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space-time DG discretizations of optimal

control problems involving the viscous
Burgers equation
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We consider one-dimensional distributed optimal control problems with the state equa-
tion being given by the viscous Burgers equation. We discretize using a space-time dis-
continuous Galerkin approach. We use upwind flux in time and the symmetric interior
penalty approach for discretizing the viscous term. Our focus is on the discretization of
the convection terms. We aim for using conservative discretizations for the convection
terms in both the state and the adjoint equation, while ensuring that the approaches
of discretize-then-optimize and optimize-then-discretize commute. We show that this is
possible if the arising source term in the adjoint equation is discretized properly, following
the ideas of well-balanced discretizations for balance laws. We support our findings by
numerical results.

Keywords: Optimal control, discontinuous Galerkin method, optimize-then-discretize, viscous
Burgers equation, conservative formulation

1 Introduction

We consider the following optimal control problem (OCP) on the space-time domain Q = Ω× (0, T )
with Ω = (xL, xR) ⊂ R:

min J(q, u) =
1

2
‖u− ud‖2L2(Q) +

α

2
‖q‖2L2(Q) (1)

subject to

ut + f(u)x − εuxx = q + g in Q,

u(xL, ·) = u(xR, ·) = 0 in (0, T ),

u(·, 0) = u0 in Ω.

(2)

Here, q denotes the control and u the state. The parameter α enforces the Tikhonov regularization
and we assume ε > 0 to be constant. In this contribution we focus on f(u) = 1

2u
2. Then, the state

equation corresponds to the viscous Burgers equation with distributed control q and a source term g.
Considering the viscous Burgers equation is a suitable intermediate step towards extending methods
to the (compressible) Navier-Stokes equations as we need to deal with a non-linear convection term.

There exists a variety of contributions covering OCPs for viscous Burgers equation with distributed
control, see for example [6,8,18,25,27] and the references cited therein. In this work we solve (1) and
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(2) by means of the reduced approach using a space-time discontinuous Galerkin (DG) discretization
for the state and the adjoint equation. We discretize the diffusion term with the symmetric interior
penalty (SIPG) discretization [3] and use an upwind flux in time. For the non-linear convection term
in the state equation we consider two different fluxes, the Lax-Friedrichs (LF) and the Engquist-
Osher (EO) flux. We focus on finding corresponding matching fluxes for the linearized convection
term in the adjoint equation.

Ideally, the discretization of the state and of the adjoint equation should be chosen such that the ap-
proaches of discretize-then-optimize (DO) and optimize-then-discretize (OD) commute. Leykekhman
[20] examined the commutativity for DG discretizations of a steady advection diffusion equation. He
showed the commutative properties of the SIPG discretization. Akman and Karasözen [1] extended
this to the time-dependent case using DG in time. We will focus on the proper treatment of the
(non-)linear convection terms in this contribution.

We start with a standard conservative space-time DG discretization of the state equation (2).
In the DO approach, the discretization of the adjoint equation follows from a straight-forward but
potentially lengthy computation. In the OD approach, one is free to discretize the adjoint equation.
In a continuous setting the adjoint equation (dropping initial and boundary conditions) is given by

− zt − f ′(u)zx − εzxx = u− ud in Q, (3)

with z denoting the adjoint state. Different to (2), the convection term is given in non-conservative
form.

It therefore seems natural to use a non-conservative discretization. This requires to implement a
new discretization. It is preferable though to reuse as much as possible from the code for solving
the state equation for solving the adjoint equation as well. This way, it is fairly straight-forward to
extend an existing solver for the state equation (2) to a solver for the OCP (1) and (2) by means of
the reduced approach.

This requires to rewrite the convection term in the adjoint equation in a conservative formulation
in order to apply the given conservative discretization. On a continuous level, one can easily do this
by introducing a source term:

− zt + (−f ′(u)z)x − εzxx = −f ′(u)xz + u− ud in Q. (4)

Let us focus on the reduced equation

− zt + (−f ′(u)z)x = −f ′(u)xz. (5)

This equation belongs to the category of balance laws. Balance laws allow for non-trivial stationary
solutions, for which the effects of the convective term and the source term cancel each other. A
good discretization should (exactly) preserve these stationary solutions. Such schemes are known
as well-balanced schemes. There exists a significant amount of literature covering well-balanced
methods, often focusing on the shallow water equations, see for example the overview article [22] as
well as [4, 11,12,15] and the references cited therein.

We will see that for our OCP there is a close connection between using a well-balanced DG
discretization for the convection term in the adjoint equation and the commutativity property of
OD vs. DO: when we use a standard discretization for (4), we violate commutativity and do not
preserve stationary solutions of (5). However, a discretization for (4) that ensures commutativity
also preserves the stationary solutions of (5).

The paper is structured as follows: In section 2, we formulate the considered OCP in more detail
and describe the discretization of the state equation that we use. In section 3, we briefly discuss the
commutative properties of the linear terms in the discretization of the state equation as this is not
the focus of our work. Sections 4 and 5 are devoted to the commutative properties of the convection
terms: in section 4 we present the resulting discrete adjoint equation when using the DO approach;
in section 5 we apply the OD approach and discuss a suitable discretization for the adjoint equation,
which is in agreement with the well-balanced idea. In section 6 we present numerical results to
support our theoretical findings. We conclude with a short summary in section 7.
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2 Problem setup

We consider the OCP given by (1) and (2) on the space-time domain Q = Ω × (0, T ) with Ω =
(xL, xR) ⊂ R. By L2(0, T ;H1

0 (Ω)) we denote the space of square integrable functions in the sense of
Bochner from (0, T ) to H1

0 (Ω). We then define

W = W (0, T ;H1
0 (Ω)) = {v : v ∈ L2(0, T ;H1

0 (Ω)), vt ∈ L2(0, T ;H−1(Ω))}.

We assume ε > 0 to be constant (and to be potentially small) and we will focus on the case of
f(u) = 1

2u
2, i.e., the viscous Burgers equation. Further, ud ∈ L2(Q) denotes the desired state,

g ∈ L2(0, T ;L2(Ω)) a source term, and u0 ∈ L2(Ω) given initial data. In the following, we will
assume that there exists a unique solution (q, u) ∈ L2(Q) × W to (1) and (2) as discussed by
Volkwein [25].

For better readability of the remaining paper, we already provide the adjoint equation in strong
non-conservative form: find z ∈W such that it satisfies a weak formulation of

−zt − f ′(u)zx − εzxx = u− ud in Q,

z(xL, ·) = z(xR, ·) = 0 in (0, T ),

z(·, T ) = 0 in Ω.

(6)

2.1 OD vs. DO

Generally, there are two approaches for discretizing the optimal control problem (1) and (2):

• Optimize-then-discretize (OD): one first sets up the optimality system on the continuous level
and then discretizes each of the three equations (state equation, adjoint equation, optimality
condition), potentially independent of each other.

• Discretize-then-optimize (DO): one first discretizes the optimal control problem including the
state equation and then sets up the optimality system on a discrete level.

