

Ringversuche der staatlichen Immissionsmessstellen (STIMES)

Stickoxide und Ozon vom 21. bis 25. September 2020

LANUV-Fachbericht 112

Ringversuche der staatlichen Immissionsmessstellen (STIMES)

Stickoxide und Ozon vom 21. bis 25. September 2020

LANUV-Fachbericht 112

Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen Recklinghausen 2021

IMPRESSUM

Herausgeber Landesamt für Natur, Umwelt und Verbraucherschutz

Nordrhein-Westfalen (LANUV)

Leibnizstraße 10, 45659 Recklinghausen

Telefon 02361 305-0 Telefax 02361 305-3215

E-Mail: poststelle@lanuv.nrw.de

Bearbeitung Thorsten Zang (LANUV)

Titelbild LANUV

Stand März 2021

ISSN 1864-3930 (Print), 2197-7690 (Internet), LANUV-Fachbericht

Informationsdienste Informationen und Daten aus NRW zu Natur, Umwelt und Verbraucherschutz unter

www.lanuv.nrw.de

Aktuelle Luftqualitätswerte zusätzlich im

• WDR-Videotext

Bereitschaftsdienst Nachrichtenbereitschaftszentrale des LANUV

(24-Std.-Dienst) Telefon 0201 714488

Nachdruck – auch auszugsweise – ist nur unter Quellenangaben und Überlassung von Belegexemplaren nach vorheriger Zustimmung des Herausgebers gestattet. Die Verwendung für Werbezwecke ist grundsätzlich untersagt.

Inhalt

1.	Einleitung	4
1.1.	Ziele des Ringversuches	4
1.2.	Zeitplan	4
1.3.	Teilnehmerliste	6
1.4.	Übersicht über die eingesetzten Messverfahren	7
1.5.	Erläuterung Bewertungsteil und ergänzende Prüfgasangebote	9
2.	Zusammenfassung der Ergebnisse	10
3.	Bewertungsteil	11
3.1.	Bewertung nach dem z'-score Verfahren	11
3.2.	Ermittlung der Vorgabekonzentration (Sollkonzentration) und der	
	Unsicherheit der Eignungsbekanntgabe	11
3.2.1.	Ermittlung des zugewiesenen Wertes	
3.2.2.	Ermittlung der Unsicherheit für die Eignungsbeurteilung	12
3.3.	Prüfgasangebote	
3.4.	Kenngrößen der Teilnehmermesswerte	14
3.5.	Teilnehmer der Gruppe I	
3.5.1.	z'-score Auswertung Stickstoffdioxid	15
3.5.2.	z'-score Auswertung Ozon	22
3.5.3.	z'-score Auswertung Stickstoffmonoxid	29
3.6.	Teilnehmer der Gruppe II	
3.6.1.	z'-score Auswertung Stickstoffdioxid	36
3.6.2.	z'-score Auswertung Ozon	43
3.6.3.	z'-score Auswertung Stickstoffmonoxid	50
4.	Ergänzende Prüfgasangebote und Auswertungen	57
4.1.	Messunsicherheiten der Teilnehmer – E _n -Zahlen	57
4.2.	Gruppe I	58
4.2.1.	E _n -Zahlen Stickstoffdioxid	58
4.2.2.	E _n -Zahlen Ozon	60
4.2.3.	E _n -Zahlen Stickstoffmonoxid	62
4.3.	Gruppe II	64
4.3.1.	E _n -Zahlen Stickstoffdioxid	64
4.3.2.	E _n -Zahlen Ozon	66
4.3.3.	E _n -Zahlen Stickstoffmonoxid	68
4.4.	Vergleichsmessungen ORSA-Röhrchen	70
4.4.1.	Benzol	
5.	Anhang	74
5.1.	ORSA-Vergleichsmessungen	74

1. Einleitung

In der Zeit vom 21. bis 25. September 2020 fand im LANUV NRW ein Ringversuch der staatlichen Immissionsmessstellen der Bundesländer (STIMES) statt. Der Ringversuch beinhaltete die Messkomponenten Stickstoffmonoxid, Stickstoffdioxid und Ozon.

Folgende Messverfahren waren beteiligt:

Tabelle 1: Anzahl der Teilnehmer

Anzahl der Teilnehmer	Verfahren	Anzahl
	Chemilumineszenz (NO und NO ₂)	25
19	UV-Absorption CAPS (NO ₂)	3
	UV-Absorption (Ozon)	25

Bedingt durch die Covid-19-Pandemie fand der STIMES-Ringversuch 2020 in zwei Teilnehmergruppen statt. Für jede dieser Gruppen erfolgte die Vorgabe des zugewiesenen Wertes (des Sollwertes) durch die Mittelwerte der von den nationalen Referenzlaboratorien ermittelten Konzentrationen, also durch das UBA und das LANUV gemeinsam.

Ergänzend zum Ringversuchsangebot wurden beprobte ORSA-Röhrchen für BTEX-Vergleichsmessungen an interessierte Teilnehmer verteilt.

1.1. Ziele des Ringversuches

- Vergleich der Messergebnisse für verschiedene Prüfgaskonzentrationen im Bereich der Grenzwerte und typischer Außenluftbedingungen
- Vorgabe von Referenzwerten mit definierter Unsicherheit

1.2. Zeitplan

Montag, den 21.09.2020

Uhrzeit				
Von	Bis	Was?	Wo?	Prüfgas
ab 08:00	17:30	Anreise und Aufbau Gruppe I	Technikum	

Dienstag, den 22.09.2020

Gruppe I

Uhrzeit				
Von	Bis	Was?	Wo?	Prüfgas
08:00	10:00	Kalibrierzeit, Nullgas auf der Leitung	Technikum	
		Bewertungsangebote für die z'score Auswertung		
10:00	10:45	Nullgas		PG 1 a
11:00	11:45	500 ppb NO		PG 2 a
12:00	12:45	GPT 300 ppb NO / 200 ppb NO ₂		PG 3 a
13:00	13:45	200 ppb Ozon		PG 4 a
14:00	14:30	Besprechung	Technikum	
14:00	14:45	GPT 100 ppb NO / 100 ppb NO ₂		PG 5 a
15:00	15:45	100 ppb Ozon		PG 6 a
16:00	16:45	14 ppb NO₂		PG 7 a
17:00	17:45	14 ppb Ozon		PG 8 a

Uhrzeit				
Von	Bis	Was?	Wo?	Prüfgas
18:00	18:45	GPT 140 ppb NO / 60 ppb NO ₂		PG 9 a
19:00	19:45	60 ppb Ozon		PG 10 a
20:00	20:45	GPT 50 ppb NO / 25 ppb NO ₂		PG 11 a
21:00	21:45	25 ppb Ozon		PG 12 a

