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Abstract

We show that the purpose of consistent bias-correction for matching estima-

tors of treatment effects is two-fold. Firstly, it is known to improve point

estimation to get rid of asymptotically non-negligible bias terms. Secondly,

we show that it is also inevitable to ensure the validity of weighted (or wild)

bootstrap procedures for statistical inference. In fact, we provide a simple

setting, where although the nearest neighbor matching estimator of the aver-

age treatment effect is exactly unbiased even in finite samples, valid weighted

bootstrap inference requires bias-correction. As a direct and practically im-

portant consequence, an inadequate bias-correction will not only lead to biased

point estimates, it will also distort inference leading e.g. to invalid confidence

intervals. In simulations, we show that the choice of the bias-correction esti-

mator that practitioners still have to make, can severely affect the weighted
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bootstrap’s performance when estimating the asymptotic variance in finite

samples. In particular, simple rules such as estimating the bias based on lin-

ear regressions in the treatment arms can lead to very poor weighted bootstrap

based variance estimates.

Key words: ATE, matching estimator, bootstrap consistency, weighted bootstrap,

wild bootstrap, bias-correction JEL codes: C14, C21

1 Introduction

Matching estimators are intuitively simple procedures to estimate average treat-

ment effects within the potential outcomes framework. The asymptotic properties

of these estimators were established in Abadie and Imbens (2006, 2011, 2012). The

expression for the variance of the asymptotic distribution is seen to depend on nu-

merous nuisance parameters. Besides possible finite sample improvements, the need

to estimate the nuisance parameters motivates the desire to apply resampling based

procedures to estimate the asymptotic variance in the matching context. However,

in a highly influential paper Abadie and Imbens (2008) showed that the standard

errors obtained from a naive Efron-type bootstrap will in general be invalid. They

showed this by considering a very simple data generating process (DGP), for which

they were able to derive simple closed form expressions of: (i) the limiting variance

of the nearest neighbor matching estimator of the average treatment effect of the

treated (ATET) and (ii) the limit of the expectation of the conditional variance of

a naive Efron-type bootstrap estimator. As the two expressions differ, their DGP

constitutes a counterexample showing that the naive Efron-type bootstrap variance

estimator is not valid.

In addition to this negative result concerning the validity of resampling procedures

in the matching context, they provide two possible solutions in the form of a con-

jecture stating that using either the wild bootstrap of Härdle and Mammen (1993)

or the M-out-of-N bootstrap (Bickel et al. (1997)) can cure this invalidity and pro-

vide a remedy to correctly estimate the limiting distribution of matching estimators.

Walsh et al. (2021) proved that an M-out-of-N bootstrap procedure can indeed be
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used to unbiasedly estimate the limit variance in the counterexample DGP setting of

Abadie and Imbens (2008). As for the other possible solution, Otsu and Rai (2017)

proposed a weighted bootstrap procedure that can be interpreted as a wild boot-

strap and proved its bootstrap consistency. Thus, as they indeed write, their paper

formally confirms the conjecture that the wild bootstrap can be used to correctly

estimate the limiting distribution of matching estimators.

In this paper, we shed light on the mechanism of the weighted bootstrap proposed

by Otsu and Rai (2017) leading to the validity of their procedure. In order to

bring out the intuition for the validity of their procedure we follow in the vein of

Abadie and Imbens (2008) by looking at a class of DGPs for which it is possible to

derive simple expressions for the asymptotics of the nearest neighbor matching es-

timator of the average treatment effect (ATE) as well as for the weighted bootstrap

variance estimator. However, in contrast to the setting considered (only for ATET)

in Abadie and Imbens (2008), the number of treated and controls cannot be fixed

for the ATE. Hence, we need to extend the setup considered in Abadie and Imbens

(2008). The derivation of the simple expressions for the asymptotic distribution

of the nearest neighbor matching estimator of the ATE is substantially more com-

plicated and relies on arguments on asymptotic expansions of inverse moments of

binomial random variables.

The key to the validity of the weighted bootstrap is seen to be that it resamples

the individual contributions of the bias-corrected matching estimator rather than

resampling, for instance, the original data or the individual contributions of the clas-

sical matching estimator. Thus, the procedure requires to do bias-correction before

resampling. Surprisingly, this is also the case for settings where it is known that

the classical matching estimator is (asymptotically) unbiased. The reason for this

somewhat surprising result is that the individual contributions of the bias-corrected

matching estimator are approximately uncorrelated, when the bias is estimated suf-

ficiently precisely. In fact, if one were to correct with the actual bias, then the

individual contributions are uncorrelated. In contrast, the individual contributions

of the classical matching estimator are not uncorrelated even if the classical match-

ing estimator is (asymptotically) unbiased. Hence, by doing bias-correction first,
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the resamples obtained by the weighted bootstrap are based on draws from a col-

lection of approximately uncorrelated random variables. Therefore, the choice of

the resampling weights of the weighted bootstrap is less important. Specifically,

it is not necessary to explicitly use the wild bootstrap weights and a simple Efron

bootstrap of the individual contributions is also sufficient. Finally, as resampling

the individual contributions from the classical matching estimator is not valid even

when the estimator is unbiased, it is seen that treating the observed matches as an

additional characteristic and resampling them along with the original data will not

yield a valid bootstrap estimator.

The validity of the weighted bootstrap is an asymptotic result. In particular, it

hinges on the fact that asymptotically the actual bias is estimated consistently. The-

oretically, this is achieved in Abadie and Imbens (2011) and Otsu and Rai (2017)

by constructing a bias estimator based on flexible, nonparametric series regression

estimators. In finite samples, one of course needs to choose the truncation param-

eter in these series estimators, but, in practice, it is often advocated that using a

linear regression with all the regressors or with their squares and crossproducts will

be sufficient. These choices correspond to a series estimator using polynomial basis

functions up to the first or second order only. In our simulations, we will demon-

strate that such adhoc choices may lead to distorted inference results. We do so by

varying the first two conditional moments in the distribution of the data. Using dif-

ferent bias estimators, we are able to demonstrate the importance of doing accurate

bias-correction for the weighted bootstrap to work properly. Finally, the simulations

will also highlight the benefit of the properly performed weighted bootstrap vis-à-vis

the plug-in variance estimator proposed in Abadie and Imbens (2006).

The remainder of the paper is structured as follows. Section 2 provides the basic

treatment effect setup along with the classical matching estimator and its bias-

corrected version. The weighted bootstrap procedure of Otsu and Rai (2017) and

some related resampling procedures are presented in Section 3. Some DGPs along

with the corresponding distributional results of the nearest neighbor matching es-

timator for the ATE are given in Section 4 allowing us to explicitly determine the

asymptotic variance in our simulation study. Results pertaining to the behavior of
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the weighted bootstrap are collected in Section 5 including the main result showing

that the key to validity is an appropriate bias-correction. The results of the simu-

lation study to illustrate how the performance of the weighted bootstrap depends

on the appropriateness of the estimated bias are given in Section 6. Finally, Section

7 concludes. The detailed proofs are collected in the appendix at the end of the

manuscript.

2 Setup

We consider the basic treatment effects setup. For each unit i = 1, . . . , N let Yi(0)

and Yi(1) be the unobserved potential outcomes under control and after treat-

ment, respectively. For each unit, we observe Zi = (Yi,Wi, Xi), where Wi is

the treatment indicator (Wi = 1, if the unit is treated, and Wi = 0 otherwise),

Yi = WiYi(1) + (1 − Wi)Yi(0) is the observed outcome and Xi is a vector of (con-

tinuously distributed) covariates. Let (Y (1), Y (0),W,X) be the population random

variables. The observed data is drawn from (Y,W,X). Here, we are interested in

estimating the the average treatment effect (ATE) given by

τ = E[Y (1)− Y (0)],

which is also the parameter of interest in Otsu and Rai (2017). Let Z := {(Yi,Wi, Xi)}Ni=1

be an i.i.d. random sample from the population (Y,W,X). The classical matching

estimator for the ATE using M fixed matches with replacement is given by

τ̂ =
1

N

N∑

i=1

{Ŷi(1)− Ŷi(0)}, (2.1)

where

Ŷi(1) = WiYi + (1−Wi)
∑

j∈JM(i)

Yj

M

and

Ŷi(0) = Wi

∑

j∈JM(i)

Yj

M
+ (1−Wi)Yi
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are imputation based estimates of the potential outcomes with JM(i) the index set

of the first M matches for unit i

JM(i) =
{
j ∈ {1, . . . , N} : Wj = 1−Wi,

∑

l:Wl=Wj

1{||Xl −Xi|| ≤ ||Xj −Xi||} ≤ M
}
.

Finally, with KM(i) =
∑N

l=1 1(j ∈ JM(l)) denoting the number of times unit i was

a match, the classical matching estimator can be written as

τ̂ =
1

N

N∑

i=1

(2Wi − 1)

(
1 +

KM(i)

M

)
Yi. (2.2)

In order to derive the asymptotic properties of the matching estimator τ̂ , it is typ-

ically assumed that one has an i.i.d. sample. In addition, one typically assumes

that the regressors are continuously distributed, that the so-called common support

condition and certain moment conditions hold. Denote the first two conditional

moments of the outcome given the treatment status and the covariate value by

µ(w, x) = E[Y | W = w,X = x] and σ2(w, x) = Var[Y | W = w,X = x], then a

typical set of conditions is given in Assumption 1.