In the DO approach one needs to differentiate through the discretization of the state equation. This
approach guarantees an exact discrete gradient but might be very tedious to execute. This process
automatically implies a discretization for the adjoint problem, which might not be consistent. Also,
error estimates for the resulting discretization of the adjoint equation might not be available, which
are typically needed for proving error estimates for the full optimal control problem. In the OD
approach on the other hand, it is easy to ensure a consistent discretization of the adjoint equation
but the resulting discrete gradient may be inaccurate.

In the ideal case, both approaches commute:

Continuous OCP

Discretize Discretize

Optimize

Optimize Discrete
optimality system

We note that for a given discretization of the state equation, the DO approach is fully specified. If
the resulting discretization of the adjoint is not consistent, we cannot expect commutativity. We will
therefore focus on a space-time DG discretization, for which the DO approach results in a consistent
discretization of the adjoint equation. Therefore, one can also view this contribution as giving a
suitable reinterpretation of the discretization of the adjoint equation in the DO approach.
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For commutativity, the OD approach should coincide with this formulation. In this work, we focus
on using a conservative discretization of the convection term for both the state and adjoint equation
in order to be able to use the same flow solver for the state and the adjoint equation. We will see
that one needs to be very careful when discretizing the arising source term −f ′(u)xz in the adjoint
equation in order to ensure commutativity.

2.2 Discretization of the state equation

We discretize the state equation using a space-time DG approach. Using DG in time is a very natural
approach in the context of optimal control as one can easily compute forwards and backwards in
time. Further, we avoid strict time stepping conditions due to the presence of the diffusion term,
which explicit time stepping schemes require.

We consider a space-time mesh with each space-time element being a tensor product of a spatial
cell Ki = (xi− 1

2
, xi+ 1

2
) ⊂ Ω = (xL, xR) and a time step In = (tn, tn+1) ⊂ (0, T ). For simplicity, we

consider N equidistant spatial cells with length h, and denote by Nt the number of time steps with
t0 = 0 and tNt = T . The discrete solution is then sought in the space

Vp =

{
ϕh ∈ L2(Ω× (0, T )) : ϕh

∣∣
Ki×In

is a polynomial of degree p

}
.

We will use the following notation for discrete functions vh ∈ Vp: indices +/− and R/L denote the
following limits (with δ > 0) in time and space

vn,±(x) = lim
δ→0

vh(x, tn ± δ), vi+ 1
2 ,R/L

(t) = lim
δ→0

vh(xi+ 1
2
± δ, t).

Remark 2.1. Due to the space-time approach, we always discretize in space and time simultaneously,
using the same polynomial degree p. We typically mark discrete functions by the superscript ‘h’.

Definition 2.1. We define the average and the jump for interior edges (w.r.t. space) by{
{vh
}
}i+ 1

2
=

1

2

(
vi+ 1

2 ,R
+ vi+ 1

2 ,L

)
,

q
vh

y
i+ 1

2

= vi+ 1
2 ,L
− vi+ 1

2 ,R
. (7)

We extend the definition to boundary edges x 1
2

= xL and xN+ 1
2

= xR by{
{vh
}
} 1

2
= v 1

2 ,R
,
{
{vh
}
}N+ 1

2
= vN+ 1

2 ,L
,

q
vh

y
1
2

= −v 1
2 ,R

,
q
vh

y
N+ 1

2

= vN+ 1
2 ,L
. (8)

We further define an additional average by
{
{vh
}
}? =

{
{vh
}
} for interior edges and

{
{vh
}
}?1

2
=

1

2
v 1

2 ,R
,
{
{vh
}
}?N+ 1

2
=

1

2
vN+ 1

2 ,L
. (9)

For the discretization of the state equation (2), we use a variant of the space-time DG scheme
used in [14,21]: find uh ∈ Vp such that

Bprim(uh, ϕh) + Cprim(uh, ϕh) +A(uh, ϕh) = Sq(qh, ϕh) + Sg(g, ϕh) + l(u0, ϕh) ∀ϕh ∈ Vp. (10)

Here, Bprim + Cprim corresponds to a space-time DG discretization of the scalar conservation law
ut+f(u)x, which we will describe in more detail below, and l denotes the implementation of the initial
data u0. The discretization of the diffusion term is given by A. Finally, Sq + Sg are discretizations
of the source terms on the right hand side and are simply given by

Sq(qh, ϕh) =
∑
n,i

∫
In

∫
Ki

qh ϕh dx dt and Sg(g, ϕh) =
∑
n,i

∫
In

∫
Ki

g ϕh dx dt. (11)
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For the discretization of the diffusion term we employ the SIPG discretization [3, 7, 21] given by

A(uh, ϕh) =
∑
n,i

∫
In

∫
Ki

εuhx ϕ
h
x dx dt

−
∑
n,i

∫
In
ε
{
{uhx

}
}i+ 1

2

q
ϕh

y
i+ 1

2

dt

−
∑
n,i

∫
In
ε
q
uh

y
i+ 1

2

{
{ϕhx

}
}i+ 1

2
dt

+
∑
n,i

∫
In

σ

h
ε
q
uh

y
i+ 1

2

q
ϕh

y
i+ 1

2

dt.

(12)

Here, σ > 0 denotes a stability parameter, which must be chosen sufficiently large to guarantee
stability [7]. We note that we use a variant, which uses the diffusion coefficient ε in each term.
Therefore, the coefficient σ is independent of ε. It mainly depends on the constant in the inverse
trace estimate and roughly scales with O(p2).

Finally, Bprim and Cprim are given by

B(uh, ϕh) = −
∑
n,i

∫
In

∫
Ki

uh ϕht dx dt

+
∑
n,i

∫
Ki

{
U(un+1,−, un+1,+) ϕn+1,− − U(un,−, un,+) ϕn,+

}
dx

(13)

and

Cprim(uh, ϕh) = −
∑
n,i

∫
In

∫
Ki

f(uh) ϕhx dx dt

+
∑
n,i

∫
In

{
F(ui+ 1

2 ,L
, ui+ 1

2 ,R
) ϕi+ 1

2 ,L
− F(ui− 1

2 ,L
, ui− 1

2 ,R
) ϕi− 1

2 ,R

}
dt.

(14)

Here, U and F denote the fluxes in time and space. In order to enable proper time marching, we use
the upwind flux in time, i.e.,

U(un+1,−, un+1,+) = un+1,−.

Then, Bprim can be derived from B as

Bprim(uh, ϕh) = −
∑
n,i

∫
In

∫
Ki

uh ϕht dx dt+
∑
n,i

∫
Ki

(
un+1,− ϕn+1,− − un,− ϕn,+

)
dx (15)

with u0,− being defined as 0, the sum over n going from 0 to Nt − 1, and the implementation of the
initial data being given by

l(u0, ϕh) =
∑
i

∫
Ki

u0ϕ0,+ dx. (16)

The flux in space F will be specified in the next section. At the physical boundaries of the domain
we set u 1

2 ,L
= 0 and uN+ 1

2 ,R
= 0 to respect the homogeneous Dirichlet boundary conditions.

