scale (a), average summed absolute distance (SAD) between consecutive rate
maps (b), evenness of SUM-based merged rate maps (c), and activity distribu-
tions of MAX-based merged rate maps (d) in 36 simulation runs with varying
primary learning rates θ1�ǫb and θ2�ǫb (individual curves), varying secondary
learning rate θ1�ǫn (columns), and varying number θ2�M of BL units per TL
unit (averaged). All simulations use a fixed number θ1�M = 100 of TL units.
The evenness and activity distributions are calculated and shown as in fig. 5.16.
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The last set of baseline experiments has demonstrated that a two-layer RGNG is
able to reliably model a group of putative grid cells that exhibit stable, hexagonal
firing fields and share a common grid orientation as well as a common grid spacing.
In detail, the simulation runs show that the RGNG behavior is largely dominated
by four parameters: The primary learning rates of both layers θ1�ǫb and θ2�ǫb,
the secondary learning rate of the top layer θ1�ǫn, and the number θ2�M of BL
units per TL unit. In contrast, the number θ1�M of top layer units, i.e., the
number of putative grid cells in a grid cell group does not seem to influence
the RGNG behavior in a cardinal way. The obtained results suggest, that the
following choice of parameters may represent a suitable, initial configuration of
further experiments:

• θ1�ǫb = 0.04,

• θ1�ǫn = 0.04,

• θ2�ǫb = 0.01,

• θ2�ǫn = 0.0001,

• θ1�M = 100, and

• θ2�M ∈ {20, 40, 80},

with all other parameters chosen as described in section 5.2. In case an experiment
uses more than 20 BL units per TL unit, the resulting rate maps should contain
only a subset of the corresponding TL unit’s firing fields in order to remain
biologically plausible (sec. 5.3.1).

5.4 Discussion

The baseline experiments explored the behavior of a two-layer RGNG with
respect to its key parameters. As primary result the experiments allowed to
determine a set of parameters that yields an RGNG modeling the behavior of
a group of grid cells in terms of their activity in response to particular inputs.
The resulting artificial rate maps do not only show the peculiar hexagonal firing
patterns of grid cells, but also share a common grid orientation as well as a
common grid spacing within the group of modeled grid cells. The variation
of grid orientation and grid spacing present in the particular simulation runs
matches the observed variations of ±5◦ and ±5 cm reported in the literature
(sec. 5.2.3). Comparing also the gridness scores of the simulated rate maps with
observed gridness scores is less straightforward since an RGNG models only a
single group or module of grid cells, whereas the measurements reported in the
literature typically encompass gridness scores across multiple grid scales and
include the gridness scores of non-grid cells as well. However, a set of RGNGs
can be compiled in such a way that the resulting artificial rate maps encompass
the different grid scales that can be observed in spatially periodic cells, e.g., as
reported by Krupic et al. [91]. Figure 5.47 shows the individual gridness score
distributions of such an ensemble based on 6 simulation runs with fixed learning
rates θ1�ǫb = 0.04, θ1�ǫn = 0.04, θ2�ǫb = 0.01, and θ2�ǫn = 0.0001, fixed number
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Figure 5.47: Distributions of gridness scores in simulation runs with fixed learning
rates θ1�ǫb = 0.04, θ1�ǫn = 0.04, θ2�ǫb = 0.01, and θ2�ǫn = 0.0001, fixed number
of TL units θ1�M = 100, and varying number θ2�M of BL units per TL unit
(columns) based on rate maps containing all, one-quarter, and one-sixteenth
(rows) of the corresponding TL unit’s firing fields. Colored histograms mark
simulation runs that result in artificial rate maps similar to those of spatially
periodic cells (regularity of firing fields indicated by color: green = higher, orange
= lower) in dorsal MEA and PaS.

of TL units θ1�M = 100, and varying number θ2�M ∈ {5, 10, 20, 40, 80, 160} of
BL units per TL unit. Gridness distributions were obtained from rate maps
containing all, one-quarter, and one-sixteenth of the corresponding TL unit’s
firing fields. Distributions based on artificial rate maps that exhibit similar
scales to those reported in the literature [91] are highlighted by colors, which
also indicate the regularity (green = higher, orange = lower) of the particular
rate maps.

Combining the individual distributions shown in figure 5.47 results in an artificial
distribution of gridness scores (fig. 5.48a) that resembles the observed, natural
gridness distributions of cells in the MEA (and PaS) in several ways (fig. 5.48b-d).
In general, natural gridness distributions appear to be bimodal with one mode
at a gridness value of about −0.25 and the other mode at a gridness value of
about 1.0. The minimum between these modes typically lies at a value around
0.5. Maximum gridness values tend to be no larger than 1.5 while minimum
gridness values appear to be rarely smaller than −1.0. These characteristics are
essentially shared by the artificial gridness distribution (fig. 5.48a), although
the relative magnitudes of the two modes do not match those of the natural
distributions. This may have several reasons. First, the actual number of grid
cell modules, their scale, as well as the regularity of their grid patterns is very
likely to be different from the chosen ensemble. Second, the number of cells in
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(a) (b)

(c) (d)

Figure 5.48: Comparison of gridness score distributions resulting from simu-
lation runs (a) and measurements in vivo reported in the literature (b,c,d).
(a) Stacked histogram based on the colored gridness distributions shown in
figure 5.47. (b) Distribution of gridness scores in dorsal MEA and PaS published
by Krupic et al. [91]. Red line indicates 95th percentile of shuffled distribution.
(c) Distribution of gridness scores in MEA published by Boccara et al. [9]. Red
line indicates 99th percentile of shuffled distribution. (d) Distribution of gridness
scores in MEA of mice published by Domnisoru et al. [33]. Red line indicates
95th percentile of shuffled distribution.

each natural grid cell module may vary. Third, the RGNG parameters chosen for
this ensemble aim at a strong alignment and distribution of the grid cells’ firing
fields which may exaggerate the proportion of high gridness values. And Fourth,
natural gridness distributions probably contain a higher number of non-grid cells
(fig. 5.2a) that are missing in the artificial distribution. Despite these potential
differences the proposed grid cell model appears to capture and reproduce the
core characteristics of natural gridness distributions sufficiently well.
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In addition to this primary result the baseline experiments also demonstrated
the robustness of the RGNG behavior, which in general changes gradually and
predictably in response to parameter changes. The range of most parameters can
span multiple magnitudes within which the RGNG behavior remains sensible.
Furthermore, the baseline experiments could establish, that the number of input
patterns that are represented and recognized by the dendritic tree of a grid cell,
i.e., the number θ2�M of BL units in the proposed model, will be most likely
neither very low (< 20) nor very high (> 80) resulting in a testable prediction for
future neurobiological investigations. Likewise, the experimental results suggest
that the number of grid cells per grid cell module is rather noncritical and will
probably not affect the general behavior of the grid cells themselves.

Further investigation of the baseline experiments brought up a question regarding
the cause of a specific detail in the previously reported results: Under certain
conditions the MAX-based merge rate maps exhibit a very regular, small-scale,
dotted pattern (e.g., fig. 5.38). As it turns out, the dotted pattern is an aliasing
artifact resulting from the input vector construction described in section 5.2.1.
The coordinates of each input location are mapped onto the 50-dimensional input
vectors vx and vy using a rounding operation that causes a discretization of
input locations. Since the merged rate maps are based on rate maps that contain
just one-sixteenth of the corresponding TL unit’s firing fields (i.e., the underlying
rate maps show just one-sixteenth of the input space) this discretization becomes
visible as an aliasing artifact.

To determine the impact of this aliasing a subset of the baseline experiments
was repeated using anti-aliased inputs. The latter were generated by first
creating an input vector as described in section 5.2.1 but with 800 instead of
100 elements, and then downsampling the 800-dimensional input vector back
to 100 dimensions by averaging. The first set of repeated experiments consists
of 30 simulation runs with primary learning rates θ1�ǫb = 0.04 and θ2�ǫb =
0.01, varying number θ1�M ∈ {25, 50, 100, 500, 1000} of TL units, and varying
number θ2�M ∈ {5, 10, 20, 40, 80, 160} of BL units per TL unit. Figure 5.49
shows resulting rate maps as well as averaged gridness values in comparison to
the previous baseline experiments that used the same set of parameters. The
rate maps resulting from the anti-aliased inputs (fig. 5.49a, bottom three rows)
are visually very similar to those of the previous baseline experiments (top three
rows) and their average gridness scores (fig. 5.49b,c, red curves) are close to
the previous results (blue curves) as well. For higher numbers (80,160) of BL
units the anti-aliased inputs appear to result in slightly higher gridness scores
indicating that the less restricted input locations may have facilitated a more
regular arrangement of firing fields.