Assumption 1. The data Z = {(Yi,Wi, X)}Ni=1consists of N i.i.d. draws from the

distribution of (Y,W,X), where Y = WY (1) + (1−W )Y (0) with:

(i) X is continuously distributed on a compact and convex set X ⊂ Rk. The

density of X is bounded and bounded away from zero on X.

(ii) W is independent of (Y (0), Y (1)) conditional on X = x for almost every

x ∈ X. There exists η > 0 such that Pr(W = 1 | X = x) ∈ (η, 1 − η) for

almost every x ∈ X.

(iii) For each w ∈ {0, 1}, µ(w, ·) and σ2(w, ·) are Lipschitz continuous on X;

σ2(w, ·) is bounded away from zero on X and E[Y 4|W = w,X = ·] is uni-

formly bounded on X.

These conditions correspond to the set of assumptions given in Abadie and Imbens

(2006, 2011) and Otsu and Rai (2017). Identification of the ATE is guaranteed

by the common support condition in Assumption 1(ii). Asymptotically, one could
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weaken Assumption 1(i) and allow for discretely distributed covariates taking finitely

many values with all the results being established for subsamples based on the val-

ues of the discrete covariates. In finite samples, allowing for discrete covariates in

such a fashion may lead to difficulties as the common support condition may fail

in the sample. In this case one could treat the discrete covariates as if they were

continuously distributed. The smoothness conditions in Assumption 1(iii) are used

to establish the consistency and asymptotic normality of the matching estimators.

Under the conditions in Assumption 1, Abadie and Imbens (2006) derived consis-

tency and asymptotic normality of the classical matching estimator τ̂ . In particular,

they established that
√
N(τ̂ −BN − τ)

σN

d−→ N (0, 1),

where

σ2
N =

1

N

N∑

i=1

(
1 +

KM(i)

M

)2

σ2(Wi, Xi) + E

[(
µ(1, X)− µ(0, X)− τ

)2]

and the bias term is given by

BN =
1

N

N∑

i=1

2Wi − 1

M

∑

j∈JM(i)

(
µ(Xi, 1−Wi)− µ(Xj, 1−Wi)

)

=
1

N

N∑

i=1

(2Wi − 1)
(
µ(Xi, 1−Wi)−

1

M

∑

j∈JM(i)

µ(Xj, 1−Wi)
)
.

Moreover, they showed that unless one uses a single regressor (k = 1), the bias term

BN of the classical matching estimator τ̂ dominates the asymptotic distribution and

the classical matching estimator will not be
√
N -consistent. In particular, under

Assumption 1, their Theorem 1 holds, which states that BN = Op(N
−1/k). The bias

term depends on the conditional means in both treatment arms. Thus, if we have

estimators for these conditional means, denoted by µ̂(x, w) for w ∈ {0, 1}, then we

can estimate the bias by

B̂N =
1

N

N∑

i=1

2Wi − 1

M

∑

j∈JM (i)

(
µ̂(Xi, 1−Wi)− µ̂(Xj, 1−Wi)

)
(2.3)

and we can define the bias-corrected matching estimator by τ̃ := τ̂ − B̂N . It is

immediately clear that if the bias estimator can be shown to satisfy
√
N(B̂N−BN) =
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oP (1), then it follows that

√
N(τ̃ − τ)

σN

d−→ N (0, 1).

Abadie and Imbens (2011) use a flexible, nonparametric series regression estima-

tor to estimate the conditional means and provide sufficient conditions to ensure
√
N(B̂N − BN ) = oP (1). Plugging-in (2.2) and (2.3) and re-arranging, the bias-

corrected matching estimator can be written as

τ̃ =
1

N

N∑

i=1

(2Wi − 1)

(
1 +

KM(i)

M

)(
Yi − µ̂(Xi,Wi)

)

+ (2Wi − 1)
(
µ̂(Xi,Wi)− µ̂(Xi, 1−Wi)

)

=:
1

N

N∑

i=1

τ̃i, (2.4)

where we will call

τ̃i = (2Wi − 1)

(
1 +

KM(i)

M

)(
Yi − µ̂(Xi,Wi)

)

+ (2Wi − 1)
(
µ̂(Xi,Wi)− µ̂(Xi, 1−Wi)

) (2.5)

the individual contribution to the bias-corrected matching estimator. Similarly, we

can write

τ̂ =
1

N

N∑

i=1

(2Wi − 1)

(
1 +

KM(i)

M

)
Yi =:

1

N

N∑

i=1

τ̂i, (2.6)

and will call

τ̂i = (2Wi − 1)

(
1 +

KM(i)

M

)
Yi (2.7)

the individual contribution to the classical matching estimator.

3 The weighted bootstrap estimator

The weighted bootstrap estimator proposed by Otsu and Rai (2017) is defined as a

randomly weighted average of the difference between the individual contributions of

the bias-corrected matching estimator and the bias-corrected estimator. Recalling

the decomposition of the bias-corrected matching estimator in (2.4) in terms of the
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individual contributions given in (2.5) the weighted bootstrap estimator is defined

as

√
NT̃ ∗ =

N∑

i=1

η∗i (τ̃i − τ̃ ), (3.1)

for a given choice of randomly drawn resampling weights η∗i , i = 1, . . . , N .

In order to derive the validity of the weighted bootstrap, Otsu and Rai (2017) con-

sider the setting of Abadie and Imbens (2011). In particular, the conditions in

Assumption 1 are assumed to hold, the bias is estimated using nonparametric series

estimators µ̂(x, w), for w ∈ {0, 1} and the conditions ensuring that
√
N(B̂N−BN ) =

op(1) are satisfied. In this setup, Otsu and Rai (2017) showed that, whenever the

resampling weights satisfy the conditions given in Assumption 2, the weighted boot-

strap is valid in the sense that d(
√
NT̃ ∗,

√
N(τ̃ − τ))

P−→ 0 with d the Kolmogorov

distance.

Assumption 2. The resampling weights η∗i , i = 1, . . . , N satisfy:

(i) (η∗1, . . . , η
∗
N) is exchangeable and independent of the data Z = {(Yi,Wi, Xi)}Ni=1.

(ii)
∑N

i=1 (η
∗
i − η∗)

2 P∗

−→ 1, where η∗ = 1
N

∑N
i=1 ηi

(iii) maxi=1,...,N |η∗i − η∗| P∗

−→ 0.

(iv) E
∗ [(η∗i )2

]
= O (N−1) for all i = 1, . . . , N .

Choosing wild bootstrap-type weights η∗i = ǫ∗i /
√
N , where {ǫ∗i }Ni=1 are i.i.d. random

variables with a zero mean and unit variance is admissible in Assumption 2. By

calling the resulting procedure based on this choice of weights the wild bootstrap,

allows Otsu and Rai (2017) to conclude that the conjecture of Abadie and Imbens

(2008) has been formally confirmed.

However, the conditions in Assumption 2 also allow for the choice of η∗i = M∗
i /

√
N

with (M∗
1 , . . . ,M

∗
N) a multinomially distributed random vector based on N trials

and N equally likely cells. This choice of resampling weights is nothing else but a

rescaling of a simple Efron bootstrap applied to (τ̃i,c, i = 1, . . . , N), where τ̃i,c :=

τ̃i − τ̃ as
N∑

i=1

M∗
i√
N
(τ̃i − τ̃ ) =

1√
N

N∑

i=1

M∗
i τ̃i,c =

1√
N

N∑

i=1

τ̃ ∗i,c
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where (τ̃ ∗i,c, i = 1, . . . , N) denotes an Efron bootstrap sample obtained by indepen-

dently drawing with replacement from (τ̃i,c, i = 1, . . . , N). In fact, it can even be

written in terms of a simple Efron bootstrap of the individual contributions of the

bias-corrected matching estimator as
∑N

i=1M
∗
i = N implies that

1√
N

N∑

i=1

M∗
i (τ̃i − τ̃) =

1√
N

N∑

i=1

M∗
i τ̃i −

√
Nτ̃ =

1√
N

N∑

i=1

τ̃ ∗i −
√
Nτ̃

where (τ̃ ∗i , i = 1, . . . , N) is an Efron bootstrap sample obtained by independently

drawing with replacement from the (uncentered) individual contributions (τ̃i, i =

1, . . . , N).

As the choice of the weights is not restricted to the wild bootstrap-type weights and

an Efron bootstrap of the (τ̃i,c, i = 1, . . . , N) is also valid, this already indicates that

it is not the “wildness” that makes the weighted bootstrap procedure work. In fact,

as we will see Section 5 the key for the validity is that the bias-corrected individual

contributions are resampled as opposed to resampling the individual contributions

of the classical matching estimator or to resampling the original data.

In the last part of this section we will show in what way the valid bootstrap estimator

using Efron-type weights can be interpreted as an Efron bootstrap based on an

“augmented” data set. The naive Efron-type bootstrap of the data {(Yi,Wi, Xi)}Ni=1

considered in Abadie and Imbens (2008) fails because the bootstrap counterpart of

KM(i) fails to correctly reproduce the matching distribution KM(i). As a possible

solution, it may be conceivable to use an Efron bootstrap that treates the matches

KM(i) as a characteristic of the original data. However, if one uses an Efron-type

bootstrap on the “augmented” data {(Yi,Wi, Xi, KM(i))}Ni=1 and then plugs in the

bootstrap variables into the formula of the classical matching estimator, we get

exactly the same as using an Efron bootstrap on the individual contributions of the

classical matching estimator

√
NT̂ ∗ =

N∑

i=1

M∗
i√
N
(τ̂i − τ̂) =

1√
N

N∑

i=1

τ̂ ∗i,c =
1√
N

N∑

i=1

τ̂ ∗i −
√
Nτ̂, (3.2)

where (τ̂ ∗i,c = τ̂ ∗−τ̂ , i = 1, . . . , N) with (τ̂ ∗i , i = 1, . . . , N) the Efron bootstrap sample

of the individual contributions of the classical matching estimator. Thus, when

the weighted bootstrap on the individual contributions of the classical matching
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estimator is invalid, it is also invalid to use an Efron on the “augmented” data

{(Yi,Wi, Xi, KM(i))}Ni=1 along with the formula for the classical matching estimator

– even in settings when the classical matching estimator is unbiased in finite samples.