We note that all of Bprim, A, and Sq are linear in uh and qh, respectively, whereas Cprim is
non-linear in uh. Further, all terms are linear in the test function ϕh.
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2.3 Choice of numerical flux F
There exists a large literature concerning numerical fluxes, see [16, 19] for a small selection. In the
following we will focus on the following two fluxes:

• Global Lax-Friedrichs flux (LF): The flux is given by

F(a, b) :=
1

2
(f(a) + f(b))− αg

2
(b− a) (17)

with a parameter αg to be discussed below. For αg independent of a and b, the derivatives are
given by

F′a(a, b) =
1

2
f ′(a) +

αg

2
and F′b(a, b) =

1

2
f ′(b)− αg

2
. (18)

• Engquist-Osher flux (EO): For Burgers equation, the EO flux is given by, compare [9, 16],∫ a

0

max(f ′(u), 0) du+

∫ b

0

min(f ′(u), 0) du. (19)

The derivatives are given by

F′a(a, b) = max(f ′(a), 0) and F′b(a, b) = min(f ′(b), 0). (20)

The LF flux is probably the most widespread flux due to its good stability properties and its simple
form. The EO flux can be interpreted as an extension of the upwind flux to more general conservation
laws. Often upwind fluxes lead to more accurate results than the fairly diffusive LF flux, especially
for finite volume or lower order DG schemes.

There are different options for choosing the parameter αg for the LF flux, for example

LF1: αg := max
x∈Ω
{|f ′(u0(x))|}, (21a)

LF2: αg := max
x∈Ω
{|f ′(uh(x, tn))|}, (21b)

LF3: αg :=
w∆x

∆t
, w =

1

2p+ 1
. (21c)

LF1 and LF2 can be found in standard text books, e.g., LF1 in [5] and LF2 in [13], and LF3 has
been suggested in [23]. The difference between LF1 and LF2 is whether to evaluate the constant
αg based on the initial data or whether to reevaluate it in each time step. In the context of finite
volume schemes, the LF flux is typically defined using (21c) with p = 0.

For explicit time stepping one needs be careful in choosing αg to guarantee stability. This is
especially the case as the source term g + q on the right hand side of (10) can greatly influence the
discrete solution by, e.g., creating new extrema. Thanks to the stability properties of using DG in
time though, this is not an issue for us. We therefore use the choice that is most convenient in terms
of differentiability, and choose LF1 (which we simply call LF from now on) as then αg only depends
on the given data.

Remark 2.2. Other authors have already examined the effect of the choice of the numerical fluxes
on optimal control problems. For example, the authors of [2, 17] examine the long-time asymptotic
behavior of (a different version of) LF and EO in the context of a finite volume scheme for an OCP
with Burgers equation, with the control being given by the initial data, and conclude that LF is too
diffusive while EO works well. In our tests we did not observe fundamentally different behaviors for
LF and EO. This could be attributed to the observation that often, for higher polynomial degree p, the
influence of the numerical flux is not as dominant. Our main goal here is to show that our approach
can be applied to a variety of fluxes.
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This concludes the description of the discretization of the state equation. Next, we discuss the
discretization of the adjoint equation. To do so, we first summarize commutativity results from the
literature for the time derivative and the diffusion term. This is done in section 3. Afterwards we
focus on the discretization of the convection term in the adjoint equation. We will first consider the
DO approach in section 4 and afterwards the OD approach in section 5.

Remark 2.3. In [26], the authors examine discretely exact derivatives for DG schemes in the context
of linear hyperbolic equations. To avoid quadrature errors, the authors recommend to use a strong
DG formulation for the discretization of the adjoint equation if a weak discretization for the state
equation is used. We will use weak DG discretizations for both equations and make up by using
sufficiently accurate quadrature rules. Our focus is on how to properly discretize a non-conservative
equation in a conservative form.

3 Commutativity of the linear terms of the PDE discretization

We discuss the commutativity of the linear forms Bprim and A in the discretization of the state
equation (10). We start with the bilinear form A, the discretization of the diffusion term. As
discussed by Leykekhman [20] in the context of a steady advection diffusion equation, using the
SIPG discretization results in commutativity with respect to the diffusion term. This is not the case
if, for example, the non-symmetric interior penalty (NIPG) discretization was chosen.

Using DG in time with the upwind flux corresponds to a DG discretization in space of a constant
advection term with upwind flux. Therefore, based on the results by Leykekhman [20] as well as
based on the results of Akman and Karasözen [1], we expect the time discretization to commute.
For completeness, we briefly recap the computation here. To do so, we introduce the bilinear form
Badj given by

Badj(ϕ
h, zh) =

∑
n,i

∫
In

∫
Ki

zh ϕht dx dt+
∑
n,i

∫
Ki

(
zn,+ ϕn,+ − zn+1,+ ϕn+1,−) dx (22)

with zNt,+ defined to be 0. This form is derived from (13) but respects the fact that in the adjoint
equation the term −zt needs to be discretized and that therefore the upwind flux goes in the opposite
direction. Due to the homogeneous initial conditions for z, there is no additional term of the form
l, compare (16).

Using integration by parts in time on each time slap, we get (we drop the sum over the spatial
cells for better readability)

Bprim(uh, zh)i = −
Nt−1∑
n=0

∫
In

∫
Ki

uh zht dx dt+

Nt−1∑
n=0

∫
Ki

(
un+1,− zn+1,− − un,− zn,+

)
dx

=

Nt−1∑
n=0

∫
In

∫
Ki

uht z
h dx dt−

Nt−1∑
n=0

∫
Ki

(
un+1,− zn+1,− − un,+ zn,+

)
dx

+

Nt−1∑
n=0

∫
Ki

(
un+1,− zn+1,− − un,− zn,+

)
dx

=

Nt−1∑
n=0

∫
In

∫
Ki

uht z
h dx dt+

Nt−1∑
n=0

∫
Ki

(
un,+ zn,+ − un,− zn,+

)
dx

=

Nt−1∑
n=0

∫
In

∫
Ki

uht z
h dx dt+

Nt−1∑
n=0

∫
Ki

(
un,+ zn,+ − un+1,− zn+1,+

)
dx,

which coincides with Badj(u
h, zh)i, and therefore confirms the commutativity properties of the time

discretization.
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Therefore, the discretizations of the linear terms ut and −εuxx, resulting in −zt and −εzxx in
the adjoint equation, satisfy the requirements for commutativity. So does the linear source term Sq.
Next, we will examine the discretization of Cprim in more detail, which involves the non-linear term
f(u)x. For that purpose, we will examine the DO and the OD approach more formally.