Mittwoch, den 23.09.2020

Uhrzeit				
Von	Bis	Was?	Wo?	Prüfgas
07:00	13:00	Abbau und Abreise Gruppe I	Toohnikum	
13:00	19:00	Anreise und Aufbau Gruppe II	Technikum	

Donnerstag, den 24.09.2020

Gruppe II

Uhrzeit	Uhrzeit				
Von	Bis	Was?	Wo?	Prüfgas	
08:00	10:00	Kalibrierzeit, Nullgas auf der Leitung	Technikum		
		Bewertungsangebote für die z'score Auswertung			
10:00	10:45	Nullgas		PG 1 b	
11:00	11:45	500 ppb NO		PG 2 b	
12:00	12:45	GPT 300 ppb NO / 200 ppb NO ₂		PG 3 b	
13:00	13:45	200 ppb Ozon		PG 4 b	
14:00	14:30	Besprechung	Technikum		
14:00	14:45	GPT 100 ppb NO / 100 ppb NO ₂		PG 5 b	
15:00	15:45	100 ppb Ozon		PG 6 b	
16:00	16:45	14 ppb NO ₂		PG 7 b	
17:00	17:45	14 ppb Ozon		PG 8 b	
18:00	18:45	GPT 140 ppb NO / 60 ppb NO ₂		PG 9 b	
19:00	19:45	60 ppb Ozon		PG 10 b	
20:00	20:45	GPT 50 ppb NO / 25 ppb NO ₂		PG 11 b	
21:00	21:45	25 ppb Ozon		PG 12 b	

Freitag, den 25.09.2020

Uhrzeit				
Von	Bis	Was?	Wo?	Prüfgas
ab 08:00	17:30	Abbau und Abreise Gruppe II	Technikum	

1.3. Teilnehmerliste

Messstelle	Straße	PLZ	Ort
LANUV FB 43	Wallneyer Str. 6	45133	Essen
Umweltbundesamt Außenstelle Langen	Paul-Ehrlich-Straße 29	63225	Langen
RIVM Niederlande	Postbus 1	NL-3720	BA Bilthoven, Niederlande
Senatorin für Klimaschutz, Umwelt, Mobilität, Stadtentwicklung und Wohnungsbau (Bremen)	Contrescarpe 72	28195	Bremen
Landesamt für Umwelt- und Arbeitsschutz Saarbrücken	Don-Bosco-Str. 1	66119	Saarbrücken
Landesamt für Umwelt, Natur- schutz und Geologie Mecklenburg-Vorpommern	Goldberger Straße 12	18273	Güstrow
Thüringer Landesamt für Umwelt, Bergbau und Naturschutz	Göschwitzer Straße 41	07745	Jena
Staatliche Betriebsgesellschaft für Umwelt und Landwirtschaft Sachsen	Altwahnsdorf 12	01445	Radebeul
Hessisches Landesamt für Naturschutz, Umwelt und Geologie	Rheingaustr. 186	65203	Wiesbaden
Landesamt für Umweltschutz Sachsen-Anhalt Außenstelle Magdeburg	Wallonerberg 6 - 7	39104	Magdeburg
Staatliches Gewerbeaufsichtsamt Hildesheim Niedersachsen	Goslarsche Straße 3	31134	Hildesheim
Staatliches Umweltamt Luxemburg (ADENV)	1, Avenue Rock´n´Roll	L-4361	Esch-Sur-Al- zette
Institut für Hygiene und Umwelt, Hamburg	Marckmannstraße 129a	20539	Hamburg
Landesamt für Umwelt, Rheinland-Pfalz	Rheinallee 97-101	55118	Mainz
Senatsverwaltung für Umwelt, Verkehr und Klimaschutz Berlin	Brückenstraße 6	10179	Berlin
Landesamt für Umwelt Brandenburg	Seeburger Chaussee 2	14476	Potsdam
Landesamt für Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein	Oelixdorfer Straße 2	25509	Itzehoe
Bayerisches Landesamt für Umwelt	Bürgermeister-Ulrich-Straße 160	86179	Augsburg
LANUV FB 42	Wallneyer Str. 6	45133	Essen

1.4. Übersicht über die eingesetzten Messverfahren

Tabelle 3: Eingesetzte Messverfahren

TN	Analysemethoden	Komponente
TN01	Horiba APNA 370	NO
TN01	Horiba APNA 370	NO_2
TN01	Horiba APOA 370	O ₃
TN02	Thermo TE 42i	NO
TN02	Thermo TE 42i	NO ₂
TN02	Thermo TE 49i	O ₃
TN03	Horiba APNA 370	NO
TN03	Horiba APNA 370	NO_2
TN03	Horiba APOA 370	O ₃
TN04	Horiba APNA 370	NO
TN04	Horiba APNA 370	NO ₂
TN04	Horiba APOA 370	O ₃
TN05	Teledyne API 200 E	NO
TN05	Teledyne API 200 E	NO_2
TN05	Thermo TE 49i	O ₃
TN06	Horiba APNA 370	NO
TN06	Horiba APNA 370	NO ₂
TN06	Environnement O3 42 M	O ₃
TN08	Teledyne API T200P	NO
TN08	Teledyne API T200P	NO ₂
TN08	Thermo TE 49i	O ₃
TN09	Horiba APNA 370	NO
TN09	Horiba APNA 370	NO ₂
TN09	Thermo TE 49i	O ₃
TN10	Environnement AS 32 M	NO ₂
TN15	Horiba APNA 370	NO
TN15	Horiba APNA 370	NO ₂
TN15	Horiba APOA 370	O ₃
TN16	Environnement AS 32 M	NO ₂
TN17	Horiba APNA 370	NO
TN17	Horiba APNA 370	NO ₂
TN17	Horiba APOA 370	O ₃
TN18	Horiba APNA 370	NO
TN18	Horiba APNA 370	NO ₂
TN18	Horiba APOA 370	O ₃
TN19	Thermo TE 42i	NO
TN19	Thermo TE 42i	NO ₂
TN19	Thermo TE 49i	O ₃

