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Abstract

In many forecast evaluation applications, standard tests (e.g., Diebold and Mariano, 1995) as
well as tests allowing for time-variation in relative forecast ability (e.g., Giacomini and Rossi,
2010) build on heteroskedasticity-and-autocorrelation consistent (HAC) covariance estimators.
Yet, the �nite-sample performance of these asymptotics is often poor. �Fixed-b� asymptotics
(Kiefer and Vogelsang, 2005), used to account for long-run variance estimation, improve �nite-
sample performance under homoskedasticity, but lose asymptotic pivotality under time-varying
volatility. Moreover, loss of pivotality due to time-varying volatility is found in the standard
HAC framework in certain cases as well. We prove a wild bootstrap implementation to restore
asymptotically pivotal inference for the above and new CUSUM- and Cramér-von Mises based
tests in a fairly general setup, allowing for estimation uncertainty from either a rolling window
or a recursive approach when �xed-b asymptotics are adopted to achieve good �nite-sample
performance. We then investigate the (time-varying) performance of professional forecasters
relative to naive no-change and model-based predictions in real-time. We exploit the Survey of
Professional Forecasters (SPF) database and analyze nowcasts and forecasts at di�erent hori-
zons for output and in�ation. We �nd that not accounting for time-varying volatility seriously
a�ects outcomes of tests for equal forecast ability: wild bootstrap inference typically yields con-
vincing evidence for advantages of the SPF, while tests using non-robust critical values provide
remarkably less. Moreover, we �nd signi�cant evidence for time-variation of relative forecast
ability, the advantages of the SPF weakening considerably after the �Great Moderation�.
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1 Introduction

Forecasting plays a crucial role in economics, �nance and many other disciplines. Policy makers,

�rms, investors and households have various needs for macroeconomic predictions. Many of those

are available, e.g., from the IMF and OECD, governmental forecasts like `Teal Book' forecasts from

the Federal Reserve, or commercial forecasters (e.g., Blue Chip Economic Indicators, Data Resources

Inc. or the Survey of Professional Forecasters [SPF]). The SPF is the most comprehensive database

available to assess the performance of professional forecasters. A fundamental question is then

whether SPF forecasts outperform simple (model-based) alternatives, that is, have signi�cantly

smaller forecast error loss di�erentials on average. E.g., Zarnowitz and Braun (1993) reveal that

SPF forecasts perform well in comparison to standard time series models (see also Croushore, 1993;

Stark, 2010). With data from 1969 to 2017, we re-evaluate SPF forecasts for US output growth and

GDP de�ator in�ation using robust inference methods.

This long evaluation period contains subsamples with structural changes mainly due to the �Great

Moderation�, but also during and after the �Great Financial Crisis�. The �Great Moderation�

is a period of considerable reduction in macroeconomic volatility as well as of sharp decline in

predictability (Campbell, 2007). The �Great Financial Crisis� changed volatility, although to a lesser

extent than the �Great Moderation�, and yet less is known about its consequences on predictability.

Changing macroeconomic volatility and changing predictability have important implications for

forecast evaluation tests. While the �rst feature typically leads to time-varying volatility (in the

sense of possibly unconditional heteroskedasticity over time) in forecast error loss di�erentials, the

second might imply an instability of their mean. Ignoring these features may lead to signi�cant size

distortions and power losses; see the rich literature on forecasting in unstable environments (e.g.,

Giacomini and Rossi, 2010; Rossi, 2013; Coroneo and Iacone, 2020).

Here, we discuss the Diebold and Mariano (DM, 1995), �uctuation (Giacomini and Rossi, 2010) as

well as new CUSUM and Cramér-von Mises tests from the perspective of time-variation, in particular

time-varying volatility. While the DM test focuses on comparisons in stable environments, the

latter three statistics capture time-varying relative forecast performance explicitly. The �uctuation,

CUSUM and Cramér-von Mises statistics are however generally not robust to time-varying volatility,

as their limiting null distributions depend on limit processes for partial sums, which do not converge

to standard Wiener processes under time-varying volatility (cf. Section 2.2).

Moreover, we conduct the discussion in the ��xed-b� paradigm as pioneered by Kiefer and Vo-
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gelsang (2005). This paradigm goes beyond the standard heteroskedasticity- and autocorrelation

consistent [HAC] framework (see the seminal contributions of Newey and West, 1987; Andrews,

1991), in which e.g. Diebold and Mariano (1995) and Giacomini and Rossi (2010) also derive their

limiting distributions for the cited test statistics. HAC permits to use critical values from stan-

dard distributions, like the χ2 or standard normal. These asymptotic distributions, however, turn

out to be rather poor approximations to actual �nite-sample distributions. Hence, substantial size

distortions arise in practice. In particular, test results turn out to be sensitive to the choice of

bandwidth B and kernel k employed for long-run variance estimation. The poor performance of

HAC's asymptotic approximation can be explained by the �small-b� requirement that a vanishing

fraction b := B/P → 0 of the number of observations P be used for estimating autocovariances,

while of course b > 0 in �nite-samples. To tackle this issue, Kiefer et al. (2000) and Kiefer and

Vogelsang (2002a,b, 2005) propose ��xed-b� asymptotics, which do not assume that b → 0. This

leads to nonstandard distributions (reviewed in Section 2). Conveniently and unlike in the stan-

dard small-b HAC framework, the new distributions re�ect the choice of B and k even in the limit.

The above papers convincingly demonstrate that the new distributions provide, in the absence of

time-varying variances, substantially better approximations to actual �nite-sample distributions.

For these reasons, Choi and Kiefer (2010) advocate the use of Diebold and Mariano (1995) tests

with �xed-b critical values; see also Li and Patton (2018). However, �xed-b critical values rely too

on asymptotics for partial sums, which are a�ected by time-varying volatility, such that the �xed-b

based Diebold and Mariano (1995) test then lacks pivotality, too.

Our main theoretical contribution is then to develop time-varying volatility-robust wild bootstrap

versions of DM, �uctuation (Giacomini and Rossi, 2010) as well as the new CUSUM and Cramér-von

Mises statistics under the �xed-b paradigm. We allow for parameter estimation error (West, 1996)

in estimated nonnested forecast models, and cover both rolling window and recursive estimation for

a fairly general nonlinear GMM setup.

In more detail, Section 2 rigorously shows time-varying variances to a�ect �xed-b limiting distri-

butions of all the above four statistics (discussed in more detail in Subsection 2.1) and thus to

lead to a loss of asymptotic pivotality (see also Müller, 2014, p. 314). This actually emphasizes

a strength of the �xed-b approach, as it implies that the variability of the variances�in�uencing

�nite-sample behavior�is re�ected in the limiting distribution. It does, however, come at the cost

of yet di�erent critical values. Such time-varying variances are pervasive in applied work in general
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and in our empirical application in Section 3 speci�cally.1

Adopting the parameter estimation framework of West (1996) (see Subsection 2.2), we characterize

the resulting additional terms a�ecting the �xed-b distribution of the discussed tests for a class of

generic nonlinear GMM estimators. We then develop a wild bootstrap correction (Subsection 2.3)

replicating these features of the asymptotic distribution and establish its asymptotic validity. An

appendix provides numerical results indicating considerable size distortions, due to time-varying

volatility, resulting from using the non-bootstrapped conventional asymptotic critical values even

in the limit. At the same time, the proposed bootstrap is shown to work well.

Section 3 compares the predictive ability of SPF forecasts for output and in�ation to no-change and

model-based approaches based on rolling window and recursive estimation. We focus on nowcasts,

one-quarter and one-year ahead forecasts and evaluate these by considering the �rst and the �nal

release of data. Overall, we �nd forecast error loss di�erentials to exhibit substantial heteroskedas-

ticity. This has a direct impact on test decisions when comparing outcomes of traditional and our

new robust tests: while the bootstrap provides strong evidence for the superiority of SPF forecasts

(especially for nowcasts), there are notably fewer and weaker rejections when using asymptotic criti-

cal values. Our �ndings strongly suggest that SPF forecasts perform better early in the sample, but

also that this advantage shrank considerably in the 1980s, leading to equal predictive ability starting

in the mid-1980s. There are some signs of recoveries of forecast superiority around 2000 for GDP

de�ator in�ation. We discuss our �ndings in relation to the literature on SPF accuracy, in general

as well as with emphasis on the loss in relative predictability related to the �Great Moderation�.

In recent related work, Coroneo and Iacone (2020) study the use of the full-sample Diebold and

Mariano (1995) statistic T DM for unconditional predictive ability testing. They adopt the frame-

work of Giacomini and White (2006), i.e., they work with observed loss di�erentials�estimated

from rolling forecasts�directly, and hence do not explicitly model e�ects of parameter estimation

in the limiting distributions as we do in our nonlinear GMM setup. Next to an application of

�xed-b inference using the Bartlett kernel, Coroneo and Iacone (2020) use an alternative weighted

periodogram estimate of the long-run variance with associated ��xed-m� asymptotics to improve

the �nite-sample performance of T DM . Additionally, they compare the e�ectiveness of these testing

approaches to a stationary block bootstrap (Politis and Romano, 1994). Their �xed-b and �xed-m

1Indeed, Groen et al. (2013) �nd variance changes to be important for in�ation forecasting. More generally,
time-varying volatility is present in many macroeconomic (e.g., Stock and Watson, 2002; Sensier and van Dijk, 2004;
Justiniano and Primiceri, 2008; Clark and Ravazzolo, 2015) and �nancial (e.g., Guidolin and Timmermann, 2006;
Rapach and Strauss, 2008; Amado and Teräsvirta, 2013) series such as economic growth, in�ation and excess returns.

4



approaches rule out time-varying volatility.2 Under time-varying volatility, as is also present in, e.g.,

their empirical applications to the SPF, Coroneo and Iacone (2020) suggest to split the sample into

subsamples for which an assumption of constant variance is more credible and hence would allow

for the use of standard �xed-b or �xed-m asymptotics. Sometimes, economic considerations (e.g.,

the �Great Moderation�) may provide useful guidance about suitable splits of the whole sample.

However, there are several problems with ad hoc choices regarding selected sample splits. These

issues touch upon the unknown existence, number and locations of break points see, e.g., Rossi and

Sekhposyan (2016). Our proposed tests do not require the researcher to possess such knowledge.

Section 4 concludes. A series of appendices collects proofs (unless indicated otherwise in the main

text), other derivations, simulation results and further empirical results.

2 Fixed-b inference under time-varying volatility

2.1 Hypotheses and tests

We test the null of equal predictive ability of two competing forecasts for a target series zt, either

generated by models or obtained from surveys. We shall not assume a speci�c loss function but

work with generic loss di�erentials directly (Diebold and Mariano, 1995),

yt = Lt (zt+h, f1,t)− Lt (zt+h, f2,t) . (1)

Here, fi,t, i = 1, 2, denote the competing h-step ahead forecasts for time t + h and Lt(u1, u2) the

loss function relevant at time t for horizon h. Typically, one focuses on one horizon h at a time,

and we therefore avoid any explicit dependence of fi,t and Lt on h in the following.

The forecasts fi,t depend on various predictors (including, e.g., zt and lags of zt) in the model-based

case, gathered in the vector xi,t, and on parameters of a model, say θi ∈ RMi . Sometimes, θi

is known, and we write fi,t = fi (xi,t,θi) as �ideal forecasts�.3 In practice, however, parameters

of forecast models are typically unknown, and one uses f̂ ri,t = fi
(
xi,t, θ̂

r

i,t

)
. The notation θ̂

r

i,t

emphasizes that one can update the estimators over time, either in a rolling (r = rol) or a recursive

(r = rec) fashion.

2The sampling properties of the periodogram also depend on time-varying volatility (see, e.g., Demetrescu and
Sibbertsen, 2016).

3This includes cases such as driftless random-walk forecasts that do not require parameter estimation.
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Time-variation in the loss di�erentials (1) may arise for a variety of reasons. The most obvious are

time-varying features in the series zt+h and the forecasts fi,t, but changes in the loss function (such

as di�erent weights attached to forecast errors at di�erent times) may also play a role. Less apparent

but potentially no less important is the e�ect of parameter estimation, f̂ ri,t−fi,t; see Subsection 2.2.

We focus on tests of unconditional (cf. Remark 6 below for alternative cases) equal predictive

accuracy for all t. Hence, the null of interest is that of a zero loss di�erential at each point in time

(Giacomini and Rossi, 2010)

H0 : E (yt) ≡ µt = 0 ∀t,

extending the pair of hypotheses of �average� equal vs. unequal predictive ability as pioneered

by Diebold and Mariano (1995). One may also consider one-sided alternatives, cf., e.g., Remark

3 below. Imposing constancy of µt has important consequences: as pointed out by Giacomini

and Rossi (2010), one can expect some loss of power and reduced interpretability of rejections

by tests based on falsely assuming a (time-)homogenous alternative. We follow the seminal work

of Giacomini and Rossi (2010) and allow for time-variation in µt under the alternative (e.g., as a

consequence of forecast breakdowns or other forms of structural instabilities in the relative predictive

performance).

To accommodate parameter estimation, we follow closely the setup pioneered by West (1996).

There are R preliminary observations used to obtain estimates θ̂1,R and θ̂2,R. These are used to

set up the forecasts f̂1,R and f̂2,R, which are compared with zR+h. Then, for the rolling window

approach, one estimates the parameters using observations t = 2, . . . , R + 1 (resulting in θ̂
rol

i,R+1),

while the estimation sample is expanded by one observation for the recursive approach (resulting

in θ̂
rec

i,R+1). The forecast comparison is then conducted for t = R + 1, until t = R + P − 1.

In total, P observations are available for forecast comparison, zR+h, . . . , zR+P−1+h together with

f̂i,R, . . . , f̂i,R+P−1. According to West (1996), R and P should go to in�nity jointly, with P/R →

π > 0 to ensure that the estimation e�ect is re�ected in the asymptotics.4 To �x ideas, we focus on

the class of (possibly overidenti�ed) GMM estimators with at least as many moment conditions Ni

as parameters Mi. Like in West (1996), pseudo-true values θi are taken to exist, such that, as the

sample size grows, one may write θ̂
r

i,t
p→ θi ∀ t ≥ R, for r ∈ {rol, rec}. Subsection 2.2 states precise

assumptions on the estimators. The observed forecast losses are then given by Lt
(
zt+h, f̂

r
i,t

)
≡

4By considering the contribution of estimation uncertainty, our framework therefore focuses on (adopting the
taxonomy of Giacomini and Rossi, 2010) comparing forecasting models (and, in so doing, on non-nested models)
rather than comparing forecasting methods, as in, e.g., Giacomini and White (2006), where the losses depend on
parameters estimated in sample using so-called limited-memory estimators.
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Lt
(
zt+h, fi

(
xi,t, θ̂

r

i,t

))
, so one uses

ŷrt = Lt
(
zt+h, f̂

r
1,t

)
− Lt

(
zt+h, f̂

r
2,t

)
, t = R, . . . , R+ P − 1, (2)

for testing rather than the infeasible yt.

Testing the null restriction E(yt) = 0 under the assumption of (time-)homogeneity may be done via

a Wald-type statistic building on ŷrt (Diebold and Mariano, 1995; West, 1996). Concretely, let

T DM =
1

P

(∑R+P−1
t=R ŷrt

)2

Ω̂
, (3)

where Ω̂ is a suitable estimator of the relevant long-run variance. Estimation of Ω̂ is discussed in

more detail below. Considering heterogeneity, the �rst method used here to test µt = 0 against

µt 6= 0 without imposing constant expectations is the �uctuations test of Giacomini and Rossi

(2010). With Ω̂ based on all P pseudo out-of-sample observations available,5 consider

T F = max
t∈{bS/2c+R,...,P+R−bS/2c}

∣∣∣∣∣∣ 1√
SΩ̂

t+bS/2c−1∑
j=t−bS/2c

ŷrj

∣∣∣∣∣∣ , S = bνP c with ν ∈ (0, 1) . (4)

We consider two additional statistics to deal with time-varying relative predictive ability, namely a

CUSUM-type and a Cramér-von Mises functional.6 The CUSUM-type statistic is directly based on

the partial sums of ŷrt ,
7

T Q = max
R≤t≤R+P−1

√
S2
t

Ω̂P
with St =

t∑
j=R

ŷrj . (5)

The Cramér-von Mises statistic is given by

T C =
1

P 2

R+P−1∑
t=R

S2
t

Ω̂
. (6)

Standard regularity conditions assumed, the small-b limiting distribution of T x, x ∈ {DM,F,Q,C}
5We hence follow Giacomini and Rossi (2010) and focus on a full-sample estimate of the long-run variance.

In a time-varying framework like the present one, it is, following a suggestion of a referee, natural to also study
time-varying estimates Ω̂t of the long-run variance. We investigate this option in our Monte-Carlo study, but �nd
full-sample estimates to typically perform better, at least in the experiments considered there.

6These appear to be more popular in the statistical literature, with prominent econometric exceptions such as the
KPSS test for stationarity.

7The (perhaps more familiar) CUSUM statistic for a break in mean involves St/t−SP /P . This e�ectively demeans
the series, and such a test is rather for a break in relative predictive power. We however test for departures from the
null µt = 0 rather than µt being a constant unknown mean, so centering St at zero is the natural choice here.
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are known under unconditional homoskedasticity, and can be obtained as particular cases of Propo-

sition 1 below, which deals with the encompassing case of time-varying volatility.

Let us now take a closer look at the long-run variance estimator. Given suitable choices for the

kernel k and the bandwidth B = bbP c(see Newey and West, 1987; Andrews, 1991),

Ω̂ = γ̂0 + 2
P−1∑
j=1

k (j/B) γ̂j (7)

is a long-run variance estimator with γ̂j = P−1
∑R+P−1

t=|j|+R (yt − ȳ)
(
yt−|j|− ȳ

)
. Regularity conditions

assumed, Ω̂ is consistent for the long-run variance of yt. Whenever yt is unobserved, one computes Ω̂

based on ŷrt . However, West (1996) shows that, when parameters need to be estimated, the resulting

long-run variance estimator does not standardize the partial sums of ŷrt correctly in general. See

Theorem 4.1 of West (1996), which also indicates how to explicitly correct the long-run variance

estimator. Yet, we shall not require West's explicit correction here, since the wild bootstrap we use

to deal with time-varying volatility in the �xed-b framework (see Subsection 2.3, and in particular

Step 4 of Algorithm 1) implicitly correctly replicates the behavior of the test statistics in the limit

by constructing bootstrap samples in such a way that they do capture the e�ect of estimation error.

Although (cf. Remark 1 below) the small-b asymptotic distributions of the above statistics do

not depend on k and b,8 Kiefer and Vogelsang (2005) argue for T DM (and this extends to T x,

x ∈ {F,Q,C}) that �nite-sample dependence on tuning parameters translates into poor �nite-

sample behavior. To alleviate this, Choi and Kiefer (2010) resort to �xed-b asymptotics for T DM .

However, �xed-b based limiting distributions are a�ected by time-varying variances, such that one

solution immediately prompts the next problem. Proposition 1 below contains a formal treatment;

see also Demetrescu et al. (2019) and the references therein. To illustrate the main issues with

such time-varying variances, consider the case of known parameters and tests based on T DM . To

make the dependence of the distribution of T DM on k and b explicit, Kiefer and Vogelsang (2005)

let b ∈ (0, 1] in the limit. Under homoskedasticity, the resulting limiting distribution is free of

nuisance parameters (any scale matrix cancelling out), but is nonstandard. Concretely, Choi and

8Since B = bbP c, we may switch freely between the use of the bandwidth B and the fraction b; however, since b
appears in the limit distributions, we use it from now on.
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Kiefer (2010) show that

T DM d→ Bk,b with Bk,b = W 2(1)/Λk,b(W ) and

Λk,b(W ) ≡


−
∫ 1

0

∫ 1
0

1
b2
k′′
(
r−s
b

)
W̄ (r)W̄ (s) drds for k di�erentiable twice

2
b

(∫ 1
0 W̄ (r)2dr −

∫ 1−b
0 W̄ (r + b)W̄ (r)dr

)
for the Bartlett kernel,

(8)

where W̄ (s) ≡W (s)− sW (1) with W (s) a standard Wiener process. The distinct feature of �xed-b

asymptotics is that Bk,b depends on the entire path of the Wiener process W (s) obtained as the

limit process of the partial sums of yt�and not only on W (1), like for small-b. Since time-varying

volatility implies a di�erent limit for partial-sums processes (see, e.g., Cavaliere, 2004), this has

important consequences for �xed-b when the volatility of yt varies over time. Such dependence of

the limiting distributions on the variance pattern extends to the case of estimated parameters and

forecast instabilities; see Proposition 1 below.