Figure 5.50 provides a comparison of SUM-based (fig. 5.50a) and MAX-based
(fig. 5.50b) merged rate maps for the same set of repeated experiments. While
the SUM-based merged rate maps resulting from the anti-aliased inputs are
again visually very similar to those of the previous baseline experiments, the
MAX-based merged rate maps differ. The maps resulting from the anti-aliased
inputs (fig. 5.50b, lower three rows) do not show the aliasing artifacts, i.e.,
the small-scale, dotted pattern present in the maps of the original baseline
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experiments (upper three rows). Instead, they exhibit a smoother distribution
of firing fields. Despite this difference the overall distribution of activity levels
appears to remain similar. This impression is supported by comparison of the
SUM-based merged rate maps’ evenness and the MAX-based merged rate maps’
activity distributions shown in figure 5.51. For both measures the curves and
distributions resulting from anti-aliased inputs (red) and those of the original
baseline experiments (blue) follow similar trends. In general, merged rate maps
of simulations receiving anti-aliased inputs appear to be slightly more even and
have slightly higher activity values on average.

Finally, comparing the distributions of grid orientations (fig. 5.52a) and the
distributions of gridness scores (fig. 5.52b) shows that there is no significant
difference between the results of the original baseline experiments and the results
of the repeated experiments with respect to these measures. In case of the
gridness score distributions the histograms of simulations receiving anti-aliased
inputs (fig. 5.52b, bottom two rows) show a slight skew towards higher gridness
values for simulations using 80 or 160 BL units, which is consistent with the
increase in average gridness score observable in figure 5.49b.

To further investigate the potential impact of aliased input a second set of
baseline experiments was repeated. The set consists of nine simulation runs with
primary learning rates θ1�ǫb = 0.04 and θ2�ǫb = 0.01, and varying TL secondary
learning rates θ1�ǫn ∈ {0.01 · θ1�ǫb, 0.1 · θ1�ǫb, 1.0 · θ1�ǫb}. The BL secondary
learning rate θ2�ǫn was kept at a fixed ratio, i.e., θ2�ǫn := 0.01 · θ2�ǫb and the
number of TL units was set to θ1�M = 100. Figures 5.53 and 5.54 summarize the
results of this comparison. In general, this second set of repeated experiments
confirms the observations made above, i.e., the dotted patterns in the MAX-based
merged rate maps disappear, and the gridness score distributions of simulations
with 80 BL units are skewed towards higher gridness values. In addition, this
second set of repeated experiments demonstrates that the improved orientation
alignment of grid patterns due to an increased TL secondary learning rate is
not impeded by the anti-aliased input. On the contrary, the anti-aliased input
may slightly improve the pattern alignment, which would be consistent with the
other observed effects.

In summary, the repeated baseline experiments using anti-aliased inputs demon-
strate that the aliased inputs used in the baseline experiments did not affect
the general behavior of the RGNG in a significant way and did not invalidate
any assessments made regarding the RGNG’s capabilities. Their main impact
on the RGNG’s performance consists of a minimal reduction in the average
gridness scores and a slight degradation of the alignment and distribution of
firing patterns, i.e., the errors introduced by aliased inputs lead, in general, to a
more conservative assessment of the RGNG’s capabilities.
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(a) rate maps

(b) TL avg. (c) BL avg.

Figure 5.49: Comparison between normal (top three rows, blue curves) and
anti-aliased (bottom three rows, red curves) input spaces using rate maps (a) and
mean gridness scores averaged over either the number θ1�M of TL units (b) or
the number θ2�M of BL units (c) derived from 30 simulation runs with primary
learning rates θ1�ǫb = 0.04 and θ2�ǫb = 0.01, varying number θ1�M of TL units
(columns), and varying number θ2�M of BL units (sub-rows and sub-columns).
Each artificial rate map in (a) was chosen randomly from the particular set of
rate maps.
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(a) SUM-based

(b) MAX-based

Figure 5.50: Comparison between normal and anti-aliased input spaces using
merged rate maps based on the SUM- (a) and MAX-approaches (b) derived from
30 simulation runs with primary learning rates θ1�ǫb = 0.04 and θ2�ǫb = 0.01,
varying number θ1�M of TL units (columns), and varying number θ2�M of
BL units (sub-rows and sub-columns). The underlying rate maps contain one-
sixteenth of the firing fields of the respective TL units.
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(a) TL avg. (b) BL avg.

(c) TL avg. (d) BL avg.

Figure 5.51: Comparison between normal and anti-aliased input spaces using
evenness (a,b) and activity distributions (c,d) of the merged rate maps shown
in fig. 5.50 averaged over either the number θ1�M of TL units (a,c) or the
number θ2�M of BL units (b,d). The evenness and activity distributions are
calculated and shown as in fig. 5.16.
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(a) orientation distributions

(b) gridness distributions

Figure 5.52: Comparison between normal and anti-aliased input spaces using
distributions of gridness orientations (a) and distributions of gridness scores
(b) derived from 30 simulation runs with primary learning rates θ1�ǫb = 0.04
and θ2�ǫb = 0.01, varying number θ1�M of TL units (columns), and varying
number θ2�M of BL units (sub-rows and sub-columns). Color of the distributions
indicates number of major orientations as in figure 5.40. Gridness threshold of
0.4 indicated by red marks.
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Figure 5.53: Comparison between normal and anti-aliased input spaces using
artificial rate maps, MAX-based merged rate maps, gridness distributions, and
grid orientation distributions (sub-columns) derived from nine simulation runs
with primary learning rates θ1�ǫb = 0.04 and θ2�ǫb = 0.01, varying secondary
learning rate θ1�ǫn (columns), and varying number θ2�M of BL units per TL
unit (sub-rows). All simulations use a fixed number θ1�M = 100 of TL units.
Each artificial rate map was chosen randomly from the particular set of rate
maps. Merged rate maps are based on rate maps containing one-sixteenth of the
corresponding TL unit’s firing fields. Gridness threshold of 0.4 indicated by red
marks. Color of the distributions indicates number of major orientations as in
figure 5.40. The empty gray-colored orientation distribution (top-right) results
from all grid orientations being just outside the 0 to 60◦ region.
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Figure 5.54: Comparison between normal and anti-aliased input spaces using
artificial rate maps, SUM-based merged rate maps, summed absolute differences
(SAD) of consecutive rate maps over time, and grid spacing distributions (sub-
columns) derived from nine simulation runs with primary learning rates θ1�ǫb =
0.04 and θ2�ǫb = 0.01, varying secondary learning rate θ1�ǫn (columns), and
varying number θ2�M of BL units per TL unit (sub-rows). All simulations use
a fixed number θ1�M = 100 of TL units. Each artificial rate map shows one-
sixteenth of the corresponding TL unit’s firing fields and was chosen randomly
from the particular set of rate maps. The merged rate maps and distributions
are, too, based on rate maps containing one-sixteenth of the corresponding TL
unit’s firing fields.



166 CHAPTER 5. MODEL CHARACTERIZATION



Input Space Aspects

The last chapter characterized the RGNG behavior over a range of different
parameter sets with respect to a single non-changing input space. Conversely, this
chapter investigates how changes in the input space influence the RGNG behavior.
The first section examines how sequential inputs, i.e., sequences of smoothly
changing position inputs can be processed by an RGNG. It uses movement data
provided by Sargolini et al. [141] of real rats that forage for food in a square
environment. Section 6.2 augments this sequential input data with different
amounts of noise to test the robustness of the RGNG in this respect. Section 6.3,
the main part of this chapter, starts with a possible neuronal implementation of
the attractor network based input that was used so far. It demonstrates how
changes to the input signal of this attractor network yields RGNG behaviors
that replicate two important grid cell phenomena: anchoring of the grid rotation
to external visual cues, and rescaling of the grid pattern in response to a sudden
change of the environment geometry. Subsequently, section 6.3 presents two
alternative input space models based on population signals from place cells and
motor neurons, respectively. These alternative input spaces illustrate that the
RGNG-based grid cell model is not bound to a specific form of input and can be
used to explain other phenomena like the grid-like firing patterns in response to
saccade movements reported by Killian et al. [83].