TN	Analysemethoden	Komponente
TN20	Horiba APNA 370	NO
TN20	Horiba APNA 370	NO_2
TN20	Thermo TE 49i	O ₃
TN24	Horiba APNA 370	NO
TN24	Horiba APNA 370	NO ₂
TN24	Horiba APOA 370	O ₃
TN25	Horiba APNA 370	NO
TN25	Horiba APNA 370	NO_2
TN25	Horiba APOA 370	О3
TN26	Horiba APNA 370	NO
TN26	Horiba APNA 370	NO ₂
TN26	Horiba APOA 370	O ₃
TN27	Horiba APNA 370	NO
TN27	Horiba APNA 370	NO_2
TN27	Horiba APOA 370	O ₃
TN28	Thermo TE 42i	NO
TN28	Thermo TE 42i	NO ₂
TN28	Teledyne T400	O ₃
TN29	Horiba APNA 370	NO
TN29	Horiba APNA 370	NO_2
TN29	Thermo TE 49i	O ₃
TN30	Horiba APNA 370	NO
TN30	Horiba APNA 370	NO ₂
TN30	Horiba APOA 370	O ₃
TN31	Thermo TE 42i	NO
TN31	Thermo TE 42i	NO ₂
TN31	Horiba APOA 370	O ₃
TN32	Teledyne T500U CAPS	NO_2
TN34	Horiba APNA 370	NO
TN34	Horiba APNA 370	NO_2
TN34	Horiba APOA 370	O ₃
TN35	Horiba APNA 370	NO
TN35	Horiba APNA 370	NO_2
TN35	Horiba APOA 370	O ₃
TN37	-	NO_2
TN38	-	NO_2
TN38	-	O ₃
TN42	-	NO ₂
TN42		O ₃
TN07	ORSA	Benzol

TN	Analysemethoden	Komponente
	•	•
TN12	ORSA	Benzol
TN13	ORSA	Benzol
TN22	ORSA	Benzol
TN23	ORSA	Benzol
TN33	ORSA	Benzol
TN36	ORSA	Benzol
TN39	ORSA	Benzol
TN40	ORSA	Benzol
TN41	ORSA	Benzol

1.5. Erläuterung Bewertungsteil und ergänzende Prüfgasangebote

Der vorliegende Bericht dient zur Dokumentation der Ergebnisse des STIMES-Ringversuches. Der Bericht ist in zwei Teile unterteilt.

- 1) Einen Bewertungsteil (Kapitel 3)
- 2) Ergänzende Angebote und Auswertungen (Kapitel 4)

Die Angebote des Bewertungsteiles dienen der Feststellung der Eignung eines Teilnehmerverfahrens zur Quantifizierung der interessierenden Komponenten. In Anlehnung an die Anforderungen der 39. BlmSchV erfolgt die Beurteilung der Eignung anhand der Teilnehmermesswerte durch eine z'-score Auswertung. Über die erfolgreiche Teilnahme an einem Ringversuch wird zusätzlich zu diesem Bericht ein Teilnahmezertifikat ausgestellt.

Bedingt durch die Covid-19-Pandemie fand der STIMES-Ringversuch 2020 in zwei Teilnehmergruppen statt. Daher konnten, mit Ausnahme eines Nullgases, keine ergänzenden Prüfgasangebote dosiert werden.

2. Zusammenfassung der Ergebnisse

Die Standardabweichung der Teilnehmermesswerte für die Bewertungsangebote ist, mit Ausnahme eines Angebotes für Stickstoffmonoxid mit 4,8 %, für alle Komponenten unter 2,5 %. Dies zeigt die hervorragende Präzision der Teilnehmerverfahren.

Innerhalb der Teilnehmergruppe liegen die z'-score Beträge durchweg unter 2. Alle Teilnehmer erfüllen die Anforderungen der z'-score Bewertung, wie in Abschnitt 3.1 beschrieben. Die Abschnitte 3.5 und 3.6 zeigen die Ergebnisse und Bewertungen der Teilnehmer. Die Tatsache, dass die z'-scores für alle Angebote und Teilnehmer unterhalb 2 liegen, unterstreicht die hohe Ergebnisqualität der Teilnehmer. Alle Teilnehmer haben die Anforderungen des Bewertungsteils erfüllt und somit den Ringversuch bestanden.

In Abschnitt 4.4 befindet sich eine Übersicht über die Ergebnisse der BTEX-Vergleichsmessungen der ORSA-Röhrchen. Die Röhrchen wurden zur Vergleichsmessung für BTEX an interessierte Teilnehmer des Ringversuches verteilt. Die Analyse erfolgte dann in den Laboratorien der Teilnehmer bzw. wurde von den Teilnehmern an externe Auftragnehmer vergeben.

3. Bewertungsteil

3.1. Bewertung nach dem z'-score Verfahren

Der z'-score (z'-Wert) ist ein standardisiertes Maß für die systematische Abweichungskomponente eines Laboratoriums, berechnet unter Verwendung des zugewiesenen Wertes (Sollwert) und der Standardabweichung für die Eignungsbeurteilung.

Ein z'-score, der den Betrag von 3 überschreitet, bedeutet eine Überschreitung der Kontrollgrenzen und somit einen fehlerhaften Wert. Ein z'-score oberhalb des Betrages 2 stellt ein Warnsignal dar.

Der z'-score wird nach folgender Formel berechnet:

$$z' = \frac{x - X}{\sigma}$$

z' z'-score

x Konzentration einzelner Teilnehmer

X zugewiesener Wert (Sollwert)

σ Standardabweichung für die Eignungsbeurteilung

Durch die Normierung auf die Präzisionsvorgabe gibt es für die z'-scores ein allgemeines Bewertungsschema:

 $|z'| \le 2$ Ergebnis zufriedenstellend

2 < |z'| < 3 Ergebnis fraglich

 $|z'| \ge 3$ Ergebnis unzureichend

Grundsätzlich wird allen Teilnehmern, die z'-score-Beträge größer als 2 erzielt haben, empfohlen, ihr Analyseverfahren zu überprüfen. Um für eine Ringversuchskomponente die Bewertung "erfolgreiche Teilnahme" zu erhalten, muss für mindestens zwei von drei Konzentrationsstufen ein z'-score-Betrag kleiner gleich 2 erzielt werden, für höchstens eine Stufe darf der z'-score-Betrag auch den Wert 2 überschreiten, muss aber kleiner als 3 bleiben.

3.2. Ermittlung der Vorgabekonzentration (Sollkonzentration) und der Unsicherheit der Eignungsbekanntgabe

3.2.1. Ermittlung des zugewiesenen Wertes

Bedingt durch die Covid-19-Pandemie fand der STIMES-Ringversuch 2020 in zwei Teilnehmergruppen statt. Für jede dieser Gruppen erfolgte die Vorgabe des zugewiesenen Wertes des Sollwertes durch die Mittelwerte der von den nationalen Referenzlaboratorien ermittelten Konzentrationen, also durch das UBA und das LANUV gemeinsam.

Eine robuste statistische Auswertung im Sinne der DIN ISO 13528 kommt, aufgrund der geringen Teilnehmerzahlen, nicht in Frage. Aus technischen Gründen, wie Wandungseffekten in Druckminderungsventilen oder der in situ Dosierung von Ozon, kann der Vorgabewert, mit wenigen Ausnahmen, nicht mit der gewünschten Unsicherheit über die Mischungsgleichung vorgegeben werden.