Finally, from

√
NT̃ ∗ =

N∑

i=1

M∗
i√
N
(τ̃i − τ̃) =

1√
N

N∑

i=1

τ̃ ∗i,c =
1√
N

N∑

i=1

τ̃ ∗i −
√
Nτ̃.

we see that the valid weighted bootstrap with Efron-type weights can be interpreted

as an Efron bootstrap on the “augmented” data {(Yi,Wi, Xi, KM(i))}Ni=1 that uses

the formula of the bias-corrected estimator. Notice, that the bias-correction is not

re-calculated in the bootstrap sample, so that this is another “characteristic” of the

original data that is kept. Therefore, the weighted bootstrap with multinomially

distributed weights, can be thought of as an Efron boostrap on the “augmented”

data {(Yi,Wi, Xi, KM(i), µ̂(Xi,Wi), µ̂(Xi, 1−Wi)}Ni=1.

4 A simple DGP allowing for closed-form asymp-

totic expressions for the ATE

In order to show that the bias-correction is necessary for the validity of the weighted

bootstrap, we will follow in the vein of Abadie and Imbens (2008). In particular,

we will consider a DGP for which the classical nearest neighbor matching estimator

is unbiased even in finite samples and for which we can derive closed from expres-

sions for (i) the limit variance of the nearest neighbor matching estimator and (ii)

the limit of the expectation of the conditional variance of the weighted bootstrap

when applied to the individual contributions of the classical matching estimator.

As these two expressions turn out to be different, this proves that a weighted boot-

strap applied to the individual contributions of the classical matching estimator

(without bias correction) is not valid, although the estimator is actually unbiased

and, in particular, for the purpose of point estimation there is no bias to correct

for. Note, that the simple expressions cannot be derived using the setup considered

by Abadie and Imbens (2008), which was used to get corresponding results when

estimating the ATET. We have to modify the DGP to allow for i.i.d. draws from
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(Y,W,X). In particular, this entails that we will no longer have a fixed ratio of

treated to control units in the sample, which in turn makes the derivation of the

expressions substantially more difficult.

Assumption 3. Let Z = {(Yi,Wi, Xi)}Ni=1 =: (Y,W,X) be a sample of N inde-

pendent draws from (Y,W,X), where:

(i) The regressor satisfies X ∼ U [0, 1].

(ii) W ∼ Bern(p) with p = α/(1 + α) for some finite positive α.

(iii) Y = WY (1) + (1−W )Y (0) with the potential outcomes satisfying:

(a) Y (1) is degenerate with Pr(Y (1) = c) = 1 for some fixed c.

(b) Y (0) | X = x ∼ N (0, 1) for all x ∈ [0, 1].

As we are only considering one continuous covariate in Assumption 3, we know that
√
NBN = oP (1), so that it will not contribute to the asymptotic distribution of the

classical matching estimator. In fact, as µ(x, 0) = 0 and µ(x, 1) = c for all x the

bias of the classical matching estimator is exactly zero, because

BN =
1

N

N∑

i=1

(2Wi − 1)
1

M

∑

j∈J (i)

(
µ(Xi, 1−Wi)− µ(Xj, 1−Wi)

)
= 0.

Assumption 3(iii) implies that the ATE τ equals c. It thus follows that
√
N(τ̂ − τ)

σN

d−→ N (0, 1),

where, because µ(x, 1)− µ(x, 0)− τ = 0, σ2(x, 1) = 0 and σ2(x, 0) = 1 for all x, we

have

σ2
N =

1

N

N∑

i=1

(
1 +

KM(i)

M

)2

σ2(Xi,Wi) + E

[(
µ(X, 1)− µ(X, 0)− τ

)2]

=
1

N

N∑

i=1

(1−Wi)

(
1 +

KM(i)

M

)2

.

In the following, we will consider the nearest neighbor matching estimator based on

a single match, that is with M = 1. To lighten notation, we will write Ki := K1(i).

In this case, it is possible to establish the distributional results for the matching

estimator of the ATE under Assumption 3.
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Proposition 1 (Distributional results for nearest neighbor matching estimator τ̂ ).

Given Assumption 3 the nearest neighbor matching estimator for the ATE,

τ̂ =
1

N

N∑

i=1

(2Wi − 1) (1 +Ki)Yi

satisfies

√
N(τ̂ − τ)

d−→ N
(
0, 1 +

α

1 + α

(
2 +

3

2
α

))
.

The proposition can be seen as a companion result to the simple expressions derived

by Abadie and Imbens (2008) in the ATET case. In order to derive the results

in the ATE case given in Proposition 1, we have to modify their proposed DGP,

which then requires the use of substantially more complicated arguments based

on some non-trivial results on asymptotic approximations for reciprocal moments

of binomial random variables. From the proposition we can see that the classical

nearest neighbor matching estimator is asymptotically normal with a limit variance

that depends solely on the parameter α, which governs the expected ratio of treated

to control units in the sample. Under the additional assumption that the bias

estimator B̂N satisfies
√
N(B̂N −BN) =

√
NB̂N = oP (1), the bias-corrected nearest

neighbor matching estimator with (M = 1) will have the same asymptotic limit,

that is

√
N(τ̃ − τ)

d−→ N
(
0, 1 +

α

1 + α

(
2 +

3

2
α

))
.

Proof of Proposition 1. Given the DGP in Assumption 3, we have already seen that

the ATE τ is given by c. Some simple calculations show that for the classical nearest

neighbor matching estimator under the DGP of Assumption 3 one gets

τ̂ =
1

N

N∑

i=1

Wi (1 +Ki) τ − (1−Wi) (1 +Ki) Yi(0)

= τ − (1−Wi) (1 +Ki) Yi(0),

where the last line follows from
∑N

i=1Wi +
∑N

i=1KiWi = N1 + N0 = N . Thus

τ̂ − τ = − 1
N

∑N
i=1(1−Wi) (1 +Ki)Yi(0) and and it follows that

√
N(τ̂ − τ) | W,X ∼ N

(
0,

1

N

N∑

i=1

(1−Wi) (1 +Ki)
2

)
.

13



The total law of variance leaves us with

Var[
√
N(τ̂ − τ)] = E

[
Var[

√
N(τ̂ − τ) | X,W]

]
+ Var

[
E[
√
N(τ̂ − τ) | X,W]

]

= E

[
1

N

N∑

i=1

(1−Wi) (1 +Ki)
2

]
.

Thus, we are left to show that the last expression converges to the limit variance

given in the proposition. As {Wi}Ni=1 are i.i.d. and the {Ki}Ni=1 are exchangeable,

we get

Var[
√
N(τ̂ − τ)] = E[1−Wi] + 2E[(1−Wi)Ki] + E[(1−Wi)K

2
i ]

=
1

1 + α

(
1 + 2E[Ki | Wi = 0] + E[K2

i | Wi = 0]
)
.

When deriving the limit expressions of the terms E[Ki | Wi = 0] and E[K2
i | Wi = 0]

we cannot directly appeal to the results in Abadie and Imbens (2008) as there, N0

and N1, the number of control units and treated units are assumed to be fixed frac-

tions of the sample size. Instead, we have to use a conditioning argument and results

on asymptotic expansions of reciprocal moments of binomial random variables to

get

E[Ki | Wi = 0] → α and E[K2
i | Wi = 0] → α +

3

2
α2 (4.1)

as N → ∞ from which the proposition follows. The details of the lengthy technical

arguments leading to (4.1) are given in Appendix A.

The setting in Assumption 3 will serve to show that the weighted bootstrap applied

to the individual contributions of the classical matching estimator (without bias

correction) is not valid even if the classical matching estimator is unbiased in finite

samples.

In Section 6, we will use simulations to investigate the performance of the weighted

bootstrap estimator when the bias is poorly estimated. In order to do so, we will

consider DGPs that satisy Assumption 4, where (iii)(b) in Assumption 3 has been

replaced by Y (0)|X = x ∼ N (µ(x, 0), σ2(x, 0)) for specific choices of µ(x, 0) and

σ(x, 0). Note, that if µ(x, 0) = 0 and σ2(x, 0) = 1, then the conditions are the same

as those in Assumption 3.
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Assumption 4. Let Z = {(Yi,Wi, Xi)}Ni=1 =: (Y,W,X) be a sample of N inde-

pendent draws from (Y,W,X), where:

(i) The regressor satisfies X ∼ U [0, 1].

(ii) W ∼ Bern(p) with p = α/(1 + α) for some finite positive α.

(iii) Y = WY (1) + (1−W )Y (0) with the potential outcomes satisfying:

(a) Y (1) is degenerate with Pr(Y (1) = c) = 1 for some fixed c.

(b) Y (0)|X = x ∼ N (µ(x, 0), σ2(x, 0)) for specific choices of µ(x, 0) and

σ(x, 0).