6.1 Sequential Input

The baseline experiments described in the previous chapter used inputs that
were randomly drawn from the given input space to avoid any sampling bias.
In real animals, however, this idealized form of input is not realistic. When
an animal moves through its environment, the putative inputs to the grid cells
will correspond to successive locations. To evaluate the behavior of the RGNG
to such sequential input, movement data of real rats provided by Sargolini et
al. [141] was used. The data contains multiple traces of rat movements in a
rectangular, 1m × 1m environment sampled at 50Hz. Each trace consists of
about 30000 data points covering a duration of 10 minutes. Figures 6.1a and 6.1b
show two examples of these movement traces. As the number of samples in
a single trace is not sufficient to train an RGNG 34 movement traces were
concatenated into a single input sequence with over one million samples. If
needed, this input sequence was fed multiple times to the respective RGNG. In
addition to its sequential nature the sequence also provided a less uniform, more
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(a) (b)

(c)

Figure 6.1: Rat movement data published by Sargolini et al. [141]. (a,b) Two
example traces of rat movement within a rectangular, 1m× 1m environment. In
each example the rat locations were sampled at 50Hz for a duration of 10 minutes
resulting in 30000 locations per trial. (c) Histogram of locations in all trial
datasets that were used.

realistic sampling of the environment. As shown in figure 6.1c some locations in
the environment, e.g., the borders were less frequently visited by the animals.

To accommodate the RGNG for inputs that are not randomly sampled from the
input space the sensitivity with which the RGNG reacts to individual inputs
must be, in general, decreased. This can be achieved by multiplying all learning
rates by a common factor (e.g., 0.1), which keeps the relative ratios between the
different learning rates that were established in section 5.3.3 intact. In addition,
it may be necessary to increase parameters θ�λ and θ�τ to compensate for the
slower adaptation of the prototypes. Parameter θ�λ controls the interval at
which new units are added to the RGNGs in the respective layer. Increasing the
parameter provides more time to the existing units to adapt towards particular
regions of input space. Parameter θ�τ controls the threshold at which edges
that are not used anymore are discarded. Increasing θ�τ results in a more rigid
network structure which increases the number of inputs that units receive via
their neighborhood relations.

Figures 6.2 and 6.3 summarize the results of nine simulation runs with varying
learning rates θ1�ǫb, θ1�ǫn, θ2�ǫb, and θ2�ǫn (columns), and varying parameters
θ1�λ, θ1�τ , θ2�λ, and θ2�τ (rows) in which the RGNG processed the sequential
inputs described above. Since varying the learning rates as well as varying the
parameters θ1�λ and θ2�λ of an RGNG can change its dynamic behavior signifi-
cantly, it is not immediately obvious at which point in time measurements like
the distribution of gridness scores should be taken. To this end the distributions
of summed absolute differences between consecutive rate maps sampled at every
100000 time steps (fig. 6.2) were used to ensure that each simulation continued
sufficiently long as to reach some form of dynamic equilibrium. Accordingly, the
measurements shown in figure 6.3 were taken near the end of each simulation
run (t ∈ {1800000, 2800000, 5800000, 14800000}). The resulting data show that
there are multiple parameterizations for which the TL units of an RGNG form
hexagonal firing patterns when processing sequential location inputs. The results
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Figure 6.2: Distributions of summed absolute differences (vertical axis) between
consecutive rate maps over time (horizontal axis) for simulation runs with
varying learning rates θ1�ǫb, θ1�ǫn, θ2�ǫb, θ2�ǫn (columns), and varying parameters
θ1�λ, θ1�τ, θ2�λ, θ2�τ (rows). Color indicates number of TL units (dark red =
high, dark blue = low). All simulation runs use a fixed number θ1�M = 100 of
TL units as well as a fixed number θ2�M = 20 of BL units per TL unit.

of the simulation run whose learning rates were reduced by one magnitude (2nd
in top row) appear to be most similar to the results obtained in section 5.3.3 in
terms of gridness distribution, MAX-based merged rate map, and distribution of
grid orientations. However, even further reductions of the learning rates by up
to three magnitudes can result in aligned TL units expressing hexagonal firing
patterns if the reduction in learning rates is accompanied by an increase of θ�λ
and θ�τ . This result indicates that individual TL units are able to cover an entire
input space even if the inputs are sampled highly non-randomly provided that
the learning rates as well as the growth rate of the RGNG are sufficiently small.
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Figure 6.3: Artificial rate maps, MAX-based merged rate maps, gridness dis-
tributions, and grid orientation distributions of simulation runs with vary-
ing learning rates θ1�ǫb, θ1�ǫn, θ2�ǫb, θ2�ǫn (columns), and varying parameters
θ1�λ, θ1�τ, θ2�λ, θ2�τ (rows). All simulation runs use a fixed number θ1�M = 100
of TL units as well as a fixed number θ2�M = 20 of BL units per TL unit.
Each artificial rate map was chosen randomly from the particular set of rate
maps. Merged rate maps are based on rate maps containing one-sixteenth of the
corresponding TL unit’s firing fields. Gridness threshold of 0.4 indicated by red
marks. Color of the distributions indicates number of major orientations as in
figure 5.40.
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6.2 Noisy Input

Besides the sequential nature of the input described above, real grid cells will also
receive a considerable amount of noise. Based on the number of dendritic spines
(sec. 2.9.1) it can be estimated that a layer II stellate cell receives input from
hundreds to thousands of other neurons. Each of those neurons will fire randomly
about once per second [86]1 resulting in a large number of spurious signals. To test
how the RGNG reacts to additional noise in its input a set of five simulation runs
with increasing levels of noise were conducted. All simulation runs used a fixed set
of parameters (θ1�ǫb = θ1�ǫn = 0.004, θ2�ǫb = 0.001, θ2�ǫn = 0.00001, θ1�M = 100,
θ2�M = 20, θ1�λ = θ2�λ = 1000, θ1�τ = θ2�τ = 300) and processed sequential
location inputs as described in section 6.1. Each input vector ξ := (ṽx, ṽy) was
augmented by noise as follows:

ṽxi := max[ min[ vxi + ξn (2Urnd − 1), 1] , 0] ,

ṽyi := max[ min[ vyi + ξn (2Urnd − 1), 1] , 0] , ∀i ∈ {0 . . . d− 1} ,

with noise level ξn, uniform random values Urnd ∈ [0, 1], dimension d = 50, and
vxi , v

y
i as described in section 5.2.1.

Figure 6.4 summarizes the results of these experiments. They indicate that the
used RGNG is able to tolerate increasing levels ξn ∈ {0.1, 0.3, 0.5, 0.7, 0.9} of
noise without loosing its ability to form the characteristic hexagonal pattern of
firing fields and to align and distribute these patterns. However, with increasing
noise level the maximum average activity (MX) present in the rate maps drops
by two orders of magnitude. This decrease is clearly visible in the MAX-based
merged rate maps, which use a fixed range of [0, 1] for their color gradients. Yet,
the minimal difference between the maximum average activity (MX) and the
minimum average activity (MN) for any given noise level ξn is at least two orders
of magnitude, i.e., each cell’s activity may be normalized with respect to the
particular noise level without much disturbance of the hexagonal firing pattern.

The reduction of the maximum average activity with increasing noise levels can
be explained by the ratio r used to derive each cell’s activity (sec. 5.2.3). The
ratio r describes the relative distance of the current input ξ to the best matching
unit s1 and the second best matching unit s2. If r is close to zero, the input has
roughly the same distance to unit s1 and to unit s2 resulting in a low activity of
the corresponding TL unit. If, on the other hand, r is close to one, the input is
close to the best matching unit s1 yielding a high activity of the TL unit. With
increasing noise the probability that an input matches the prototype of the best
matching unit very closely decreases substantially. As a consequence, each BL
prototype becomes surrounded with a kind of “dead zone” for which it is unlikely
that an input will fall into it. The value of the ratio r at the border of this zone
defines then the probable maximum activity of the corresponding TL unit.