3.2.2. Ermittlung der Unsicherheit für die Eignungsbeurteilung

Die Vorgabe für die maximale Abweichung des Teilnehmerergebnisses vom Sollwert (Präzisionsvorgabe) leitet sich ab von der Anforderung an die einzuhaltende Messunsicherheit des Teilnehmerergebnisses. Diese setzt sich aus den wesentlichen Unsicherheitsbeträgen zusammen

- der Unsicherheit der Prüfgaskonzentration/des Sollwertes (Uref); sie wird vom Veranstalter zusammen mit dem Sollwert angegeben und nachvollziehbar begründet
- der maximal zulässigen Messunsicherheit des Teilnehmerergebnisses (U_{Lab}); sie leitet sich aus den Datenqualitätszielen der entsprechenden EU-Tochterrichtlinien ab. Die in den EU-Richtlinien angegebenen Werte gelten für Feldmessungen. Da unter Ringversuchsbedingungen eine Reihe von Messunsicherheitskomponenten wie Probenahmeeffekte, Langzeitdriften oder Querempfindlichkeiten nicht zum Tragen kommen, wurden die zulässigen Toleranzen der Datenqualitätsanforderungen halbiert (siehe Tabelle 4). Entsprechende Unsicherheitsberechnungen nach dem Muster der VDI 4202 bzw. den CEN-Normen EN 14211 und 14212 für NO₂ und SO₂ haben gezeigt, dass die o. g. Anforderungen eine plausible Größenordnung darstellen.
- der Messunsicherheit in der Nähe des Nullpunktes (U₀); die aus den Datenqualitätszielen der EU-Richtlinien abgeleitete zulässige Messunsicherheit gilt zunächst für den Bereich des Grenzwertes. Die prozentuale Angabe mit Bezug auf die Messgutkonzentration lässt sich nicht unverändert bis zu niedrigen Konzentrationen als alleinige Anforderung beibehalten, da die zulässige Messunsicherheit sonst unrealistisch klein wird. Bei niedrigen Konzentrationen muss vielmehr die Messunsicherheit in der Nähe des Nullpunktes berücksichtigt werden, die für einen unteren Konzentrationsbereich als konstant angesehen werden kann. Sie wird gemäß der Werte in der Tabelle 4 berücksichtigt.

Die Unsicherheit des Vorgabewertes wird als $U_{Vorgabe}$ bezeichnet. Sie wird nach DIN ISO 13528 auch als Unsicherheit der Eignungsbeurteilung U_X benannt und wie folgt berechnet:

$$U_{Vorgabe} = \sqrt{U_{ref}^2 + U_{Lab}^2}$$

bzw. für U_{lab}< U₀

$$U_{\textit{Vorgabe}} = \sqrt{U_{\textit{ref}}^{2} + U_{0}^{2}}$$

U_{ref} Erweiterte (95 %) Unsicherheit des Referenzwertes (Sollwert)

U_{Vorgabe} Erweiterte (95 %) Unsicherheit des Vorgabewertes (der Eignungsbeurteilung)
U_{Lab} Erweiterte (95 %) zugesicherte Unsicherheit des Teilnehmermesswertes
U₀ Erweiterte (95 %) zugesicherte Mindestunsicherheit des Teilnehmermesswertes

Tabelle 4: Kriterien für die Leistungsfähigkeit

Komponente	U ₀	U _{Lab} [%]
Benzol	0,5 μg/m ³	12.5
Schwefeldioxid	5 μg/m³	
Stickstoffdioxid	2 ppb	7,5
Stickstoffmonoxid	3 ppb	

Ozon	1,6 ppb	

Die Messunsicherheit des Referenzwertes U_{ref} setzt sich aus der Unsicherheit der Ermittlung des Referenzwertes selbst und einem zusätzlichen Beitrag durch Inhomogenität in der Entnahmestrecke zusammen. Der erweiterte Unsicherheitsbeitrag der Inhomogenität beträgt weniger als 0,7 %. Hierbei konnten systematische Konzentrationsunterschiede sicher ausgeschlossen werden. Daher soll als erweiterter Unsicherheitsbeitrag für die Inhomogenität 0,7 % zu Grunde gelegt werden. Die erweiterte (95 %) Unsicherheit des Referenzwertes U_{ref} (Sollwert) setzt sich dann zusammen aus

$$U_{ref} = \sqrt{U_S^2 + U_I^2}$$

Us Unsicherheit des Sollwertes

 J_1 Unsicherheitsbeitrag durch Inhomogenität = 0,7 % von U_s

$$\sigma = \frac{U_{Vorgabe}}{2} / \frac{1}{2}$$

σ Standardabweichung des Vorgabewertes (der Eignungsbeurteilung)

3.3. Prüfgasangebote

 Tabelle 5:
 Prüfgasangebote Bewertungsteil

Tabelle 5.		i ruigasangebote bewertungstell					
Prüfgasan- gebot	Kompo- nente	Gruppe	Einheit	zugewiesener Wert	Uref	U _{lab}	
PG 2 a	NO	I	ppb	498,8	15,4	37,4	20,2
PG 3 a	NO	I	ppb	262,0	9,3	19,6	10,9
PG 5 a	NO	ı	ppb	106,4	4,4	8,0	4,6
PG 9 a	NO	Ţ	ppb	150,8	5,4	11,3	6,3
PG 11 a	NO	I	ppb	29,9	2,3	3,0	1,9
PG 2 b	NO	II	ppb	498,0	15,4	37,4	20,2
PG 3 b	NO	II	ppb	264,7	9,6	19,9	11,0
PG 5 b	NO	II	ppb	107,6	4,5	8,1	4,6
PG 9 b	NO	II	ppb	151,9	5,4	11,4	6,3
PG 11 b	NO	II	ppb	30,2	2,3	3,0	1,9
PG 3 a	NO ₂	I	ppb	236,9	9,3	17,8	10,0
PG 5 a	NO ₂	I	ppb	113,1	5,1	8,5	4,9
PG 7 a	NO ₂	I	ppb	14,2	1,9	2,0	1,4
PG 9 a	NO ₂	- 1	ppb	60,9	3,3	4,6	2,8
PG 11 a	NO ₂	ı	ppb	25,0	2,1	2,0	1,5
PG 3 b	NO ₂	Ш	ppb	233,8	8,8	17,5	9,8
PG 5 b	NO_2	Ш	ppb	111,7	5,2	8,4	4,9
PG 7 b	NO ₂	Ш	ppb	14,1	1,8	2,0	1,3
PG 9 b	NO_2	Ш	ppb	59,8	3,4	4,5	2,8
PG 11 b	NO ₂	II	ppb	24,8	2,2	2,0	1,5
PG 4 a	O ₃	ı	ppb	237,1	6,9	17,8	9,5
PG 6 a	O ₃	ı	ppb	90,9	3,3	6,8	3,8
PG 8 a	O ₃	ı	ppb	16,9	1,2	1,6	1,0
PG 10 a	O ₃	- 1	ppb	60,0	2,2	4,5	2,5

Prüfgasan- gebot	Kompo- nente	Gruppe	Einheit	zugewiesener Wert	Uref	U _{lab}	
PG 12 a	O ₃	ı	ppb	29,5	1,4	2,2	1,3
PG 4 b	O ₃	П	ppb	235,5	6,6	17,7	9,4
PG 6 b	O ₃	Ш	ppb	89,6	3,1	6,7	3,7
PG 8 b	O ₃	Ш	ppb	16,6	1,6	1,6	1,1
PG 10 b	O ₃	Ш	ppb	58,9	2,0	4,4	2,4
PG 12 b	O ₃	II	ppb	29,1	1,2	2,2	1,2

3.4. Kenngrößen der Teilnehmermesswerte

Aus den Messwerten der Teilnehmer wurden neben Median und Standardabweichung s auch der robuste Vorgabewert X* und die robuste Standardabweichung s* nach DIN ISO 13528 Anhang C berechnet.