Remark 1. For b → 0, Λk,b(W )
d→ 1 and Bk,b

d→ χ2
1 (Kiefer and Vogelsang, 2005). In this sense,

small-b asymptotics are a particular case of �xed-b asymptotics. Interestingly, T DM is asymptoti-

cally robust under the null to time-varying volatility under small-b asymptotics.9 Yet, as mentioned

above, the �nite-sample quality of the HAC-based χ2-approximation is poor, so the two extant op-

tions presented above e�ectively force practitioners to choose for T DM between two problems under

possible time-varying volatility: either non-pivotal �xed-b distributions, or asymptotically robust

small-b distributions with poor �nite-sample quality. �

2.2 Assumptions and limiting behavior

This subsection states our maintained assumptions on the DGP and GMM estimation with Ni ≥Mi

moment conditions, and provides relevant asymptotic theory.

Assumption 1. Let C̄b
i,a ≡

∑b
j=a Ci,j,θi . For t = R, . . . , R + P − 1 and r ∈ {rol, rec}, let the

following decompositions hold:

θ̂
r

i,t = θi +
(
C̄t,′
i,RWi,θi C̄t

i,R

)−1
C̄t,′
i,RWi,θi

t∑
j=R

ai,j,θi + rri,t

where R = t−R+ 1 for r = rol and R = 1 for r = rec. Furthermore,

9The explanation is that the full-sample sum in the numerator of the T DM converges upon normalization to a
normal distribution even under time-varying volatility, while the long-run variance estimator converges under small-b
to the average long-run variance of the loss di�erentials as required for robustness (see Cavaliere, 2004).
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(i) supR<t≤R+P

∥∥rri,t∥∥ = op
(
R−1/2

)
as R,P →∞ with P/R→ π,

(ii) Wi,θi > 0 are deterministic, symmetric full-rank matrices,

(iii) E(ai,t,θi) = 0 and

(iv) C̄t
i,R are full-rank with probability approaching unity as speci�ed in Assumption 4 below.

This assumption gives the usual linearized representation of a standard nonlinear GMM estimator

which minimizes the suitably weighted quadratic form of sample moment conditions. The condition

that E (ai,t,θi) = 0 at the true θi follows from specifying moment conditions for estimating θi.

The Ci,j,θi are the Jacobians of the moment conditions and the Wi,θi are the limiting weighting

matrices (note that the formulation allows for estimated optimal weights). The dependence on θi

arises from having possibly nonlinear moment conditions which are linearized for the asymptotics.

In the linear GMM case, the Ci,j,θi are simply the cross-products of instruments and regressors,

while the ai,t,θi are the products of instruments and regression errors, say, εi,t. Moreover, rri,t = 0 in

the linear setup. For OLS, of course, regressors serve as instruments and weight matrices cancel out.

We thus simply have that θ̂
rol

i,t = θi+
(∑t

j=t−R+1 xj,tx
′
j,t

)−1∑t
j=t−R+1 xi,tεi,t (and analogously for

θ̂
rec

i,t ). Appendix A provides further details for the important special case of a linear regression.

In line with the literature (again, see West, 1996), we assume the loss and forecast functions to be

smooth enough to allow for an evaluation of the impact of the estimation noise. The assumption

covers leading loss functions such as squared error loss as well as generic forecast functions, cf. again

Appendix A for a speci�c example. The gradient characterizing the impact of changes in the

parameters on the loss is

di(f, t) =
∂Lt
∂u2

∣∣∣∣
u1=zt+h

u2=f

∂fi
∂θ

∣∣∣∣
xi,t
θ=t

, (9)

and we assume it to be uniformly continuous in the following sense.

Assumption 2. There exists 0 < ε < 1/2 such that, for the neighbourhood ΦP = ×i=1,2

{
θ̃i :∥∥θ̃i − θi∥∥ < CP−1/2+ε, C > 0

}
of
(
θ′1;θ′2

)′
, it holds as R,P →∞ with P/R→ π that

sup
(θ̃
′
1,θ̃
′
2)′∈ΦP ;t=R,...,P+R−1

∥∥∥di(f̃i,t, θ̃i)− di(fi,t,θi)∥∥∥ p→ 0

where f̃i,t = fi
(
xi,t, θ̃i

)
, i = 1, 2.
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As a consequence, we may write

ŷrt = yt +

2∑
i=1

(−1)i+1d′i(fi,t,θi) ·
(
θ̂
r

i,t − θi
)

+ op (1) , t = R, . . . , R+ P − 1, (10)

where the op (1) term is negligible uniformly in t (see the proof of Lemma 2 below) and (the

transpose of) d′i(fi,t,θi) is de�ned in (9). Assumption 2 serves the same purpose as the corresponding

Assumption 1(b) of West (1996) requiring a certain boundedness of second derivative of the fi,t.

The conditions are useful in this form for dealing with the bootstrap later on; see in particular the

proof of consistency of our proposed bootstrap approach (Proposition 2) below. It is ful�lled, e.g.,

when the Jacobians of di are bounded on ΦP . To describe the e�ect of the �estimation noise� terms

d′i(fi,t,θi) ·
(
θ̂
r

i,t−θi
)
, we make the following mild high-level assumption serving to guarantee a law

of large numbers for the average of the derivatives to hold.10

Assumption 3. As P,R→∞ with P/R→ π, the weak convergence P−1
∑R+[sP ]−1

t=R di(fi,t,θi)⇒

hi(s), i = 1, 2 holds on s ∈ [0, 1], where hi are Lipschitz-continuous deterministic vector functions.

To quantify the departures from the standard small-b limits, we specify the behavior of the moment

conditions jointly with that of yt (and also characterize the limit behavior of the Jacobians of the

moment conditions Ci,j,θi):

Assumption 4. Let ξt =
(
a′1,t,θ1 ,a

′
2,t,θ2

, yt − µt
)′ ∈ RN1+N2+1 s.t. ξt = G(t/R)ṽt. Assume that

(i) G(u) is a matrix of piecewise Lipschitz functions, full-rank at all u ∈ [0, 1 + π],

(ii) ṽt has zero mean and unit long-run covariance, and is L2+δ-bounded for some δ > 0, strictly

stationary and strong mixing with mixing coe�cients α(j) satisfying the summability condition∑
j≥0 α(j)1/p−1/(2+δ) <∞ for some 2 < p < 2 + δ, and

(iii) there exist matrices Ci(u) of deterministic Lipschitz functions, full-rank for all u > 0, such

that the weak convergence R−1
∑[uR]

t=1 Ci,t,θi ⇒ Ci(u) holds on [0, 1 + π].

The structure of G is not restricted, since its role is to generate time-varying, symmetric, positive

de�nite (local) long-run covariance matrices G(t/R)G′(t/R) for ξt. Assumption 4 allows for a

wide range of patterns of time-varying volatility, including (possibly multiple) abrupt or smooth

changes, as well as periodic patterns of heteroskedasticity. The assumption of a non-stochastic

10One could alternatively state slightly more low-level assumptions on average of di(fi,t,θi) for the full sample
t = 1, . . . , R+P − 1. However, as can be seen in (10), one only needs observations at times R, . . . , R+P − 1, so that

we state our assumption on P−1 ∑R+[sP ]−1
t=R di(fi,t,θi) directly.
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variance function G(u) can moreover be relaxed, e.g., under independence conditions between G(u)

and ṽt. The strong mixing condition is fairly mild, too; it is a typical requirement for CLTs and

invariance principles for dependent sequences and allows, under suitable restrictions, for various

forms of e.g. Markov switching or GARCH models (the surveys of Bradley, 2005, and Lindner,

2009, provide more technical discussions).

Partitioning G conformably with the components of ξt, we note that the o�-diagonal blocks induce

(long-run) correlation of the moment conditions and the loss di�erentials, which may therefore

be time-varying. Correspondingly, block diagonality of G implies asymptotic independence of the

average moment conditions and the loss di�erentials, case in which the time-variation is rather in

their marginal covariance matrices. Clearly, the mixing requirement on ξt and the deterministic

limit of the sample averages of the Jacobians of the moment conditions imply short memory, so we

do not allow for unit root behavior of regressors or instruments in the GMM estimation procedure.

We obtain from, e.g., Smeekes and Urbain (2014, Lemma 1) the following partial sum behavior:

Lemma 1. Under Assumption 4 with W a N1 + N2 + 1 vector of independent Wiener processes,

R−1/2
∑[uR]

t=1 ξt ⇒
∫ u

0 G(s)dW (s) ≡ (A′1 (u) ,A′2 (u) , Ay (u))′ on [0, 1 + π].

The process
∫ u

0 G(s)dW (s) is Gaussian with independent, zero-mean increments, but not a Brow-

nian motion as its quadratic variation
∫ s

0 G(r)G′(r)dr is nonlinear whenever G(·) 6= const. In

particular, this can occur due to breaks or smooth transitions in variances or covariances of ξt. Its

components Ai and Ay are simply the limit processes for the partial sums of the GMM moment

conditions and the loss di�erentials, respectively. We then have the following behavior of the partial

sums of ŷrt , r ∈ {rol, rec}, in the evaluation period t = R+ 1, . . . , R+ P .

Lemma 2. Let A(s) ≡ (Ay (1 + sπ)−Ay(1)) /
√
π, and, for r ∈ {rol, rec}, C̃rol

i (s) ≡ Ci(1 + πs)−

Ci(πs), C̃rec
i (s) ≡ Ci(1 + πs), Ã

rol
i (s) ≡ Ai(1 + πs) −Ai(πs) and Ã

rec
i (s) ≡ Ai(1 + πs). Under

Assumptions 1�4 and the null µt = 0 ∀t, we have, for s ∈ [0, 1],

1√
P

R+[sP ]−1∑
t=R

ŷrt ⇒ A(s) +
√
π

2∑
i=1

(−1)i+1
∫ s

0
N r′

i (r)(Mr
i)
−1(r)dhi(r) ≡ Br

G,π(s),

where Mr
i(s) ≡ C̃r′

i (s) Wi,θi C̃r
i(s) and N

r
i(s) ≡ C̃r′

i (s) Wi,θi Ã
r

i(s).

Proof: See Online Appendix.

Remark 2. As already discussed by West (1996, Sec. 4), there are situations in which the e�ect

of estimation error is negligible. Lemma 2 shows that it is su�cient that hi(s) = 0 for all s, as
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the weak limit of P−1/2
∑R+[sP ]

t=R+1 ŷ
r
t then only depends on the limit process for the loss di�erential,

Ay. Verifying whether the condition hi(s) = 0 holds or not in a particular application requires

information beyond the observed forecast errors. A su�cient condition for this to hold is that ∂Lt∂u2
has

zero expectation and is uncorrelated with ∂fi
∂θ for both i = 1, 2. The �rst condition (unbiasedness)

is quite mild. The second, however, implies both f1,t and f2,t to be rational forecasts. The statistics

under study test for equal predictive accuracy only, so rationality may be quite restrictive. It will,

however, at least approximately be met in an interesting situation: under stationarity and estimation

under the relevant loss, their product di (fi,t,θi) may be close to zero because it represents a f.o.c. for

the estimators (following from minimizing the observed loss,
∑
L (zt+h; fi,t(θ)) w.r.t. θ). See, e.g.,

Appendix A for a leading example. The bottom line is that, for all tests considered here, the

estimation e�ect depends in general on the examined forecasting procedures via ∂fi
∂θ . In order to

compare forecasts, one therefore requires information regarding their construction, i.e., information

in addition to the point forecasts and the actual realizations, see West (1996) again.

Lemma 2 con�rms that one also recovers the case without estimation error for π → 0 (i.e., when

�many� preliminary observations R are available relative to the forecasting periods P ), where, again

P−1/2
∑R+[sP ]−1

t=R ŷt ⇒ A(s). At the same time, for π →∞, the estimation e�ect dominates.

When the researcher knows that she is in a situation like one of those discussed in this remark,

she may simply set di = 0 in Step 4 of the bootstrap algorithm 1 introduced in the following

subsection. �

Since the processes Br
G,π are not Brownian motions is general, Lemma 2 implies non-pivotal null

distributions for the statistics of interest. With Λk,b from (8), we have the following

Proposition 1. Under the assumptions of Lemma 2 and the null µt = 0 ∀t, we have for Br
G,π,

r ∈ {rol, rec},

T DM d→ (Br
G,π(1))2/Λk,b

(
Br

G,π

)
, T F ⇒ sup

s∈[ν/2,1−ν/2]

1

ν

∣∣Br
G,π

(
s+ ν

2

)
−Br

G,π

(
s− ν

2

)∣∣√
Λk,b

(
Br

G,π

)
T Q ⇒ sup

s∈[0,1]

∣∣Br
G,π(s)

∣∣√
Λk,b

(
Br

G,π

) , T C ⇒ 1

Λk,b
(
Br

G,π

) ∫ 1

0
(Br

G,π(s))2ds .

Proof: See Online Appendix.

Remark 3. Evidently, the limiting random variables presented in Proposition 1 may, together

with suitable critical values (see Section 2.3), also be adopted for one-sided testing whenever the
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researcher has speci�c alternatives in mind. E.g., a signed version of (5), maxR≤t≤R+P−1 St

/√
Ω̂P ,

together with large quantiles of sups∈[0,1]B
r
G,π(s)

/√
Λk,b

(
Br

G,π

)
may be used for right-tailed CUSUM-

type tests. See Section 3 for an illustration of one-sided testing. �

Remark 4. Notwithstanding Remark 1, the limiting distributions of T F , T Q and T C depend on

the entire path of the processes Br
G,π via their numerator even when b → 0. Therefore, small-b

robustness to time-varying volatility is only given for T DM in general. �

Given the dependence on time-varying variances in this particular form, a wild bootstrap is a

natural candidate to restore asymptotically valid inference. See, e.g., Hansen (2000, p. 106) for an

early application of the wild bootstrap to replicate sampling distributions a�ected by unconditional

heteroskedasticity. We provide implementation details in the next subsection.

Remark 5. There are alternative ways to deal with time-varying (co)variances, some of which we

explore in related work (Demetrescu et al., 2019). These build i) on estimating G and using the

estimate to time-transform the series so as to restore homoskedasticity and hence apply standard

�xed-b inference, or ii) on using a pretesting approach where, depending on the outcome of a test

of no unconditional heteroskedasticity, either standard or heteroskedasticity robust �xed-b methods

are used. We provide evidence that the wild bootstrap's performance is superior in terms of both

size and power. We therefore focus in a wild bootstrap implementation here. �

Remark 6. Tests of equal conditional predictive ability are obtained by leveraging the loss dif-

ferentials with a vector wt of K suitable test functions (Giacomini and White, 2006). To cover

this case, one may set yt = wt (Lt (zt+h, f1,t)− Lt (zt+h, f2,t)) and correspondingly test the null

H0 : E (yt) = 0. Appendix C contains the details of a multivariate implementation of tests of equal

predictive accuracy. Of course, wt = 1 recovers the unconditional approach on which we focus here.

In any case, conditional tests are of course equally a�ected by time-varying volatility. �

2.3 A wild bootstrap correction

To correct for inherent non-pivotality via the wild bootstrap, the bootstrap scheme must replicate

the properties of Br
G,π, r ∈ {rol, rec}, in the limit. In particular, the wild bootstrap algorithm

we propose focuses at replicating the volatility-related time-varying properties of all involved series.

These properties depend, among others, on hi(·), Ci(·), and the joint behavior of Ay(·) and Ai(·).

Since Ci(·), Wi and hi(·) are deterministic, this can be achieved by jointly bootstrapping yt and
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ai,t. To do so, one must however resort to estimated quantities, since yt and especially ai,t are

not observed directly (unless there is no estimation error, such that yt is observed and the other

quantities do not enter the test statistics at all). While ŷrt , r = {rec, rol}, is a natural estimator for

yt, estimates of ai,t,θi , Wi,θi and Ci,t,θi,t require plugging in estimates of θi, leading to Ĉr
i,t, Ŵr

i,t

and âri,t:

Algorithm 1

1. Compute ŷrt from (2) and Ĉr
i,t, Ŵr

i,t and â
r
i,t, r = {rec, rol} as follows:

• For rolling window estimation:

Ĉrol
i,t = C

i,t,θ̂
rol
i,R

, Ŵrol
i,t = W

i,θ̂
rol
i,R

, âroli,t = a
i,t,θ̂

rol
i,R

, for t = 1, . . . , R

Ĉrol
i,t = C

i,t,θ̂
rol
i,t

, Ŵrol
i,t = W

i,θ̂
rol
i,t

, âroli,t = a
i,t,θ̂

rol
i,t

, for t = R+ 1, . . . , R+ P − 1.

• For recursive estimation: set θ̂
rec

i,t = 0 for t < Ni and compute

Ĉrec
i,t = C

i,t,θ̂
rec
i,t
, Ŵrec

i,t = W
i,θ̂

rec
i,t
, âreci,t = a

i,t,θ̂
rec
i,t
, t = 1, . . . , R+ P − 1.

To save computing time, one may evaluate Ĉr
i,t, Ŵr

i,t and ai,t,· at θ̂
r

i,R+P−1.

2. For t = 1, . . . , R+P −1, construct wild bootstrap variates
(
a∗,′1,t,a

∗,′
2,t, y

∗
t

)′
as
(
âr,′1,t, â

r,′
2,t, ŷ

r
t

)′
r∗t ,

where the multipliers r∗t are an i.i.d.(0,1) sequence, independent of the data, with E (|r∗t |w) <

∞ ∀w ∈ N. Note that, for t < R, one may use any values for yt and ŷ
r
t since these do not

enter the test statistics T x, x ∈ {DM,F,Q,C}.

3. Construct the bootstrap analogues

θ̂
∗,r
i,t =

 t∑
j=R

Ĉr,′
i,j Ŵr

i,t

t∑
j=R

Ĉr
i,j

−1
t∑

j=R
Ĉr,′
i,j Ŵr

i,t

t∑
j=R

a∗i,j + θ̂
r

i,R+P

for t = R, . . . , R+ P − 1, where R = t−R+ 1 for r = rol and R = 1 for r = rec.

4. Letting f̂ r,∗i,t = fi
(
xi,t, θ̂

r,∗
i,t

)
, r ∈ {rol, rec}, construct the bootstrap sample

ŷr,∗t = y∗t + d′1(f̂ r,∗1,t , θ̂
∗,r
1,t) ·

(
θ̂
∗,r
1,t − θ̂

r

1,R+P

)
− d′2(f̂ r,∗2,t , θ̂

∗,r
2,t) ·

(
θ̂
∗,r
2,t − θ̂

r

2,R+P

)

for t = R, . . . , R+ P − 1.
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5. Using the bootstrap sample ŷr,∗t , t = R, . . . , R+P −1, compute the bootstrap analogues T x,∗,

x ∈ {DM,F,Q,C}, of the test statistics (3)-(6).

6. Obtain the quantile(s) qx,∗1−α, x ∈ {DM,F,Q,C}, of the respective bootstrap distributions.

In practice, the distribution functions of the bootstrap statistics T x,∗ are not known, but can be

simulated in the usual way by repeating Steps 2 � 5 M times for a reasonably large M to obtain

consistent empirical analogues via Monte Carlo simulation. Typical choices for the distribution of

r∗t are the Gaussian, Rademacher, or Mammen (1993) distributions.

Some additional conditions are required for establishing the validity of this bootstrap.

Assumption 5.