1p. 411ff
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Figure 6.4: Artificial rate maps, MAX-based merged rate maps, gridness dis-
tributions, and grid orientation distributions of simulation runs with varying
levels ξn of noise (columns) added to the inputs. All simulation runs used a
fixed set of parameters (θ1�ǫb = θ1�ǫn = 0.004, θ2�ǫb = 0.001, θ2�ǫn = 0.00001,
θ1�M = 100, θ2�M = 20, θ1�λ = θ2�λ = 1000, θ1�τ = θ2�τ = 300) and processed
sequential location inputs as described in section 6.1. Each artificial rate map
was chosen randomly from the particular set of rate maps. Average maximum
activity (MX) and average minimum activity (MN) across all rate maps stated
below. Merged rate maps are based on rate maps containing one-sixteenth of
the corresponding TL unit’s firing fields. Gridness threshold of 0.4 indicated by
red marks. Color of the gridness and orientation distributions indicates number
of major orientations as in figure 5.40.

6.3 Input Space Instances

A key property of the proposed grid cell model is the separation of the general
processing of input signals by a group of grid cells, which is modeled by an
RGNG, and the specific structure of an input space that is required to yield a
particular firing behavior of the individual cells. In case of grid cells the basic
requirement that has to be met by the structure of any potential input space
consists in a uniform distribution of input space elements that correlates with
the animal’s location. This requirement ensures that the BL RGNGs will form
the characteristic hexagonal firing patterns of grid cells. If it is assumed that
the grid patterns span the entire environment ad infinitum, the input space
structure has to be also periodic, i.e., each input space element has to correlate
with periodic locations in the environment for any particular direction.

The abstract input space used so far (sec. 5.2.1) meets both of those requirements.
The next section outlines a possible neuronal implementation of this abstract
input space and demonstrates how the phenomena of grid pattern rotation
(sec. 1.4) and grid pattern rescaling (sec. 2.4) might arise in this implementation.
Subsequently, two alternative input space models are presented. The first model
illustrates that a grid cell like firing pattern can also arise if the input resembles
the signal of a place cell population. The biological plausibility of such an input
signal was shown by Bonnevie et al. [10] as they demonstrated that entorhinal
grid cell firing requires an excitatory drive from the hippocampus. The second
model illustrates that a grid cell like firing pattern can develop from putative
efference copies of eye muscle signals. Such a signal could, e.g., explain the
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(a) (b)

(c) (d)

Figure 6.5: Theoretical model for the derivation of positional inputs using
one-dimensional attractor networks. (a) Head direction cells as units of a one-
dimensional attractor (outer ring) integrate angular velocity signals (± AV) from
the animal’s head. (b) The output of head direction cells (outer ring) is received
by sine and cosine cells (± sin/cos) that utilize electrotonic attenuation to ap-
proximate the sine and cosine fractions of the current head direction. (c,d) Speed
modulated sine and cosine signals are integrated by one-dimensional attractor
networks yielding two orthogonal, one-dimensional, periodic representations of
the animal’s location.

grid-like firing patterns in response to saccade movements reported by Killian et
al. [83] (sec. 1.5.4).

6.3.1 1D Attractor Network Input

A possible neuronal implementation of the abstract input space used so far
(sec. 5.2.1) can be based on one-dimensional attractor networks as described, e.g.,
by McNaughton et al. [105]. Figure 6.5 illustrates the four basic components of
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Figure 6.6: Artificial rate maps and grid orientation distributions within a single
simulation run experiencing a grid rotation. The simulation run used a fixed set
of parameters (θ1�ǫb = θ1�ǫn = 0.004, θ2�ǫb = 0.001, θ2�ǫn = 0.00001, θ1�M = 100,
θ2�M = 20, θ1�λ = θ2�λ = 1000, θ1�τ = θ2�τ = 300) and processed sequential
location inputs as described in section 6.1. Each artificial rate map corresponds
to the same TL unit sampled at different points in time. Color of the orientation
distributions indicates number of major orientations as in figure 5.40.

this implementation. The first component (fig. 6.5a) consist of a one-dimensional
attractor network commonly used to explain how angular velocity signals from
the head (± AV) can be integrated such that the individual units of the ring-
attractor (outer ring) behave like head direction cells. The second component
(fig. 6.5b) utilizes the electrotonic attenuation of input signals within the dendritic
tree of a neuron[155]2 to approximate the sine and cosine fractions of the head
direction signal. In figure 6.5b the length of the connections drawn from the
outer head direction cells towards the inner sine and cosine cells (± sin/cos)
represents the dendritic distance of these inputs to the soma. Finally, the last two
components (fig. 6.5c,d) integrate the sine and cosine signals into two orthogonal,
periodic, one-dimensional representations of location in a way that is similar
to the integration of the angular velocity signals shown in figure 6.5a. The
integration differs slightly as the sine and cosine signals need to be modulated by
a speed signal in order to result in a proper integration of the animal’s movement
in the particular directions. Such an explicit speed signal was recently discovered
in the MEA by Kropff et al. [88]. Their findings show that there is not only
a distinct population of speed cells in the MEA, but also that the behavior of
speed cells is linked to the behavior of grid cells in such a way that it supports
path integration models like the one described here.

The input model outlined above uses the angular head velocity and the speed
of movement to derive a representation of the animal’s location. However, the
implementation could be based on other means to derive the head direction signal,
which is used as input for the second component (fig. 6.5b). Similarly, the explicit
speed modulation in the last two components could be substituted by input
from speed-modulated head direction cells [161] to the second component and a
suitable thresholding of the sine and cosine signals in the last two components.

Based on this input model two prominent grid cell phenomena, the rotation
alignment towards external visual cues (sec. 1.4) and the grid pattern rescaling
(sec. 2.4), can be explained. The former phenomenon is directly related to the
known alignment of head direction cells towards external visual cues [162]. If
the head direction cells that feed into the sine and cosine cells (fig. 6.5b) change
their absolute orientation, then the absolute orientation of the orthogonal, one-

2p. 98ff
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Figure 6.7: Artificial rate maps of a single TL unit within a single simulation run
experiencing grid rescaling. The simulation run used a fixed set of parameters
(θ1�ǫb = θ1�ǫn = 0.004, θ2�ǫb = 0.001, θ2�ǫn = 0.00001, θ1�M = 100, θ2�M = 20,
θ1�λ = θ2�λ = 1000, θ1�τ = θ2�τ = 300) and processed sequential location inputs
as described in section 6.1.

dimensional representations of location (fig. 6.5c,d) changes too. The center of
this rotation is the current location. Figure 6.6 shows an example of such a
rotation. The three artificial rate maps and the accompanying grid orientation
distributions originate from the same simulation run, but were sampled at
different points in time (left = earliest). The middle rate map and orientation
distribution were sampled during a time period where the underlying RGNG
received input that was rotated 25 degrees. As a result the measured grid
orientation shifted by the same amount.

The phenomenon of grid pattern rescaling (sec. 2.4) can be explained by variations
in the speed signal, which controls the integration of movement in the one-
dimensional representations of location (fig. 6.5c,d). If the speed signal depends,
e.g., on visual cues like optical flow, a sudden change in the environment’s
geometry could cause a misinterpretation of these cues. For instance, if a square
environment is haled along one dimension, the optical flow when running in that
direction would suggest a doubling of movement speed. In case of the attractor
input model a speed signal that is stronger in a particular direction causes the
resulting grid pattern to shrink in that direction. Figure 6.7 illustrates this
phenomenon. It shows the artificial rate map of a single TL unit sampled at
different points in time (left = earliest). The middle rate map was sampled
during a time period where the hypothetical environment was shrunk by 50% in
one direction while simultaneously the assumed speed in that direction doubled.
As a result the grid pattern appears to be compressed in the particular direction.

Other phenomena like the realignment or fragmentation of grid patterns require
the integration of the proposed grid cell model into a wider network including
feedback connections from hippocampal place cells. Such a network and its
implications are outlined in chapter 7.