Given any DGP satisfying Assumption 4, we now get τ = c−E[µ(X, 0)]. As we are

still only considering one regressor, i.e. BN = Op(N
−1), so that the bias will still not

contribute to the asymptotic distribution of the classical nearest neighbor matching

estimator. Moreover, we get

√
N(τ̂ − τ)

σN

d−→ N (0, 1)

where (using σ2(x, 1) = 0 and µ(x, 1) = c), we have

σ2
N =

1

N

N∑

i=1

(1 +Ki)
2 σ2(Xi,Wi) + E

[(
µ(X, 1)− µ(X, 0)− τ

)2]

=
1

N

N∑

i=1

(1−Wi) (1 +Ki)
2 σ2(Xi, 0) + E

[(
µ(X, 0)− E[µ(X, 0)]

)2]
.

Although the expression for σ2
N is more complicated than under the more restrictive

Assumption 3, it is still possible to calculate the limit of its expectation as in the

proof of Proposition 1 provided µ(x, 0) and σ2(x, 0) are polynomials in x. In partic-

ular, as the Ki depend on the regressors in the treated group and these are drawn

independently of the control observations, we have E[(1−Wi)(1 +Ki)
2σ2(0, Xi)] =

E[(1−Wi)(1+Ki)
2]E[σ2(0, Xi)]. Thus, in addition to the steps of the proof of Propo-

sition 1, one has to calculate certain moments of a uniformly distributed random

variable.
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5 Bias-correction affects bootstrap validity

In this section we prove that the weighted bootstrap without bias-correction is in

general invalid. We will do so by considering the setting of Assumption 3, where

the classical matching estimator is already unbiased even in finite samples. In this

setting we will derive the limit of the expectation of the conditional variance of the

weighted bootstrap based on resampling the individual contributions of the classical

matching estimator (without bias correction) and see that it does not converge to

the correct limit.

Denote by E
∗[ · ] and Var∗[ ··] the expectation and the variance, respectively, over the

resampling mechanism conditional on the orginal data. Now, suppose that the DGP

is given as in Assumption 3 and that the bias estimator based on series estimators

µ̂(x, w) for w ∈ {0, 1} satisfies
√
N(B̂N − BN ) =

√
NB̂N = oP (1). From the

validity of the weighted bootstrap in this setting, we know that E
[
Var∗

[√
NT̃ ∗

]]
→

1 + α
1+α

(
2 + 3

2
α
)
for any choice of resampling weights satisfying Assumption 2.

Next, we will see that although the classical matching estimator is unbiased in the

setting of Assumption 3, a weighted bootstrap procedure based on resampling the

individual contributions of the classical nearest neighbor matching estimator will

not be valid. Specifically, given the decomposition of the classical nearest neighbor

matching estimator for the ATE in (2.6) in terms of the individual contributions, we

will show that the conditional variance of the weighted bootstrap estimator based

on resampling the corresponding contributions given in (2.7) will not converge to

the correct limit. In particular, we will consider the weighted bootstrap procedure

√
NT̂ ∗ :=

1√
N

N∑

i=1

ǫ∗i (τ̂i − τ̂ ) (5.1)

with {ǫ∗i }Ni=1 a sequence of i.i.d. random variables that are independent of the data

with E∗[ǫ∗i ] = 0 and Var∗[ǫ∗i ] = 1. Hence, this weighted bootstrap corresponds

to a weighted bootstrap using wild bootstrap weights applied to the individual

contributions of the classical matching estimator.

Theorem 1 (Inconsistency of
√
NT̂ ∗). Under the DGP of Assumption 3, the weighted

bootstrap on the individual contributions of the classical nearest neighbor matching
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estimator
√
NT̂ ∗ in (5.1) satisfies E∗

[√
NT̂ ∗

]
= 0 and as N → ∞,

E

[
Var∗

[√
NT̂ ∗

]]
→ 1 +

α

1 + α

(
2 +

3

2
α

)
+ τ 2

1

1 + α

(
2 +

3

2α

)
.

We immediatelty see that
√
NT̂ ∗ is inconsistent as the expectation of the conditional

variance does not converge to the asymptotic variance of the matching estimator as

given in Proposition 1. This result is quite surprising at first as the classical matching

estimator is actually unbiased under the DGP of Assumption 3. Hence, in order to

use the weighted bootstrap for valid inference, it is still necessary to perform bias

correction first and then resample the individual contributions of the bias-corrected

matching estimator although there is no bias to correct for.

As the limit in Theorem 1 is of the form limN→∞Var[
√
N(τ̂ − τ)] + τ 2 1

1+α
(2 + 3

2α
),

large ATE τ and small values of α will result in a larger bias when estimating the

limit variance.

Proof of Theorem 1. As the resampling weights {ǫ∗i }Ni=1 are i.i.d. and independent

of the data with E∗[ǫ∗i ] = 0 and Var∗[ǫ∗i ] = 1, we get

E
∗[
√
NT̂ ∗] =

1√
N

N∑

i=1

E
∗[ǫ∗i ](τ̂i − τ̂ ) = 0.

With Cov∗[ ·, ·] the covariance over the resampling mechanism conditional on the

data the independence of the resampling weights implies that

Var∗[
√
NT̂ ∗] =

1

N

N∑

i=1

N∑

j=1

Cov∗[ǫ∗i , ǫ
∗
j ](τ̂

t − τ̂)(τ̂j − τ̂)

=
1

N

N∑

i=1

(τ̂i − τ̂ )2 =
1

N

N∑

i=1

τ̂ 2i − (τ̂ )2.

Under the DGP of Assumption 3, we have τ̂ = τ − (1 −Wi) (1 +Ki) Yi(0), which
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when plugged into the second term and upon taking expectations yields

E[(τ̂ )2] = E[(τ − 1

N

N∑

i=1

(1−Wi)(1 +Ki)Yi(0))
2]

= τ 2 − 2τE[
1

N

N∑

i=1

(1−Wi)(1 +Ki)Yi(0)]

+
1

N2

N∑

i=1

N∑

j=1

(1−Wi)(1−Wj)(1 +Ki)(1 +Kj)Yi(0)Yj(0)

= τ 2 +
1

N
E[(1−Wi)(1 +Ki)

2] → τ 2,

where for the third equality we have used that the Yi(0) are zero mean i.i.d. and

independent of the Xi and the limit in the last line is due to Var[
√
N(τ̂ − τ)] =

E[(1−Wi)(1 +Ki)
2] = O(1).

Using the DGP of Assumption 3, we get

E

[
1

N

N∑

i=1

τ̂ 2i

]
=

1

N

N∑

i=1

E[(Wi(1 +Ki)Yi − (1−Wi)(1 +Ki)Yi)
2]

= τ 2
1

N

N∑

i=1

E[Wi(1 +Ki)
2] +

1

N

N∑

i=1

E[(1−Wi)(1 +Ki)
2]

= τ 2
1

N

N∑

i=1

E[Wi(1 +Ki)
2] + Var[

√
N(τ̂ − τ)].

The limit of Var[
√
N(τ̂ − τ)], which is of course the target, was given in Proposition

1. As for the limit of τ 2 1
N

∑N
i=1 E[Wi(1 + Ki)

2], we get upon multiplying out and

due to the exchangeability of the {Ki}Ni=1 and as the {Wi}Ni=1 are i.i.d. that

τ 2
1

N

N∑

i=1

E[Wi(1 +Ki)
2] = τ 2

(
α

1 + α
+ 2

α

1 + α
E[Ki | Wi = 1]

)
+

α

1 + α
E[K2

i | Wi = 1].

Mirroring the derivation for the marginal moments ofKi | Wi = 0 given in Abadie and Imbens

(2008), we get for a fixed n1 ∈ {1, . . . , N} and n0 = N − n1,

E[Ki | Wi = 1,

N∑

j=1

Wj = n1] =
n0

n1

and

E[K2
i | Wi = 1,

N∑

j=1

Wj = n1] =
n0

n1
+

3

2

n0(n0 − 1)(n1 + 8/3)

n1(n1 + 1)(n1 + 2)
.
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Then using the same conditioning argument and the results on asymptotic expan-

sions of reciprocal moments of binomial random variables as in Appendix A, we

get

E[Ki | Wi = 1] → 1

α

and

E[K2
i | Wi = 1] → 1

α
+

3

2

(
1− 2

1 + α

α
+

(
1 + α

α

)2
)
.

Putting everything together, as Var[
√
N(τ̂ − c)] → 1 + α

1+α
(2 + 3

2
α), we get

E[Var∗[
√
Nτ tWB]]

→ τ 2
α

1 + α

(
1 +

2

α
+

1

α
+

3

2

(
1− 2

1 + α

α
+

(
1 + α

α

)2
))

+ 1 +
α

1 + α

(
2 +

3

2
α

)
− τ 2

= 1 +
α

1 + α

(
2 +

3

2
α

)
+ τ 2

(
1

1 + α

(
2 +

3

2
· 1
α

))
.