Tabelle 6: Kenngrößen der Teilnehmermesswerte

Prüfgasan- gebot	Komponente	Median [ppb]	s [ppb]	s rel.	X* [ppb]	s* [ppb]
PG1 a	NO	0,1	0,9	-	0,1	0,3
PG2 a	NO	498,7	5,4	1,08 %	497,0	3,9
PG3 a	NO	261,2	4,3	1,67 %	260,2	2,8
PG5 a	NO	106,5	2,3	2,20 %	106,3	1,2
PG9 a	NO	150,7	2,5	1,67 %	149,9	2,6
PG11 a	NO	29,7	1,4	4,82 %	29,5	0,8
PG1 b	NO	0,1	0,4	-	0,1	0,2
PG2 b	NO	498,6	3,9	0,79 %	499,0	4,8
PG3 b	NO	265,1	3,7	1,38 %	265,1	3,1
PG5 b	NO	107,8	1,4	1,31 %	108,1	1,2
PG9 b	NO	152,2	1,5	1,01 %	152,2	1,7
PG11 b	NO	30,2	0,5	1,74 %	30,3	0,3
PG1 a	NO ₂	0,1	0,2	-	0,0	0,2
PG2 a	NO ₂	2,5	1,4	-	3,1	1,5
PG3 a	NO ₂	238,1	2,1	0,87 %	238,6	2,4
PG5 a	NO ₂	112,8	1,3	1,18 %	112,8	1,2
PG7 a	NO ₂	14,4	0,4	2,49 %	14,2	0,4
PG9 a	NO ₂	61,1	0,6	1,00 %	61,2	0,4
PG11 a	NO_2	25,2	0,5	1,94 %	25,1	0,5
PG1 b	NO_2	-0,1	0,6	-	0,0	0,4
PG2 b	NO_2	1,9	1,3	-	2,4	1,6
PG3 b	NO_2	235,7	3,0	1,25 %	236,2	3,5
PG5 b	NO ₂	112,4	2,0	1,81 %	112,5	2,4
PG7 b	NO_2	14,1	0,7	4,67 %	14,1	0,4
PG9 b	NO ₂	59,9	1,4	2,34 %	60,2	1,2
PG11 b	NO ₂	24,9	0,9	3,47 %	25,0	0,8
PG1 a	O ₃	0,2	0,2	-	0,2	0,3
PG4 a	O ₃	236,7	1,9	0,80 %	236,6	2,3

Prüfgasan- gebot	Komponente	Median [ppb]	s [ppb]	s rel.	X* [ppb]	s* [ppb]
PG6 a	O ₃	90,5	0,8	0,91 %	90,5	1,1
PG8 a	O ₃	16,7	0,3	1,55 %	16,7	0,2
PG10 a	O ₃	59,7	0,5	0,85 %	59,8	0,7
PG12 a	O ₃	29,3	0,3	1,01 %	29,4	0,3
PG1 b	O ₃	0,3	0,5	-	0,3	0,4
PG4 b	O ₃	234,6	4,3	1,82 %	234,5	3,6
PG6 b	O_3	89,2	1,7	1,95 %	89,5	1,2
PG8 b	O ₃	16,7	0,3	1,98 %	16,6	0,4
PG10 b	O_3	58,7	1,1	1,91 %	58,9	0,6
PG12 b	O ₃	29,1	0,5	1,84 %	29,1	0,5

3.5. Teilnehmer der Gruppe I

3.5.1. z'-score Auswertung Stickstoffdioxid

Tabelle 7: z'-score Auswertung Stickstoffdioxid

Teilnehmer	PG3 a	z'- score	PG5 a	z'- score	PG7 a	z'- score	PG9 a	z'- score	PG11 a	z'- score
remienne	ppb	30010	ppb	30010	ppb	30010	ppb	30010	ppb	30010
TN01	240,5	0,4	113,1	0,0	14,8	0,4	61,5	0,2	25,5	0,3
TN02	239,2	0,2	110,8	-0,5	14,1	-0,1	61,2	0,1	25,1	0,1
TN03	238,0	0,1	114,2	0,2	14,5	0,2	61,5	0,2	25,5	0,3
TN05	239,1	0,2	112,7	-0,1	13,7	-0,3	61,1	0,1	24,2	-0,5
TN08	239,6	0,3	110,6	-0,5	13,7	-0,4	60,8	0,0	24,4	-0,4
TN10	236,6	0,0	113,7	0,1	14,6	0,3	61,3	0,1	25,5	0,3
TN16	236,2	-0,1	110,8	-0,5	13,9	-0,2	60,4	-0,2	24,7	-0,2
TN18	237,9	0,1	111,2	-0,4	14,6	0,3	61,9	0,4	25,1	0,1
TN20	236,3	-0,1	112,4	-0,1	14,0	-0,1	60,6	-0,1	24,7	-0,2
TN24	237,7	0,1	113,7	0,1	14,5	0,2	61,3	0,1	25,3	0,2
TN25	236,4	-0,1	113,3	0,0	14,6	0,3	60,9	0,0	25,4	0,3
TN27	239,5	0,3	112,3	-0,2	14,0	-0,1	61,1	0,1	24,9	-0,1
TN28	237,3	0,0	113,7	0,1	14,4	0,1	61,1	0,1	25,4	0,3
TN31	238,2	0,1	113,9	0,2	14,3	0,1	61,2	0,1	25,2	0,1
TN35	243,1	0,6	112,9	0,0	14,4	0,1	62,5	0,6	25,2	0,1
TN37	241,8	0,5	115,5	0,5	14,4	0,1	62,4	0,5	25,7	0,5
TN42	239,1	0,2	112,7	-0,1	13,7	-0,3	61,1	0,1	24,2	-0,5
X	236,9		113,1		14,2		60,9		25,0	
σ	10,0		4,9		1,4		2,8		1,5	
Anzahl	17		17		17		17		17	