6.3.2 Place Cell Input

Bonnevie et al. [10] demonstrated that entorhinal grid cell firing requires an
excitatory drive from the hippocampus. This raises the question if the proposed
grid cell model can form grid cell like firing patterns if its input space is based
on a population of hippocampal place cells. To simulate such an input space the
activity of a place cell population is approximated by a set of d Gaussians, which
are randomly distributed across the environment. The resulting d-dimensional
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Figure 6.8: Artificial rate maps, MAX-based merged rate maps, gridness dis-
tributions, and grid orientation distributions of simulation runs that processed
place cell input from a varying number d of place cells (columns) with varying
place field sizes σ (rows). Examples of place field sizes are given as artificial
rate maps at the start of each major row. All simulation runs used a fixed set
of parameters (θ1�ǫb = θ1�ǫn = 0.04, θ2�ǫb = 0.01, θ2�ǫn = 0.0001, θ1�M = 100,
θ2�M = 20, θ1�λ = θ2�λ = 1000, θ1�τ = θ2�τ = 300) and processed random loca-
tion inputs. Each artificial rate map was chosen randomly from the particular
set of rate maps and displays either all, one-quarter, or one-sixteenth (sub-rows)
of the respective TL unit’s firing fields. Correspondingly, the merged rate maps,
gridness distributions, and grid orientation distributions are also based on rate
maps containing all, one-quarter, or one-sixteenth of the firing fields. Gridness
threshold of 0.4 indicated by red marks. Color of the gridness and orientation
distributions indicates number of major orientations as in figure 5.40.

input vector contains then the activation of each place cell for a given location
according to its Gaussian function. Using this type of input space a total
of nine simulation runs with varying number d ∈ {10, 50, 100} of place cells,
varying place field sizes σ ∈ {0.1, 0.2, 0.4} (σ being the standard deviation of
the place fields’ Gaussian functions), fixed learning rates θ1�ǫb = θ1�ǫn = 0.04,
θ2�ǫb = 0.01, and θ2�ǫn = 0.0001, as well as fixed number θ1�M = 100 of TL
units, fixed number θ2�M = 20 of BL units per TL unit, fixed growth rate
θ1�λ = θ2�λ = 1000, and fixed edge age θ1�τ = θ2�τ = 300 were conducted. All
simulation runs processed random location inputs.
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Figure 6.8 summarizes the results of these simulation runs. For each run it
depicts artificial rate maps containing all, one-quarter, and one-sixteenth of
the respective TL unit’s firing fields (sub-rows). In addition, corresponding
MAX-based merged rate maps, gridness distributions, and grid orientation
distributions are provided as well (sub-columns). For each place field size σ
an exemplary artificial place cell rate map is shown at the start of each major
row. In general it appears difficult to identify a clear trend with which the
proportion of TL units, whose gridness scores are above the threshold of 0.4,
would correlate. In case of a low number of place cells (d = 10) the place field
size must be rather large (σ = 0.4) to yield a significant proportion of grid
cells. With increasing number of place cells (d ∈ {50, 100}) however, smaller
place field sizes (σ = 0.2) appear to result in higher proportions of grid cells,
which may indicate a general preference of the RGNG for sparse input vectors.
Though, input based on place cells with even smaller firing fields (σ = 0.1), i.e.,
even sparser input vectors do not yield significant numbers of TL units with
gridness scores above 0.4. A rotational alignment of firing patterns is present
in most cases, but the orientation distributions are slightly wider compared to
those observed in the baseline experiments. Similarly, the distribution of firing
fields as indicated by the MAX-based merged rate maps is less even as well.
Furthermore, there appears to be a tendency for some firing fields to concentrate
at the corners of the environment.

In summary, the overall structure and behavior of the grid cell like firing patterns
that result from a place cell population input appear less clean than the patterns
that result from an attractor network based input. Furthermore, the proportion of
TL units that possess firing rate maps with gridness scores above the 0.4 threshold
is significantly lower as well. This difference between place cell population input
and attractor network based input may result from the non-periodic nature of
the former input space. This non-periodicity leads to an alignment of firing fields
along the input space boundaries3, which in turn interferes with a free alignment
of firing fields among each other. Interestingly, the lower proportion of high
gridness scores observed in simulation runs that process place cell population
input resembles the lower proportion of high gridness scores observed in the
deeper layers of MEA (fig. A.1) as well as the PrS and PaS (fig. A.2). In all three
cases the particular regions receive major inputs from the hippocampus, most
likely containing the output of place cells. These differences in the distributions
of gridness scores may hint at slightly different characteristics of the respective
input spaces, e.g., regarding their periodicity.

6.3.3 Eye Gaze Input

Section 1.5.4 referenced work by Killian et al. [83] in which they report on
neurons in the primate MEA that exhibit grid cell like firing patterns in response
to eye movements. These movements consist of fast saccades and intermittent,
comparatively long fixations on quickly changing gaze points in the field of view.
Given a suitable type of input the RGNG grid cell model can replicate this firing
behavior. To this end a possible input signal could be an efference copy of the
population signal from the motor neurons that control the four main muscles

3Revisit figure 4.1 to see this alignment in three synthetic examples.
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Figure 6.9: Eye and orbit anatomy with motor nerves by Patrick J. Lynch,
medical illustrator; C. Carl Jaffe, MD, cardiologist (CC BY 2.5).

attached to the eye (fig. 6.9). In such a signal the number of neurons that are
active for a particular muscle determines how strongly this muscle contracts.
A corresponding input signal ξ := (vx0 , vx1 , vy0 , vy1) for a given normalized
gaze position (x, y) can be implemented as four concatenated d-dimensional
vectors vx0 , vx1 , vy0 and vy1 :

vx0
i := max

[

min
[

1− δ
(

i+1
d

− x
)

, 1
]

, 0
]

,

vx1
i := max

[

min
[

1− δ
(

i+1
d

− (1− x)
)

, 1
]

, 0
]

,

vy0

i := max
[

min
[

1− δ
(

i+1
d

− y
)

, 1
]

, 0
]

,

vy1

i := max
[

min
[

1− δ
(

i+1
d

− (1− y)
)

, 1
]

, 0
]

, ∀i ∈ {0 . . . d− 1} ,

with δ = 4 defining the “steepness” of the population signal and the size d of
each motor neuron population.

Using this type of input space a total of four simulation runs with varying
number d ∈ {5, 10, 20, 40} of population sizes, fixed learning rates θ1�ǫb = θ1�ǫn =
0.04, θ2�ǫb = 0.01, and θ2�ǫn = 0.0001, as well as fixed number θ1�M = 100 of
TL units, fixed number θ2�M = 20 of BL units per TL unit, fixed growth rate
θ1�λ = θ2�λ = 1000, and fixed edge age θ1�τ = θ2�τ = 300 were conducted. All
simulation runs processed random eye gaze locations. Figure 6.10 summarizes
the results. For each run (columns) it depicts artificial rate maps containing
all, one-quarter, and one-sixteenth of the respective TL unit’s firing fields
(rows). In addition, corresponding MAX-based merged rate maps, gridness
distributions, and grid orientation distributions are provided as well (sub-rows
and -columns). The results show that the RGNG is able to form hexagonal, grid
like firing patterns in response to the population signal defined above. Even
small population sizes (d ≤ 10) yield a significant proportion of TL units with
gridness scores above the 0.4 threshold. Like the place cell input described above
the putative input from motor neuron populations is also non-periodic leading to
an alignment of firing fields along the input space boundaries, which is especially
visible in the MAX-based merged rate maps. The rotational alignment of the
firing rate maps appears to be influenced by the input space boundary alignment
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Figure 6.10: Artificial rate maps, MAX-based merged rate maps, gridness
distributions, and grid orientation distributions of simulation runs that processed
input from a varying number d of presumed motor neurons per muscle (columns)
that control the eye gaze. All simulation runs used a fixed set of parameters
(θ1�ǫb = θ1�ǫn = 0.04, θ2�ǫb = 0.01, θ2�ǫn = 0.0001, θ1�M = 100, θ2�M = 20,
θ1�λ = θ2�λ = 1000, θ1�τ = θ2�τ = 300) and processed random gaze locations.
Each artificial rate map was chosen randomly from the particular set of rate maps
and displays either all, one-quarter, or one-sixteenth (rows) of the respective TL
unit’s firing fields. Correspondingly, the merged rate maps, gridness distributions,
and grid orientation distributions are also based on rate maps containing all, one-
quarter, or one-sixteenth of the firing fields. Gridness threshold of 0.4 indicated
by red marks. Color of the gridness and orientation distributions indicates
number of major orientations as in figure 5.40.

as well. The major peaks in the orientation distributions seem to be clustered
around either 0◦, 30◦, or 60◦.