The result in Theorem 1 shows that the DGP in Assumption 3 serves as a coun-

terexample for the validity of the weigthed bootstrap, when applied to the individual

contributions of the classical matching estimator (without bias correction) instead

of to the individual contributions of the bias-corrected estimator. This result is

even more surprising given the fact that in the setting of Assumption 3, the clas-

sical matching estimator is unbiased. In order to gain some additional insight into

this somewhat surprising result let us compare the individual contributions of the

classical nearest neighbor matching estimator τ̂i = (2Wi − 1)(1 +Ki)Yi with those

of an oracle bias-corrected estimator, defined by τ̌ = 1
N

∑N
i=1 τ̌i with

τ̌i = (2Wi − 1)(1 +Ki)(Yi − µ(Xi,Wi)) + (2Wi − 1) (µ(Xi,Wi)− µ(Xi, 1−Wi)) ,

(5.2)

where in contrast to the bias-corrected estimator τ̃ the conditional means µ(x, w)

for w ∈ {0, 1} are treated as known. In the following, we will see that although
√
N(τ̂ − τ) =

√
N(τ̌ − τ) + op(1) in the setting of Assumption 3, the stochastic

properties of the individual contributions τ̂i− τ̂ and τ̌i− τ̌ differ quite substantially.
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Proposition 2 (First and second moment structure of τ̌i). Given Assumption 3, the

individual contributions of the oracle bias-corrected estimator given in (5.2) satisfy

(i) E[τ̌i] = τ

(ii) Cov[τ̌iτ̌j ] = 0 for i 6= j.

(iii) Var[τ̌i] = Var[
√
N(τ̌ − τ)]

Proof. The straightforward though lengthy proof is given in Appendix B.

From Proposition 2 it follows that

Var[
√
N(τ̌ − τ)] = Var[

√
Nτ̌ ] = Var[

1√
N

N∑

i=1

τ̌i] =
1

N

N∑

i=1

Var[τ̌i]

Thus, Proposition 2 states that the individual contributions of the oracle bias-

corrected matching estimator {τ̌i}Ni=1 are uncorrelated, centered at the ATE, E[τ̌i] =

τ , and their variance corresponds to the target variance Var[τ̌i] = Var[
√
N(τ̌ − τ)].

Thus, it is intuitively clear that any random weighted average of the {τ̌i − τ̌}Ni=1

will be valid. Heuristically, when the bias-corrected individual contribution τ̃i ap-

proximates τ̌i well enough, asymptotically the {τ̃i}Ni=1 will satisfy the properties in

Proposition 2 from which it follows that the weighted bootstrap is valid. Notice, that

the result in Proposition 2 is not so surprising as Abadie and Imbens (2011) showed

that the oracle bias-corrected matching estimator has a martingale representation.

In particular, they showed that
√
N(τ̂ − BN − τ) =

∑2N
i=1 ξN,i with

ξN,i =





1√
N
(2Wi − 1) (µ(Xi,Wi)− µ(Xi, 1−Wi)− τ) , 1 ≤ i ≤ N

1√
N
(2Wi−N − 1)

(
1 + KM (i−N)

M

)
(Yi−N − µ(Xi−N ,Wi−N)) , N + 1 ≤ i ≤ 2N.

Moreover, given the specific filtration in Abadie and Imbens (2011), the {ξN,i} are

martingale differences, and thus uncorrelated. As τ̌i =
√
N (ξN,i + τ + ξN,i+N), it

follows that the individual contributions are also uncorrelated. In contrast to this,

the individual contributions of the classical matching estimator τ̂i do not have these

nice properties. In particular, they are not uncorrelated with the correlation de-

pending on the correlation structure of the matches in a complicated way as seen in

(B.1) of Appendix B.
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6 Simulations

In practice, in order to calculate the weighted bootstrap estimator
√
NT̃ ∗ in (3.1),

one needs to choose a bias estimator B̂N . The asymptotic validity of the weighted

bootstrap is derived using a bias estimator based on nonparametric series estimators

for µ(x, w) for w ∈ {0, 1}. In particular, it is assumed that the truncation parameter

in the series estimation grows at a specific rate to ensure that
√
N(B̂N−BN) = oP (1).

In finite samples one of course still needs to choose at which point to truncate. In this

section we will conduct a simulation study to illustrate how sensitive the weighted

bootstrap performance can be to the selected bias-correction. In particular, we will

see how popular simple choices such as using linear regressions, which corresponds to

only taking polynomial bases up to order one into account, may lead to a very poor

performance of the weighted bootstrap variance estimator. All the simulations are

based on a DGP satisfying the conditions in Assumption 4 with c = 1 and specific

choices of µ(x, 0) and σ2(x, 0).

All the simulations in this section were based on S = 10 000 simulation runs. We

varied the number of observations according to N ∈ {100, 250, 500, 1 000, 2 000}.
Furthermore, we varied the expected balancedness of the design by considering

α ∈ {10, 5, 2, 1, 0.5, 0.2, 0.1}. For each simulated data set, we compute the clas-

sical nearest neighbor matching estimator

τ̂ =
N∑

i=1

(2Wi − 1)(1 +Ki)Yi

and two different bias-corrected nearest neighbor matching estimators

τ̃ =

N∑

i=1

(2Wi − 1) (1 +Ki)
(
Yi − µ̂(Xi,Wi)

)
+ (2Wi − 1)

(
µ̂(Xi,Wi)− µ̂(Xi, 1−Wi)

)

that we will denote by τ̃c and τ̃lin. The two bias-corrected matching estimators

differ in the model used to estimate µ(x, w) to obtain the predictions µ̂(x, w) and

thus in the choice of the bias estimator used. The estimator τ̃lin uses the popular

simple bias estimator based on linear least squares estimation of µ(x, w). The second

estimator τ̃c is even simpler using a bias estimator based on estimating µ(x, w) by

the sample average of the response in treatment arm w. In addition to using the
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two bias-corrected nearest neighbor matching estimators we will also consider using

the infeasible oracle bias-corrected estimator

τ̌ =

N∑

i=1

(2Wi − 1) (1 +Ki)
(
Yi − µ(Xi,Wi)

)
+ (2Wi − 1)

(
µ(Xi,Wi)− µ(Xi, 1−Wi)

)
.

All the above matching estimators can be written as

ω =
1

N

N∑

i=1

ωi (6.1)

with ωi the individual contribution of the respective estimator.

We will consider two versions of the weighted bootstrap. For the first, we will use the

Efron type weighted bootstrap based on using η∗i = M∗
i /
√
N , where (M∗

1 , . . . ,M
∗
N)

is multinomially distributed with N trials and N equally likely cells. Applied to the

generic matching estimator ω in (6.1), it is given by

√
Nω∗,EF =

1√
N

N∑

i=1

M∗
i (ωi − ω).

Secondly, we will use the wild bootstrap type weights η∗i = ǫ∗i /
√
N where the {ǫ∗i }i=1

follow the Mammen two-point distribution. Applied to the generic matching esti-

mator ω in (6.1), the weighted bootstrap estimator is given by

√
Nω∗,WB =

1√
N

N∑

i=1

ǫ∗i (ωi − ω).

The focus of the simulation study is to determine how the different choices for

µ̂(x, w) that are used in the bias-correction will affect the estimated variance of the

weighted bootstrap given by Var∗[ω∗,k] for k ∈ {WB,EF}. In each simulation run,

these variance estimates will be calculate based on B = 1 000 bootstrap resamples.

For each k ∈ {WB,EF} the estimate is given by

V̂ar
∗
[ω∗,k] = N

1

B − 1

B∑

b=1

(
ω∗,k
b − 1

B

B∑

b=1

ω∗,k
b

)2

,

where
√
Nω∗,k

b is the weighted bootstrap estimate from bootstrap replication b =

1, . . . , B.

As an alternative to the above weighted bootstrap based variance estimators we will

also consider the plug-in variance estimator proposed in Theorem 7 of Abadie and Imbens

(2006) that is not based on resampling, which we denote by V̂ar
(AI)

.
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Table 1: Variance estimation results, when µ(x, 0) = 0 and σ2(x, 0) = 1 based on

simulations with N = 2 000 for various α.

α 10 5 2 1 0.5 0.2 0.1

Asy. Variance 16.45 8.92 4.33 2.75 1.92 1.38 1.20

V̂ar
(AI)

16.48 8.92 4.33 2.75 1.92 1.38 1.19

V̂ar
∗
[τ̌ ∗,EF] 16.45 8.93 4.33 2.75 1.92 1.38 1.20

V̂ar
∗
[τ̂ ∗,EF] 16.64 9.31 5.25 4.50 5.24 9.32 16.69

V̂ar
∗
[τ̃ ∗,EFlin ] 16.27 8.88 4.32 2.74 1.92 1.38 1.19

V̂ar
∗
[τ̃ ∗,EFc ] 16.36 8.90 4.33 2.74 1.92 1.38 1.20

V̂ar
∗
[τ̌ ∗,WB] 16.45 8.93 4.33 2.75 1.91 1.38 1.19

V̂ar
∗
[τ̂ ∗,WB] 16.64 9.31 5.25 4.50 5.25 9.31 16.70

V̂ar
∗
[τ̃ ∗,WB

lin ] 16.28 8.88 4.32 2.74 1.91 1.38 1.19

V̂ar
∗
[τ̃ ∗,WB

c ] 16.36 8.91 4.33 2.74 1.91 1.38 1.19

All the above variance estimators will be compared in terms of their ability to

unbiasedly estimate the asymptotic variance of the matching estimator. This will be

done by comparing their average over the simulations with the asymptotic variance.