(i) Wi,θi is continuous in θi,

(ii) for max{N1, N2} ≤ t ≤ R+ P − 1, supt
∥∥Ĉr

i,t −Ci,t,θi

∥∥ p→ 0,

(iii) ∃γ > 0 such that supt ‖di(fi,t,θi)‖ = Op
(
P 1/2−γ) and supt

∥∥âri,t − ai,t,θi∥∥ = Op (P−γ),

(iv) E (ṽtṽ
′
t) = c · IN1+N2+1 with c > 0.

Proposition 2. Under Assumptions 1�5, it holds under the null µt = 0 ∀t that

P
(
T x ≥ qx,∗1−α

)
→ α, x ∈ {DM,F,Q,C}, as R,P →∞ with P/R→ π.

Proof: See Online Appendix.

Remark 7. The additional Assumption 5(i)-(iii) refers essentially to required smoothness of Ĉr
i,t

and âri,t as functions of the estimators, and is ful�lled in, e.g., the linear GMM case; see for example

Appendix A. In a nutshell, it transfers the smoothness requirements from Assumption 2 to the

bootstrap world. Assumption 5(iv) implies the proposed bootstrap scheme to asymptotically work

under the additional condition that E (ṽtṽ
′
t) = c·IN1+N2+1, namely that the covariance and long-run

covariance matrices of ṽt are proportional. This is trivially ful�lled in the case without estimation

error, and may for example also be side-stepped when there is one factor driving the volatility

changes having the same impact on all components, i.e., when G(s) = g(s) ·G0 for some constant

full-rank matrix G0 and g(s) a piecewise Lipschitz scalar function. A further slightly more restrictive

example of this condition being ful�lled is given in case of common dynamics. That we require this

condition is a consequence of using a plain-vanilla wild bootstrap in step 2 of the above algorithm,

which imposes no serial correlation in the bootstrap error replicates, therefore producing equal
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covariance and long-run covariance matrices (conditional on the data). The condition would be

violated when, e.g., the researcher overdi�erences the involved series to obtain a reduced-rank long-

run covariance matrix. In such cases, one could for example resort to a sieve wild bootstrap (see, e.g.,

Cavaliere et al., 2010, for an implementation in co-integrated models with time-varying volatility)

or, in a less parametric vein, to a block wild bootstrap (see, e.g., Smeekes and Urbain, 2014, who

explicitly permit singular long-run covariance matrices), both of which allow to capture the relevant

long-run covariance matrix. �

Remark 8. As argued in the proof of Proposition 2, qx,∗1−α remains una�ected under local alterna-

tives µt = R−1/2µ(t/R) with µ a non-zero deterministic Lipschitz function µ(·); see the discussion

following eq. (16) in Appendix B. At the same time, the limiting behavior of T x, x ∈ {DM,F,Q,C}

can easily be seen to change, so that the bootstrap tests have nontrivial local power. �

Remark 9. The algorithm is easily modi�ed to account for the case where only one of the forecasts

involves estimated parameters, or when the two forecasts resort to di�erent estimation schemes, one

rolling and the other recursive. �

Remark 10. While the bootstrap from Algorithm 1 is feasible when a researcher possesses all the

necessary information regarding the construction of the forecast, some external sources (cf. Section

3) only publish point forecasts and actual realizations. Such information is not su�cient to assess

the relative strengths of privately constructed forecast models. Among others, the covariance of Ai

and Ay is often not known to �outsiders�, making it impossible to apply a suitable bootstrap. �

Remark 11. Appendix D presents the results of extensive Monte Carlo simulations con�rming good

�nite-sample performance of the bootstrap versions of all statistics considered in this section. �

Remark 12. Multiple forecast comparisons, e.g., of the kind used for model con�dence sets (Hansen

et al., 2011), may also be implemented using the proposed bootstrap procedure. �

3 Empirical results

3.1 The Survey of Professional Forecasters data - summary statistics

The survey started in 1968 (conducted by the American Statistical Association and the National

Bureau for Economic Research) and is administered by the Federal Reserve Bank of Philadelphia

since 1990. Participants are asked to predict main US macroeconomic variables in the middle of
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each quarter for the current and the following four quarters. We consider two key variables: output

growth (RGDP, �Real Gross National Product/Gross Domestic Product�) and in�ation (PGDP,

�Price Index for Gross National Product/Gross Domestic Product�).11

Our sample includes the 1970s with its severe oil price shocks, leading to increases in macroeconomic

volatility and conversely, the �Great Moderation�, lasting until the mid-1980s, which exhibited a

sharp decline in volatility and predictability (see Campbell, 2007). It is well-documented that the

�Great Moderation� led to enhanced macroeconomic stability which eased forecasting in general,

but also made it more di�cult to beat simple time series models (see, e.g., Stock and Watson, 2007).

Similarly, Groen et al. (2013) �nd that regime changes in the variance play an important role for

real-time (in�ation) forecasting. The sample also covers the �Great Financial Crisis� in 2007/2008.

Such a long sample is interesting as it may be possible to identify di�erent episodes in relative

forecast performance.

We consider three horizons, viz. nowcasting (h = 0), one-quarter ahead (h = 1) and one-year ahead

(h = 4) forecasts, and two vintages (the �rst and �nal releases). Macroeconomic data is often

revised signi�cantly, see Croushore and Stark (2001). Faust and Wright (2013) and Stark (2010)

discuss and demonstrate the importance of the vintage structure when evaluating SPF (in�ation)

forecasts. We compare the SPF to model-based forecasts generated in real-time to enable a fair

comparison with regard to the available information; see also Stark (2010), D'Agostino et al. (2006)

and Coroneo and Iacone (2020).

The dynamic forecast models are economically motivated and include a predictor xt and an autore-

gressive term: zt = θ0 + θ1xt−1 + θ2zt−1 + et. For output, we use the term spread (in short: TMS),

i.e., the di�erence between long-term bond rates and short-term yields, as a predictor. Important

references include Estrella and Hardouvelis (1991) for the term spread being an important predictor

of real output and Giacomini and Rossi (2006) for the instability of its forecasting performance after

the �Great Moderation�. For in�ation, we use a Phillips curve-based model (in short: PC), see, e.g.,

Stock and Watson (1999). Here, xt is the unemployment rate. By using the unemployment rate and

an intercept rather than the unemployment gap, this speci�cation is in line with the assumption

of a constant NAIRU. The forecasting performance of the model and its empirical instability are

investigated in, e.g., Giacomini and Rossi (2009) and recently in Perron and Yamamoto (2019).

11The data �les are located at https://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-
professional-forecasters/data-�les/error-statistics. Appendix J presents some results indicating robustness of our
�ndings when investigating unemployment and housing starts, which are also available from the SPF.
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Figure 1: Loss di�erential series for output growth (RGDP) and GDP de�ator in�ation (PGDP)
of competing forecasts against the SPF (NC: no-change; TMS: term spread; PC: Phillips curve).
Nowcasts are evaluated against the �rst release for mean squared error loss.

Real-time data from the Federal Reserve Bank of Philadelphia12 is used to construct rolling window

and recursive forecasts with R = 60. Interest rate data is taken from the updated data set of

Welch and Goyal (2008).13 In the following, we present evaluation results for the �rst release and

rolling window estimation and discuss di�erences and similarities for the �nal release and recursive

estimation towards the end of this section.

Figure 1 displays representative mean squared error loss di�erentials for h = 0 for the full sample,

which covers 191 quarterly observations from 1969Q4 to 2017Q2.14 The series reveal that (i) loss

di�erentials are mostly, but not always, positive, indicating advantages of SPF forecasts, (ii) there

is potentially some time-variation in the mean, (iii) there are striking volatility changes and (iv)

there is some mild to intermediate autocorrelation. Appendices H and I contain further Figures

12The data �les are located at https://www.philadelphiafed.org/research-and-data/real-time-center/real-time-
data/data-�les.

13See Amit Goyal's website http://www.hec.unil.ch/agoyal/. In the notation of Welch and Goyal (2008, p. 1459),
the ten-year long-term government bond yield and the three-month Treasury bill secondary market rate are labeled
as �lty� and �tbl�, respectively.

14Some series contain a few missing values. Details on imputation are provided in Appendix G. As there are
relatively many missing values in the �rst year of the survey, we decided to start in 1969Q4.
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Table 1: Summary statistics for output growth (RGDP) and GDP de�ator in�ation (PGDP) using
the �rst data release. RelLoss denotes the relative root mean squared error loss of the competing
forecasts against the SPF (NC: no-change; TMS: term spread; PC: Phillips curve); SD(·) labels
the standard deviation of the loss di�erentials in the subsample I (1969-1984), II (1985-2006) or III
(2007-2017). AC(1) denotes the empirical �rst-order autocorrelation coe�cient of the loss di�eren-
tial series.

Statistic RelLoss SD(I) SD(II) SD(III) AC(1)
Sample 1969-2017 1969-1984 1985-2006 2007-2017 1969-2017

RGDP - NC/SPF h = 0 1.69 28.67 4.95 6.02 0.24
h = 1 1.51 60.61 5.49 14.02 0.14
h = 4 1.40 55.26 8.17 15.76 0.44

RGDP - TMS/SPF h = 0 1.52 19.33 4.10 10.39 0.21
h = 1 1.16 16.49 5.42 8.21 0.22
h = 4 1.06 20.27 3.99 1.99 0.04

PGDP - NC/SPF h = 0 1.38 5.88 1.68 2.41 0.08
h = 1 1.23 9.82 2.01 1.91 0.26
h = 4 1.12 16.62 2.33 2.57 0.29

PGDP - PC/SPF h = 0 1.32 5.75 1.43 1.99 -0.02
h = 1 1.26 11.00 1.65 1.83 0.25
h = 4 1.29 22.55 2.41 2.58 0.41

33-37 (49-51) for other horizons and releases with similar patterns.

Table 1 provides summary statistics. We report root mean squared error ratios of competing

forecasts relative to the SPF, such that values > 1 indicate a better performance of the SPF. In all

cases, the SPF appears to outperform its competitors. However, there is some notable heterogeneity.

The SPF is particularly successful at nowcasting (most strongly so for output). The advantages

typically shrink with an increasing forecast horizon. However, the term spread model (TMS) is a

strong competitor at h = 4, while Phillips curve-based (PC) forecasts are less competitive.

Unconditional standard deviations for the subsamples I (1969Q4-1984Q4, 61 observations), II

(1985Q1-2006Q4, 88 observations) and III (2007Q1-2017Q2, 42 observations) indicate strong over-

all changes in volatility. This underlines the need for suitable inferential procedures. Structural

changes associated with the �Great Moderation� are strongest for real GDP growth (with many

break factors being even smaller than 1/5). For output, volatility of loss di�erentials increased a

bit during the �Great Financial Crisis� (relative to the �Great Moderation�), while it stays fairly

constant for in�ation. Finally, the empirical �rst-order autocorrelation coe�cient indicates a mild

to intermediate degree of serial correlation in the loss di�erentials.
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Table 2: Test decisions for the full-sample T DM -statistic for equal predictive ability of competing forecasts against
the SPF (NC: no-change; TMS: term spread; PC: Phillips curve) - either based on wild bootstrap ('bs') or asymptotic
critical values ('asy'). Nowcasts (h = 0), one-quarter (h = 1) and one-year ahead forecasts (h = 4) are evaluated
against the �rst data release. Evaluation sample runs from 1969Q4 to 2017Q2.

RGDP - NC/SPF RGDP - TMS/SPF

h = 0 h = 1 h = 4 h = 0 h = 1 h = 4
b T DM

bs T DM
asy T DM

bs T DM
asy T DM

bs T DM
asy T DM

bs T DM
asy T DM

bs T DM
asy T DM

bs T DM
asy

0 *** *** *** *** *** *** *** *** ** ** * *
0.1 *** *** *** *** *** ** *** *** ** * * *
0.2 *** ** *** ** *** ** *** ** ** ** ** *
0.3 *** * *** * ** * ** ** ** ** ** *
0.4 *** * *** * ** * ** ** ** ** **
0.5 ** * *** * ** * ** * ** ** **
0.6 ** * *** * ** * ** * ** ** **
0.7 ** * *** * * ** * ** ** *
0.8 ** * *** * * ** * ** ** *
0.9 ** * *** * * ** * ** ** *
1 ** * *** * * ** * ** ** *

PGDP - NC/SPF PGDP - PC/SPF

h = 0 h = 1 h = 4 h = 0 h = 1 h = 4
b T DM

bs T DM
asy T DM

bs T DM
asy T DM

bs T DM
asy T DM

bs T DM
asy T DM

bs T DM
asy T DM

bs T DM
asy

0 *** *** *** ** *** *** *** *** *** **
0.1 *** *** *** *** ** * *** *** *** *** *** *
0.2 *** *** *** *** ** * *** ** *** ** *** *
0.3 *** ** *** *** ** * *** ** *** ** *** *
0.4 *** ** *** ** ** * ** * *** ** *** *
0.5 *** ** *** ** ** ** * *** ** ***
0.6 *** ** *** ** ** ** * *** ** ***
0.7 *** ** *** ** ** ** * *** * ***
0.8 *** ** *** ** ** ** * *** ** ***
0.9 *** ** *** ** ** ** * *** ** ***
1 *** ** *** ** ** ** * *** ** ***

3.2 Tests for equal predictive ability and time-variation

For all statistics T x, x ∈ {DM,F,Q,C}, we consider b ∈ {0, 0.1, . . . , 1} for the �xed-b bandwidth

parameter. We thus include a classic Newey-West type statistic (b = 0, see also App. D, fn. 24) and

also the �xed-b versions proposed by Choi and Kiefer (2010). We focus on the Bartlett kernel (i.e.,

k(x) = 1− |x| for |x| < 1 and k(x) = 0 otherwise) due to its higher power relative to the Quadratic

Spectral kernel, where both have similar size (cf. Appendix D). Test decisions and their strengths

based on asymptotic, non-robust (�asy�) and wild bootstrap (�bs�) critical values are compared.

No-change forecasts do not involve parameter estimation while model-based forecasts generally do.

For the SPF, the estimation error is not available and therefore, no correction of estimation error

is applied, see the discussion in Giacomini and Rossi (2010) and Rossi and Sekhposyan (2016).

Therefore, we employ the bootstrap algorithm given in Algorithm 1 with the additional restrictions

21



from Remarks 2 and 9 using M = 5, 000 replications, see also Appendix A for further details.

First, we test for equal predictive ability using the full-sample statistic T DM . Table 2 reports

rejections at signi�cance levels of one, �ve and ten percent. These are labeled as '***', '**' and '*'

to ease the presentation of the many results and to conserve space by not reporting six di�erent

critical values for each statistic. We consider one-sided tests against the alternative that the SPF

outperforms the benchmark.

Starting with output growth (RGDP) and no-change (NC) forecasts, the bootstrap version (sub-

script 'bs') rejects equal predictive ability across the full sample in all cases�at least at the nominal

ten percent level, but mostly at the �ve percent level or lower. This �nding holds for all horizons h

and all values of the bandwidth-parameter b. It thus clearly suggests that the SPF signi�cantly out-

performs its competitors over the full sample. On the contrary, asymptotic critical values produce

far weaker and fewer rejections. Results for the term spread model (TMS) are quite similar.

For GDP de�ator in�ation (PGDP), bootstrap inference leads to rejections at the one percent level

in all cases for the shortest horizons h = 0 and h = 1. Relying on asymptotic critical values mainly

produces rejections at the �ve percent level. We �nd a clear di�erence in test decisions for one-year

ahead forecasts (h = 4): while the bootstrap detects signi�cant di�erences, asymptotic inference

hardly indicates any signi�cant deviation from equal predictive ability. The di�erences between

the outcomes for testing the superiority of the SPF over no-change or Phillips-curve based model

forecasts are quite small.

In sum, the volatility-robust full sample results convincingly indicate the usefulness of the SPF for

both variables, especially at short horizons. We next consider tests suitable for detecting time-

variation in the relative forecast performance. To this end, we proceed in two steps. First, we apply

the T F (with ν = 0.3 as suggested in Giacomini and Rossi, 2010), T Q and T C statistics presented

in Section 2 as two-sided versions to test for time-variation in both directions and to ensure that

we do not overlook potential periods in which the SPF is outperformed by the benchmarks. It may

occur that the SPF is outperformed in some periods and that this feature is reversed in another

part of the sample. Second, we investigate the time-varying nature of relative predictive ability

of the SPF further by studying the time-varying components of the �uctuation and the CUSUM

statistic and consider signed versions of the aforementioned test statistics with one-sided (in favor

of the SPF) critical values, see Remark 3. The time-varying components are in particular the (i)

rolling standardized mean squared error di�erence and (ii) scaled partial sum of the loss di�erential
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Figure 2: The plots show the signed time-varying components of the �uctuation statistic (left axis,
solid black line) and the CUSUM statistic (right axis, dashed-dotted blue line), see equations 4
and 5 and Remark 3. Horizontal dashed lines are the corresponding one-sided �ve percent critical
values for the maximum of the displayed statistics. Nowcasts are evaluated against the �rst release;
b = 0.2, ν = 0.3.
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to identify di�erent episodes of relative predictability, if present.

Tables 3 and 4 report results. Once more, bootstrapped versions of the test statistics provide

stronger rejections than their asymptotic counterparts. Since both T DM (aiming at testing against

a constant alternative) and T x, x ∈ {F,Q,C} (tests allowing for time-varying alternatives) yield

quite similar rejections overall, the current results are not clear-cut as to the nature of the alternative.

Figure 2 reveals a sizable and signi�cant deterioration in nowcast predictability in the early 1980s

associated with the �Great Moderation�. This breakdown is signi�cant and permanent, while the

mild recoveries observed for in�ation (versus no-change forecasts only) in the early 2000s are too

weak for a rejection. For output growth, the results suggest that there is no comeback in relative

predictive ability of the SPF. Interestingly, relative forecast performance did not change a lot during

the �Great Financial Crisis� even though volatility changed somewhat, but to a much lesser extent

when compared to the �Great Moderation�. Appendix H show that these results also hold for other

horizons, see Figures 38-39. Figures 43-45 show the unscaled rolling window mean squared error

di�erence between the SPF and its competitors. They generally support the previous interpretation

and reveal that, at least, no-change forecasts never signi�cantly outperform the SPF. The CUSUM

statistic indicates a breakdown in relative forecast performance as it also turns signi�cant in the

early 1980s, implying that the accumulated changes are large enough for a rejection.15

Our interpretation is that the full sample results are mainly driven by the �rst part of the sample

(until the mid-1980s) in which the SPF clearly performed better. As the statistics for time-variation

further indicate clearly and robustly, the advantages in relative predictability largely disappear in

the mid-1980s. Most of the evidence for time-variation, however, would not have been detected by

a traditional analysis using asymptotic critical values.

Our results are fairly robust with respect to the vintage (�rst and �nal release) and the employed

estimation scheme (rolling and recursive). Starting with the descriptive statistics reported in Tables

8 and 12 (see Appendices H and I), we observe very similar patterns to the baseline case in Table

1. The loss di�erentials in Figures 33-37 and 49-51 generally reveal strong heteroskedasticity. Re-

garding the full sample results (Tables 9 and 13), our main conclusions continue to hold. A notable

di�erence is the case of real output growth when forecasts are evaluated against the �nal rather

than the �rst release. Here, we �nd no more evidence for the superiority of the SPF over the term

15Its behavior at the beginning and end of the sample provides additional information which T F cannot provide
due to trimming. Before 1976, there are signs for time-variation in all series. GDP de�ator in�ation and output
growth apparently exhibit some further time-variation after 2010.
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spread model, except when looking at nowcasts. For in�ation, on the contrary, results are quite

robust throughout various settings. These �ndings are not a�ected by the estimation scheme. When

looking are tests for time-variation, we obtain very similar conclusions, see Tables 10-11 and 14-15.

Figures 46-48 show rolling averages of loss di�erentials16 (analogous to Figure 1); see Figures 40-42

for the components of the statistics designed to detect time-variation (analogous to Figure 2).17 In

nearly all cases, we �nd the same pattern of advantages for the SPF in the early part of the sample

(prior to the �Great Moderation�) with a signi�cant decline in the mid-eighties and limited recovery

in the 2000s (if at all). An exception (for one- and four-quarter ahead forecasts) is the recursively

estimated term spread model for which the relative SPF performance improves since the 2000s.