4 DO

In this approach we first discretize and then optimize. Therefore, we consider the discrete optimal
control problem

min
(qh,uh)∈Vp×Vp

J(qh, uh) =
1

2

∥∥uh − ud∥∥2

L2(Q)
+
α

2

∥∥qh∥∥2

L2(Q)
(23)

s.t. Bprim(uh, ϕh) + Cprim(uh, ϕh) +A(uh, ϕh) = Sq(qh, ϕh) + Sg(g, ϕh) + l(u0, ϕh) ∀ϕh ∈ Vp.
(24)

The formal discrete Lagrangian is then given by

Lh(qh, uh, zh) =
1

2

∥∥uh − ud∥∥2

L2(Q)
+
α

2

∥∥qh∥∥2

L2(Q)

− Bprim(uh, zh)− Cprim(uh, zh)−A(uh, zh) + Sq(qh, zh) + Sg(g, zh) + l(u0, ϕh).

This results in the following discrete optimality system: find (qh, uh, zh) ∈ Vp × Vp × Vp such that

Bprim(uh, ϕh) + Cprim(uh, ϕh) +A(uh, ϕh) = Sq(qh, ϕh) + Sg(g, ϕh) + l(u0, ϕh) ∀ϕh ∈ Vp

u0,− = Πhu
0,

Badj(ϕ
h, zh) + Cadj,DO(uh;ϕh, zh) +A(ϕh, zh) = Su(uh − ud, ϕh) ∀ϕh ∈ Vp

zNt,+ = 0,

(αqh + zh, ϕh) = 0 ∀ϕh ∈ Vp,
(25)

with Cadj,DO still to be specified and

Su(uh − ud, ϕh) =
∑
n,i

∫
In

∫
Ki

(uh − ud) ϕh dx dt, and (ψh, ϕh) =
∑
n,i

∫
In

∫
Ki

ψh ϕh dx dt. (26)

We derive Cadj,DO from Cprim formally by considering the directional derivative of Cprim(uh, zh)
with respect to uh in direction ϕh given by

C′prim,uh(uh, zh)(ϕh) = −
∑
n,i

∫
In

∫
Ki

f ′(uh)ϕh zhx dx dt

+
∑
n,i

∫
In

{
F′uh(ui+ 1

2 ,L
, ui+ 1

2 ,R
)(ϕh) zi+ 1

2 ,L
− F′uh(ui− 1

2 ,L
, ui− 1

2 ,R
)(ϕh) zi− 1

2 ,R

}
dt. (27)
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We apply integration by parts in space to get

C′prim,uh(uh, zh)(ϕh)

=
∑
n,i

∫
In

∫
Ki

f ′(uh)xϕ
h zh dx dt+

∑
n,i

∫
In

∫
Ki

f ′(uh)ϕhx z
h dx dt

−
∑
n,i

∫
In

{(
f ′(uh)ϕh zh

)
i+ 1

2 ,L
−
(
f ′(uh)ϕh zh

)
i− 1

2 ,R

}
dt

+
∑
n,i

∫
In

{
F′uh(ui+ 1

2 ,L
, ui+ 1

2 ,R
)(ϕh) zi+ 1

2 ,L
− F′uh(ui− 1

2 ,L
, ui− 1

2 ,R
)(ϕh) zi− 1

2 ,R

}
dt.

(28)

We will now discuss the derivatives for our two numerical fluxes F separately.

4.1 LF flux

From (18) we get for the directional derivative of F(uL, uR) with respect to uh in direction ϕh

F′uh(uL, uR)(ϕh) =
{
{f ′(uh)ϕh

}
}? +

αg

2

q
ϕh

y
.

Using this in (28) results in

C′prim,uh(uh, zh)(ϕh) =
∑
n,i

∫
In

∫
Ki

f ′(uh)xϕ
h zh dx dt+

∑
n,i

∫
In

∫
Ki

f ′(uh)ϕhx z
h dx dt

−
∑
n,i

∫
In

{(
f ′(uh)ϕh zh

)
i+ 1

2 ,L
−
(
f ′(uh)ϕh zh

)
i− 1

2 ,R

}
dt

+
∑
n,i

∫
In

{({
{f ′(uh)ϕh

}
}?i+ 1

2
+
αg

2

q
ϕh

y
i+ 1

2

)
zi+ 1

2 ,L

−
({
{f ′(uh)ϕh

}
}?i− 1

2
+
αg

2

q
ϕh

y
i− 1

2

)
zi− 1

2 ,R

}
dt.

We collect all terms that are associated with test functions ϕi+ 1
2 ,L

and ϕi− 1
2 ,L

and get for interior
edges:

ϕi+ 1
2 ,L

:− f ′(ui+ 1
2 ,L

)zi+ 1
2 ,L

+
1

2
f ′(ui+ 1

2 ,L
)zi+ 1

2 ,L
+
αg

2
zi+ 1

2 ,L
= −1

2
f ′(ui+ 1

2 ,L
)zi+ 1

2 ,L
+
αg

2
zi+ 1

2 ,L
,

ϕi− 1
2 ,L

:− 1

2
f ′(ui− 1

2 ,L
)zi− 1

2 ,R
− αg

2
zi− 1

2 ,R
.

Reordering the sum to identify ϕi− 1
2 ,L

with ϕi+ 1
2 ,L

while respecting the homogeneous Dirichlet
boundary conditions results in

−f ′(ui+ 1
2 ,L

) {{z}}?i+ 1
2

+
αg

2
JzKi+ 1

2
, i = 1, . . . , N.

Similarly, we get for terms that are associated with ϕi+ 1
2 ,R

and ϕi− 1
2 ,R

, respectively, (preferring the

index i− 1
2 )

f ′(ui− 1
2 ,R

) {{z}}?i− 1
2
− αg

2
JzKi− 1

2
, i = 1, . . . , N.

9



This results in the following definition of the convection term in the discretization of the adjoint
equation for the DO approach:

Cadj,DO(uh;ϕh, zh) =
∑
n,i

∫
In

∫
Ki

f ′(uh)xϕ
h zh dx dt+

∑
n,i

∫
In

∫
Ki

f ′(uh)ϕhx z
h dx dt

+
∑
n,i

∫
In

{(
−f ′(ui+ 1

2 ,L
) {{z}}?i+ 1

2
+
αg

2
JzKi+ 1

2

)
ϕi+ 1

2 ,L

−
(
−f ′(ui− 1

2 ,R
) {{z}}?i− 1

2
+
αg

2
JzKi− 1

2

)
ϕi− 1

2 ,R

}
dt.

(29)

4.2 EO flux

Next, we consider the EO flux. Using the derivatives given by (20) in (28) and reordering the terms
with respect to ϕh gives

C′prim,uh(uh, zh)(ϕh) =
∑
n,i

∫
In

∫
Ki

f ′(uh)xϕ
h zh dx dt+

∑
n,i

∫
In

∫
Ki

f ′(uh)ϕhx z
h dx dt

−
∑
n,i

∫
In

{(
f ′(uh)ϕh zh

)
i+ 1

2 ,L
−
(
f ′(uh)ϕh zh

)
i− 1

2 ,R

}
dt

+
∑
n,i

∫
In

{
max(f ′(ui+ 1

2 ,L
), 0)

q
zh

y
i+ 1

2

ϕi+ 1
2 ,L

+ min(f ′(ui− 1
2 ,R

), 0)
q
zh

y
i− 1

2

ϕi− 1
2 ,R

}
dt.