To further investigate the alignment of firing fields at the border of the non-
periodic input space an additional set of four simulation runs with a higher
number θ2�M = 80 of BL units per TL unit were conducted. The purpose of
using a higher number of BL units is twofold: it shows the alignment of firing
fields to the input space boundary in more detail and it provides a higher number
of firing fields that are located at the center of the input space, i.e., that have
a reasonable distance to any boundary. Figure 6.11 shows the results of these
additional simulation runs. The alignment of firing fields at the border of the
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Figure 6.11: Artificial rate maps, MAX-based merged rate maps, gridness
distributions, and grid orientation distributions of simulation runs that processed
input from a varying number d of presumed motor neurons per muscle (columns)
that control the eye gaze. All simulation runs used a fixed set of parameters
(θ1�ǫb = θ1�ǫn = 0.04, θ2�ǫb = 0.01, θ2�ǫn = 0.0001, θ1�M = 100, θ2�M = 80,
θ1�λ = θ2�λ = 1000, θ1�τ = θ2�τ = 300) and processed random gaze locations.
Each artificial rate map was chosen randomly from the particular set of rate maps
and displays either all, one-quarter, or one-sixteenth (rows) of the respective
TL unit’s firing fields. Please note that the artificial rate maps containing
one-quarter of the firing fields are centered in this case and do not show
the top-right portion of firing fields as in previous figures. The merged rate
maps, gridness distributions, and grid orientation distributions are based on rate
maps containing all, one-quarter, or one-sixteenth of the firing fields. Gridness
threshold of 0.4 indicated by red marks. Color of the gridness and orientation
distributions indicates number of major orientations as in figure 5.40.

input space is clearly visible in the rate maps that contain all firing fields (first
row). Furthermore, the differences in the corresponding gridness distributions
are more pronounced compared to those in figure 6.10 indicating that larger
input population sizes (d ≥ 20) may facilitate a better4 representation of the
input space. Firing fields located near the center of the input space (second and
third row) appear less influenced by the boundary alignment. As a consequence,
a high proportion of corresponding rate maps has gridness scores beyond the 0.4

4Here, “better” refers to smaller errors between input vectors and BL prototypes on average.
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threshold. Interestingly, the orientation distributions indicate that the rotational
alignment bias towards angles that are multiples of 30◦ seems to persist.

6.4 Discussion

This chapter investigated how various changes to the input space of an RGNG
affects its behavior. It could be shown that an RGNG can form stable, grid
cell like firing patterns for sequential and potentially noisy input. Furthermore,
a possible neuronal implementation for the input space used in the baseline
experiments was proposed and it was demonstrated, how this implementation
can explain two important grid cell phenomena: anchoring of the grid rotation
to external visual cues, and rescaling of the grid pattern in response to a sudden
change of the environment geometry. The chapter concluded with two examples
of alternative input spaces formed by the population signals from place cells and
motor neurons, respectively.

The results presented above underscore a key property of the modeling approach
pursued in this work. By separating the general processing of input signals
by a group of neurons from the specific properties of observed phenomena and
putative functional objectives like, e.g., path integration, the observed phenomena
can be interpreted as the effect of structural and dynamical properties of the
particular input space, i.e., of the information that is processed rather than
the effect of structural and dynamical properties of the group of neurons, i.e.,
of the system that processes the information. This different perspective may
prove to be beneficial with respect to a number of aspects. For example, if it is
assumed that the RGNG does indeed model a general principle by which cells in
the PHR-HF process information it may be possible to infer properties of the
input to other regions like the lateral entorhinal cortex (LEA) where the firing
behavior of cells does not correlate with some variable that is readily identifiable
like, e.g., the animal’s location. Similarly, the RGNG model provides testable
hypothesis on how the firing behavior of, e.g., grid cells should change if their
inputs are manipulated or disturbed in a specific manner. Further implications
of the explicit distinction between the general processing of information and the
properties of the information that is processed are outlined in the next chapter.
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Outlook

The computational model presented and characterized in the previous chapters
is able to model the firing behavior of entorhinal grid cells using a general infor-
mation processing scheme that is not grounded in the cognitive map hypothesis.
Instead, the specific behavior of grid cells with its peculiar hexagonal firing
patterns is seen as a rare instance where the particular input space correlates
directly with a readily identifiable variable: the animal’s locations in the envi-
ronment. The underlying general processing scheme was described in chapter 4
by a single, common principle:

Each neuron aspires to represent its input space as well as possible
while being in competition with its peers.

The hypothesis that this principle applies not only to grid cells but represents a
prevalent way of information processing in higher-order parts of the cortex has
rather broad implications that lead to a number of interesting research questions.
The following sections will outline these briefly.

7.1 Encoding

Section 4.1.2 introduced the main ideas underlying the RGNG grid cell model
and provided a brief comparison between the top layer RGNG units and “classic”
perceptrons with respect to their particular approaches of representing specific
regions of input space. In essence, perceptrons can be interpreted as linear
classifiers that are combined to successively divide the input space into smaller
and smaller subregions until the desired region is “fenced in” (fig. 4.4a). In
contrast, the TL units of an RGNG form a tiled, periodic partition of their input
space. A specific region of input space can then be encoded by a combination
of periodic input space partitions that have different grid spacings and grid
orientations and only coincide in the desired input space region (fig. 4.4b).

Encoding Capacity An important difference between these two types of
input space encoding is the number of input space regions that they can uniquely
identify with a given number of neurons. In case of perceptrons a number of
d+ 1 neurons is required to describe a single region of input space that lies in
a d-dimensional submanifold. For every further region at least one additional
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neuron is required. Thus, the number of uniquely identifiable input space regions
is linear in the number of perceptrons. In contrast, the encoding of input space
regions by a group of TL units from multiple RGNGs resembles the encoding of
numbers in a residue number system (RNS). In an RNS a number is identified
by the remainders of that number with respect to a set of coprime moduli. For
example, the number 25 would be described by the remainders {1, 1, 0} with
respect to the set {2, 3, 5} of moduli. The product of the moduli defines the
amount of numbers that can be encoded with a particular RNS, i.e., the amount
of numbers is exponential in the number of moduli. Based on this analogy Fiete et
al. [38] analyzed the capacity D of grid cells to encode individual locations in the
environment. In this analogy each group of grid cells with common grid spacing
and grid orientation corresponds to a modulus while the grid cells themselves
correspond to the particular remainders or phases with respect to this modulus.
Considering uncertainties in the phases of the grid patterns as well as having
real, not coprime integer periods, Fiete et al. estimated the capacity to be:

D(N) ≈
(

1

δφ

)α(N−1)

,

with N the number of grid cell groups, δφ = 1/5 the phase resolution with
respect to the particular grid spacing, and alpha = 0.62 describing the cost of
the aforementioned uncertainties. This result can be transferred to the encoding
of input space regions by a set of RGNGs as follows. The number of BL units in
each RGNG determines the grid spacing or period of the resulting firing patterns,
the number of TL units in each RGNG determines the phase resolution δφ, and
the number of RGNGs itself corresponds to the number of grid cell groups N .
Thus, the estimate of Fiete et al. indicates that the number of input space
regions that can be uniquely identified by a set of RGNGs is polynomial in
the number of TL units per RGNG and exponential in the number of RGNGs
themselves. Based on this estimate the encoding of input space regions by a set
of RGNGs appears to be significantly more efficient than the encoding by a set
of perceptrons.

Resilience to Rubbish Class Inputs Neural networks based on perceptrons,
e.g., convolutional neural networks [95] are known to be vulnerable to so called
rubbish class samples [56]. These samples appear to the human observer as pure
noise but are classified by the network as belonging to a particular class with
high confidence. The reason why perceptrons are vulnerable to this kind of
input lies in their linear nature. In a high dimensional input space, e.g., images
of 1000 × 1000 pixels, the inputs that belong to classes that are meaningful
to human observers (e.g., images showing “flowers”, “faces”, etc.) must lie in
low-dimensional submanifolds in order to be learnable through a limited number
of samples. If a number of perceptrons is used to identify a class in this input
space, the corresponding set of hyperplanes will not only select the desired region
in the particular submanifold but will inherently select also regions of input
space that lie outside of the submanifold [56]. As a consequence, “unnatural”
rubbish inputs will lie in these undesired regions and fool the network into
classifying these inputs with high confidence (fig. 7.1). The encoding of input
space regions employed by a set of RGNGs does not suffer from this vulnerability.
All prototypes of the BL units lie directly within the respective submanifolds.
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Figure 7.1: Illustration of the undesired classification of unnatural “rubbish
class” samples by a group of perceptrons. The natural inputs in this example lie
in a two-dimensional submanifold and are selected by the hyperplanes of three
perceptrons. Unnatural inputs, a.k.a., rubbish class samples lie outside of the
submanifold but are classified as belonging to the class of the natural samples
nevertheless.