3.3 Discussion of our results in light of the related literature

We now provide a comparison of our �ndings with those of previous studies on the performance of

the SPF. Most of these use the Diebold and Mariano (1995) test for di�erences in mean squared

error. One strand of the literature deals with the accuracy of the SPF in general, while a second

smaller one focusses on the decline of predictability in connection to the �Great Moderation�. A

comparison is generally complicated by the fact that studies obviously use di�erent variables (and

de�nitions), benchmarks, vintages, horizons, samples etc. However, two articles, viz. D'Agostino

et al. (2006) and Coroneo and Iacone (2020), are particularly close to the scope of our work.

There is some consensus that the SPF provides accurate forecasts, especially nowcasts, for real

output growth and in�ation. Zarnowitz and Braun (1993) and Croushore (1993) (see also references

therein) provide early evidence on the good performance of SPF forecasts for real GDP and in�ation.

Ang et al. (2007) �nd that surveys (including the SPF) forecast in�ation better than macro variables,

time series models (including no-change forecasts as advocated by Atkeson and Ohanian, 2001) and

asset markets. They also �nd that when allowing for time-variation, the SPF dominates throughout

the whole sample. Croushore (2010) �nds con�rmatory evidence using real-time data.

The advantages of SPF nowcasts has been documented in several in�uential studies, e.g., Giannone

et al. (2008). Liebermann (2014) considers real-time nowcasting for output growth and compares

professional forecasters and a dynamic factor model to simple autoregressive and no-change fore-

casts. The author �nds that gains in forecasting accuracy are pronounced for h = 0 and decrease

16See Figures 55-57 for the case of recursively estimated models.
17See Figures 52-54 for the case of recursively estimated models.

27



in h. For a sample from 1985Q1 to 2007Q4, Stark (2010) similarly �nds that the accuracy of the

SPF declines signi�cantly for h > 1, and that the SPF outperforms no-change forecasts.

We now turn to the discussion of D'Agostino et al. (2006) and Coroneo and Iacone (2020). Both use a

naive benchmark (without estimation) under mean squared error loss and deal with time-variation

by running tests on subsamples. In contrast to our tests, theirs are not robust to time-varying

volatility and do not exploit the full sample to formally and endogenously test for time-variation.

Coroneo and Iacone (2020) propose a Diebold and Mariano (1995) statistic with �xed-m asymp-

totics (cf. the introduction). Their full-sample test has good size under homoskedasticity even in

samples of only 40 observations, while tests using standard small-b-type asymptotics are oversized.

Another advantage is the ensured positivity of the estimated long-run variance which is particularly

important in small samples and with relatively long forecast horizons, see e.g. Harvey et al. (2017).

In addition, Coroneo and Iacone (2020) consider a stationary block-bootstrap version of the test

and �nd it to yield better size than standard asymptotics, again under homoskedasticity, and to be

equally powerful as the �xed-m approach. In a sample ranging from 1987Q1 to 2016Q4, the SPF

signi�cantly outperforms a naive random walk in some cases for real output growth and in�ation

(as well as unemployment and interest rates). For output growth and in�ation, there is evidence

against the null at all horizons except three-quarters ahead. Generally, the evidence is stronger for

shorter horizons.

In a subsample analysis with three blocks of ten years of data, the authors investigate time-variation

and �nd: (i) for output growth, the SPF provides constantly superior nowcasts in all three sub-

samples, while the results for other horizons and subsamples are mixed�overall, the evidence is

declining over the subsamples and for horizons beyond one-quarter; (ii) for in�ation, relative ad-

vantages of the SPF are mainly observed for their last subsample period from 2007 to 2016 at all

horizons (except three-quarters ahead). Thus, our �ndings only partly corroborate those of Coroneo

and Iacone (2020, Tables 1 and 2) for these two variables. Unlike Stark (2010) and Coroneo and

Iacone (2020), we do not �nd that the SPF easily outperforms naive output and in�ation forecasts

after the �Great Moderation�. In order to further investigate whether the use of di�erent testing

environments may serve as an explanation for these di�erences, we provide an additional analysis

reported in Appendix K. First, we run the T DM -statistic on each of the three subsamples (for SPF

vs. no-change nowcasts and one-quarter and one-year ahead forecasts). The di�erent tests mostly

agree and give the same answers. Such an outcome is in line with the theory in Section 2 since the
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volatility varies much more across the individual subsamples rather than within. Second, we run

our T x, x ∈ {F,Q}-tests on their subsample to identify periods of instability in relative forecasting

performance and thereby, we are able to further compare the test results in light of the applied

testing environments. Actually, we �nd di�erences as the results do not match very closely. This

leads us to conclude that the observed di�erences in our main analysis may indeed be attributed

to the di�erent tests in use. As a by-product, we further provide evidence for instability within the

subsamples studied in Coroneo and Iacone (2020) and thus recommend the usage of �uctuation and

related tests in general.

D'Agostino et al. (2006) �nd a signi�cant decline in relative predictive accuracy of the SPF for

in�ation and output growth for h = 1 to h = 4. Their full-sample (1975Q1 to 1999Q4) results

indicate that the advantages of the SPF appear to be driven by the period prior to 1985 in which

the SPF outperformed the naive benchmark, with no signi�cant advantage thereafter. This points

strongly to instabilities in the relative forecast performance. Our �ndings corroborate their results

and sharpen them in showing that this phenomenon also holds for nowcasting. In addition, Campbell

(2007), D'Agostino and Whelan (2008) and Gamber and Smith (2009) �nd, through analyses of

various subsamples and consistent with our results, declining predictability of the SPF after the

�Great Moderation� for output growth and in�ation. Explanations regarding the causes of the

forecast breakdown di�er across these studies and remain an open issue.

By applying robust tests to a fairly long sample of more than 40 years, we obtain results which

support several previous �ndings. Among these are (i) the advantages of the SPF for shortest

horizons, but smaller advantages for one-year ahead forecasts; (ii) a signi�cant decline in relative

predictability during the 1980s; (iii) the robustness of the relative performance of the SPF to data

revisions. Our results yield the following new insights: (i) advantages of the SPF forecasts are

minimal in the 1990s, with weak signs of recoveries for GDP de�ator in�ation later on; (ii) relative

forecast performance did not change during the �Great Financial Crisis�, even though volatility

increased (although relatively less than during the �Great Moderation�) and (iii) the time-variation

in the relative performance of the SPF is robust to the evaluation against simple no-change forecasts

and dynamic models based on the term spread or the Phillips curve.

The observed recoveries possibly turn into a signi�cant comeback of SPF forecasts in the future.

In this case, the exact timing would very likely be unknown (Inoue and Rossi, 2005), rendering a

subsample analysis inappropriate. In general, the ad-hoc choice of break points may easily lead to
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biases. Moreover, it is not always possible to invoke economic reasons like the well-studied �Great

Moderation�. In contrast, the methods proposed here are suitable for data containing possibly

multiple unknown breakpoints in forecast performance alongside changes in volatility.

4 Concluding remarks

This paper proposes wild bootstrap tests for equal predictive ability that can be applied when

volatility and relative forecast performance may be time-varying, and proves their validity. Both

features are present in many macroeconomic and �nancial forecast comparisons. The tests account

for, when needed, rolling and recursive estimation of parameters of forecast models. The considered

tests are either full sample tests (Diebold and Mariano, 1995) or CUSUM, Cramér-von Mises and

�uctuation statistics when testing for time-variation. All employ �xed-b asymptotics which deliver

more accurately sized tests in �nite-samples.

Our empirical application investigates the (time-varying) forecast performance of professional fore-

casters obtained from the SPF relative to simple no-change and model-based forecasts in real-time.

The analysis suggests that ignoring time-varying variance seriously a�ects conclusions regarding the

null of equal predictive ability. Traditional tests provide considerably weaker evidence against the

null than the wild bootstrap versions. Tests allowing for time-variation indicate that the SPF had

signi�cant advantages until the mid-1980s, but not thereafter. Further research might address to

what extent the time-varying relative forecast performance can be explained (e.g., Campbell, 2007).

Another interesting avenue is to investigate the Fed's popular `Teal Book' forecasts (e.g., Romer

and Romer, 2000; D'Agostino and Whelan, 2008; Rossi and Sekhposyan, 2016).

References

Amado, C. and T. Teräsvirta (2013). Modelling volatility by variance decomposition. Journal of

Econometrics 175 (2), 142�153.

Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix

estimation. Econometrica 59 (3), 817�858.

Ang, A., G. Bekaert, and M. Wei (2007). Do macro variables, asset markets, or surveys forecast

in�ation better? Journal of Monetary Economics 54 (4), 1163�1212.

Atkeson, A. and L. E. Ohanian (2001). Are phillips curves useful for forecasting in�ation? Federal

Reserve Bank of Minneapolis Quarterly Review 25, 2�11.

Bradley, R. C. (2005). Basic properties of strong mixing conditions. A survey and some open

questions. Probability Surveys 2, 107�144.

30



Campbell, S. D. (2007). Macroeconomic volatility, predictability, and uncertainty in the great

moderation: evidence from the survey of professional forecasters. Journal of Business & Economic

Statistics 25 (2), 191�200.

Cavaliere, G. (2004). Unit root tests under time-varying variances. Econometric Reviews 23 (3),

259�292.

Cavaliere, G., A. Rahbek, and A. M. R. Taylor (2010). Testing for co-integration in vector autore-

gressions with non-stationary volatility. Journal of Econometrics 158 (1), 7�24.

Choi, H. S. and N. M. Kiefer (2010). Improving robust model selection tests for dynamic models.

The Econometrics Journal 13 (2), 177�204.

Clark, T. E. and F. Ravazzolo (2015). Macroeconomic forecasting performance under alternative

speci�cations of time-varying volatility. Journal of Applied Econometrics 30 (4), 551�575.

Coroneo, L. and F. Iacone (2020). Comparing predictive accuracy in small samples using �xed-

smoothing asymptotics. Journal of Applied Econometrics 35 (4), 391�409.

Croushore, D. (1993). Introducing: the survey of professional forecasters. Business Review-Federal

Reserve Bank of Philadelphia 6.

Croushore, D. (2010). An evaluation of in�ation forecasts from surveys using real-time data. The

BE Journal of Macroeconomics 10 (1).

Croushore, D. and T. Stark (2001). A real-time data set for macroeconomists. Journal of Econo-

metrics 105 (1), 111�130.

D'Agostino, A., D. Giannone, and P. Surico (2006). (Un)Predictability and macroeconomic stability.

Working Paper Series 605, European Central Bank .

D'Agostino, A. and K. Whelan (2008). Federal reserve information during the great moderation.

Journal of the European Economic Association 6 (2-3), 609�620.

Davidson, J. (1994). Stochastic Limit Theory. Oxford University Press.

Demetrescu, M., C. Hanck, and R. Kruse (2019). Robust �xed-b inference in the presence of time-

varying volatility. Mimeo.

Demetrescu, M. and P. Sibbertsen (2016). Inference on the long-memory properties of time series

with non-stationary volatility. Economics Letters 144, 80�84.

Diebold, F. X. and R. S. Mariano (1995). Comparing predictive accuracy. Journal of Business &

Economic Statistics 13 (3), 253�263.

Estrella, A. and G. A. Hardouvelis (1991). The term structure as a predictor of real economic

activity. The Journal of Finance 46 (2), 555�576.

Faust, J. and J. H. Wright (2013). Forecasting in�ation. In G. Elliott and A. Timmermann (Eds.),

Handbook of Economic Forecasting, Volume 2, Chapter 1, pp. 2�56. Elsevier.

Gamber, E. N. and J. K. Smith (2009). Are the fed's in�ation forecasts still superior to the private

sector's? Journal of Macroeconomics 31 (2), 240�251.

Giacomini, R. and B. Rossi (2006). How stable is the forecasting performance of the yield curve for

output growth? Oxford Bulletin of Economics and Statistics 68 (s1), 783�795.

Giacomini, R. and B. Rossi (2009). Detecting and predicting forecast breakdowns. Review of

Economic Studies 76 (2), 669�705.

Giacomini, R. and B. Rossi (2010). Forecast comparisons in unstable environments. Journal of

Applied Econometrics 25 (4), 595�620.

31



Giacomini, R. and H. White (2006). Tests of conditional predictive ability. Econometrica 74 (6),

1545�1578.

Giannone, D., L. Reichlin, and D. Small (2008). Nowcasting: The real-time informational content

of macroeconomic data. Journal of Monetary Economics 55 (4), 665�676.

Groen, J. J. J., R. Paap, and F. Ravazzolo (2013). Real-time in�ation forecasting in a changing

world. Journal of Business & Economic Statistics 31 (1), 29�44.

Guidolin, M. and A. Timmermann (2006). An econometric model of nonlinear dynamics in the joint

distribution of stock and bond returns. Journal of Applied Econometrics 21 (1), 1�22.

Hansen, B. E. (2000). Testing for structural change in conditional models. Journal of Economet-

rics 97 (1), 93�115.

Hansen, P. R., A. Lunde, and J. M. Nason (2011). The model con�dence set. Econometrica 79 (2),

453�497.

Harvey, D. I., S. J. Leybourne, and E. J. Whitehouse (2017). Forecast evaluation tests and negative

long-run variance estimates in small samples. International Journal of Forecasting 33 (4), 833�847.

Honaker, J., G. King, and M. Blackwell (2011). Amelia II: A program for missing data. Journal of

Statistical Software 45 (7), 1�47.

Horowitz, J. L. and N. Savin (2000). Empirically relevant critical values for hypothesis tests: A

bootstrap approach. Journal of Econometrics 95 (2), 375�389.

Inoue, A. and B. Rossi (2005). Recursive Predictability Tests for Real-Time Data. Journal of

Business & Economic Statistics 23, 336�345.

Justiniano, A. and G. Primiceri (2008). The time-varying volatility of macroeconomic �uctuations.

American Economic Review 98 (3), 604�641.

Kiefer, N. M. and T. J. Vogelsang (2002a). Heteroskedasticity-autocorrelation robust standard

errors using the Bartlett kernel without truncation. Econometrica 70 (5), 2093�2095.

Kiefer, N. M. and T. J. Vogelsang (2002b). Heteroskedasticity-autocorrelation robust testing using

bandwidth equal to sample size. Econometric Theory 18 (6), 1350�1366.

Kiefer, N. M. and T. J. Vogelsang (2005). A new asymptotic theory for heteroskedasticity-

autocorrelation robust tests. Econometric Theory 21 (6), 1130�1164.

Kiefer, N. M., T. J. Vogelsang, and H. Bunzel (2000). Simple robust testing of regression hypotheses.

Econometrica 68 (3), 695�714.

Li, J. and A. J. Patton (2018). Asymptotic inference about predictive accuracy using high frequency

data. Journal of Econometrics 203 (2), 223�240.

Liebermann, J. (2014). Real-time nowcasting of GDP: A factor model vs. professional forecasters.

Oxford Bulletin of Economics and Statistics 76 (6), 783�811.

Lindner, A. M. (2009). Stationarity, mixing, distributional properties and moments of

GARCH(p,q)�processes. In T. G. Andersen, R. A. Davis, J.-P. Kreiss, and T. Mikosch (Eds.),

Handbook of �nancial time series, pp. 43�69. Springer.

Mammen, E. (1993). Bootstrap and wild bootstrap for high dimensional linear models. Annals of

Statistics 21, 255�285.

Müller, U. K. (2014). HAC corrections for strongly autocorrelated time series. Journal of Business

& Economic Statistics 32 (3), 311�322.

Newey, W. K. and K. D. West (1987). A simple, positive semi-de�nite, heteroskedasticity and

32



autocorrelation consistent covariance matrix. Econometrica 55 (3), 703�708.

Perron, P. and Y. Yamamoto (2019). Testing for changes in forecasting perfor-

mance. Journal of Business & Economic Statistics, Advance online publication.

https://doi.org/10.1080/07350015.2019.1641410.

Politis, D. N. and J. P. Romano (1994). The stationary bootstrap. Journal of the American

Statistical Association 89 (428), 1303�1313.

Rapach, D. E. and J. K. Strauss (2008). Structural breaks and GARCH models of exchange rate

volatility. Journal of Applied Econometrics 23 (1), 65�90.

Romer, C. D. and D. H. Romer (2000). Federal reserve information and the behavior of interest

rates. American Economic Review 90 (3), 429�457.

Rossi, B. (2013). Advances in forecasting under instability. In G. Elliott and A. Timmermann

(Eds.), Handbook of Economic Forecasting, Volume 2, Chapter 21, pp. 1203�1324. Elsevier.

Rossi, B. and T. Sekhposyan (2016). Forecast rationality tests in the presence of instabilities, with

applications to federal reserve and survey forecasts. Journal of Applied Econometrics 31 (3),

507�532.

Sensier, M. and D. van Dijk (2004). Testing for volatility changes in U.S. macroeconomic time

series. The Review of Economics and Statistics 86 (3), 833�839.

Smeekes, S. and J.-P. Urbain (2014). A multivariate invariance principle for modi�ed wild boot-

strap methods with an application to unit root testing. Maastricht University GSBE Research

Memoranda RM/14/008.

Stark, T. (2010). Realistic evaluation of real-time forecasts in the survey of professional forecasters.

Federal Reserve Bank of Philadelphia, Research Department (Special Report), 726�740.

Stock, J. and M. Watson (1999). Forecasting in�ation. Journal of Monetary Economics 44 (2),

293�335.

Stock, J. H. and M. W. Watson (2002). Has the business cycle changed and why? NBER Macroe-

conomics Annual 17 (1), 159�218.

Stock, J. H. and M. W. Watson (2007). Why has U.S. in�ation become harder to forecast? Journal

of Money, Credit and Banking 39 (S1), 3�33.

Welch, I. and A. Goyal (2008). A comprehensive look at the empirical performance of equity

premium prediction. The Review of Financial Studies 21 (4), 1455�1508.

West, K. D. (1996). Asymptotic inference about predictive ability. Econometrica 64 (5), 1067�1084.

Zarnowitz, V. and P. Braun (1993). Twenty-two years of the NBER-ASA quarterly economic outlook

surveys: aspects and comparisons of forecasting performance. In Business cycles, indicators and

forecasting, pp. 11�94. University of Chicago Press.

33



Appendices�Not for publication

A Bootstrap implementation for linear regression forecasts

Here, we work out the corresponding wild bootstrap algorithm for the simple, but important case

of a regression-based prediction using two di�erent sets of predictors, x1,t and x2,t. Let us consider

the following linear predictive models

zt+h = θ′ixi,t + εi,t , t = 1, . . . , R+ P − 1, i = 1, 2, (11)

which we estimate by OLS in an either recursive or rolling scheme. The theoretical forecasts for

zt+h are given by

fi,t = θ′ixi,t, i = 1, 2,

at each step t = R, . . . , R + P − 1. The row version gradient of fi,t is given by x′i,t. Note that x1,t

and x2,t (and thus θ1 and θ2) need not have the same dimensionality.

Then, at each t, the forecasts are generated as f̂i,t = θ̂
′
i,txi,t with θ̂i,t computed recursively, θ̂i,t =

θ̂
rec

i,t , or in a rolling fashion, θ̂i,t = θ̂
rol

i,t . We use a constant quadratic loss, Lt = L(u1, u2) = (u1−u2)2

with partial derivative ∂L/∂u2 = −2(u1 − u2). In the linear regression case, the estimation e�ect

depends on

Ci,t = xi,tx
′
i,t and ai,t,θi = xi,t

(
zt+h − θ′ixi,t

)
= xi,tεi,t.

To account for the estimation e�ect, one needs to replicate the behavior of partial sums of (ai,t, yt)
′;

to do so, we need estimates of these quantities since they are not observed directly. While ŷrt is

the natural estimator for yt for both the recursive and the rolling cases, computing estimates âri,t

requires a set of residuals, say ε̂ri,t.