We further simplify (with z 1
2 ,L

= 0 and zN+ 1
2 ,R

= 0)

max(f ′(ui+ 1
2 ,L

), 0)
q
zh

y
i+ 1

2

− f ′(ui+ 1
2 ,L

)zi+ 1
2 ,L

= −min(f ′(ui+ 1
2 ,L

), 0)zi+ 1
2 ,L
−max(f ′(ui+ 1

2 ,L
), 0)zi+ 1

2 ,R

and

min(f ′(ui− 1
2 ,R

), 0)
q
zh

y
i− 1

2

+ f ′(ui− 1
2 ,R

)zi− 1
2 ,R

= min(f ′(ui− 1
2 ,R

), 0)zi− 1
2 ,L

+ max(f ′(ui− 1
2 ,R

), 0)zi− 1
2 ,R

.

This implies

Cadj,DO(uh;ϕh, zh) =
∑
n,i

∫
In

∫
Ki

f ′(uh)xz
hϕh dx dt+

∑
n,i

∫
In

∫
Ki

f ′(uh)zhϕhx dx dt

+
∑
n,i

∫
In

{(
−min(f ′(ui+ 1

2 ,L
), 0)zi+ 1

2 ,L
−max(f ′(ui+ 1

2 ,L
), 0)zi+ 1

2 ,R

)
ϕi+ 1

2 ,L

+
(

min(f ′(ui− 1
2 ,R

), 0)zi− 1
2 ,L

+ max(f ′(ui− 1
2 ,R

), 0)zi− 1
2 ,R

)
ϕi− 1

2 ,R

}
dt,

(30)

with z 1
2 ,L

= 0 and zN+ 1
2 ,R

= 0.

5 OD

In this approach, we first set up the continuous optimality system. Then we are free to discretize
each equation separately.

10



The state equation is given by: find u ∈W such that it satisfies a weak formulation of

ut + f(u)x − εuxx = g + q in Q,

u(xL, ·) = u(xR, ·) = 0 in (0, T ),

u(·, 0) = u0 in Ω.

(31)

The discrete state equation is given by (10). The adjoint equation is naturally given in a non-
conservative formulation and has the form: find z ∈ W such that it satisfies a weak formulation
of

−zt − f ′(u)zx − εzxx = u− ud in Q,

z(xL, ·) = z(xR, ·) = 0 in (0, T ),

z(·, T ) = 0 in Ω.

(32)

We rewrite it in a conservative formulation so that we can apply the existing space-time DG dis-
cretization for conservation laws:

−zt − (f ′(u)z)x − εzxx = −f ′(u)xz + u− ud in Q,

z(xL, ·) = z(xR, ·) = 0 in (0, T ),

z(·, T ) = 0 in Ω.

(33)

We will discuss suitable discretizations of the adjoint equation in the conservative formulation in the
following in detail.

Finally, the continuous optimality condition is given by: find q ∈ L2(Q) such that

αq + z = 0 in Q. (34)

The discretization of this equation is trivial.

5.1 Discretization of the adjoint equation

We discretize (33) using a conservative space-time DG discretization: find zh ∈ Vp such that

Badj(ϕ
h, zh)+Cadj,OD(uh;ϕh, zh)+A(ϕh, zh) = Scons

OD (uh; zh, ϕh)+Su(uh−ud, ϕh) ∀ϕh ∈ Vp, (35)

with Cadj,OD and Scons
OD still to be defined. Here, Scons

OD refers to a discretization of the new source
term −f ′(u)xz.

This approach has the advantage that we can define a new flux function f̃(z) = −f ′(u)z and use
a discretization similar to (10), i.e., choose F̃ to be a matching flux to F. Then,

Cadj,OD(uh;ϕh, zh) =
∑
n,i

∫
In

∫
Ki

f ′(uh)zh ϕhx dx dt

+
∑
n,i

∫
In

{
F̃((ui+ 1

2 ,L
, zi+ 1

2 ,L
), (ui+ 1

2 ,R
, zi+ 1

2 ,R
)) ϕi+ 1

2 ,L

−F̃((ui− 1
2 ,L
, zi− 1

2 ,L
), (ui− 1

2 ,R
, zi− 1

2 ,R
)) ϕi− 1

2 ,R

}
dt.

(36)

Remark 5.1. Comparing (36) with (29) and (30), we observe that for
q
f ′(uh)

y
i+ 1

2

6= 0 it is not

possible to find a flux function F̃ so that (36) matches with (29) or (30), as the terms in front
of ϕi+ 1

2 ,L
and ϕi− 1

2 ,R
in (29) and (30), respectively, differ. We will solve this problem by adding

suitable correction terms to the discretization of the new source term SconsOD .

11



The simplest way to discretize the new source term −f ′(u)xz on the right hand side of (33) is by
defining Scons

OD = Scons
OD,pre with

Scons
OD,pre(uh;ϕh, zh) = −

∑
n,i

∫
In

∫
Ki

f ′(uh)x z
h ϕh dx dt. (37)

We will see that this straight-forward approach is not the correct one here.
In the context of developing numerical methods for balance laws, it is an open secret that one

needs to be very careful in designing the schemes in order to make sure that steady states of the
continuous system are preserved by the discretization as good as possibly (ideally up to machine
precision) and not only up to the accuracy of the underlying scheme. This is, for example, well
studied for the shallow water equations and in particular for the so called lake at rest steady state,
see, e.g., [4, 11,15] and the references cited therein.

We will follow a similar idea here. Let us focus on (5). A stationary solution of this equation (on
an infinite domain) is described by

(f ′(u)z)x = f ′(u)xz.

The constant solution z = c = constant solves this equation. We note that it also solves the original
non-conservative equation −zt−f ′(u)zx = 0 on an infinite domain (before we applied integration by
parts on a continuous level). We therefore also want our conservative discretization of these terms
to imitate this correct behavior, i.e., there should hold

Cadj,OD(uh;ϕh, c)− Scons
OD (uh;ϕh, c)

!
= 0. (38)

We will adjust the discretization of the source term Scons
OD to ensure this behavior locally, with the

precise corrections depending on the choice of the numerical fluxes F and F̃.

Remark 5.2. Our current focus is on the proper discretization of the convection term, in particu-
lar on ensuring (38). We will therefore temporarily consider transmissive boundary conditions for
zh, i.e., set z 1

2 ,L
= z 1

2 ,R
and zN+ 1

2 ,R
= zN+ 1

2 ,L
, instead of the homogeneous Dirichlet boundary

conditions, which are not well-posed for a convection equation.