6.1 Baseline setting: µ(x, 0) = 0 and σ2(x, 0) = 1

The first setting corresponds to Assumption 3 used to show that bias-correction

is necessary even when the classical matching estimator is unbiased. The results

for the various variance estimators are given in Table 1 for the largest considered

sample size of N = 2 000. The first row gives the target value of the asymptotic

variances of the nearest neighbor matching estimator for different values of α as

derived in Proposition 1. The second row shows that the mean over the simulations
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of the variance estimator of Abadie and Imbens (2006) is very close to the target

variance. The next four rows provide results for the various bootstrap based variance

estimators using the Efron type weights. We immediately see that the results for the

infeasible oracle bias-corrected estimator τ̌ are very good. We also see, as shown in

the theory, that, the estimator based on the individual contributions of the classical

matching estimator τ̂ performs very poorly especially for small values of α. As for

the feasible bias-corrected estimators τ̃lin and τ̃c, both estimate the bias correctly

and it is seen that the variance estimators based on these perform very well. Notice

that τ̃lin uses an overparametrized model to estimate the conditional mean µ(x, w)

for w ∈ {0, 1} as includes an additional term that is linear in the regressor although

this is not necessary. The additional estimation uncertainty induced by this leads

to the slightly poorer performance of V̂ar
∗
[τ̃ ∗,EFlin ] compared to V̂ar

∗
[τ̃ ∗,EFc ], which

is most clearly seen for large values of α. Finally, the last four rows contain the

results for the resampling based estimators using the wild bootstrap type weights.

Comparing these with the results for the Efron type weights, we see that they are

virtually identical. Thus, choosing wild bootstrap weights does not improve the

performance of the variance estimator over Efron-type weights. In fact, for all the

remaining considered simulation designs this was also the case. Hence, we will only

report the results obtained from using the Efron-type weigths.

6.2 Linear case: µ(x, 0) = −1− 2x and σ2(x, 0) = 1

In this setting, the bias-corrected estimator τ̃c will not estimate the bias correctly.

Following the arguments outlined at the end of Section 4 it is possible to show that

τ = E[τ(X)] = E[1 − (−1 − 2X)] = 3 and E[(τ(X) − τ)2] = 1/3, which yields

Var
[√

N(τ̂ − τ)
]
→ 4/3 + α

1+α

[
2 + 3

2
α
]
. This is used to calculate the values of the

asympotic variance given in the first row of Table 2, which contains the simulation

results for the largest considered sample size of N = 2 000. In contrast to the

baseline setting, the variance estimator of Abadie and Imbens (2006) is seen to be

positively biased for all α. Again the infeasible oracle bias-corrected estimator is un-

biased. The weighted bootstrap variance estimator based on the classical matching

estimator performs very poorly over all α. The performance of the feasible bias-
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Table 2: Variance estimation results, when µ(x, 0) = −1−2x and σ2(x, 0) = 1 based

on simulations with N = 2 000 for various α.

α 10 5 2 1 0.5 0.2 0.1

Asy. Variance 16.79 9.25 4.67 3.08 2.25 1.72 1.53

V̂ar
(AI)

23.78 15.64 9.77 6.91 4.81 2.99 2.23

V̂ar
∗
[τ̌ ∗,EF] 16.78 9.26 4.66 3.08 2.25 1.72 1.53

V̂ar
∗
[τ̂ ∗,EF] 80.14 40.07 16.02 8.42 5.56 7.31 13.87

V̂ar
∗
[τ̃ ∗,EFlin ] 16.61 9.21 4.65 3.08 2.25 1.72 1.53

V̂ar
∗
[τ̃ ∗,EFc ] 21.98 11.92 5.77 3.66 2.56 1.84 1.59

corrected variance estimator based on τ̃lin that uses the correct model to estimate

the bias is nearly as good as the infeasible estimator. However, the estimator based

on τ̃c, that uses the incorrect model to estimate components of the bias performs

worse. It still offers an improvement over the estimator based on the classical match-

ing estimator and on the variance estimator of Abadie and Imbens (2006), but it is

clearly biased for all α.

6.3 Quadratic case: µ(x, 0) = −3 + 8(x− 0.5)2 and σ2(x, 0) = 1

In this setting, both the feasible bias-corrected estimators will not estimate the

bias correctly. For the present setting one gets τ = E[τ(X)] = E[1 − (3 + 8(X −
0.5)2)] = 10/3 and E[(τ(X) − τ)2] = 16/45, which yields Var

[√
N(τ̂ − τ)

]
→

61/45+ α
1+α

[
2 + 3

2
α
]
. This is used to calculate the values of the asympotic variance

given in the first row of Table 3, which contains the simulation results for the

largest considered sample size of N = 2 000. The only difference to the previous

setting is that now the variance estimators based on both feasible bias-corrected

estimators are biased due to the fact that they do not estimate the conditional means

in the treatement arms correctly and thus do not estimate the bias correctly. Again,
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Table 3: Variance estimation results, when µ(x, 0) = −3+8(x−0.5)2 and σ2(x, 0) = 1

based on simulations with N = 2 000 for various α.

α 10 5 2 1 0.5 0.2 0.1

Asy. Variance 16.81 9.27 4.69 3.11 2.27 1.74 1.55

V̂ar
(AI)

25.71 17.40 11.19 7.98 5.53 3.36 2.44

V̂ar
∗
[τ̌ ∗,EF] 16.80 9.29 4.68 3.10 2.27 1.74 1.55

V̂ar
∗
[τ̂ ∗,EF] 102.05 50.97 20.25 10.34 6.26 7.23 13.51

V̂ar
∗
[τ̃ ∗,EFlin ] 22.41 12.13 5.87 3.72 2.60 1.87 1.62

V̂ar
∗
[τ̃ ∗,EFc ] 22.36 12.12 5.87 3.72 2.60 1.87 1.62

similar to the baseline case the inclusion of a linear term merely leads to additional

estimation uncertainty as the linear component does not help in estimating the bias

in this particular setting.

6.4 Allowing for nonconstant σ2(x, 0)

Finally, we considered settings with σ2(x, 0) = 4(x−0.5)2. As mentioned at the end

of Section 4 this choice will alter the limit variance of the nearest neighbor matching

estimator in comparison to the cases with σ2(x, 0) = 1. We looked at all three

conditional mean settings with this additional choice for the conditional variance.

Qualitatively, the results are not changed. In particular, both weighted bootstrap

versions still yield essentially identical results in terms of variance estimation bias.

7 Conclusion

In this article, we have seen that consistent bias-correction not only affects point

estimation of matching estimators for treatment effects, but also impacts the validity

of weighted bootstrap based inference procedures. In particular, by means of a
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simple DGP we have shown that the weighted bootstrap applied to the classical

(non-bias-corrected) nearest neighbor matching estimator for the ATE is not valid

as the corresponding variance estimator does not converge to the correct asymptotic

limit variance – even though the classical nearest neighbor matching estimator is

unbiased in the considered setting. Thus, although the classical matching estimator

in this setup is unbiased even in finite samples, we need to apply the weighted

bootstrap procedure to its bias-corrected version in order to do valid inference.

We have seen that the main reason that the bias-correction must be used when

doing weighted bootstrap inference is that unlike the individual contributions of

the classical matching estimator, the individual contributions of the (oracle) bias-

corrected estimator are uncorrelated. As the feasible individual contributions of

the bias-corrected estimator consistently estimate the contributions based on the

oracle bias-correction, whenever the bias-correction estimator is consistent, it follows

that the individual contributions of the feasible bias-correction estimator will be

asymptotically uncorrelated. Being based purely on asymptotic considerations, this

says nothing about their behavior in finite samples. In simulations, we have seen

that inadequate bias-correction can seriously distort the weighted bootstrap based

variance estimates. Moreover, simple rules to choose a model for the bias-correction

may perform poorly. This naturally leads to the question of how to choose a good

bias-correction procedure in practice when interest lies in inference, a topic that will

be addressed in future work.

A Proof of asymptotics for matching estimator in

ATE counterexample

This appendix contains the remaining the arguments to prove Proposition 1, in

particular, the details of the arguments leading to the two results in (4.1). These

will be adressed separately in two lemmas.

Lemma 1. Given a DGP satisfying Assumption 3, it holds that

E[Ki | Wi = 0] → α.
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Proof. From the results in (Abadie and Imbens (2008), Lemma A.2 and Lemma

A.3) we know that

E[Ki | Wi = 0,
N∑

j=1

Wj = n1] =
n1

n0

=
n1

N − n1

. (A.1)

Thus, we get

E[Ki | Wi = 0]

=

N−1∑

n1=0

E[Ki | Wi = 0,

N∑

j=1

Wj = n1]P

(
N∑

j=1

Wj = n1 | Wi = 1

)

=

N−1∑

n1=0

n1

N − n1
P

(
N∑

j=1

Wj = n1 | Wi = 1

)

=
N∑

n0=1

N − n0

n0
P

(
N∑

j=1

(1−Wj) = n0 | Wi = 1

)

= N
N−1∑

n0=0

1

n0 + 1
P

(
N∑

j=1,j 6=i

(1−Wj) = n0

)
− 1.

Noticing that
∑N

j=1,j 6=i(1−Wj) is a binomial random variable with N − 1 trials and

success probability of each trial p = 1
1+α

, we can appeal to the closed form formula

for the first shifted reciprocal moment of a binomial given in Chao and Strawderman

(1972) to get

N−1∑

n0=0

1

n0 + 1
P

(
N∑

j=1,j 6=i

(1−Wj) = n0

)
=

1−
(

α
1+α

)2

N 1
1+α

which yields

E[Ki | Wi = 0] = N
1−

(
α

1+α

)2

N 1
1+α

− 1 = α− (1 + α)

(
α

1 + α

)N

→ α.

Lemma 1 proves the first statement in (4.1). The remaining statement in (4.1) is

covered by the next lemma, thus completing the proof of Proposition 1.

Lemma 2. Given a DGP satisfying Assumption 3, it holds that

E[K2
i | Wi = 0] → α +

3

2
α2.
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Proof. From the results in (Abadie and Imbens (2008), Lemma A.2 and Lemma

A.3) we know that

E[K2
i | Wi = 0,

N∑

j=1

Wj = n1] =
n1

n0
+

3

2

n1(n1 − 1)(n0 + 8/3)

n0(n0 + 1)(n0 + 2)
.