For the recursive setup, estimate for each t = 1, . . . , R+ P − 1 the LS regression

zj+h = θ̂
rec,′
i,t xi,j + êreci,j,t , j = 1, . . . , t, (12)

where the additional index t in equation (12) indicates the dependence of the estimates on the time

point at which estimation is conducted. Moreover, residuals are denoted by êreci,j,t to emphasize that

a full set of residuals is computed at each time t in a recursive manner (and we do not have one

single set of residuals which we could call ε̂i,t). Then, we use

ε̂reci,t = êreci,t,t (13)

for all t = 1, . . . , R + P − 1. That is, the tth entry, t = 1, . . . , R + P − 1, into the residual vector

used in the bootstrap algorithm (see below) is computed as the last element of the residual vector

resulting from the regression (12), which uses the �rst t observations.

We employ the following bootstrap algorithm for the recursive case:

Algorithm 2
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1. Compute ŷrect from (2) (recall that ŷrect for 1 ≤ t ≤ R − 1, do not enter the test statistic and

may be freely chosen)

2. For all t = 1, . . . , R+ P − 1, compute Ci,t = xi,tx
′
i,t and â

rec
i,t = xi,tε̂

rec
i,t with ε̂reci,t from (13).

3. Generate r∗t wild bootstrap draws, t = 1, . . . , R+ P − 1.

4. Construct
(
a∗,′1,t,a

∗,′
2,t, y

∗
t

)′
as
(
ârec,′1,t , â

rec,′
2,t , ŷ

rec
t

)′
r∗t for t = 1, . . . , R+ P − 1.

5. Compute for t = R, . . . , R+ P − 1

θ̂
rec,∗
i,t =

(
t∑

j=1

Ci,j

)−1 t∑
j=1

a∗i,j + θ̂
rec

i,R+P−1.

6. Compute for t = R, . . . , R+ P − 1

ŷrec,∗t = y∗t − 2
(
zt+h − θ̂

rec,∗ ′
1,t x1,t

)
x′1,t

(
θ̂
rec,∗
1,t − θ̂

rec

1,R+P

)
+ 2

(
zt+h − θ̂

rec,∗ ′
2,t x2,t

)
x′2,t ·

(
θ̂
rec,∗
2,t − θ̂

rec

2,R+P

)
.

7. Compute the test statistics using the bootstrap sample ŷrec,∗t , t = R, . . . , R+ P − 1.

8. Repeat the steps M times and obtain the desired quantile(s).

The wild bootstrap provides asymptotically pivotal inference if supt=1,...,R+P−1 E ‖xi,t‖4 <∞, which

su�ces to verify Assumption 5.(i) in the linear case.

The procedure is similar for rolling window estimation. For each t = R, . . . , R+ P − 1,

zj+h = θ̂
rol,′
i,t xi,j + êroli,j,t , j = t−R+ 1, . . . , t, (14)

At each time t, the forecasts are generated as f̂i,t = θ̂
rol,′
i,t xi,t.

The bootstrap algorithm for the rolling windows case is very similar, but takes into account that we

only resort to estimates from the current window at each t. The biggest change is how we get the

residuals ε̂roli,t entering âroli,t (the rolling version estimate of ai,t). Again, we have multiple variants

to choose ε̂roli,t , given the multitude of computed residuals êroli,j,t. The natural choice is for the rolling

window scheme to take

ε̂roli,t =

êroli,t,R t = 1, . . . , R

êroli,t,t t = R+ 1, . . . , R+ P − 1.
(15)

That is, the last residual from each window is added to the series of residuals as the window rolls

on and the �rst R are the residuals from the �rst window. The changes in the bootstrap algorithm

are as follows. First, compute âroli,t = xi,tε̂
rol
i,t for all t = 1, . . . , R + P , with ε̂roli,t from (15). Second,

generate the bootstrap sample analogously, and compute for t = R, . . . , R+ P − 1

θ̂
rol,∗
i,t =

(
t∑

j=t−R+1

Ci,j

)−1 t∑
j=t−R+1

a∗i,j + θ̂
rol

i,R+P−1.
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Finally, compute

ŷrol,∗t = y∗t − 2
(
zt+h −

(
θ̂
rol,∗
1,t

)′
x1,t

)
x′1,t

(
θ̂
rol,∗
1,t − θ̂

rol

1,t

)
+ 2
(
zt+h −

(
θ̂
rol,∗
2,t

)′
x2,t

)
x′2,t ·

(
θ̂
rol,∗
2,t − θ̂

rol

2,t

)
for t = R, . . . , R+ P − 1

and proceed as before.

B Proofs

Proof of Lemma 2

Consider θ̂
r

i,t for either r = rec or r = rol. Then, given the smoothness of the loss function and the

forecast functions, there exist θ̃i,t between θ̂
r

i,t and θi such that

1√
P

R+[sP ]−1∑
t=R

ŷrt =
1√
P

R+[sP ]−1∑
t=R

yt +
1

P

R+[sP ]−1∑
t=R

d′1(f1,t,θ1) ·
√
P
(
θ̂
r

1,t − θ1

)

− 1

P

R+[sP ]−1∑
t=R

d′2(f2,t,θ2) ·
√
P
(
θ̂
r

2,t − θ2

)
+Qr

s,P

where, with f̃i,t = fi
(
xi,t, θ̃i,t

)
Qr
s,P =

2∑
i=1

(−1)i
1

P

R+[sP ]−1∑
t=R

(
d′i(f̃i,t, θ̃i,t)− d′i(fi,t,θi)

)√
P
(
θ̂
r

i,t − θi
)
,

such that, for R ≤ t ≤ P +R− 1,

∣∣Qr
s,P

∣∣ ≤ 2 sup
i,t,θ̃i

∥∥∥di(f̃i,t, θ̃i,t)− di(fi,t,θi)∥∥∥ sup
i,t

√
P
∥∥∥θ̂ri,t − θi∥∥∥ .

Furthermore, it follows from Assumption 1 that

√
R
(
θ̂
rol

i,[uR] − θi
)
⇒

(
(Ci(u)−Ci(u− 1))′ Wi,θi (Ci(u)−Ci(u− 1))

)−1

× (Ci(u)−Ci(u− 1))′ Wi,θi (Ai(u)−Ai(u− 1))
√
R
(
θ̂
rec

i,[uR] − θi
)
⇒

(
C′i (u) Wi,θiCi (u)

)−1
C′i (u) Wi,θiAi (u)

hold on [1, 1 + π]. Hence, with P/R → π > 0 and t > R,
√
P
∥∥θ̂ri,t − θi∥∥ is uniformly bounded

in probability, such that θ̂
r

i,t ∈ ΦP , and therefore θ̃i,t ∈ ΦP , for all t w.p.1, and Assumption 2

ensures that sups∈[0,1]

∣∣∣Qr
s,P

∣∣∣ p→ 0. Since the limit vector processes di(·) are Lipschitz-continuous

and deterministic, the result follows with the continuous mapping theorem [CMT] and the change

of variable u = 1 + sπ.
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Proof of Proposition 1

After using Equation (10) and the uniformity of the op(1) term, the arguments in the proof of

Theorem 2 in Kiefer and Vogelsang (2005) indicate that

Ω̂ = − 1

P 2

P−1∑
i=1

P−1∑
j=1

P 2

B2
k′′
(
i− j
B

)(
1√
P

R+i−1∑
t=R

(
ŷrt − ŷr

))( 1√
P

R+j−1∑
t=R

(
ŷrt − ŷr

))
+ op(1)

for kernels with smooth derivatives, where ·̄ denotes the sample average w̄ = P−1
∑R+P−1

t=R wt for

any choice of wt. We also have

Ω̂ =
2

bP

P∑
i=1

(
1√
P

R+i−1∑
t=R

(
ŷrt − ŷr

))2

− 2

bP

[(1−b)P ]∑
i=1

(
1√
P

R+i−1∑
t=R

(
ŷrt − ŷr

)) 1√
P

R+i+[bP ]−1∑
t=R

(
ŷrt − ŷr

)+ op(1)

for the Bartlett kernel. Lemma 2 then implies, for r = {rec, rol},

1√
P

R+[sP ]−1∑
t=R

(
ŷrt − ŷr

)
=

1√
P

R+[sP ]−1∑
t=R

ŷrt −
[sP ]

P

1√
P

R+P−1∑
t=R

ŷrt ⇒ Br
G,π(s)− sBr

G,π(1);

the CMT then leads to the desired limiting null distributions.

Proof of Proposition 2

To establish the desired result, it su�ces that the bootstrap statistics T x,∗ converge weakly to the

corresponding distributions of T x, x ∈ {DM,F,Q,C}.

To this end, we �rst show that, under the null and local alternatives of the form µt = R−1/2µ(t/R)

for a piecewise Lipschitz function µ, we have on [0, 1 + π]

1√
P

[uR]∑
t=1

 a∗1,t
a∗2,t
y∗t

 p⇒
√
c

 A1 (u)

A2 (u)

Ay (u)


with �

p⇒� standing for weak convergence in probability. Write

1√
P

[uR]∑
t=1

 a∗1,t
a∗2,t
y∗t

 =
1√
P

[uR]∑
t=1

 âr1,t − a1,t,θ1

âr2,t − a2,t,θ2

ŷrt − yt + µt

 r∗t +
1√
P

[uR]∑
t=1

 a1,t,θ1

a2,t,θ2

yt − µt

 r∗t (16)

for u ≤ 1 + π. The condition supt ‖di(fi,t,θi)‖ = Op
(
P 1/2−γ) from Assumption 5 implies for γ > 0

that supt |ŷrt − yt|
p→ 0 � given the behavior of θ̂

rol

i,R+P−1 and θ̂
rec

i,R+P−1 from the proof of Lemma 2,
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such that

sup
t

∥∥∥∥∥
(
âri,t − ai,t,θi
ŷrt − yt + µt

)∥∥∥∥∥ p→ 0,

which implies in turn that, as required for the 1st summand of the r.h.s. of (16) to vanish,

1

P

R+[sP ]−1∑
t=R

∥∥∥∥∥
(
âri,t − ai,t,θi
ŷrt − yt + µt

)
r∗t

∥∥∥∥∥
2

p⇒ 0 (17)

since supt |r∗t | = o∗ (P−γ) for any γ > 0 whenever r∗t has �nite moments of any order, and the �rst

summand on the r.h.s. of (16) vanishes uniformly in u. (Here, o∗p(1) stands for a quantity vanishing

in probability w.r.t. the bootstrap measure.)

Let us now study the 2nd summand of the r.h.s. of (16). We �rst examine the case where the

bootstrap multipliers r∗t are standard normal. Let S∗P (u) denote the normalized partial sums

S∗P (u) =
1√
P

[uR]∑
t=1

 a1,t,θ1

a2,t,θ2

yt − µt

 r∗t :=
1√
P

[uR]∑
t=1

ξ∗t =
1√
P

[uR]∑
t=1

ξtr
∗
t ,

which, conditional on the sample, is a Gaussian process with independent increments. Its covariance

kernel, conditional on the data, is given by

Cov∗ (S∗P (s),S∗P (r)) =
1

P

[min{s,r}R]∑
t=1

ξtξ
′
t E
(

(r∗t )
2
)

=
1

P

[min{s,r}R]∑
t=1

ξtξ
′
t.

Note that, under Assumption 4, we obtain pointwise in s

1

P

[uR]∑
j=1

ξtξ
′
t
p→
∫ u

0
G(r) E

(
ṽtṽ
′
t

)
G′(r)dr = c

∫ u

0
G(r)G′(r)dr (18)

via a Law of Large Numbers for strong mixing processes (see Davidson, 1994, Section 20.6).

Recall that the quadratic covariation process of the desired weak limit,
√
c
∫ u

0 G(r)dW (r), is given

by c
∫ u

0 G(r)G′(r)dr. Then, like in the proof of Lemma A.5 in Cavaliere et al. (2010), weak conver-

gence in probability of the bootstrap partial sums to a Gaussian process with independent increments

and quadratic covariation process c
∫ u

0 G(r)G′(r)dr follows from uniformity of the convergence in

(18).

Uniformity is indeed given, since the increments of the limit c
∫ u

0 G(r)G′(r)dr are positive semidef-

inite by construction, so any quadratic form thereof would be a continuous, nondecreasing function,

hence leading to uniform convergence of the corresponding quadratic forms of the l.h.s. of (18).

Given such univariate uniform convergence of any quadratic form, it follows that convergence in

probability in (18) must be uniform itself.

In the case where the bootstrap multipliers r∗t are not standard normal but follow the Mammen

distribution, say, S∗P (s) is not Gaussian, but weak convergence to a Gaussian process holds condi-

tional on the sample (see, e.g., Davidson, 1994, Corollary 29.14, with r∗t being iid and having �nite
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moments of any order). The result follows along the lines of the Gaussian argument above.

Finally, supt
∥∥Ĉr

i,t −Ci,t,θi

∥∥ p→ 0 implies for either rolling or recursive estimation that

1

R

[uR]∑
t=1

Ĉr
i,j ⇒ Ci (u)

such that, with Wi,· continuous, we have

√
R
(
θ̂
rol,∗
i,[uR] − θ̂

rol

i,R+P

)
p⇒

(
(Ci(u)−Ci(u− 1))′ Wi,θi (Ci(u)−Ci(u− 1))

)−1

× (Ci(u)−Ci(u− 1))′ Wi,θi (Ai(u)−Ai(u− 1))
√
R
(
θ̂
rec,∗
i,[uR] − θ̂

rec

i,R+P

)
p⇒

(
C′i (u) Wi,θiCi (u)

)−1
C′i (u) Wi,θiAi (u)

on [1, 1 + π]. For either estimation scheme, given the behavior of θ̂
r

i,R+P−1 from the proof of Lemma

2, this implies that supR≤t≤R+P−1

∥∥θ̂r,∗i,t −θ̂ri,R+P−1

∥∥ = Op
(
R−1/2

)
, so both θ̂

r

i,R+P−1 and θ̂
r,∗
i,t belong

w.p.1 to the set ΦP . The arguments from the proof of Lemma 2 then apply, and, together with the

change of variable s = (u− 1) /π for 1 ≤ u ≤ π, the CMT implies weak convergence in probability

of the partial sums of ŷr,∗t ,

1√
P

R+[sP ]−1∑
t=R

ŷrol,∗t
p⇒
√
cBrol

G,π (s) and
1√
P

R+[sP ]−1∑
t=R

ŷrec,∗t
p⇒
√
cBrec

G,π (s) . (19)

To complete the result, it is tedious, yet straightforward to obtain a representation of the bootstrap

long-run covariance estimator parallelling to the one in the proof of Proposition 1,

Ω̂∗ = − 1

P 2

P−1∑
i=1

P−1∑
j=1

P 2

B2
k′′
(
i− j
B

)(
1√
P

R+i−1∑
t=R

(
ŷr,∗t − ŷr,∗

))( 1√
P

R+j−1∑
t=R

(
ŷr,∗t − ŷr,∗

))
+ o∗p(1)

for kernels with smooth derivatives, or

Ω̂∗ =
2

bP

P∑
i=1

(
1√
P

R+i−1∑
t=R

(
ŷr,∗t − ŷr,∗

))2

− 2

bP

[(1−b)P ]∑
i=1

(
1√
P

R+i−1∑
t=R

(
ŷr,∗t − ŷr,∗

)) 1√
P

R+i+[bP ]−1∑
t=R

(
ŷr,∗t − ŷr,∗

)+ o∗p(1)

for the Bartlett kernel. Note that the scale factor
√
c cancels out from all four bootstrap statistics

T x,∗, x ∈ {DM,F,Q,C}, and convergence in (19) together with the CMT then implies weak

convergence in probability of T x,∗ to the same distributions as T x as required for the result.
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C The multivariate case

This appendix sketches the modi�cations arising in our procedure when the analyst wishes to study

several loss di�erentials.18 The proofs are trivial generalizations of those presented in Appendix B

and omitted.

A leading scenario of this type, following Giacomini and White (2006), arises in tests of equal

conditional predictive ability.19 Here, the observed loss di�erentials are leveraged with a vector wt

of K test functions (which are measurable w.r.t. the relevant information set; see Giacomini and

White, 2006). The forecast losses are still given by Lt
(
zt+h, f̂i,t

)
= Lt

(
zt+h, fi

(
xi,t, θ̂i,t

))
, so one

uses

ŷt = wt

(
Lt
(
zt+h, f̂1,t

)
− Lt

(
zt+h, f̂2,t

))
, t = R, . . . , R+ P − 1, (20)

for testing. The null is correspondingly that of E (yt) = 0, to be tested using the feasible ŷt.

As is usual in such multivariate settings, we consider two-sided tests. Let Sba ≡
∑b

t=a ŷt and

Qba ≡
(
Sba
)′

Ω̂
−1
Sba, with covariance matrix estimator Ω̂ =

∑P−1
j=−P+1 k (j/B) Γ̂j , where Γ̂|j| =

P−1
∑R+P−1

t=|j|+R
(
ŷt − ¯̂y

) (
ŷt−|j|− ¯̂y

)′
and Γ̂−|j| = Γ̂

′
|j|. The Diebold and Mariano (1995) statistic can

then be written as

T DMK =
1

P
QR+P−1
R . (21)

In a K-variate setup, the �uctuation test of Giacomini and Rossi (2010) requires to compute for

each t = R+ [S/2], . . . , P +R− [S/2] a moving-window based version of (21),

Ft,S =
1

S
Q
t+[S/2]−1
t−[S/2]

and

T FK = max
t∈{R+[S/2],...,R+P−[S/2]}

Ft,S , S = bνP c with ν ∈ (0, 1) . (22)

The CUSUM and Cramér-von Mises statistics can be written as

T QK = max
R≤t≤R+P−1

√
QtR/P and T CK =

1

P 2

R+P−1∑
t=R

QtR. (23)

The multivariate random �xed-b limits of the long-run covariance matrix become

Λk,b (X) ≡

−
1
b2

∫ 1
0

∫ 1
0 k
′′ ( r−s

b

)
X̄(r)X̄(s)′ drds

1
b

(
2
∫ 1

0 X̄(r)X̄(r)′dr −
∫ 1−b

0 X̄(r + b)X̄(r)′ dr −
∫ 1−b

0 X̄(r)X̄(r + b)′ dr
)

for kernels with smooth derivatives and the Bartlett kernel, respectively.

The moment conditions are taken to obey, jointly with yt, a �N1 + N2 + K-dimensional� version

of Assumption 4, which then implies a multivariate analog of Lemma 2, where Ay is K-variate.

18We focus on recursive estimation for brevity, all modi�cations to the rolling case are straightforward.
19It may also be conceivable to study several loss functions simultaneously, but we do not provide the details here.
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Moreover, let the multivariate analog of di be given as

Di(f, t) = wt ·
∂Lt
∂u2

∣∣∣∣
u1=zt+h

u2=f

∂fi
∂θ′

∣∣∣∣
xi,t
θ=t

,

which is smooth in the same sense as di in Assumption 2. Assume analogously that, for R,P →∞
with P/R→ π,

1

P

R+[sP ]−1∑
t=R

Di(fi,t,θi)⇒ Hi(s),

where Hi is deterministic and Lipschitz-continuous.

Lemma 3. Let A(s) ≡ (Ay (1 + sπ)−Ay(1)) /
√
π. For r ∈ {rec, rol}, it holds that

1√
P

R+[sP ]−1∑
t=R

ŷrt ⇒ A(s) +
√
π

2∑
i=1

(−1)i+1

(∫ s

0
N r′

i (r)(Mr
i)
−1(r)dH′i(r)

)′
≡ Br

G,π(s),

on [0, 1], where Mr
i(s) and N

r
i (s) are de�ned in Lemma 2.

In the multivariate case, the statistics are based on quadratic forms. For some vector processX and

(stochastic) matrix T, (a.s.) invertible, de�ne therefore the limiting functionals of the multivariate

test statistics as

F(X,T) = sup
s∈[ν/2;1−ν/2]

1

ν

(
X
(
s+

ν

2

)
−X

(
s− ν

2

))′
T−1

(
X
(
s+

ν

2

)
−X

(
s− ν

2

))
,

Q(X,T) = sup
s∈[0,1]

√
X ′ (s) T−1X (s) and C(X,T) =

∫ 1

0
X ′ (s) T−1X (s) ds.

Proposition 3. Under the assumptions of Lemma 3 and the null, for x ∈ {F,Q,C} and X ∈
{F ,Q, C} we have for either r ∈ {rec, rol} that

T DMK
d→ Br,′

G,π(1) Λ−1
k,b(B

r
G,π)Br

G,π(1) and T xK ⇒ X
(
Br

G,π,Λk,b(B
r
G,π)

)
.