There holds

−Scons
OD,pre(uh;ϕh, c) + Cadj,OD(uh;ϕh, c)

=
∑
n,i

∫
In

∫
Ki

f ′(uh)x c ϕ
h dx dt+

∑
n,i

∫
In

∫
Ki

f ′(uh)c ϕhx dx dt

+
∑
n,i

∫
In

{
F̃((ui+ 1

2 ,L
, c), (ui+ 1

2 ,R
, c)) ϕi+ 1

2 ,L
− F̃((ui− 1

2 ,L
, c), (ui− 1

2 ,R
, c)) ϕi− 1

2 ,R

}
dt

=
∑
n,i

∫
In

{
(c f ′(uh) ϕh)i+ 1

2 ,L
− (c f ′(uh) ϕh)i− 1

2 ,R

}
dt

+
∑
n,i

∫
In

{
F̃((ui+ 1

2 ,L
, c), (ui+ 1

2 ,R
, c)) ϕi+ 1

2 ,L
− F̃((ui− 1

2 ,L
, c), (ui− 1

2 ,R
, c)) ϕi− 1

2 ,R

}
dt.

Next, we consider the two fluxes separately.

5.1.1 LF flux

A natural choice for F̃ in case of the LF flux is given by

F̃((uL, zL), (uR, zR)) = {{−f ′(u)}}? {{z}}+
αg

2
JzK . (39)
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Then,

F̃((uL, c), (uR, c)) = {{−f ′(u)}}? {{c}}+
αg

2
JcK = −c {{f ′(u)}}?.

This gives

−Scons
OD,pre(uh;ϕh, c) + Cadj,OD(uh;ϕh, c)

=
∑
n,i

∫
In

{
(c f ′(uh) ϕh)i+ 1

2 ,L
− (c f ′(uh) ϕh)i− 1

2 ,R

}
dt

+
∑
n,i

∫
In

{
−c
{
{f ′(uh)

}
}?i+ 1

2
ϕi+ 1

2 ,L
+ c

{
{f ′(uh)

}
}?i− 1

2
ϕi− 1

2 ,R

}
dt

=
∑
n,i

∫
In

{
1
2c

q
f ′(uh)

y
i+ 1

2

ϕi+ 1
2 ,L

+ 1
2c

q
f ′(uh)

y
i− 1

2

ϕi− 1
2 ,R

}
dt.

Therefore, at each spatial edge i+ 1
2 , we are left with a term of the form

c
q
f ′(uh)

y
i+ 1

2

{
{ϕh

}
}?i+ 1

2
.

In other words: our current discretization does not preserve a standing wave if
q
f ′(uh)

y
i+ 1

2

6= 0.

Reincorporating the homogeneous Dirichlet boundary conditions for the adjoint state z, we there-
fore define for the LF flux

Scons
OD (uh;ϕh, zh) = Scons

OD,pre(uh;ϕh, zh) +
∑
n,i

∫
In

q
f ′(uh)

y
i+ 1

2

{
{zh
}
}?i+ 1

2

{
{ϕh

}
}?i+ 1

2
. (40)

Remark 5.3. Note that for this definition Cadj,OD − SconsOD coincides with Cadj,DO, compare (29),
and therefore the OD approach, which uses the source term SconsOD , commutes with the DO approach.

5.1.2 EO flux

A natural flux F̃ in case of EO, which respects the upwind character of the flux, is given by

F̃((uL, zL), (uR, zR)) =

∫ zL

0

max(−f ′(uL), 0) ds+

∫ zR

0

min(−f ′(uR), 0) ds

= −min(f ′(uL), 0)zL −max(f ′(uR), 0)zR.

We then get

−Scons
OD,pre(uh;ϕh, c) + Cadj,OD(uh;ϕh, c)

=
∑
n,i

∫
In

{
(cf ′(uh) ϕh)i+ 1

2 ,L
− (cf ′(uh) ϕh)i− 1

2 ,R

}
dt

+
∑
n,i

∫
In

{
−
(

min(f ′(ui+ 1
2 ,L

), 0)c+ max(f ′(ui+ 1
2 ,R

), 0)c
)
ϕi+ 1

2 ,L

+
(

min(f ′(ui− 1
2 ,L

), 0)c+ max(f ′(ui− 1
2 ,R

), 0)c
)
ϕi− 1

2 ,R

}
dt.

After some manipulations, this gives

−Scons
OD,pre(uh;ϕh, c) + Cadj,OD(uh;ϕh, c) =∑

n,i

∫
In

{(
max(f ′(ui+ 1

2 ,L
), 0)c−max(f ′(ui+ 1

2 ,R
), 0)c

)
ϕi+ 1

2 ,L

+
(

min(f ′(ui− 1
2 ,L

), 0)c−min(f ′(ui− 1
2 ,R

), 0)c
)
ϕi− 1

2 ,R

}
dt.
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Therefore, again, our discretization does not satisfy the property of preserving a standing wave
locally. To ensure this property and to guarantee commutativity with Cadj,DO given by (30) we
define for the EO flux, setting z 1

2 ,L
= zN+ 1

2 ,R
= 0 to respect the homogeneous Dirichlet boundary

conditions for z,

Scons
OD (uh;ϕh, zh) = Scons

OD,pre(uh;ϕh, zh)

+
∑
n,i

∫
In

{(
max(f ′(ui+ 1

2 ,L
), 0)zi+ 1

2 ,R
−max(f ′(ui+ 1

2 ,R
), 0)zi+ 1

2 ,R

)
ϕi+ 1

2 ,L

+
(
−min(f ′(ui− 1

2 ,R
), 0)zi− 1

2 ,L
+ min(f ′(ui− 1

2 ,L
), 0)zi− 1

2 ,L

)
ϕi− 1

2 ,R

}
dt.

(41)

Remark 5.4. Note that for Jf ′(u)K = 0 the additional edge stabilizations in (41) and (40) drop.
This is for example the case for the linear advection equation.

6 Numerical results

In this section we present numerical results for solving the OCP (1) and (2). We use the reduced
approach and rewrite J(qh, uh) as jh(qh) = J(qh, Sh(qh)) with Sh being the discrete solution operator
given by (10). Then, for each evaluation of ∇jh(qh) we once need to solve the discrete state equation
and the discrete adjoint equation, which is given by (25) for the DO approach and by (35) for the
OD approach. We solve the resulting optimization problem in jh using the L-BFGS algorithm with
Armijo line search, see, e.g., Failer [10] for more information.

We focus on examining the effect of adding the additional correction terms in the discretization
of the source term −f ′(u)xz. Therefore, we only use the discretization of the adjoint equation that
is given by (35) and compare the following two versions:

• OD-with (OD-w): In this approach we add the correction terms in Scons
OD (given by (40) for

the LF flux and by (41) for the EO flux). The resulting discretization then coincides with the
discretization of the adjoint equation in the DO approach.

• OD-without (OD-wo): In this approach we use Scons
OD = Scons

OD,pre, which results in a discretiza-
tion, which violates commutativity and does not preserve steady solutions of the convective
terms in the adjoint equation.