Thus, we get

E[K2
i | Wi = 0]

=
N−1∑

n1=0

E[K2
i | Wi = 0,

N∑

j=1

Wj = n1]P

(
N∑

j=1

Wj = n1 | Wi = 1

)

=

N−1∑

n1=0

n1

n0
P

(
N∑

j=1

Wj = n1 | Wi = 1

)

+
3

2

N−1∑

n1=0

n1(n1 − 1)(n0 + 8/3)

n0(n0 + 1)(n0 + 2)
P

(
N∑

j=1

Wj = n1 | Wi = 1

)

= E[Ki | Wi = 0]

+
3

2

N−1∑

n1=0

n1(n1 − 1)(n0 + 8/3)

n0(n0 + 1)(n0 + 2)
P

(
N∑

j=1

Wj = n1 | Wi = 1

)
,

where the last equality follows from (A.1). From Lemma 1 we know that the first

summand converges to α. So we are left to show that

N−1∑

n1=0

n1(n1 − 1)(n0 + 8/3)

n0(n0 + 1)(n0 + 2)
P

(
N∑

j=1

Wj = n1 | Wi = 1

)
→ α2 (A.2)

Using similar arguments as above we arrive at

N−1∑

n0=0

(N − (n0 + 1))(N − (n0 + 2))(n0 + 11/3)

(n0 + 1)(n0 + 2)(n0 + 3)
P

(
N∑

j=1,j 6=i

(1−Wj) = n0

)

=:

N−1∑

n0=0

gN(n0)P

(
N∑

j=1,j 6=i

(1−Wj) = n0

)
.

Using n0+11/3 = n0+3+2/3, multiplying out and splitting up the sums in gN(n0),

we get

gN(n0) = g
(1)
N (n0) + g

(2)
N (n0) + g

(3)
N (n0)

N2

(n0 + 1)(n0 + 2)
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with

g
(1)
N (n0) =

N2

(n0 + 1)(n0 + 2)

g
(2)
N (n0) = −2

3

N

(n0 + 1)(n0 + 3)
− 2

3

N

(n0 + 2)(n0 + 3)

g
(3)
N (n0) = 1− N

n0 + 1
− N

n0 + 2
+

2/3

n0 + 3

Recall that
∑N

j=1,j 6=i(1 −Wj) is a binomial random variable with N − 1 trials and

sucess probability of each trial p = 1
1+α

, thus we can directly use the results from

Chao and Strawderman (1972) to get

N−1∑

n0=0

g
(3)
N (n0)P

(
N∑

j=1,j 6=i

(1−Wj) = n0

)
→ 1− 2(1− α) = −2α− 1.

In order to deal with the corresponding term g
(1)
N (n0) we need the second recip-

rocal moments. In contrast to the first reciprocal moment that are no nice ana-

lytic expressions. However, we can appeal to the asymptotic expansions derived in

Wuyungaowa and Wang (2008). In particular, their Corollary 1 implies that

N2
N−1∑

n0=0

1

(n0 + 1)2
P

(
N∑

j=1,j 6=i

(1−Wj) = n0

)

= N2 1

(N 1
1+α

)2

(
1 +O

(
1

N

))
→ (1 + α)2.

As N2

(n0+2)2
≤ g

(1)
N (n0) ≤ N2

(n0+1)2
, we have just derived an upper bound for term with

g
(1)
N (n0). Notice, that

1

(n0 + 2)2
=

1

(n0 + 1)2
+

−2n0 − 3

(n0 + 1)2(n0 + 2)2

and

0 ≥ −2n0 − 3

(n0 + 1)2(n0 + 2)2
≥ −2(n0 + 2)

(n0 + 1)2(n0 + 2)2
≥ −2

(n0 + 1)3
.

By Theorem 1 in Wuyungaowa and Wang (2008) we get

N2

N−1∑

n0=0

1

(n0 + 1)3
P

(
N∑

j=1,j 6=i

(1−Wj) = n0

)
=

N2

(
N α

1+α

)3
(
1 +O

(
1

N

))
→ 0,
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which implies for the lower bound of the term involving g
(1)
N (n0) that

N2
N−1∑

n0=0

1

(n0 + 2)2
P

(
N∑

j=1,j 6=i

(1−Wj) = n0

)

= N2

N−1∑

n0=0

1

(n0 + 1)2
P

(
N∑

j=1,j 6=i

(1−Wj) = n0

)
+O

(
1

N

)
→ (1 + α)2

and N2
∑N−1

n0=0 g
(1)
N (n0)P

(∑N
j=1,j 6=i(1−Wj) = n0

)
→ (1 + α)2. Similar arguments

to the ones for g
(1)
N (n0) yield

N2

N−1∑

n0=0

g
(2)
N (n0)P

(
N∑

j=1,j 6=i

(1−Wj) = n0

)
→ 0

and putting everything together we get

N2

N−1∑

n0=0

gN(n0)P

(
N∑

j=1,j 6=i

(1−Wj) = n0

)
→ (1 + α)2 − 2α− 1 = α2

establishing (A.2).

B First and second moments of individual contri-

butions

In this appendix we derive the first two moments of the individual contributions of

the infeasible oracle bias-corrected nearest neighbor matching estimator, which then

proves Proposition 2. The results are collected in two lemmas.

Lemma 3 (First moments of the individual contributions). For the individual con-

tributions of the infeasible bias-corrected estimator we have

E[τ̌i] = τ and E[τ̌i | Wi = w] = E[τ(Xi) | Wi = w] for w ∈ {0, 1}.

Moreover, for any DGP with a homogenous treatment effect, that is with τ(x) = τ

for all x, we get E[τ̌i | Wi = w] = τ . (In our simple DGP with µ(x, 1) = τ for all x

and µ(x, 0) = 0 for all x, the treatment effect is homogenous.)
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Proof. For the components of the (infesible) bias-corrected estimator we have

E[τ̌i | Wi = 1] = E
[
E[(1 +Ki)(Yi − µ(Xi, 1)) + µ(Xi, 1)− µ(Xi, 0) | X,Wi = 1] | Wi = 1

]

= E
[
(1 +Ki)E[Yi − µ(Xi, 1) | X,Wi = 1]︸ ︷︷ ︸

=0

| Wi = 1
]
+ E

[
µ(Xi, 1)− µ(Xi, 0) | Wi = 1

]

= E
[
µ(Xi, 1)− µ(Xi, 0) | Wi = 1

]

= E
[
E[Yi(1) | Xi]− E[Yi(0) | Xi] | Wi = 1

]

= E[τ(Xi) | Wi = 1]

where τ(x) := E[Y (1)− Y (0) | X = x]. Similarly, we get

E[τ̌i | Wi = 0] = E[τ(Xi) | Wi = 0].

such that

E[τ̌i] = Pr(Wi = 1)E[τ(Xi) | Wi = 1] + Pr(Wi = 0)E[τ(Xi) | Wi = 0])

= E[τ(Xi)] = τ.

The next lemma provides the second moment structure of the individual contribu-

tions of the (infeasible) bias-corrected estimator.

Lemma 4 (Second moment properties of individual contributions to (infeasible) bias

corrected matching estimator). For the individual contributions of the bias-corrected

estimator we have

(a) For i 6= j, Cov[τ̌iτ̌j | Wi = w,Wj = u] = 0 for all w, u ∈ {0, 1}.

Moreover, as for i 6= j, it holds that E
[
E[τ̌i | Wi,Wj ]E[τ̌j | Wi,Wj ]

]
= E

[
E[τ̌i |

Wi]
]
E
[
E[τ̌j | Wj]

]
we get

Cov[τ̌iτ̌j ] = 0 for i 6= j.

(b) For i = j, we get

Var[τ̌i | Wi = w] = E[(1 +Ki)
2(Yi − µ(Xi, w))

2 | Wi = w] + Var[τ(Xi) | Wi = w].
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so that as E[τ̌i | Wi = w] = E[τ(Xi) | Wi = w] we get

Var[τ̌i] = E[(1 +Ki)
2(Yi − µ(Xi,Wi))

2] + E
[
Var[τ(Xi) | Wi

]
+ Var

[
E[τ(Xi) | Wi]

]

= E[(1 +Ki)
2(Yi − µ(Xi,Wi))

2] + Var[τ(Xi)].

(c) Finally, notice that due to the result in (a) we get that for the (infeasible) bias

corrected matching estimator

Var[
√
N(τ̌ − τ)] = Var[

√
Nτ̌ ] = Var[

1√
N

N∑

i=1

τ̌i] =
1

N

N∑

i=1

Var[τ̌i]

Due to the random sampling assumption (and as the Ki are exchangeable) in (b),

we get that Var[τ̌i] = Var[τ̌j ] for all i, j = 1, . . . , n, which with (c) implies that

Var[τ̌i] = Var[
√
N(τ̌ − τ)].

As an aside for our simple DGP, as Yi(1) = τ , and Yi(0) | Xi ∼ N (0, 1) the expression

in (b) simplifies to

Var[τ̌i] = P(Wi = 0)E[(1 +Ki)
2(Yi − µ(Xi, 0))

2 | Wi = 0] + Var[τ ]

= P(Wi = 0)E[(1 +Ki)
2 | Wi = 0]

=
1

1 + α
(1 + 2E[Ki | Wi = 0] + E[K2

i | Wi = 0])

= Var[
√
N(τ̌ − τ)]

→ 1 +
α

1 + α

(
2 +

3

2
α
)
.