In the multivariate case, the bootstrap algorithm restoring pivotality only requires modi�cation of

the �rst step to account for multivariate ŷt and reads as follows:

Algorithm 3

1. Compute ŷrt from (20) (recall that, for t = 1, . . . , R − 1, ŷrt does not enter the statistic so it

may be freely chosen); for t = 1, . . . , R + P − 1, compute Ĉr
i,t, Ŵr

i,t and â
r
i,t as in Algorithm

1.

2. For t = 1, . . . , R+P−1, draw multipliers r∗t and construct
(
a∗′1,t,a

∗′
2,t,y

∗′
t

)′
as
(
âr,′1,t, â

r,′
2,t, ŷ

r,′
t

)
r∗t .

3. Compute θ̂
rol,∗
i,t or θ̂

rec,∗
i,t for t = R+ 1, . . . , R+ P − 1 like in the algorithm in the main text.

4. With f̂ r,∗i,t = fi
(
xi,t, θ̂

r,∗
i,t

)
, compute for either r = rec or r = rol

ŷr,∗t = y∗t + D1(f̂ r,∗1,t , θ̂
r,∗
1,t) ·

(
θ̂
r,∗
1,t − θ̂

r

1,R+P−1

)
−D2(f̂ r,∗2,t , θ̂

r,∗
2,t) ·

(
θ̂
r,∗
2,t − θ̂

r

2,R+P−1

)
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for t = R, . . . , R+ P − 1.

5. Compute the test statistics of interest using the bootstrap sample ŷr,∗t , t = R, . . . , R+ P − 1.

6. Repeat steps 2�5 M times and obtain the desired quantile(s).
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D Numerical evidence

This section investigates the �nite-sample properties of the di�erent statistics, in view of the asymp-

totic arguments from Section 2.2. We consider both potential time-varying forecasting ability and

estimation uncertainty (cf. Proposition 1). For concreteness, we shall investigate the simple and

widely relevant case of regression-based prediction through competing univariate predictors. Al-

gorithm 2 in Appendix A summarizes the corresponding bootstrap procedure for replicating the

non-pivotal distributions from Proposition 1.

Our main DGP is as follows. We aim to predict an ARMA(1,1)-process zt = 0.4zt−1 + εt + 0.3εt−1,

t = 1, . . . , R + P , through two competing AR(1)-processes xi,t = 0.5xi,t−1 + ui,t, i = 1, 2. Let

ut = (εt, u1,t, u2,t)
′, generated from a multivariate normal distribution with correlation matrix Υt

speci�ed further below. The predictions of zt via the xi,t, and hence loss di�erentials to be used

for all the test statistics, are�unless indicated otherwise�obtained by simple (recursive) OLS as

in (12), taking h = 0 for simplicity.

We study the �uctuation (T F ), CUSUM (T Q) and Cramér-von Mises (T C) statistics discussed in

(4), (5) and (6).20

We also investigate �asymptotic� �xed-b tests for completeness, abbreviated as �asy� in the �gures,

as opposed to �bs� for the bootstrap versions. In these, the �xed-b versions of the T Q, T C and

T F statistics are compared against critical values derived from �xed-b limiting distributions which,

unlike those reported in Proposition 1, do not account for time-varying variances and thus su�er

from non-pivotality under heteroskedasticity. Concretely and directly extending the approach of

Kiefer and Vogelsang (2005), we obtain �xed-b critical values for these tests from simulating the

distributions from Proposition 1 under the homoskedasticity assumption that G(s) = I.21

We furthermore follow up on the suggestion of the editor to explore the e�ectiveness of allowing for a

time-varying version of the estimate Ω̂ from (7) (based on ŷt throughout), generically denoted Ω̂t, for

all the above statistics. Recursive estimates of Ω̂t estimate the autocovariances, for ` = 1, . . . , P , via

γ̂j,` = `−1
∑R+`

t=|j|+R+1

(
ŷt − ¯̂y

) (
ŷt−|j|− ¯̂y

)
, and accordingly, for �xed-b, use a bandwidth B = b · `.22

(For small-b, refer to footnote 24, with P = `.) The rolling estimates, with a window size chosen

as E = [0.3 ·P ] and ` = E + 1, . . . , P , are based on γ̂j,` = E−1
∑R+`

t=|j|+R+1+`−E
(
ŷt − ¯̂y

) (
ŷt−|j| − ¯̂y

)
and B = b · E.23

Under time-varying variances, such an estimate is potentially more e�ective in capturing the be-

havior of the statistics under consideration over time. At the same time, both small- and �xed-b

approaches rely on asymptotics assuming the long-run variance is estimated using the entire sample.

It is an open issue explored in our simulations to what extent asymptotic and bootstrap critical val-

ues accurately re�ect the behavior of the test statistics when computed based on such a time-varying

estimate.
20We additionally considered the one-time reversal (OTR) statistic QLR∗P put forward by Giacomini and Rossi

(2010, Prop. 2). We found the statistic to perform well in situation for which it was designed (viz. small-b and
homoskedasticity), and to have a wild bootstrap version constructed analogously to the statistics analyzed here to
perform similarly to the above tests. Results are not reported for brevity.

21Table 5 in the Appendix E reports these critical values.
22We also impose an initial window size of P/5 to avoid instable long-run variance estimates that might otherwise

arise in very small samples.
23Similar to the recursive setup, we take γ̂j,` = γ̂j,E+1 for the initial period ` = 1, . . . , E.
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R = 300, P = 100, ν = 0.3, δ1 = 1, ζ = 0.9, Bartlett, Mammen, fs

See (4), (5) and (6) for the �uctuation (T F ), CUSUM (T Q) and Cramér-von Mises (T C) statistics. All
statistics are computed based on recursive OLS. �bs� abbreviates the bootstrap versions, cf. Algorithm 2.
�asy� uses standard non-robust �xed- or small-b critical values. �fs� denotes test statistics computed based
on a full-sample estimate of the long-run variance matrix, while �tv� (in later �gures) refers to a time-varying
variance estimate. R denotes the estimation sample, P the prediction sample, ν the relative window width
of T F (see (4)), δ1 the post-break variance and ζ the breakfraction. Bartlett denotes the Bartlett kernel, QS
is short for quadratic spectral (in later �gures). Mammen and Normal (in the additional simulation results)
indicates the bootstrap distribution used in Step 2 of Algorithm 2. See the main text for further details.

Figure 3: Size under homoskedasticity, asymptotic and bootstrap tests, full-sample covariance esti-
mate

The statistics computed with such a time-varying estimate are denoted with �tv� in the �gures, as

opposed to those based on the full-sample estimate Ω̂, denoted by �fs�. More speci�cally and in

line with the logic of the corresponding test statistics, we employ recursive estimates (i.e., using an

increasing window of observations) Ω̂t for T Q and T C and rolling estimates Ω̂t for T F . For the

bootstrap versions of the tests, we also compute corresponding bootstrap estimates of the time-

varying covariances matrix estimates for each point in time R+ 1, . . . , R+ P .

Bootstrapping such long-run variance estimates at each point in time in a Monte Carlo study on a

large parameter grid is computationally rather expensive. The size and power experiments hence

consider and report a (representative) subset of cases from the grid R ∈ {50, 100, 200, 300}, P ∈
{50, 100, 200, 500, 1000}, both the Bartlett and Quadratic Spectral (QS) kernels, b ∈ {0, 0.1, 0.2, . . . , 1}24

and σu ∈ {−0.4,−0.2, 0, 0.2, 0.4, 0.5, 0.6}. Moreover, time-varying variance is introduced by gener-

ating a structural break in the covariance matrix by scaling Υt by δ1 ∈ {1/3, 1, 3}, at break dates

speci�ed further below.

In step 4 of Algorithm 2, we draw r∗t from the Mammen (1993) two-point distribution, but also report

24For b = 0, we use the automatic estimator for B, B̂ = d(4ρ̂2(1 − ρ̂)−4P )1/g with ρ̂ from an approximating
AR(1) model for the series (see Andrews, 1991, eqs. (6.2) and (6.4)). Here, d = 1.1447, g = 3 for the Bartlett and
d = 1.3221, g = 5 for the QS kernel.
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See notes to Figure 3.

Figure 4: Size under homoskedasticity, asymptotic and bootstrap tests, time-varying covariance estimate

robustness checks for normal errors in a supplementary appendix.25 These choices are common in

the literature. In view of the �ndings of Giacomini and Rossi (2010, Table II), we choose a relative

window size of ν = 0.3 for T F . We test against two-sided alternatives at a nominal level of α = 0.1

and use M = 500 bootstrap replications for the wild bootstrap tests.

D.1 Size

The size experiments, based on 5, 000 replications, take Υt = Υ to be an equicorrelation matrix

with identical o�-diagonal elements σu = 0.5. This yields a scenario in which x1,t and x2,t have

equal predictive ability for zt so that the null hypothesis of the tests is true. Here, we scale by δ1

at times [ζ · (R + P )], where ζ ∈ {0.3, 0.6, 0.9}. For instance, δ1 = 1/3 and ζ = 0.9 yield a late

downward break in variance.

First, Figure 3 shows that the full-sample covariance estimate based versions of T Q and T C �xed-b

tests perform well across b under the benchmark case of homoskedasticity (δ1 = 1), as does the

bootstrap T F test. The asymptotic �uctuation test is slightly undersized for b > 0. Unreported

simulations for larger P reveal this to be, as expected, a small-sample phenomenon. It is worth

stressing that Giacomini and Rossi (2010) focus on b = 0, a value for which T F performs very well, so

that our �ndings do not contradict theirs. Also, the results are reminiscent of Kiefer and Vogelsang

(2005)�while �xed-b tests yield good �nite-sample size, there are �nite-sample size distortions for

the small-b versions (Newey and West, 1987; Andrews, 1991), i.e., for b = 0.

The bootstrap appears e�ective in controlling size for both full-sample Ω̂ (Figure 3) and time-varying

25FOR THE REFEREES: please refer to Appendix F.
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Figure 5: Size under heteroskedasticity (late downward break), asymptotic and bootstrap tests, full-sample

Ω̂t (Figure 4) for all statistics. Under asymptotic c.v.s, the use of Ω̂t�which would not have been

necessary given δ1 = 1�however generally leads to somewhat inferior performance for all tests

here, possibly re�ecting the above-mentioned mismatch between the assumptions and practice of

estimating the long-run variance. No clear ranking emerges for the proposals of the present paper.

The non-pivotality of the asymptotic tests under heteroskedasticity becomes apparent in Figures

5-8. Here, the break occurs at observation [0.9 · (300 + 100)] = 360. The �rst R = 300 preliminary

observations have been used for parameter estimation. In particular, the full-sample asymptotic

tests are distorted as soon as b takes moderate or large values. That is, �xed-b versions of the

tests, as predicted by Proposition 1, no longer provide accurate �nite-sample size in the presence

of time-varying variance, although a time-varying estimate appears as an e�ective remedy for some

asymptotic tests in this case (cf. Figures 6 and 8).

In turn and as a result of Proposition 2, the bootstrap �xed-b versions maintain good size. Again,

they are slightly less successful at correcting the well-known small-sample small-b size distortions.

Also, the �xed-b approximations work slightly less well for smaller b, still being close to the standard

small-b case (b = 0), which is in line with Kiefer and Vogelsang (2005). For about b > 0.2, the

bootstrap tests generally perform very well.26

Focussing on the robust bootstrap tests, Figures 9 reveals that there is little to choose between the

Bartlett and QS kernel in terms of size. Both perform similarly well.

Figure 10 demonstrates, for T Q, that P has a minor e�ect on both versions of the bootstrap tests.

Unlike for the time-varying covariance matrix based version, size appears to improve for the full-

26There is some small and unsystematic variation in the empirical sizes when varying b. We consider this to be
due to simulation variability given the relatively small number of Monte Carlo replications for each case.
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Figure 6: Size under heteroskedasticity (late downward break), asymptotic and bootstrap tests, time-varying

sample covariance asymptotic tests, but this �nding is not robust with respect to other ζ and δ1.

We complete the discussion of the size results by an additional experiment in which there is no

orthogonality between residuals and regressors, with corresponding e�ects on the relevance of cor-

recting for estimation error. Concretely, instead of via recursive OLS, we construct the predictions

for zt via the xi,t via recursive instrumental variables (IV) estimation, using the lag of the xi,t, xi,t−1,

as instrument for the predictors. Given the predictors' autoregressive structure, such instruments

satisfy the relevance condition of a valid IV. The only necessary modi�cations in Algorithm 2 pre-

sented in Appendix A are (see also the discussion below Assumption 1) that, now, Ci,t = xi,tx
′
i,t−1

and âi,t = xi,t−1ε̂i,t, with ε̂i,t now denoting the IV residuals.

Figures 11 and 12 present results. These con�rm the capability of the robust bootstrap tests to also

provide accurate inference in IV-based setups, with the asymptotic tests again exhibiting expected

size distortions under heteroskedasticity. We do not observe relevant qualitative di�erences to the

OLS-based results obtained with the same parameters of the DGP (cf. Figures 5 and 6), suggesting

minor importance of the particular estimation scheme at least in the experiments considered here.

D.2 Power

In our power experiments, based on 2, 500 replications, we specify two distinct scenarios. First, we

consider a time-invariant so-called �Toeplitz� structure for Υt. More speci�cally, both εt and u1,t

as well as u1,t and u2,t are correlated (with a correlation coe�cient of σu) while εt and u2,t are

uncorrelated. Thus, x2,t is independent of zt and therefore has no predictive power, in contrast to

x1,t. Time-varying variance is generated as in the size experiments.
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Figure 7: Size under heteroskedasticity (late upward break), asymptotic and bootstrap tests, full-sample

In order to generate time-varying forecasting ability, we specify a simple switch from an equicorre-

lated matrix to a �Toeplitz� matrix at time τ := [R+P/4]. Thus, the structural break in predictive

power emerges from a time-varying correlation matrix Υt. The break date hence is located in the

�rst quarter of the prediction sample and renders the DGP practically relevant.27 Here, the variance

break also occurs at τ .

We �rst consider results from the �Toeplitz� experiments. First, Figures 13 and 14 show that

the power of both bootstrap and asymptotic tests increases in P both for full-sample and time-

varying estimation of the long-run covariance matrix. Second, observing that this power experiment

corresponds to the size study reported in Figures 5 and 6, it comes as no surprise that the power

ranking is strongly a�ected by whether a test accurately exhausts or even exceeds nominal size.

For example, the asymptotic full-sample CUSUM statistic T Q is fairly undersized for b = 0.4,

negatively a�ecting its power. The asymptotic Cramér-von Mises statistic T C is slightly oversized,

with corresponding positive impact on power. Recall that Section D.1 revealed that the bootstrap

tests generally e�ectively exhaust nominal size, implying that their power is either better than

that of the asymptotic tests when the latter are undersized, or more credible when the latter are

oversized. Third, T Q and T C perform well and quite similarly in terms of power.

Upward size distortions are even more pronounced for the asymptotic tests using time-varying

variance estimates (Figure 6), so that their power as reported in Figure 14 is not associated with the

nominal type-I error. Figure 15 therefore reports size-adjusted power, where size-adjusted critical

values�bearing in mind that, as argued forcefully by Horowitz and Savin (2000), the particular

27We also experimented with later values of τ . Of course, a smaller sample in which the predictors' forecasting
ability di�ers translates into lower power, but the general qualitative conclusions of our study remain the same.
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Figure 8: Size under heteroskedasticity (late upward break), asymptotic and bootstrap tests, time-varying

point chosen in composite space of points satisfying the null so as to be able to obtain such critical

values and hence adjusted power is always somewhat arbitrary�are computed from a simulation in

which σu = 0 for both predictors.28

As expected, the test statistics that are somewhat undersized (cf. again Figures 5 and 6) do relatively

better when computing their power from size-adjusted critical values, and the high rejection rates of

the tests that were oversized against unadjusted critical values drop accordingly. When benchmarked

against adjusted critical values, we still �nd the versions of T Q and T C test to perform best under

this speci�c DGP. The �uctuation tests' T F , asy and T F , tv performances come next.

That said, as adjusted critical values are of course not available in practice, it is not clear how to

exploit this �nding in applications. We therefore agree with Horowitz and Savin (2000) that the

bootstrap as, for example, discussed in this paper is a reasonable way to obtain tests with good size

and hence credible power properties in the presence of asymptotically non-pivotal statistics.

In any case, the above power study with constant relative forecasting ability may of course be

somewhat more geared towards statistics such as T Q and T C that take more of a full-sample

perspective than, e.g., T F . We therefore now present some of the results for the time-varying

forecasting ability case in which the predictive power of x2,t for zt is identical to that of x1,t until

τ . After τ , the predictive power of x2,t for zt vanishes. Figures 16 (Bartlett) and 17 (QS) compare

the power for the two kernels in the bootstrap case. Here, we plot power against σu. First and as

expected, the power of all tests increases in |σu|. This is because the predictive power of x1,t for zt

then is larger relative to that of x2,t after τ .

Comparing the entries of Figure 16 with the corresponding one of Figure 17 reveals that the Bartlett

28Alternatively, it would have been no less plausible to set, for example, σu = 0.4 for both predictors.
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Figure 9: Bootstrap size under heteroskedasticity, di�erent kernels

kernel leads to more powerful tests. This is noteworthy, as both variants fairly e�ectively exhaust

nominal size (cf. the entries at σu = 0; see also Figure 9). Figures 16 and 17 also reveal that,

relative to the constant relative forecasting ability case, the di�erent variants of T F become more

attractive compared to T Q and T C . In particular, the bootstrapped version of T F with a time-

varying covariance matrix estimate performs very well. This is intuitive in that the �uctuation

test may be expected to work relatively better in cases in which the relative forecasting ability

is time-varying. Moreover, the use of a time-varying variance estimate seems to further improve

performance in such a setup. In view of the small size distortions of the bootstrap tests, we waive

to report size-adjusted power in this case.