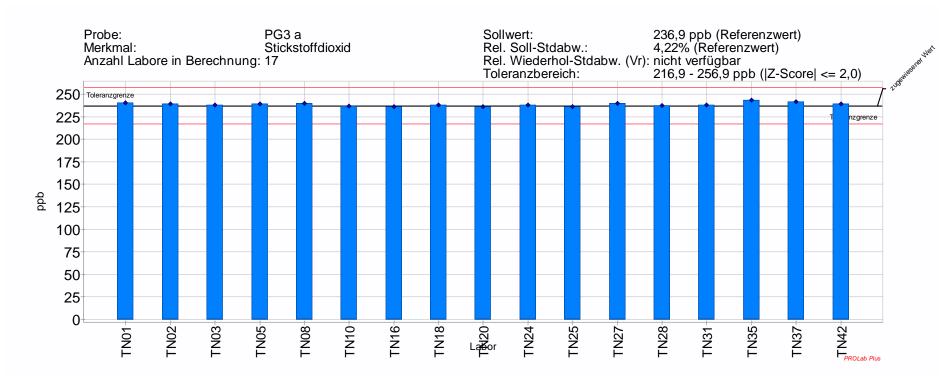
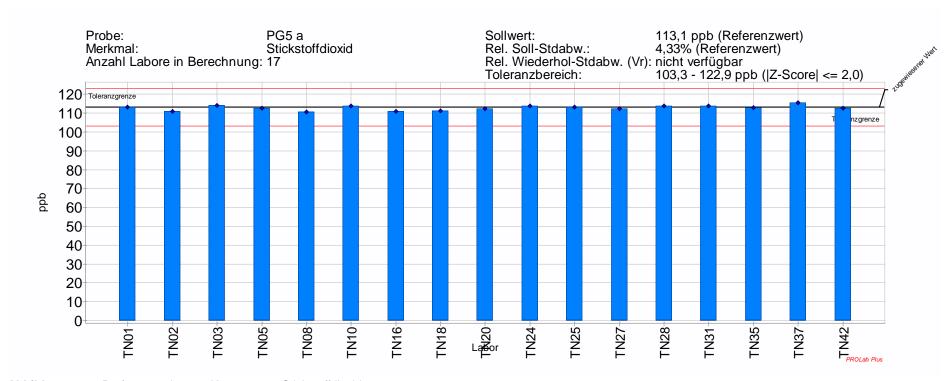



Abbildung 1: Prüfgasangebot 3 a Komponente Stickstoffdioxid

Abbildung 2: Prüfgasangebot 5 a Komponente Stickstoffdioxid

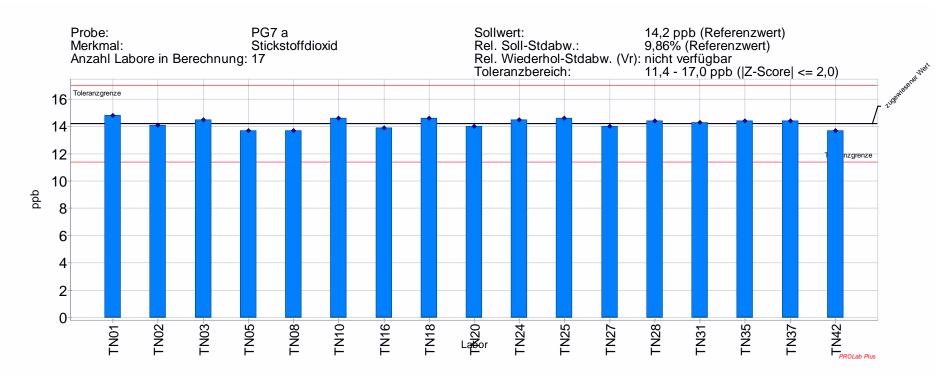
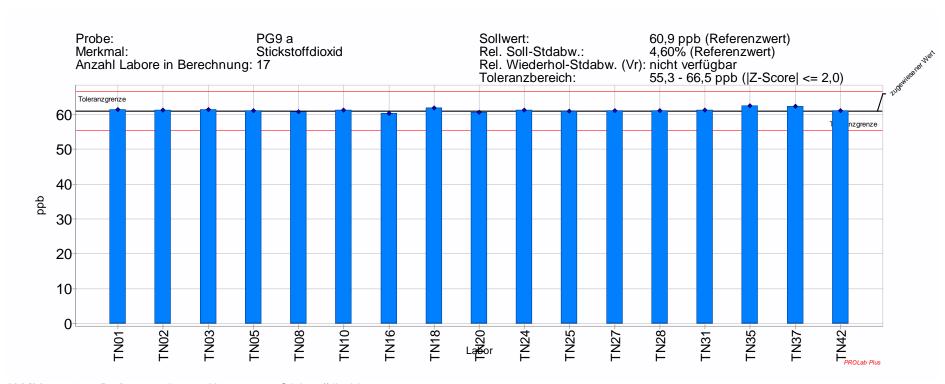