Any input that lies outside of the submanifolds will result in a large distance
from both the particular BMU as well as the second BMU leading to a low
activation in every TL unit. In this respect the RGNG encoding is similar to that
of RBF-networks [125], which are also not vulnerable to rubbish class inputs [56].

Inherent Sequence Decomposition If an RGNG is presented with a series
of inputs that consist of samples that originate from consecutive locations in input
space, i.e., samples that describe a continuous movement through the input space,
the resulting sequence of TL unit activations is not unique to this particular
sequence of inputs. Instead, there are multiple sequences of inputs that describe
the same relative movement through input space that will evoke an identical
sequence of TL unit activations as response. Figure 7.2 illustrates this relation.
The colored arrows represent input sequences of identical, relative movements
that result in the same sequence of TL unit responses. As a consequence, each
complex, absolute movement through input space is inherently decomposed
into smaller subsequences of relative movements that frequently occur in other
movements as well. In a way, this decomposition into subsequences of relative
movements resembles the identification of basic visual elements like corners
and edges of various orientations in the primary visual cortex. Similar to the
identification of specific input space regions by combining the activity of TL units
from multiple RGNGs with different spatial scales, specific absolute movements
through input space can be recomposed by the simultaneous activity of TL unit
sequences in multiple RGNGs.
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Figure 7.2: Illustration of the sequence decomposition that occurs inherently
within a group of grid cells. Repeating subsequences are indicated as colored
arrows. Distribution of each grid cell’s firing fields are indicated by underlying
circles of equal color.

This inherent decomposition of input sequences may support the learning of
complex sequences by reducing the need to experience a sequence repeatedly
as the decomposed, relative subsequences may have been learned already in
the context of other, earlier inputs. In the case of grid cells, such sequences
could consist of new paths in the environment that would then be learned as
a series of smaller, relative movements like: “move straight ahead for 10 steps
and then turn left”. Recent findings [90, 157] that describe an alignment of grid
patterns towards environmental boundaries like walls, may be related to this
kind of decomposition. An alignment of the grid pattern towards environmental
boundaries may improve the reusability of relative movement sequences as they
increase the probability of matching subsequences in similar environmental
situations, e.g., “running alongside a wall”. A different example where such a
decomposition of complex sequences may be applicable as well are the movements
of muscles that translate into typical, self-similar movements of, e.g., arms or
legs.

Neurobiological Aspects The RGNG input space encoding has also a num-
ber of properties that are interesting from a neurobiological perspective. Since
each TL unit of an RGNG tries to represent its entire input space the firing fields
of all TL units are almost identical apart from their difference in phase. If a
single TL unit breaks down, a neighboring TL unit with similar phase can quickly
rearrange its firing fields to compensate the loss. In case a large proportion of TL
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units fails, the RGNG will likely undergo graceful degradation resulting only in a
loss of precision but avoiding catastrophic failure. This assumption is supported
by the coupled layer baseline experiments (sec. 5.3.3), which demonstrate that
the overall number of TL units has only minor influence on the general behavior
of the RGNG. Furthermore, the assumption that groups of grid cells undergo
graceful degradation represents a testable prediction of the RGNG model that
could be investigated by, e.g., selective lesion studies.

Another interesting aspect of the common processing principle stated above is
its potential benefit to the overall amount of resources that has to be spent to
maintain a corresponding set of neurons. In case of a “classic” multi-layered
perceptron network neurons in the higher levels of such a network may represent
classes that are encountered very rarely. Such neurons would have to be kept alive
over long periods of time in which they would not contribute to the information
processing within the network. In contrast, by representing the entire input space
in each TL unit of an RGNG the overall metabolic consumption is averaged across
all cells as each TL unit becomes active on a regular basis. This assumption, too,
represents a testable prediction of the RGNG model. If the RGNG does indeed
describe a general principle by which neurons in the higher-order parts of the
cortex process information, a uniform energy consumption within such regions,
e.g., the LEA should be detectable by, e.g., high resolution fMRI recordings.

7.2 Hierarchical Organization

In the previous section it was pointed out that the RGNG input space encoding
allows to identify an exponential number of input space regions with respect to
a given number of RGNGs and corresponding sets of TL units. To achieve this
exponential capacity individual input space regions have to be encoded by an
ensemble of TL units from different RGNGs. To actually utilize this exponential
capacity it is not possible to use any subsequent processing scheme that relies on
an explicit representation of these TL unit ensembles. Otherwise an exponential
number of neurons would be needed to represent each ensemble negating the
benefits gained by the efficient ensemble representation. A possible solution to
this problem is outlined in figure 7.3. Instead of converging the output from the
TL units onto a subsequent layer of neurons in a feedforward fashion, the TL
units establish independent feedback connections to the group of neurons that
forms their input space. Each TL unit connects to the input space neurons by
Hebbian learning, i.e., it connects to those neurons that are represented by its
BL units. To directly determine a set of corresponding connection weights the
sum of the BL units’ prototype vectors could be used. If multiple RGNGs with
different grid spacings and grid orientations share the same set of input neurons,
the feedback connections of their TL units will interfere in the same way as their
TL units’ outputs, i.e., feedback signals from all RGNGs will converge on those
input space neurons that represent the current input. The practical effect of
such a feedback signal is twofold: It can stabilize the input signal in the presence
of noise and, more importantly, it implements a form of pattern completion if
the input signal is partially missing. For example, if the input signal to multiple
groups of grid cells consists in a redundant representation of the rat’s position,
e.g., based on ideothetic cues as well as on visual cues both parts of the input
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Figure 7.3: Illustration of putative feedback connections from three TL units
(right side: red, blue, green) of different RGNGs to the group of neurons that
forms the common input space (IS) that is shared by the RGNGs. Each TL unit
has feedback connections to those neurons of the input space that cause the TL
unit to fire, i.e., who are represented by one of the TL unit’s BL units. The
neurons in the input space who are represented by the BL units that currently
coincide (center on the left side) receive simultaneous feedback from all three
TL units (big yellow circles).

signal could back up each other in case either one is faulty (e.g., due to path
integration errors) or missing (e.g., under poor visibility conditions). Similarly,
if the animal is moved from one environment to another the change in visual
cues could reset the path integrator via this feedback mechanism providing a
possible explanation for the grid cell phenomenon of realignment (sec. 2.3). It is
important to note that the interaction of the feedback connections from multiple
RGNGs is not learned but emerges naturally.