Figures 18-20 demonstrate (for the Bartlett kernel) that power increases in P also under time-

varying relative forecasting ability, the reason being that the time span during which a change in

forecasting ability can be detected also increases. Intuitively, we again �nd the �rolling� T F tests to

perform relatively better in such a scenario. More speci�cally, when assessed against size-adjusted

critical values (computed from a scenario in which σu = 0 throughout), Figure 20 reveals T F with a

time-varying covariance matrix estimate to perform best for P > 200, with the full-sample version

of T Q slightly more powerful for smaller P . A comparison of Figures 15 and 20 however also

reveals that power of all tests is generally lower in the time-varying forecasting ability case. This

is as expected, as there is a smaller period R + P − τ during which they may detect di�erences in

forecasting power. There appears to be no clear pattern in this scenario as to whether a time-varying

or full-sample covariance estimate leads to higher power.
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Figure 10: Size of T Q under heteroskedasticity for di�erent P , asymptotic and bootstrap tests, full-sample
and time-varying
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Figure 11: IV estimation, size under heteroskedasticity, asymptotic and bootstrap tests, time-varying co-
variance estimate
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Figure 12: IV estimation, size under heteroskedasticity, asymptotic and bootstrap tests, time-varying co-
variance estimate
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Figure 13: Power vs. P , constant relative forecasting ability, asymptotic and bootstrap tests, full-sample
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Figure 14: Power vs. P , constant relative forecasting ability, asymptotic and bootstrap tests, time-varying
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Figure 15: �Size-adjusted power� vs. P , constant relative forecasting ability
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Figure 16: Power bootstrap tests vs. σu, time-varying relative forecasting ability, Bartlett
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Figure 17: Power bootstrap tests vs. σu, time-varying relative forecasting ability, Quadratic Spectral
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Figure 18: Power vs. P , time-varying relative forecasting ability, asymptotic and bootstrap tests, full-sample
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Figure 19: Power vs. P , time-varying relative forecasting ability, asymptotic and bootstrap tests, time-
varying
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Figure 20: �Size-adjusted power� vs. P , time-varying relative forecasting ability, asymptotic and bootstrap
tests
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E Asymptotic critical values

b 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10% critical values

T Q

Bartlett 1.97 2.14 2.37 2.63 2.92 3.19 3.46 3.70 3.92 4.14 4.36
QS 1.97 2.25 2.71 3.30 4.08 4.99 5.97 7.02 8.17 9.38 10.68

T C

Bartlett 1.21 1.43 1.71 2.06 2.47 2.91 3.42 3.91 4.35 4.89 5.42
QS 1.22 1.57 2.14 3.08 4.47 6.38 9.09 12.29 16.47 21.75 28.04

T F , ν = 0.3
Bartlett 8.05 8.46 9.87 12.13 15.50 19.38 23.27 27.00 30.46 34.01 37.76

QS 8.05 9.30 13.00 20.79 35.50 56.94 85.95 121.04 164.70 218.95 282.40

T F , ν = 0.5
Bartlett 6.52 7.19 8.55 10.44 12.52 14.86 17.86 20.94 23.83 26.69 29.56

QS 6.53 7.95 11.34 16.57 25.37 39.12 58.27 83.59 115.38 153.14 197.37

T DM

Bartlett 2.71 3.39 4.20 5.19 6.33 7.59 8.91 10.11 11.40 12.75 14.16
QS 2.71 3.76 5.31 7.83 11.52 16.47 22.92 30.83 41.03 53.50 68.53

5% critical values

T Q

Bartlett 2.25 2.49 2.81 3.17 3.50 3.87 4.19 4.49 4.76 5.03 5.30
QS 2.25 2.65 3.32 4.21 5.36 6.76 8.29 9.94 11.65 13.44 15.35
T C

Bartlett 1.69 2.03 2.46 3.07 3.69 4.44 5.16 5.94 6.67 7.44 8.24
QS 1.69 2.26 3.31 5.00 7.86 11.95 17.58 25.19 34.80 46.25 59.28

T F , ν = 0.3
Bartlett 9.58 9.85 11.79 14.80 19.30 24.53 29.33 33.99 37.96 42.41 47.06

QS 9.59 11.17 16.96 29.94 54.87 94.61 150.47 222.97 317.35 428.42 559.59
T F , ν = 0.5

Bartlett 8.14 8.92 10.87 13.57 16.49 19.52 23.79 28.14 31.83 35.77 39.47
QS 8.14 10.08 15.48 24.40 40.58 68.10 105.25 151.32 212.99 288.50 380.02

T DM

Bartlett 3.83 4.97 6.45 8.04 9.79 11.90 13.92 15.91 17.96 20.12 22.26
QS 3.83 5.68 8.64 13.38 21.02 31.57 46.04 65.35 89.22 119.31 151.89

Table 5: Asymptotic critical values

Table 5 reports asymptotic critical values ignoring possible time-varying variance. �Small-b� χ2
1

quantiles are recovered as special cases for the squared Diebold and Mariano (1995) statistic T DM

for b = 0. Also note that, under small-b asymptotics, the critical values are independent of the

kernel (up to simulation variability).
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F Additional simulation results

This section addresses questions raised by the editor and the referees.

Figures 21 and 22 suggest that our key �ndings are robust also to smaller sizes of the estimation

and prediction samples R and P . Similarly, Figures 23 and 24 demonstrate that choosing R small

and P large, i.e., the opposite choices to those in Figures 3 and 4, likewise leaves our conclusions

una�ected. Figures 25 to 28�the counterparts to Figures 3 to 6�provide evidence that it does not

matter if we choose the Mammen or normal distribution for the bootstrap errors.

Finally, Figures 29-32 consider cases (both for homoskedastic and heteroskedastic series) where the

equicorrelated correlation matrix Υt additionally undergoes a break from σu = 0.5 to σu = 0.2 at

τ . Thus, both regressors' predictive ability decreases after τ , but proportionally so. Hence, the

relative predictive performance is una�ected, so that the null hypothesis is true. This design is

inspired by a similar size study of a equal relative predictability scenario in Section 4.1 of Giacomini

and Rossi (2010). The results demonstrate that the conclusions of the corresponding Figures 3-6

also apply here, in particular regarding the robustness of the wild bootstrap implementations put

forward here.
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Figure 21: Size under homoskedasticity in small samples, asymptotic and bootstrap tests, full sample
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Figure 22: Size under homoskedasticity in small samples, asymptotic and bootstrap tests, time-varying
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Figure 23: Size under homoskedasticity, asymptotic and bootstrap tests, small R, large P , full-sample

59



0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

re
je
ct
io
n
ra
te

b

T Q, bs, tv
T C , bs, tv
T F , bs, tv

T Q, asy, tv
T C , asy, tv
T F , asy, tv

R = 100, P = 300, ν = 0.3, δ1 = 1, ζ = 0.9, Bartlett, Mammen, tv

See notes to Figure 3.

Figure 24: Size under homoskedasticity, asymptotic and bootstrap tests, small R, large P , time-varying
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Figure 25: Size under homoskedasticity, asymptotic and bootstrap tests, normal bootstrap errors, full-sample
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Figure 26: Size under homoskedasticity, asymptotic and bootstrap tests, normal bootstrap errors, time-
varying
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Figure 27: Size under heteroskedasticity, asymptotic and bootstrap tests, normal bootstrap errors, full-
sample
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Figure 28: Size under heteroskedasticity, asymptotic and bootstrap tests, normal bootstrap errors, time-
varying
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Figure 29: Size under homoskedasticity, asymptotic and bootstrap tests, equal relative predictability, full-
sample
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Figure 30: Size under homoskedasticity, asymptotic and bootstrap tests, equal relative predictability, time-
varying
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Figure 31: Size under heteroskedasticity, asymptotic and bootstrap tests, equal relative predictability, full-
sample
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Figure 32: Size under heteroskedasticity, asymptotic and bootstrap tests, equal relative predictability, time-
varying
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G Imputation

This appendix contains details on the imputed values for the missing observations in the SPF data

set from the �Forecast Error Statistics for the Survey of Professional Forecasters� obtained from the

Federal Reserve Bank of Philadelphia.

A few missing values in the SPF series and the are imputed via a bootstrap based expectation

maximization [EM] algorithm, see Honaker et al. (2011). The algorithm makes use of the standard

EM algorithm on multiple bootstrapped samples of the original data set (containing missing values)

to obtain imputed values. We use 10,000 bootstrap replications for the EM algorithm. The code

is written in R (by using the Amelia package) and available upon request from the authors. Tables

6�7 contain the imputed values (underlined) in connection to neighboring values. The obtained

bootstrap averages serve as imputed values which are plausible.

Table 6: Data entries for the �rst release of RGDP and PGDP series. #MV gives the number of
missing values in total. For underlined dates imputed values are obtained from the bootstrap-based
EM algorithm. Neighboring values are reported for comparison.

Date RGDP PGDP

1995Q3 4.20481 0.58927
1995Q4 2.41452 2.26685

1996Q1 2.80932 2.60573

#MV 1 1

Table 7: Data entries for four-quarters ahead SPF forecasts. #MV gives the number of missing
values in total. For underlined dates imputed values are obtained from the bootstrap-based EM
algorithm. Neighboring values are reported for comparison.

Date RGDP PGDP

1969Q4 4.03701 3.21260
1970Q1 3.55115 3.56122

1970Q2 3.90855 3.56355

1970Q3 4.05961 3.90631

1970Q4 3.10037 3.01866
1971Q1 4.54798 4.15267

1971Q2 4.26233 2.95183

1975Q2 5.40498 3.50332
1975Q3 5.33554 6.52413

1975Q4 5.02638 6.57499

#MV 5 5
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H Additional empirical results - rolling window

This appendix contains additional empirical results based on rolling window estimation. First, it

reports evaluations against the �nal release, starting with summary statistics. Next, full-sample and

time-variation test results are given. The appendix ends with plots of forecast error loss di�erentials

and graphs for the analysis of time-variation in the relative forecast performance.

Table 8: Summary statistics for output growth (RGDP) and GDP de�ator in�ation (PGDP) using
the �nal data release. RelLoss denotes the relative root mean squared error loss of the competing
forecasts against the SPF (NC: no-change; TMS: term spread; PC: Phillips curve); SD(·) labels
the standard deviation of the loss di�erentials in the subsample I (1969-1984), II (1985-2006) or III
(2007-2017). AC(1) denotes the empirical �rst-order autocorrelation coe�cient of the loss di�eren-
tial series.

Statistic RelLoss SD(I) SD(II) SD(III) AC(1)
Sample 1969-2017 1969-1984 1985-2006 2007-2017 1969-2017

RGDP - NC/SPF
h = 0 1.54 44.66 5.83 8.05 0.11
h = 1 1.39 51.28 7.42 10.57 0.21
h = 4 1.41 62.13 10.63 18.70 0.28

RGDP - TMS/SPF
h = 0 1.34 22.65 5.34 15.45 0.21
h = 1 1.05 18.82 5.63 9.18 0.20
h = 4 1.01 24.03 3.82 2.68 0.03

PGDP - NC/SPF
h = 0 1.35 4.79 1.44 2.30 0.22
h = 1 1.18 9.04 1.61 2.29 0.14
h = 4 1.08 15.47 2.55 2.12 0.33

PGDP - PC/SPF
h = 0 1.35 4.46 1.44 1.82 0.09
h = 1 1.22 10.05 1.62 2.12 0.11
h = 4 1.26 20.93 2.48 2.51 0.43
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Figure 33: Loss di�erential series for output growth (RGDP) and GDP de�ator in�ation (PGDP)
of competing forecasts against the SPF (NC: no-change; TMS: term spread; PC: Phillips curve).
One-quarter ahead forecasts (h = 1) are evaluated against the �rst release.
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Figure 34: Loss di�erential series for output growth (RGDP) and GDP de�ator in�ation (PGDP)
of competing forecasts against the SPF (NC: no-change; TMS: term spread; PC: Phillips curve).
One-year ahead forecasts (h = 4) are evaluated against the �rst release.
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Figure 35: Loss di�erential series for output growth (RGDP) and GDP de�ator in�ation (PGDP)
of competing forecasts against the SPF (NC: no-change; TMS: term spread; PC: Phillips curve).
Nowcasts (h = 0) are evaluated against the �nal release.
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Figure 36: Loss di�erential series for output growth (RGDP) and GDP de�ator in�ation (PGDP)
of competing forecasts against the SPF (NC: no-change; TMS: term spread; PC: Phillips curve).
One-quarter ahead forecasts (h = 1) are evaluated against the �nal release.
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of competing forecasts against the SPF (NC: no-change; TMS: term spread; PC: Phillips curve).
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Figure 38: The plots show the time-varying components of the signed �uctuation statistic (left axis,
solid black line) and the CUSUM statistic (right axis, dashed-dotted blue line), see equations 4
and 5. Horizontal dashed lines are the corresponding one-sided �ve percent critical values for the
maximum of the displayed statistics. One-quarter ahead forecasts (h = 1) are evaluated against the
�rst release; b = 0.2, ν = 0.3.
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Figure 39: The plots show the time-varying components of the signed �uctuation statistic (left axis,
solid black line) and the CUSUM statistic (right axis, dashed-dotted blue line), see equations 4
and 5. Horizontal dashed lines are the corresponding one-sided �ve percent critical values for the
maximum of the displayed statistics. One-year ahead forecasts (h = 4) are evaluated against the
�rst release; b = 0.2, ν = 0.3.
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Figure 40: The plots show the time-varying components of the signed �uctuation statistic (left
axis, solid black line) and the CUSUM statistic (right axis, dashed-dotted blue line), see equations
4 and 5. Horizontal dashed lines are the corresponding one-sided �ve percent critical values for
the maximum of the displayed statistics. Nowcasts (h = 0) are evaluated against the �nal release;
b = 0.2, ν = 0.3.
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Figure 41: The plots show the time-varying components of the signed �uctuation statistic (left axis,
solid black line) and the CUSUM statistic (right axis, dashed-dotted blue line), see equations 4
and 5. Horizontal dashed lines are the corresponding one-sided �ve percent critical values for the
maximum of the displayed statistics. One-quarter ahead forecasts (h = 1) are evaluated against the
�nal release; b = 0.2, ν = 0.3.

78



F
−

st
at

1970 1990 2010

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

0.
0

0.
5

1.
0

1.
5

2.
0

C
U

S
U

M
 s

ta
t

RGDP − NC/SPF

F
−

st
at

1970 1990 2010

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0

0.
0

0.
5

1.
0

C
U

S
U

M
 s

ta
t

RGDP − TMS/SPF

F
−

st
at

1970 1990 2010

0
1

2
3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

C
U

S
U

M
 s

ta
t

PGDP − NC/SPF

F
−

st
at

1970 1990 2010

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

0.
0

0.
5

1.
0

1.
5

2.
0

C
U

S
U

M
 s

ta
t

PGDP − PC/SPF

Figure 42: The plots show the time-varying components of the signed �uctuation statistic (left axis,
solid black line) and the CUSUM statistic (right axis, dashed-dotted blue line), see equations 4
and 5. Horizontal dashed lines are the corresponding one-sided �ve percent critical values for the
maximum of the displayed statistics. One-year ahead forecasts (h = 4) are evaluated against the
�nal release; b = 0.2, ν = 0.3.
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Figure 43: The plots show the rolling mean squared error di�erence (unscaled, ν = 0.3). Nowcasts
(h = 0) are evaluated against the �rst release.
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Figure 44: The plots show the rolling mean squared error di�erence (unscaled, ν = 0.3).
One-quarter ahead forecasts (h = 1) are evaluated against the �rst release.
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Figure 45: The plots show the rolling mean squared error di�erence (unscaled, ν = 0.3).
One-year ahead forecasts (h = 4) are evaluated against the �rst release.
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Figure 46: The plots show the rolling mean squared error di�erence (unscaled, ν = 0.3). Nowcasts
(h = 0) are evaluated against the �nal release.
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Figure 47: The plots show the rolling mean squared error di�erence (unscaled, ν = 0.3).
One-quarter ahead forecasts (h = 1) are evaluated against the �nal release.
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Figure 48: The plots show the rolling mean squared error di�erence (unscaled, ν = 0.3).
One-year ahead forecasts (h = 4) are evaluated against the �nal release.
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I Additional empirical results - recursive estimation

This appendix contains additional empirical for recursive estimation results. First, it reports eval-

uations against the �rst and �nal release, starting with summary statistics. Next, full-sample and

time-variation test results are given. The appendix ends with plots of forecast error loss di�erentials

and graphs for the analysis of time-variation in the relative forecast performance.

Table 12: Summary statistics for output growth (RGDP) and GDP de�ator in�ation (PGDP)
using the �rst and �nal data release. RelLoss denotes the relative root mean squared error loss
of the competing term spread (TMS) and Phillips curve (PC) forecasts against the SPF; SD(·)
labels the standard deviation of the loss di�erentials in the subsample I (1969-1984), II (1985-2006)
or III (2007-2017). AC(1) denotes the empirical �rst-order autocorrelation coe�cient of the loss
di�erential series.

Statistic RelLoss SD(I) SD(II) SD(III) AC(1)
Sample 1969-2017 1969-1984 1985-2006 2007-2017 1969-2017

RGDP (First) - TMS/SPF
h = 0 1.56 18.08 5.85 11.70 0.21
h = 1 1.22 16.34 7.93 13.43 0.28
h = 4 1.10 14.12 4.41 4.17 0.07

RGDP (Final) - TMS/SPF
h = 0 1.34 21.12 6.89 17.10 0.26
h = 1 1.09 18.63 7.84 15.04 0.30
h = 4 1.03 15.01 4.89 4.18 0.05

PGDP (First) - PC/SPF
h = 0 1.36 5.16 1.38 2.24 0.01
h = 1 1.23 9.64 1.52 1.80 0.19
h = 4 1.18 11.80 1.77 2.39 0.13

PGDP (Final) - PC/SPF
h = 0 1.34 4.08 1.21 2.23 0.10
h = 1 1.19 8.77 1.35 2.13 0.06
h = 4 1.16 10.52 1.94 1.87 0.17

86



T
ab
le
13
:
T
es
t
d
ec
is
io
n
s
fo
r
th
e
fu
ll
-s
a
m
p
le
T

D
M
-s
ta
ti
st
ic
fo
r
eq
u
a
l
p
re
d
ic
ti
v
e
a
b
il
it
y
o
f
co
m
p
et
in
g
te
rm

sp
re
a
d
(T

M
S
)
a
n
d
P
h
il
li
p
s
cu
rv
e
(P
C
)
fo
re
ca
st
s
a
g
a
in
st

th
e
S
P
F
-

ei
th
er

b
a
se
d
o
n
w
il
d
b
o
o
ts
tr
a
p
('
b
s'
)
o
r
a
sy
m
p
to
ti
c
cr
it
ic
a
l
va
lu
es

('
a
sy
')
.
N
ow

ca
st
s
(h

=
0
),
o
n
e-
q
u
a
rt
er

(h
=

1
)
a
n
d
o
n
e-
y
ea
r
a
h
ea
d
fo
re
ca
st
s
(h

=
4
)
a
re

ev
a
lu
a
te
d
a
g
a
in
st

th
e
�
rs
t
a
n
d
�
n
a
l
d
a
ta

re
le
a
se
.
E
va
lu
a
ti
o
n
sa
m
p
le
ru
n
s
fr
o
m

1
9
6
9
Q
4
to

2
0
1
7
Q
2
.

R
G
D
P
(F
ir
st
)
-
T
M
S
/
S
P
F

R
G
D
P
(F
in
a
l)
-
T
M
S
/
S
P
F

h
=

0
h

=
1

h
=

4
h

=
0

h
=

1
h

=
4

b
T

D
M

b
s

T
D

M
a
s
y

T
D

M
b
s

T
D

M
a
s
y

T
D

M
b
s

T
D

M
a
s
y

T
D

M
b
s

T
D

M
a
s
y

T
D

M
b
s

T
D

M
a
s
y

T
D

M
b
s

T
D

M
a
s
y

0
*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

0
.1

*
*
*

*
*
*

*
*
*

*
*

*
*
*

*
*
*

*
*
*

*
*
*

0
.2

*
*
*

*
*
*

*
*
*

*
*

*
*
*

*
*
*

*
*
*

*
*

0
.3

*
*
*

*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*

0
.4

*
*

*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*

*
*

0
.5

*
*

*
*

*
*
*

*
*
*

*
*
*

*
*

*
*

*
*

0
.6

*
*

*
*

*
*
*

*
*
*

*
*
*

*
*

*
*

*
*

0
.7

*
*

*
*

*
*
*

*
*
*

*
*
*

*
*

*
*

*
*

0
.8

*
*

*
*

*
*
*

*
*
*

*
*
*

*
*

*
*

*
*

0
.9

*
*

*
*

*
*
*

*
*
*

*
*
*

*
*

*
*

*
*

1
*
*

*
*

*
*
*

*
*
*

*
*
*

*
*

*
*

*
*

P
G
D
P
(F
ir
st
)
-
P
C
/
S
P
F

P
G
D
P
(F
in
a
l)
-
P
C
/
S
P
F

h
=

0
h

=
1

h
=

4
h

=
0

h
=

1
h

=
4

b
T

D
M

b
s

T
D

M
a
s
y

T
D

M
b
s

T
D

M
a
s
y

T
D

M
b
s

T
D

M
a
s
y

T
D

M
b
s

T
D

M
a
s
y

T
D

M
b
s

T
D

M
a
s
y

T
D

M
b
s

T
D

M
a
s
y

0
*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*

*
*
*

*
*
*

0
.1

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*

*
*
*

*
*
*

*
*
*

*
*

*
*
*

*
*

0
.2

*
*
*

*
*
*

*
*
*

*
*

*
*
*

*
*
*
*

*
*

*
*
*

*
*

*
*

*
0
.3

*
*
*

*
*

*
*
*

*
*

*
*
*

*
*
*
*

*
*

*
*
*

*
*

*
*

*
0
.4

*
*
*

*
*

*
*
*

*
*

*
*

*
*
*
*

*
*

*
*
*

*
*

*
*

*
0
.5

*
*
*

*
*

*
*
*

*
*

*
*

*
*

*
*

*
*
*

*
*

*
*

0
.6

*
*
*

*
*

*
*
*

*
*

*
*

*
*
*

*
*

*
*
*

*
*

*
*

0
.7

*
*
*

*
*

*
*
*

*
*

*
*

*
*
*

*
*

*
*
*

*
*

*
*

0
.8

*
*
*

*
*

*
*
*

*
*

*
*

*
*

*
*

*
*
*

*
*

*
*

0
.9

*
*
*

*
*

*
*
*

*
*

*
*

*
*

*
*

*
*
*

*
*

*
*

1
*
*
*

*
*

*
*
*

*
*

*
*

*
*

*
*

*
*
*

*
*

*
*

87



T
ab
le

14
:
T
es
t
d
ec
is
io
n
s
fo
r
th
e
ti
m
e-
va
ri
a
ti
o
n
T
{Q

,C
,F
}
-s
ta
ti
st
ic
s
fo
r
ti
m
e-
va
ri
a
ti
o
n
in

th
e
p
re
d
ic
ti
v
e
a
b
il
it
y
o
f
co
m
p
et
in
g
te
rm

sp
re
a
d
(T

M
S
)
a
n
d
P
h
il
li
p
s
cu
rv
e
(P
C
)

fo
re
ca
st
s
a
g
a
in
st

th
e
S
P
F
-
ei
th
er

b
a
se
d
o
n
w
il
d
b
o
o
ts
tr
a
p
('
b
s'
)
o
r
a
sy
m
p
to
ti
c
cr
it
ic
a
l
va
lu
es

('
a
sy
')
.
N
ow

ca
st
s
(h

=
0
),
o
n
e-
q
u
a
rt
er

(h
=

1
)
a
n
d
o
n
e-
y
ea
r
a
h
ea
d
fo
re
ca
st
s

(h
=

4
)
a
re

ev
a
lu
a
te
d
a
g
a
in
st

th
e
�
rs
t
a
n
d
�
n
a
l
d
a
ta

re
le
a
se
.
E
va
lu
a
ti
o
n
sa
m
p
le
ru
n
s
fr
o
m

1
9
6
9
Q
4
to

2
0
1
7
Q
2
.