Abbildung 3: Prüfgasangebot 7 a Komponente Stickstoffdioxid

Abbildung 4: Prüfgasangebot 9 a Komponente Stickstoffdioxid

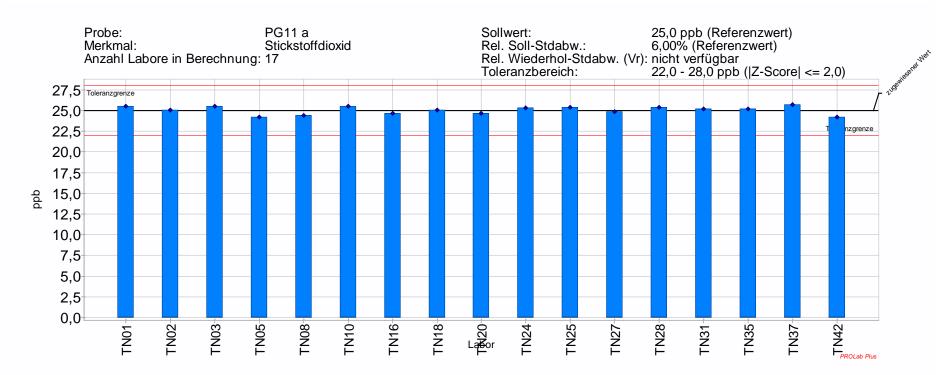


Abbildung 5: Prüfgasangebot 11 a Komponente Stickstoffdioxid

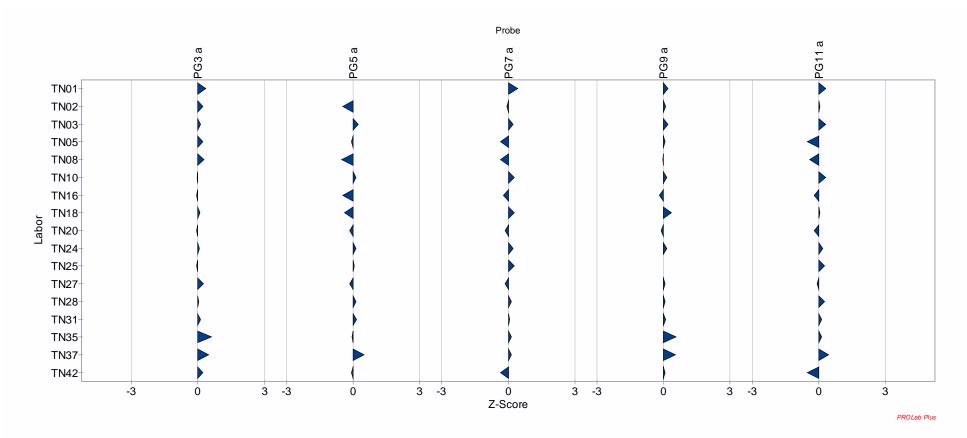
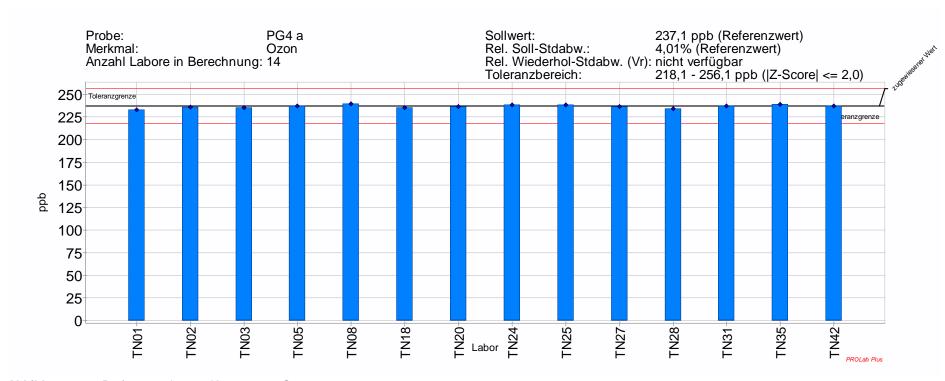



Abbildung 6: z'score Übersicht Gruppe I Stickstoffdioxid

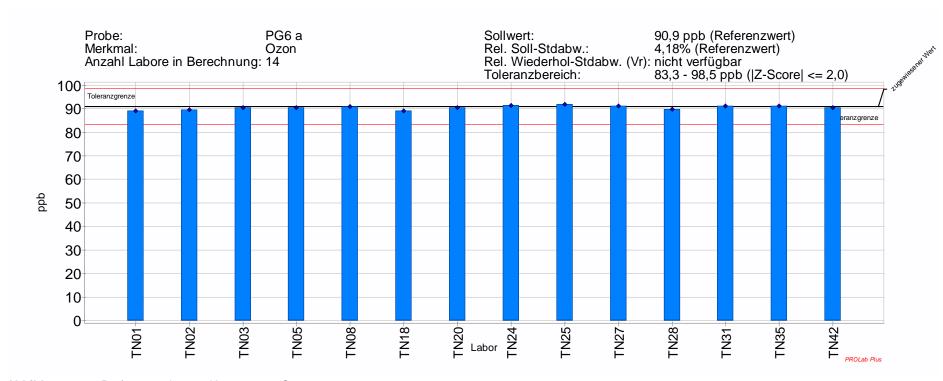
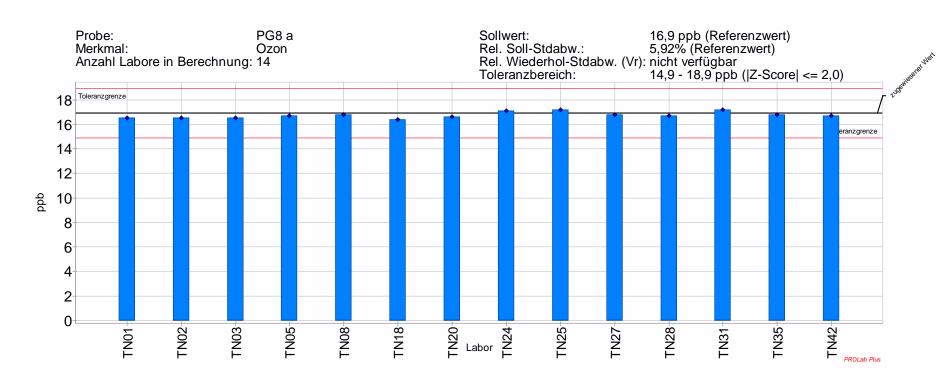