This feedback mechanism can not only be used with arbitrary groups of input
space neurons, but also with other RGNGs resulting in a hierarchical structure
where the output of several RGNGs forms the input space of the next layer. As
each RGNG has an exponential capacity it can handle the exponential input
of the ensemble code while still avoiding any explicit representation of such
ensembles. Figure 7.4 shows a putative hierarchical organization between the
entorhinal cortex and the hippocampus based on RGNGs. In this very simplified
model the entorhinal cortex is divided into a lateral (LEA) and medial (MEA)
part that each consist of a number of RGNGs with different grid spacings and
grid orientations. While the MEA is assumed to process information on the rats
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Figure 7.4: Illustration of a putative hierarchical organization between the
entorhinal cortex (LEA,MEA) and the hippocampus (HC). RGNGs with different
grid spacings and grid orientations are drawn as light yellow squares. Each RGNG
in the HC receives feedforward inputs from entorhinal RGNGs with different,
but neighboring grid spacings and grid orientations (blue, green, light gray
connections). Conversely, each entorhinal RGNG receives feedback connections
(red, light gray) from all HC RGNGs it projects to.

location, the LEA is supposed to process information on the visual, auditory,
and olfactory qualities of the environment. The hippocampus (HC) in this
model has a similar structure as it consists of a number of RGNGs with different
grid spacings and grid orientations as well. Each RGNG in the HC receives
feedforward inputs from entorhinal RGNGs with different, but neighboring grid
spacings and grid orientations (blue, green, and light gray connections in fig. 7.4),
i.e., it receives ensemble activations from the LEA as well as the MEA for a
particular “size” of input space regions. Conversely, each entorhinal RGNG
receives feedback connections (red, and light gray connections in fig. 7.4) from
all HC RGNGs it projects to resulting in the feedback scheme described above.
In this simple model the HC receives ensemble activations that describe the rat’s
location and its sensorial qualities. As each TL unit in the HC RGNGs tries
to entirely represent this large input space, it is unlikely that a TL unit will
fire at more than one location per environment resulting in the typical firing
behavior observed in hippocampal place cells including such phenomena like
remapping [118, 115]. In a different context, this simple model may also explain
the observations of Bonnevie et al. [10] who showed that grid cells in the MEA
require an excitatory drive from the hippocampus. In this model, the excitatory
drive would consist of the hippocampal feedback connections to the entorhinal
cortex. As a testable prediction for this hypothesis, the experiments of Bonnevie
et al. could be repeated for the LEA.

On a larger scale it is conceivable how a deep, multi-layered network of RGNGs
could form a high-capacity, autoassociative memory that integrates low level
sensory information into higher level concepts using a bottom-up process while
simultaneously augmenting this process with a stream of top-down feedback
information. In such a system bottom-up sensory information and top-down
information from higher level concepts compete with each other to form a stable,
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coherent representation that is comprised of both “live” sensory data and stored
experiences.

7.3 Summary and Conclusion

The discovery of grid cells by the Moser group [45, 62] provided a new opportunity
to study the behavior of neurons in higher-order parts of the cortex. Since the
firing behavior of grid cells is highly correlated with the animal’s location in
the environment, existing computational models of grid cells explain the cells’
behavior in the wider context of the cognitive map hypothesis, i.e., they view grid
cells as functional parts of a system that supports navigation and self-localization.
In contrast, the computational model of grid cells proposed in this thesis provides
a complementary view on the behavior of grid cells that is not grounded in the
cognitive map hypothesis. Instead, the behavior of grid cells is interpreted as just
one instance of a general processing scheme that may be prevalent throughout
higher-order parts of the cortex.

The central idea underlying this grid cell model consists in the separation of a
general processing scheme that is implemented by a group of grid cells and the
specific information that is processed. As a key contribution this thesis introduced
the recursive growing neural gas (RGNG) algorithm as a possible implementation
of this general processing scheme. Based on extensive baseline tests it could be
shown that an RGNG is able to capture the most salient characteristics of grid
cell firing patterns, i.e., their hexagonal structure, a shared grid spacing and
grid orientation, as well as an even distribution of grid phases within a group
of grid cells. Further experiments demonstrated the robustness of the RGNG
with respect to sequential, and noisy inputs as well as the RGNG’s ability to
process signals from different types of input spaces. In this context it could be
shown that the proposed grid cell model may also explain the grid cell like firing
patterns of primate entorhinal neurons in response to eye movements [83], which
no other grid cell model could explain so far.

In addition to these functional aspects the RGNG grid cell model makes a
number of testable predictions that can be investigated using neurobiological
experiments:

• Each firing field of a grid cell should correspond to a localized activation
in the cell’s dendritic tree.

• A group of grid cells should experience graceful degradation if its members
are gradually inhibited.

• Regions of the brain that contain grid cells, e.g., the MEA should exhibit
a uniform metabolic rate.

• The disruption of feedback connections between the hippocampus and the
LEA should result in similar changes of the firing behavior of LEA cells as
it was observed in case of the MEA.
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Beyond these specific predictions the RGNG model may also support the inter-
pretation of observed firing patterns in cells that do not exhibit a clear hexagonal
firing pattern by providing some intuition on the potential properties of the
involved input space.

Finally, the main hypothesis of this work is the assumption that the RGNG grid
cell model is in fact a general model that describes a prevalent way of information
processing in higher-order parts of the cortex. The fact that cells with grid like
firing fields were found across multiple species as well as multiple regions of the
brain [83, 74, 9, 177, 33] may support this hypothesis to a certain degree. For
example, Jacobs et al. [74] found grid cell like activity of cells – albeit in low
numbers – in several brain areas of humans (entorhinal cortex, hippocampus,
parahippocampal gyrus, amygdala, cingulate cortex, frontal cortex, fig. A.3a).
Furthermore, the theoretical considerations regarding properties of the RGNG
input space encoding as well as aspects of a potential hierarchical organization
suggest that the proposed RGNG-model could function as a building block within
a deep, autoassociative memory network. In this regard the RGNG-model may
also find uses outside its main neuroscientific objective as a potential object of
research in the area of machine learning.
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Appendix

A.1 Supplementary Empirical Data

(a) (b)

(c) (d)

Figure A.1: Distribution of gridness scores in layer II (a), layer III (b), layer V
(c), and layer VI (d) of MEA published by Sargolini et al. [141]. Red lines
indicate gridness of 0.
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(a) (b) (c)

Figure A.2: Distribution of gridness scores in MEA (a), PrS (b), and PaS (c)
published by Boccara et al. [9]. Red lines indicate 99th percentile of shuffled
distributions.

(a)

(b)

(c)

Figure A.3: Distribution of gridness scores in other species. (a) Gridness distri-
bution found in the entorhinal cortex (EC), hippocampus (H), parahippocampal
gyrus (PHG), Amygdala (A), cingulate cortex (CC), and frontal cortex (Cx) of
humans published by Jacobs et al. [74]. Black bars represent grid scores above
the 95th percentile of shuffled data. (b) Gridness distribution found in the MEA
of bats published by Yartsev et al. [177]. Red bar indicates the 95th percentile
of shuffled data. (c) Gridness distribution found in the MEA of mice published
by Domnisoru et al. [33]. Red bar indicates the 95th percentile of shuffled data
at 0.34. Horizontal axis ranges from −0.5 to 1.5.
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A.2 Supplementary Simulation Data

Figure A.4: Merged artificial rate maps of 40 simulation runs with varying
number θ1�M of TL units (columns), varying learning rates θ1�ǫb and θ1�ǫn
(rows), and varying number θ2�M of BL units (sub-columns). Artificial rate
maps are merged in two different ways (sub-rows): either by summation (SUM)
or by using the maximum value for each location (MAX). The color gradient
from dark blue to dark red represents the range 0 . . .maxsum in case of SUM,
and the range 0 . . . 1 in case of MAX.
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Figure A.5: Merged artificial rate maps of 30 simulation runs with fixed primary
learning rate θ1�ǫb = 0.05, varying number θ1�M of TL units (columns), varying
secondary learning rate θ1�ǫn (rows), and varying number θ2�M of BL units
(sub-columns). Artificial rate maps are merged in two different ways (sub-rows):
either by summation (SUM) or by using the maximum value for each location
(MAX). The color gradient from dark blue to dark red represents the range
0 . . .maxval in case of SUM, and the range 0 . . . 1 in case of MAX.
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Figure A.6: Examples of artificial rate maps in 30 simulation runs with fixed
primary learning rate θ1�ǫb = 0.005, varying number θ1�M of TL units (columns),
varying secondary learning rate θ1�ǫn (rows), and varying number θ2�M of BL
units (sub-columns). Each simulation run is represented by two representative
artificial rate maps.
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A.3 Supplementary Implementation Details

Figure A.7: Call graph for a single call to the input function F in a RGNG
with three layers (L1, L2, L3). Executing F in layer L1 results in θ1�M (M1)
calls to function D, a single call to function A with learning rate θ1�ǫb (eb1),
and O (θ1�M − 1) (M1’) calls to function A with learning rate θ1�ǫn (en1),
where O (θ1�M − 1) is the potential size of the direct neighborhood of the
corresponding BMU. The calls to D and A result in recursive calls to F on
the next lower layer. Note that functions A temporarily change the learning
rates for their calls to F . The recursion stops when a layer is reached where
the prototypes are vectors (indicated by dark blue boxes). The colored cirlces
indicate the origin of the learning rates (eb1,eb2,etc.) used to adapt the different
units.
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