R
G
D
P
(F
ir
st
)
-
T
M
S
/S
P
F

h
=

0
h

=
1

h
=

4

b
T
Q b
s

T
Q a
sy
T
C b
s
T
C a
sy
T
F b
s
T
F a
sy
T
Q b
s

T
Q a
sy
T
C b
s
T
C a
sy
T
F b
s
T
F a
sy
T
Q b
s

T
Q a
sy
T
C b
s
T
C a
sy
T
F b
s
T
F a
sy

0
**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
**

**
*

**
*

**
*

**
**
*

0.
1

**
*

**
*

**
*

**
*

**
*

**
*

**
**

*
*

**
*

**
**
*

**
*

0.
2

**
*

**
**
*

**
*

**
*

**
**

**
**

**
*

*
**
*

**
**
*

**
0.
3

**
**

**
**

*
*

**
*

**
*

**
*

**
*

**
*

**
**
*

**
**
*

**
0.
4

**
*

**
**

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
**
*

**
0.
5

*
*

**
**

**
*

**
*

**
*

**
*

**
*

**
**
*

**
**
*

**
0.
6

*
**

**
**

**
**

**
**

**
**
*

**
**
*

**
0.
7

*
**

**
**
*

**
*

**
*

**
*

**
*

**
**
*

**
**
*

**
0.
8

*
*

**
**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
**
*

**
0.
9

*
**

**
**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
**
*

**
1

*
**

**
**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
**
*

**

R
G
D
P
(F
in
al
)
-
T
M
S
/S
P
F

h
=

0
h

=
1

h
=

4

b
T
Q b
s

T
Q a
sy
T
C b
s
T
C a
sy
T
F b
s
T
F a
sy
T
Q b
s

T
Q a
sy
T
C b
s
T
C a
sy
T
F b
s
T
F a
sy
T
Q b
s

T
Q a
sy
T
C b
s
T
C a
sy
T
F b
s
T
F a
sy

0
**
*

**
*

**
*

**
*

**
*

**
*

0.
1

**
**

**
**
*

**
*

**
0.
2

**
**

**
**

**
**

0.
3

**
*

**
**

*
*

0.
4

*
*

**
**

0.
5

*
*

**
**

0.
6

*
*

*
**

0.
7

*
*

**
0.
8

*
*

*
**

0.
9

*
*

**
1

*
*

**

88



T
ab
le
15
:
co
n
ti
n
u
ed

fr
o
m

T
a
b
le
1
4
.

P
G
D
P
(F
ir
st
)
-
P
C
/S
P
F

h
=

0
h

=
1

h
=

4

b
T
Q b
s

T
Q a
sy
T
C b
s
T
C a
sy
T
F b
s
T
F a
sy
T
Q b
s

T
Q a
sy
T
C b
s
T
C a
sy
T
F b
s
T
F a
sy
T
Q b
s

T
Q a
sy
T
C b
s
T
C a
sy
T
F b
s
T
F a
sy

0
**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
**

**
*

*
**
*

**
**

**
*

**
**
*

0.
1

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
**
*

**
*

**
**

**
**

**
*

0.
2

**
*

**
**
*

**
**
*

**
**
*

**
**
*

**
*

**
*

*
*

0.
3

**
*

**
*

**
**

*
**
*

*
**
*

**
*

*
*

*
*

0.
4

**
*

**
**

*
**

**
*

**
*

*
0.
5

**
*

**
**

*
**

**
*

*
0.
6

**
*

**
**

*
**

**
*

*
*

0.
7

**
*

**
**

*
**

**
*

*
*

0.
8

**
*

**
**

*
**

**
*

*
0.
9

**
*

**
**

*
**

**
*

*
1

**
*

**
**

*
**

**
*

*
*

P
G
D
P
(F
in
al
)
-
P
C
/S
P
F

h
=

0
h

=
1

h
=

4

b
T
Q b
s

T
Q a
sy
T
C b
s
T
C a
sy
T
F b
s
T
F a
sy
T
Q b
s

T
Q a
sy
T
C b
s
T
C a
sy
T
F b
s
T
F a
sy
T
Q b
s

T
Q a
sy
T
C b
s
T
C a
sy
T
F b
s
T
F a
sy

0
**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
**

**
**
*

**
**
*

0.
1

**
*

**
*

**
*

**
*

**
*

**
*

**
*

*
**

**
**

**
*

**
**

*
0.
2

**
*

**
**
*

**
**
*

**
**

*
**

**
**

**
*

*
*

0.
3

**
*

**
**

**
**

**
*

*
**
*

**
**

**
*

*
0.
4

**
*

**
**

*
**

*
**

**
*

**
*

0.
5

**
**

**
*

**
*

**
**

*
*

*
0.
6

**
**

*
*

**
*

**
*

**
*

*
*

0.
7

**
**

**
*

**
*

**
*

**
*

**
*

0.
8

**
**

**
*

**
*

*
**
*

**
**

**
*

0.
9

**
**

**
*

**
*

*
**
*

**
*

**
*

1
**

**
**

*
**

*
**
*

**
*

**
*

89



R
G

D
P

 (
F

IR
S

T
)−

 T
M

S
/S

P
F

1970 1980 1990 2000 2010

−
20

0
20

40
60

R
G

D
P

 (
F

IN
A

L)
−

 T
M

S
/S

P
F

1970 1980 1990 2000 2010

−
20

0
20

40
60

80
10

0

P
G

D
P

 (
F

IR
S

T
)−

 P
C

/S
P

F

1970 1980 1990 2000 2010

−
10

0
10

20

P
G

D
P

 (
F

IN
A

L)
−

 P
C

/S
P

F

1970 1980 1990 2000 2010

−
5

0
5

10
15

Figure 49: Loss di�erential series for output growth (RGDP) and GDP de�ator in�ation (PGDP)
of competing TMS forecasts against the SPF. Nowcasts (h = 0) are evaluated against the �rst and
the �nal release.
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Figure 50: Loss di�erential series for output growth (RGDP) and GDP de�ator in�ation (PGDP)
of competing TMS forecasts against the SPF. One-quarter ahead forecasts (h = 1) are evaluated
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Figure 52: The plots show the time-varying components of the signed �uctuation statistic (left axis,
solid black line) and the CUSUM statistic (right axis, dashed-dotted blue line), see equations 4
and 5. Horizontal dashed lines are the corresponding one-sided �ve percent critical values for the
maximum of the displayed statistics. Nowcasts (h = 0) are evaluated against the �rst and �nal
release; b = 0.2, ν = 0.3.
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Figure 53: The plots show the time-varying components of the signed �uctuation statistic (left axis,
solid black line) and the CUSUM statistic (right axis, dashed-dotted blue line), see equations 4
and 5. Horizontal dashed lines are the corresponding one-sided �ve percent critical values for the
maximum of the displayed statistics. One-quarter ahead forecasts (h = 1) are evaluated against the
�rst and �nal release; b = 0.2, ν = 0.3.
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Figure 54: The plots show the time-varying components of the signed �uctuation statistic (left axis,
solid black line) and the CUSUM statistic (right axis, dashed-dotted blue line), see equations 4
and 5. Horizontal dashed lines are the corresponding one-sided �ve percent critical values for the
maximum of the displayed statistics. One-quarter ahead forecasts (h = 4) are evaluated against the
�rst and �nal release; b = 0.2, ν = 0.3.
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Figure 55: The plots show the rolling mean squared error di�erence (unscaled, ν = 0.3). Nowcasts
(h = 0) are evaluated against the �rst and �nal release.
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Figure 56: The plots show the rolling mean squared error di�erence (unscaled, ν = 0.3).
One-quarter ahead forecasts (h = 1) are evaluated against the �rst and �nal release.
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Figure 57: The plots show the rolling mean squared error di�erence (unscaled, ν = 0.3).
One-year ahead forecasts (h = 4) are evaluated against the �rst and �nal release.
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J Additional empirical results - unemployment and housing starts

This section provides some selected results for other SPF variables, viz. unemployment and housing

starts for the case of SPF vs. no-change forecasts, to document that our key �ndings are robust to

the choice of variables.29

In particular, Figure 58 plots the loss di�erentials an in Figure 1. Table 16 presents descriptive

evidence similar to Table 1. The full-sample results from Table 17 are in line with those of the left

panels of Table 2. The �ndings in Table 18 match those of the upper panels of Tables 3 and 4.

Finally, Figure 59 provides evidence regarding time-varying predictability similar to that of the left

panels of Figure 2.
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Figure 58: Loss di�erential series (no-change versus SPF) for the unemployment rate (UNEMP)
and housing starts (HOUSING). Nowcasts are evaluated against the �rst release for mean squared
error loss.

Table 16: Summary statistics for the unemployment rate (UNEMP) and housing starts (HOUS-
ING) using the �rst data release. RelLoss denotes the relative root mean squared error loss of
the competing no-change forecasts against the SPF. SD(·) labels the standard deviation of the loss
di�erentials in the subsample I (1969-1984), II (1985-2006) or III (2007-2017). AC(1) denotes the
empirical �rst-order autocorrelation coe�cient of the loss di�erential series.

Statistic RelLoss(NC/SPF) SD(I) SD(II) SD(III) AC(1)
Sample 1969-2017 1969-1984 1985-2006 2007-2017 1969-2017

UNEMP h = 0 2.38 0.50 0.09 0.31 0.33
h = 1 1.76 1.15 0.17 0.95 0.58
h = 4 1.43 2.21 0.48 2.16 0.67

HOUSING h = 0 1.40 0.05 0.01 0.01 0.07
h = 1 1.32 0.08 0.02 0.02 0.26
h = 4 1.20 0.25 0.05 0.07 0.61

29Further results on the �nal release, rolling mean squared errors etc., as well as details on the imputation performed
on unemployment and housing starts, are available upon request.
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Table 17: Test decisions for the full-sample T DM -statistic for equal predictive ability of competing no-change
forecasts against the SPF - either based on wild bootstrap ('bs') or asymptotic critical values ('asy'). Nowcasts
(h = 0), one-quarter (h = 1) and one-year ahead forecasts (h = 4) are evaluated against the �rst data release.
Evaluation sample runs from 1969Q4 to 2017Q2.

UNEMP HOUSING
h = 0 h = 1 h = 4 h = 0 h = 1 h = 4

b T DM
bs T DM

asy T DM
bs T DM

asy T DM
bs T DM

asy T DM
bs T DM

asy T DM
bs T DM

asy T DM
bs T DM

asy

0 *** *** *** *** *** *** *** *** *** *** *** **
0.1 *** *** *** *** *** *** *** *** *** *** ** **
0.2 *** *** *** *** *** *** *** ** ** ** * *
0.3 *** ** *** ** *** *** ** * ** * *
0.4 *** ** *** ** *** ** ** * ** *
0.5 *** ** *** ** *** ** ** * *
0.6 *** ** *** ** *** *** ** *
0.7 *** ** *** ** *** *** ** *
0.8 *** ** *** ** *** *** ** *
0.9 *** ** *** ** *** *** * *
1 *** ** *** ** *** *** * *
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Figure 59: The plots show the time-varying components of the signed �uctuation statistic (left
axis, solid black line) and the CUSUM statistic (right axis, dashed-dotted blue line), see equations
4 and 5. Horizontal dashed lines are the corresponding one-sided �ve percent critical values for
the maximum of the displayed statistics. Nowcasts are evaluated against the �rst release; b = 0.2,
ν = 0.3.
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K Additional empirical results - subsample analysis

This section provides an additional analysis on the subsamples studied by Coroneo and Iacone

(2020). Their SPF data sample from the post-�Great Moderation� period runs from 1987Q1 to

2016Q4 with a total of 120 observations. The authors form three equally sized subsamples of ten

years of quarterly data with 40 observations each. The resulting subsamples show di�erent levels

of volatility each. For instance, the third subsample starting in 2007 has higher volatility than the

others due to its relation to the �Great Financial Crisis�. The foci are now on no-change forecasts

and an evaluation against the �rst release to facilitate a comparison with their results.

First, we run the one-sided T DM -statistic on each of the three subsamples. Table 19 reports the

results. Overall, the �ndings are very similar to Coroneo and Iacone (2020) (their Tables 1 and 2).

This is as expected since the volatility varies much more across the individual subsamples rather

than within. In a second step, we apply our tests for time-variation on their sample. Thereby, we are

able to identify periods of instability (without imposing sample split points ourselves) and compare

our �ndings to their results. In particular, Figure 60 shows the results of the signed time-varying

components of the �uctuation and the CUSUM test statistic together with one-sided wild bootstrap

critical values at the �ve percent level. Vertical red dashed lines show the sample split choices by

Coroneo and Iacone (2020). Considering the �uctuation test, we �nd in nearly all cases a rejection

in favor of time-varying advantages of the SPF. The case of one-year ahead in�ation forecasts is

an exception. The CUSUM statistic turns out to be signi�cant in all cases. More importantly, the

�uctuation test shows remarkable and signi�cant time-variation within all given subsamples of ten

years, especially for output growth in middle subsample from 1997Q1 to 2006Q4 at all horizons.

For in�ation, we �nd all subsamples to be a�ected in this respect. The time-varying nature within

subsamples provides some evidence that ad hoc choices might be problematic, as already discussed.

As a next step, we compare the subsample evidence reported in Coroneo and Iacone (2020) (their

Tables 1 and 2) to the one obtained via the wild bootstrap for the �uctuation test. Overall,

our results show interesting and remarkable di�erences to those reported in Coroneo and Iacone

(2020). For instance, in the case of one-year ahead output growth forecasts, the evidence reported

in Coroneo and Iacone (2020) is relatively weak and suggests only for the �rst subsample that

the SPF outperforms the no-change benchmark. A rather opposite result is suggested by the

�uctuation test which indicates that the SPF outperforms the benchmark just prior to the �Great

Financial Crisis�, but not beforehand. Besides these apparent di�erences, there are some cases in

which the test decisions agree (see, e.g., in�ation nowcasts), but in general they do not match well.

The CUSUM test results generally indicate the importance of time-variation since the 2000s. They

further emphasize the time-variation of relative predictive ability within the subsamples. Overall, we

�nd evidence suggesting that the di�erences in the results are due to di�erent testing environments

(ad hoc sample splits versus �uctuation and related tests allowing for endogenous break points).
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Table 19: Test decisions for the T DM -statistic for equal predictive ability of competing no-change forecasts against
the SPF - either based on wild bootstrap ('bs') or asymptotic critical values ('asy'). Nowcasts (h = 0), one-quarter
(h = 1) and one-year ahead forecasts (h = 4) are evaluated against the �rst data release. Evaluation periods are the
subsamples from 1987Q1 to 1996Q4, from 1997Q1 to 2006Q4 and from 2007Q1 to 2016Q4.

RGDP - 1987Q1 to 1996Q4 PGDP - 1987Q1 to 1996Q4

h = 0 h = 1 h = 4 h = 0 h = 1 h = 4
b T DM

bs T DM
asy T DM

bs T DM
asy T DM

bs T DM
asy T DM

bs T DM
asy T DM

bs T DM
asy T DM

bs T DM
asy

0 *** *** *** *** ** ** ** ** *** *** * *
0.1 *** *** *** ** * * ** * *** ** *
0.2 *** *** *** ** ** ** ** * ** **
0.3 *** *** ** ** ** ** * ** **
0.4 *** *** ** ** ** ** * ** **
0.5 *** *** ** ** ** ** ** **
0.6 *** *** ** ** ** ** ** **
0.7 *** *** ** ** ** ** ** **
0.8 *** *** ** ** ** ** ** **
0.9 *** *** ** ** ** ** ** **
1 *** *** ** ** ** ** ** **

RGDP - 1997Q1 to 2006Q4 PGDP - 1997Q1 to 2006Q4

h = 0 h = 1 h = 4 h = 0 h = 1 h = 4
b T DM

bs T DM
asy T DM

bs T DM
asy T DM

bs T DM
asy T DM

bs T DM
asy T DM

bs T DM
asy T DM

bs T DM
asy

0 *** ** *** *** ** ** *** ** ** **
0.1 ** ** *** *** ** ** ** ** * *
0.2 ** ** *** ** ** ** ** ** * *
0.3 ** ** *** *** ** ** ** * *
0.4 ** ** *** *** ** * ** *
0.5 ** * *** *** * * ** *
0.6 * * *** *** * * ** *
0.7 * * *** *** ** * ** *
0.8 * * *** *** ** ** ** *
0.9 * * *** *** ** ** ** *
1 * * *** *** ** ** ** *

RGDP - 2007Q1 to 2016Q4 PGDP - 2007Q1 to 2016Q4

h = 0 h = 1 h = 4 h = 0 h = 1 h = 4
b T DM

bs T DM
asy T DM

bs T DM
asy T DM

bs T DM
asy T DM

bs T DM
asy T DM

bs T DM
asy T DM

bs T DM
asy

0 *** *** *** ** *** *** *** *** ** **
0.1 *** ** *** * *** *** *** *** ** **
0.2 ** ** ** * ** ** *** ** *** **
0.3 ** ** ** ** ** *** *** ** **
0.4 ** ** ** ** ** *** *** ** *
0.5 ** ** ** ** * *** ** ** *
0.6 ** * ** ** * *** ** ** *
0.7 ** * * * * *** ** ** *
0.8 * * * ** * *** ** ** *
0.9 * * * * * *** ** ** *
1 ** * * * * *** ** ** *
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Figure 60: The plots show the time-varying components of the signed �uctuation statistic (left axis,
solid black line) and the CUSUM statistic (right axis, dashed-dotted blue line), see equations 4 and
5 and Remark 3. Horizontal dashed lines are the corresponding one-sided �ve percent critical values
for the maximum of the displayed statistics. Dashed red vertical lines indicate sample split points
as in Coroneo and Iacone (2020). Now- and forecasts are evaluated against the �rst release; b = 0.2,
ν = 0.3. Evaluation sample runs from 19871Q1 to 2016Q4 as in Coroneo and Iacone (2020).
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