From these two lemmas, we see that the τ̌i are uncorrelated with E[τ̌i] = τ and

Var[τ̌i] = Var[
√
N(τ̌ − τ)] thus proving Proposition 2.

Proof of Lemma 4. For the contributions to the (infeasible) bias-corrected estima-

tor, we get

E[τ̌iτ̌j | Wi = 1,Wj = 1, i 6= j]

= E[(1 +Ki)(1 +Kj)(Yi − µ(Xi, 1))(Yj − µ(Xj, 1)) | Wi = 1,Wj = 1, i 6= j]

+ 2E[(1 +Ki)(Yi − µ(Xi, 1))
(
µ(Xj, 1)− µ(Xj, 0)

)
| Wi = 1,Wj = 1, i 6= j]

+ E[
(
µ(Xi, 1)− µ(Xi, 0)

)(
µ(Xj, 1)− µ(Xj, 0)

)
| Wi = 1,Wj = 1, i 6= j]]

=
(
E[
(
µ(Xi, 1)− µ(Xi, 0)

)
| Wi = 1]

)2
=
(
E[τ(X) | W = 1]

)2
.
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Thus Cov[τ̌iτ̌j | Wi = 1,Wj = 1, i 6= j] = 0.

Similarly, if both units are controls we get

E[τ̌iτ̌j | Wi = 0,Wj = 0, i 6= j]

= E[(−1)(1 +Ki)(−1)(1 +Kj)(Yi − µ(Xi, 0))(Yj − µ(Xj, 0)) | Wi = 0,Wj = 0, i 6= j]

+ 2E[−(1 +Ki)(Yi − µ(Xi, 1))
(
µ(Xj, 1)− µ(Xj, 0)

)
| Wi = 0,Wj = 0, i 6= j]

+ E[
(
µ(Xi, 1)− µ(Xi, 0)

)(
µ(Xj, 1)− µ(Xj, 0)

)
| Wi = 0,Wj = 0, i 6= j]]

=
(
E[
(
µ(Xi, 1)− µ(Xi, 0)

)
| Wi = 0]

)2
=
(
E[τ(X) | W = 0]

)2

such that Cov[τ̌iτ̌j | Wi = 0,Wj = 0, i 6= j] = 0.

If the units are of different type, then

E[τ̌iτ̌j | Wi = 1,Wj = 0]

= E[(1 +Ki)(−1)(1 +Kj)(Yi − µ(Xi, 1))(Yj − µ(Xj , 0)) | Wi = 1,Wj = 0]

+ E[(1 +Ki)(Yi − µ(Xi, 1))
(
µ(Xj, 1)− µ(Xj, 0)

)
| Wi = 1,Wj = 0]

+ E[−(1 +Kj)(Yj − µ(Xj, 0))
(
µ(Xi, 1)− µ(Xi, 0)

)
| Wi = 1,Wj = 0]

+ E[
(
µ(Xi, 1)− µ(Xi, 0)

)(
µ(Xj, 1)− µ(Xj, 0)

)
| Wi = 1,Wj = 0, i 6= j]]

= E[
(
µ(Xi, 1)− µ(Xi, 0) | Wi = 1]E[

(
µ(Xj, 1)− µ(Xj, 0) | Wj = 0]

= E[τ(X) | W = 1]E[τ(X) | W = 0]

and Cov[τ̌iτ̌j | Wi = 1,Wj = 0] = 0.

Finally, for the case that i = j, we get

E[τ̌ 2i | Wi = w] = E[(1 +Ki)
2(Yi − µ(Xi, 1))

2 | Wi = w] + E[
(
µ(Xi, 1)− µ(Xi, 0)

)2 | Wi = w].

such that

Var[τ̌i | Wi = w] = E[(1 +Ki)
2(Yi − µ(Xi, w))

2 | Wi = w]

+ E[τ 2(Xi) | Wi = w]−
(
E[τ(Xi) | Wi = w]

)

= E[(1 +Ki)
2(Yi − µ(Xi, w))

2 | Wi = w] + Var[τ(Xi) | Wi = w].

We finish this appendix by providing some derivations for the individual contribu-

tions of the simple matching estimator. In particular, we will see that even in our
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simple setting they will be correlated with the correlation structure depending on

the correlation structure of the matches in a complicated way.

For the first moment of τ̂i it holds that

E[τ̂i | Wi = 1] = E
[
E[(1 +Ki)Yi | X,Wi = 1] | Wi = 1

]

= E
[
(1 +Ki)µ(Xi, 1) | Wi = 1

]

and

E[τ̂i | Wi = 0] = −E
[
(1 +Ki)µ(Xi, 0) | Wi = 0

]

such that

E[τ̂i] = P(Wi = 1)E[τ̂i | Wi = 1] + P(Wi = 0)E[τ̂i | Wi = 0]

= P(Wi = 1)E
[
(1 +Ki)µ(Xi, 1) | Wi = 1

]
− P(Wi = 0)E

[
(1 +Ki)µ(Xi, 0) | Wi = 0

]
.

For our simple DGP, we had P(Wi = 1) = α
1+α

, E[Ki | Wi = 1] → 1
α
, µ(xi, 0) = 0

and µ(Xi, 1) = τ . In this case, we get using results from Appendix A that

E[τ̂i] = P(Wi = 1)E
[
(1 +Ki)µ(Xi, 1) | Wi = 1

]
− P(Wi = 0)E

[
(1 +Ki)µ(Xi, 0) | Wi = 0

]

=
α

1 + α
τE
[
(1 +Ki) | Wi = 1

]
− 0 → α

1 + α
τ(1 +

1

α
) = τ.

In contrast to the individual contributions of the (infeasible) bias-corrected estimator

the expectation of the τ̂i converges to τ as opposed to being equal to τ .

As for the second moment structure of the τ̂i, we get

E[τ̂iτ̂j | Wi = 1,Wj = 1, i 6= j]

= E[(1 +Ki)(1 +Kj)YiYj | Wi = 1,Wj = 1, i 6= j]

= E[(1 +Ki)(1 +Kj)E[YiYj | X,Wi = 1,Wj = 1, i 6= j | Wi = 1,Wj = 1, i 6= j]]

= E[(1 +Ki)(1 +Kj)µ(Xi, 1)µ(Xj, 1) | Wi = 1,Wj = 1, i 6= j]]

=
(
E[µ(Xi, 1) | Wi = 1]

)2
+ 2E[Kiµ(Xi, 1) | Wi = 1]E[µ(Xi, 1) | Wi = 1]

+ E[KiKjµ(Xi, 1)µ(Xj, 1) | Wi = 1,Wj = 1, i 6= j]

The last equality makes use of the random sampling assumption and the fact that
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the Ki are exchangeable. Thus

Cov[τ̂i, τ̂j | Wi = 1,Wj = 1, i 6= j]

= E[τ̂iτ̂j | Wi = 1,Wj = 1, i 6= j]−
(
E[τ̂i | Wi = 1]

)2

= E[(1 +Ki)(1 +Kj)µ(Xi, 1)µ(Xj, 1) | Wi = 1,Wj = 1, i 6= j]]

−
(
E[(1 +Ki)µ(Xi, 1) | Wi = 1]

)2

= E[KiKjµ(Xi, 1)µ(Xj, 1) | Wi = 1,Wj = 1, i 6= j]−
(
E[Kiµ(Xi, 1) | Wi = 1]

)2

= Cov[Kiµ(Xi, 1), Kjµ(Xj , 1) | Wi = 1,Wj = 1, i 6= j]

6= 0.

By the same argument, we get

Cov[τ̂i, τ̂j | Wi = 0,Wj = 0, i 6= j] = Cov(Kiµ(Xi, 0), Kjµ(Xj, 0) | Wi = 0,Wj = 0, i 6= j] 6= 0.

and

Cov[τ̂i, τ̂j | Wi = 1,Wj = 0] = −Cov(Kiµ(Xi, 1), Kjµ(Xj, 0) | Wi = 1,Wj = 0] 6= 0.

Notice, that for i 6= j

E[E[τ̂i | Wi,Wj]E[τ̂j | Wi,Wj]] = E[E[τ̂i | Wi]E[τ̂j | Wi]]

= E[E[τ̂i | Wi]]E[E[τ̂j | Wi]],

which implies that Cov [E[τ̂i | Wi,Wj],E[τ̂j | Wi,Wj]] = 0. Thus, for i 6= j

Cov[τ̂i, τ̂j ] = E [Cov[τ̂i, τ̂j] | Wi,Wj]] .

In contrast to the individual contributions of the (infeasible) bias corrected matching

estimator these are not zero.

To get a better understanding of these expressions let us assume that µ(Xi, w) =

µ(w) for all x, which implies homogenous treatment effects. (This is assumed in our

simple DGP). Then, we get

Cov[τ̂i, τ̂j | Wi = 1,Wj = 1, i 6= j] = µ(1)2Cov(Ki, Kj | Wi = 1,Wj = 1, i 6= j)

Cov[τ̂i, τ̂j | Wi = 0,Wj = 0, i 6= j] = µ(0)2Cov(Ki, Kj | Wi = 0,Wj = 0, i 6= j)

Cov[τ̂i, τ̂j | Wi = 1,Wj = 0, i 6= j] = −µ(1)µ(0)Cov(Ki, Kj | Wi = 1,Wj = 0, i 6= j)

(B.1)

and can see that the correlation depens on the correlation of the matching in a

complicated way.
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