For the penalty parameter σ in the SIPG formulation we choose σ = 3p(p+ 1).

6.1 Test 1: Manufactured solution

We start with a manufactured solution to test convergence properties. On the domain (xL, xR) =
(−1, 1), we define the solution

u(x, t) = sin
(π

2
(x+ 1)

)
,

z(x, t) = − sin
(π

2
(x+ 1)

)
exp(−ε(T − t))(T − t),

q(x, t) = −α−1z,

(42)

which results in the data u0 = u(·, 0),

ud(x, t) = z(x, t)

(
ε

(
π2

4
− 1

)
− π

2
cos
(π

2
(x+ 1)

))
+ sin

(π
2

(x+ 1)
)

+ sin
(π

2
(x+ 1)

)
exp(−ε(T − t)),

g(x, t) = u(x, t)

(
π

2
cos
(π

2
(x+ 1)

)
+ ε

π2

4
− α−1 exp(−ε(T − t))(T − t)

)
.

(43)
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Figure 1: Test 1: Results for gradient test. The x−axis denotes 1
ρ with ρ being the step length in

the difference quotient, the y−axis denotes the error of the gradient as given by (44).

The specific choices of α, ε, and T will be made precise below.

6.1.1 Gradient test

We start with a gradient test to assess the accuracy of the discrete gradient for the two methods
OD-w and OD-wo. More precisely, we compare the results for computing the directional derivative
j′h(qh)(δqh) in a direction δqh by means of the adjoint equation with the result of using central
difference quotients for different step sizes ρ, i.e., we evaluate∣∣∣∣jh(qh + ρδqh)− jh(qh − ρδqh)

2ρ
− j′h(qh)(δqh)

∣∣∣∣. (44)

We set ε = 0.01, α = 0.01, T = 1, and choose qh to be the L2 projection of the minimum and δqh

to be the L2 projection of 10(x+ 1)(1− x)(0.2− t). We choose a coarse discretization with h = 0.1
and time step length ∆t = 0.1 and vary ρ between 10−1 and 10−9.

The results for LF and EO flux are shown in figure 1. As expected, we obtain an accurate discrete
gradient for OD-w. For OD-wo, we observe

• an inaccurate gradient discretization,
• but with increasing accuracy for increasing polynomial degree p.

6.1.2 Convergence of the OCP

Next, we run convergence tests for the solution given by (42). We choose T = 0.2, α = 0.1, and
∆t = 0.5∆x. The stopping tolerance in the L-BFGS algorithm is set to be 10−8. A gradient size
bigger than that indicates that the line search broke (due to an inconsistent discrete gradient).

In table 1, we show the results for using the LF flux for ε = 10−3. Besides errors and orders of
convergence we present the number of iterations in the L-BFGS algorithm and the gradient norm
when the algorithm exited. Roughly speaking we observe convergence orders of O(hp+1) for the state
u, the adjoint z, and the control q, except for 2 cases: If the error size is too close to the residual of
the gradient (for example for N = 80 and p = 3) our convergence breaks. This is to be expected.
The more interesting case is the case of p = 1 for OD-wo. Here, we observe a deterioration in the
convergence order for the adjoint z, and marginally for the control q as well. This also reflects in
larger errors compared to using OD-w.

The same effect is more obvious when we decrease the diffusion parameter. In table 2, we present
the results for the LF flux for ε = 10−5. Here, we observe a decay of the convergence order in the
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p N error u order error q order error z order iter. gradient

OD-wo

1 40 2.35e-04 – 1.93e-03 – 2.31e-04 – 25 4.66e-05
1 80 5.43e-05 2.11 5.09e-04 1.92 7.36e-05 1.65 28 1.97e-05
1 160 1.28e-05 2.08 1.44e-04 1.82 2.48e-05 1.57 31 7.11e-06
1 320 3.19e-06 2.01 4.05e-05 1.83 8.22e-06 1.59 36 2.81e-06

2 20 2.31e-05 – 1.67e-04 – 1.67e-05 – 49 2.18e-07
2 40 2.95e-06 2.97 2.05e-05 3.03 2.06e-06 3.02 52 3.00e-08
2 80 3.41e-07 3.11 2.61e-06 2.98 2.61e-07 2.98 54 9.51e-09
2 160 4.65e-08 2.87 3.93e-07 2.73 3.47e-08 2.91 54 9.51e-09

3 10 4.15e-06 – 4.97e-05 – 4.96e-06 – 54 9.51e-09
3 20 1.81e-07 4.52 3.02e-06 4.04 3.00e-07 4.05 54 9.51e-09
3 40 2.97e-08 2.61 2.86e-07 3.40 1.70e-08 4.14 54 9.51e-09
3 80 2.62e-08 0.18 2.07e-07 0.47 3.33e-09 2.35 54 9.51e-09

OD-w

1 40 2.31e-04 – 1.87e-03 – 1.87e-04 – 54 9.51e-09
1 80 5.05e-05 2.19 4.63e-04 2.02 4.63e-05 2.02 54 9.51e-09
1 160 9.91e-06 2.35 1.15e-04 2.01 1.15e-05 2.01 54 9.51e-09
1 320 1.72e-06 2.52 2.87e-05 2.01 2.87e-06 2.01 54 9.51e-09

2 20 2.26e-05 – 1.67e-04 3.07 1.67e-05 – 54 9.51e-09
2 40 2.88e-06 2.98 2.01e-05 3.06 2.01e-06 3.06 54 9.51e-09
2 80 3.23e-07 3.15 2.45e-06 3.04 2.44e-07 3.04 54 9.51e-09
2 160 4.35e-08 2.89 3.62e-07 2.76 3.01e-08 3.02 54 9.51e-09

3 10 4.16e-06 – 4.96e-05 – 4.96e-06 – 54 9.51e-09
3 20 1.73e-07 4.59 2.99e-06 4.05 2.98e-07 4.05 54 9.51e-09
3 40 2.66e-08 2.70 2.65e-07 3.49 1.72e-08 4.11 54 9.51e-09
3 80 2.59e-08 0.04 2.05e-07 0.37 3.52e-09 2.29 54 9.51e-09

Table 1: Test 1: Errors and orders of convergence for ε = 10−3.

adjoint z to first order for p = 1 for OD-wo, i.e., for not using the correction terms. For OD-w we
observe perfect second order convergence. For p = 2, the difference between the two discretizations
is already very small. This is consistent with the results of the gradient test, which imply that the
gradient becomes increasingly better for higher polynomial degree.

The results for the EO flux are qualitatively very similar, and are not shown here for brevity.

6.2 Test 2

Next, we consider a problem from the literature [8, 24], which we modified slightly to see more
activity for later time t. We set (xL, xR) = (0, 1), T = 1, α = 0.5, and ε = 0.001. Initial conditions
u0 are given by

u0(x) = sin(4πx).

We further choose g = 0 and ud = sin(4πx). The choice of ud is the main difference to the test
in [8, 24] where ud = 0 is used, which causes the discrete solution uh to decay to zero very rapidly.
We choose the time step size ∆t = 0.25∆x, and we initialize the L-BFGS algorithm with qh0 = 0 and
set the stopping tolerance to be 10−7. We use the EO flux for the results presented in the following.
The usage of the LF flux gives very similar results.

When solving the inviscid Burgers equation ut + f(u)x = 0 (outside the context of an OCP) for
the given initial data u0, two shocks form at x = 1

4 and x = 3
4 and rarefaction waves form at x = 0,

x = 1
2 , and x = 1. To keep the discrete state solution uh close to the desired state ud (within the

OCP context), the control qh needs to counteract this behavior. We show the solution for the control
qh and the state uh on a mesh with p = 2 and N = 160 in figure 2. We observe steep gradients in
the control around x = 0, x = 1

2 , and x = 1, counterbalancing the arising rarefaction waves in uh.
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p N error u order error q order error z order iter. gradient

OD-wo

1 40 2.79e-04 – 1.97e-03 – 2.47e-04 – 24 5.33e-05
1 80 7.51e-05 1.89 5.51e-04 1.84 9.20e-05 1.42 27 2.81e-05
1 160 2.28e-05 1.72 1.93e-04 1.51 4.08e-05 1.18 29 1.26e-05
1 320 8.15e-06 1.49 7.90e-05 1.29 1.99e-05 1.04 33 7.11e-06

2 20 2.52e-05 – 1.72e-04 – 1.72e-05 – 44 2.25e-07
2 40 3.98e-06 2.66 2.18e-05 2.98 2.18e-06 2.97 51 4.63e-08
2 80 6.28e-07 2.67 3.09e-06 2.82 3.10e-07 2.82 54 9.51e-09
2 160 1.01e-07 2.64 5.60e-07 2.46 5.42e-08 2.51 54 9.51e-09

3 10 4.63e-06 – 4.87e-05 – 4.87e-06 – 54 9.51e-09
3 20 2.76e-07 4.07 3.12e-06 3.96 3.08e-07 3.98 54 9.51e-09
3 40 3.58e-08 2.94 3.19e-07 3.29 1.87e-08 4.04 54 9.51e-09
3 80 2.68e-08 0.42 2.12e-07 0.59 2.94e-09 2.67 54 9.51e-09

OD-w

1 40 2.74e-04 – 1.89e-03 – 1.89e-04 – 54 9.51e-09
1 80 6.99e-05 1.97 4.68e-04 2.01 4.68e-05 2.01 54 9.51e-09
1 160 1.76e-05 1.99 1.17e-04 2.01 1.17e-05 2.01 54 9.51e-09
1 320 4.39e-06 2.00 2.91e-05 2.00 2.91e-06 2.00 54 9.51e-09

2 20 2.46e-05 – 1.72e-04 – 1.72e-05 – 54 9.51e-09
2 40 3.84e-06 2.68 2.12e-05 3.02 2.12e-06 3.02 54 9.51e-09
2 80 5.86e-07 2.71 2.65e-06 3.00 2.65e-07 3.00 54 9.51e-09
2 160 8.82e-08 2.73 3.89e-07 2.77 3.33e-08 2.99 54 9.51e-09

3 10 4.65e-06 – 4.85e-05 – 4.85e-06 – 54 9.51e-09
3 20 2.65e-07 4.13 3.05e-06 3.99 3.04e-07 4.00 54 9.51e-09
3 40 2.96e-08 3.16 2.75e-07 3.47 1.86e-08 4.03 54 9.51e-09
3 80 2.59e-08 0.19 2.05e-07 0.42 3.53e-09 2.40 54 9.51e-09

Table 2: Test 1: Errors and orders of convergence for ε = 10−5.

OD-w OD-wo

N value J order iter. gradient value J order iter. gradient

20 0.10640082692 - 44 8.58e-08 0.10641958284 - 11 2.10e-03
40 0.10818515778 - 44 7.94e-08 0.10819225166 - 14 1.02e-03
80 0.10855578246 2.27 43 8.03e-08 0.10855750188 2.28 18 3.44e-04
160 0.10862035158 2.52 43 8.00e-08 0.10862054051 2.53 22 1.09e-04

Table 3: Test 2: Values and orders of convergence (computed using values from 3 subsequent meshes)
for functional J for p = 1.

OD-w OD-wo

N error q order iter. gradient error q order iter. gradient

20 1.67e-02 - 44 8.58e-08 1.77e-02 - 11 2.10e-03
40 4.56e-03 1.87 44 7.94e-08 6.10e-03 1.54 14 1.02e-03
80 1.47e-03 1.64 43 8.03e-08 2.83e-03 1.11 18 3.44e-04
160 4.20e-04 1.80 43 8.00e-08 1.00e-03 1.50 22 1.09e-04

Table 4: Test 2: Errors and orders of convergence for the control q for p = 1.
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Figure 2: Test 2: Computed solution (qh, uh) for p = 2 and N = 160. Left column: control qh, right
column: state uh. The second row shows the solutions qh(·, t) and uh(·, t) at time instances
t = 0.25, t = 0.5, and t = 0.75 as a function of the space coordinate x.

In table 3 we present results for the functional values J given by (1) for p = 1 for both approaches
OD-w and OD-wo. Despite the fact that the computation for OD-wo breaks very early due to the
inconsistent gradient, the functional values for J are very similar to each other.

To get a better idea of the difference between the schemes, we therefore also compute errors by
comparing with a reference solution, which has been produced using p = 3 and N = 640. In table
4 we show the results for p = 1 for the control q, both for OD-w and OD-wo. We observe lower
convergence orders for OD-wo than OD-w, which results in larger errors. In particular, the error for
N = 160 is already a factor of 2.4 smaller for OD-w than for OD-wo. This is not a huge factor but
significant given that the algorithms are identical except for the addition of the correction terms.

7 Conclusion and outlook

We have presented space-time DG discretizations for an optimal control problem for the viscous
Burgers equation, for which the approaches of DO and OD commute. We employ conservative
discretizations for the convection terms for both the state and the adjoint equation. Following
the ideas of well-balanced discretizations of balance laws, we introduce additional edge terms in the
discretization of the new source term −f ′(u)xz in the adjoint equation. This ensures that steady state
solutions of the convection terms in the adjoint equation are preserved and that the approaches of
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DO and OD coincide. Our numerical experiments confirmed reduced convergence rates and reduced
gradient accuracy if these additional edge terms are not included for different settings.

In the next step, we proceed to considering the compressible Navier-Stokes equations based on
using the space-time DG discretizations suggested in [14, 21]. Due to the symmetry properties
introduced by the usage of entropy variables as degrees of freedom (instead of conserved variables),
we expect the discretizations of the time derivative term and of the diffusion term to possess the
commutative properties. Therefore, similar to the work done here, the challenge will consist in finding
appropriate discretizations for the convection terms, for which we will build on insights developed
here.
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