3.5.2. z'-score Auswertung Ozon

Tabelle 8:z'-score Auswertung Ozon


Teilnehmer PG4 a score PG6 a score PG8 a score PG8 a score PG8 a score PG10 a score PG12 a score PC3 a score	Tabelle 6.	2 -300		erturig O							
ppb ppb ppb ppb ppb ppb ppb TN01 232,7 -0,5 89,2 -0,4 16,5 -0,4 59,0 -0,4 28,9 -0,5 TN02 235,8 -0,1 89,5 -0,4 16,5 -0,4 59,3 -0,3 29,1 -0,3 TN03 235,4 -0,2 90,4 -0,1 16,5 -0,4 59,5 -0,2 29,0 -0,4 TN05 237,1 0,0 90,5 -0,1 16,7 -0,2 59,7 -0,1 29,3 -0,2 TN08 239,4 0,2 91,0 0,0 16,8 -0,1 60,2 0,1 29,5 0,0 TN18 235,1 -0,2 89,2 -0,4 16,4 -0,5 59,1 -0,4 29,1 -0,3 TN20 236,5 -0,1 90,5 -0,1 16,6 -0,3 59,7 -0,1 29,2 -0,2 TN24 238,4	Teilnehmer	PG4 a		PG6 a		PG8 a		PG10 a	_	PG12 a	
TN01	remieriner	1	30010		30010		30010		30010		30010
TN02											
TN03	TN01	232,7	-0,5	89,2	-0,4	16,5	-0,4	59,0	-0,4	28,9	-0,5
TN05	TN02	235,8	-0,1	89,5	-0,4	16,5	-0,4	59,3	-0,3	29,1	-0,3
TN08	TN03	235,4	-0,2	90,4	-0,1	16,5	-0,4	59,5	-0,2	29,0	-0,4
TN18	TN05	237,1	0,0	90,5	-0,1	16,7	-0,2	59,7	-0,1	29,3	-0,2
TN20	TN08	239,4	0,2	91,0	0,0	16,8	-0,1	60,2	0,1	29,5	0,0
TN24	TN18	235,1	-0,2	89,2	-0,4	16,4	-0,5	59,1	-0,4	29,1	-0,3
TN25	TN20	236,5	-0,1	90,5	-0,1	16,6	-0,3	59,7	-0,1	29,2	-0,2
TN27	TN24	238,4	0,1	91,5	0,2	17,1	0,2	60,5	0,2	29,7	0,2
TN28	TN25	238,5	0,1	91,8	0,2	17,2	0,3	60,6	0,2	29,8	0,2
TN31 236,9 0,0 91,1 0,1 17,2 0,3 60,2 0,1 29,7 0,2 TN35 238,9 0,2 91,1 0,1 16,8 -0,1 60,2 0,1 29,8 0,2 TN42 237,1 0,0 90,5 -0,1 16,7 -0,2 59,7 -0,1 29,3 -0,2 X 237,1 90,9 16,9 60,0 29,5 σ 9,5 3,8 1,0 2,5 1,3	TN27	236,3	-0,1	91,2	0,1	16,8	-0,1	60,1	0,0	29,3	-0,2
TN35 238,9 0,2 91,1 0,1 16,8 -0,1 60,2 0,1 29,8 0,2 TN42 237,1 0,0 90,5 -0,1 16,7 -0,2 59,7 -0,1 29,3 -0,2 X 237,1 90,9 16,9 60,0 29,5 σ 9,5 3,8 1,0 2,5 1,3	TN28	234,1	-0,3	89,9	-0,3	16,7	-0,2	59,4	-0,2	29,3	-0,2
TN42 237,1 0,0 90,5 -0,1 16,7 -0,2 59,7 -0,1 29,3 -0,2 X 237,1 90,9 16,9 60,0 29,5 σ 9,5 3,8 1,0 2,5 1,3	TN31	236,9	0,0	91,1	0,1	17,2	0,3	60,2	0,1	29,7	0,2
X 237,1 90,9 16,9 60,0 29,5 σ 9,5 3,8 1,0 2,5 1,3	TN35	238,9	0,2	91,1	0,1	16,8	-0,1	60,2	0,1	29,8	0,2
σ 9,5 3,8 1,0 2,5 1,3	TN42	237,1	0,0	90,5	-0,1	16,7	-0,2	59,7	-0,1	29,3	-0,2
	X	237,1		90,9		16,9		60,0		29,5	
Anzahl 14 14 14 14 14	σ	9,5		3,8		1,0		2,5		1,3	
	Anzahl	14		14		14		14		14	

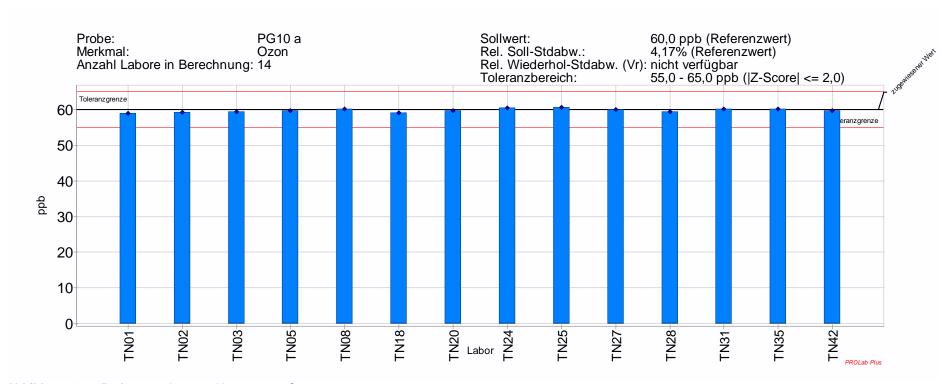

Abbildung 7: Prüfgasangebot 4 a Komponente Ozon

Abbildung 8: Prüfgasangebot 6 a Komponente Ozon

Abbildung 9: Prüfgasangebot 8 a Komponente Ozon

Abbildung 10: Prüfgasangebot 10 a Komponente Ozon

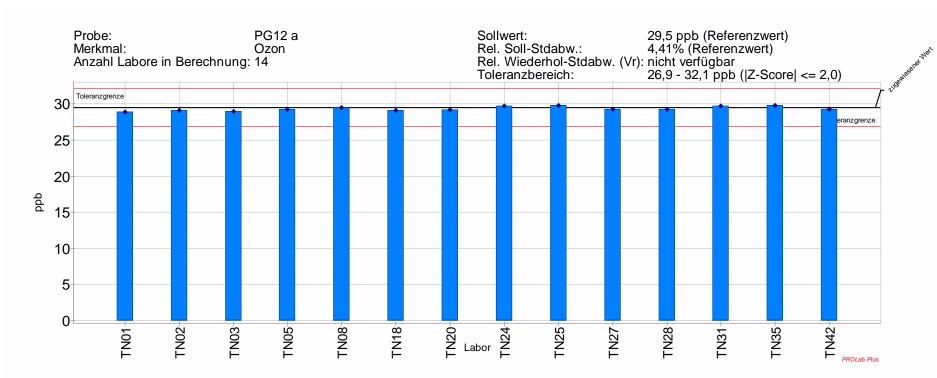


Abbildung 11: Prüfgasangebot 12 a Komponente Ozon

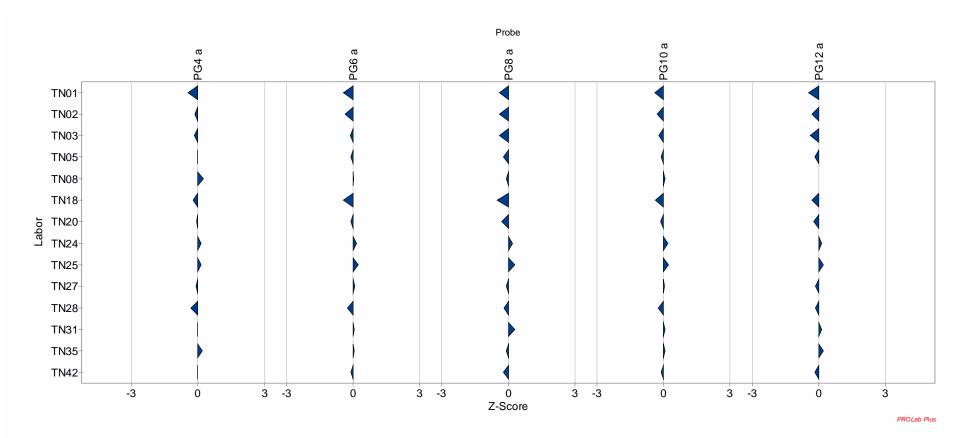


Abbildung 12: z'-score Übersicht Ozon Gruppe I

3.5.3. z'-score Auswertung Stickstoffmonoxid

Tabelle 9: z'-score Auswertung Stickstoffmonoxid Gruppe I

Teilneh-	_	-		z'-	lickstolli	z'-		z'-		z'-		z'-
mer			PG2 a	score	PG3 a	score	PG5 a	score	PG9 a	score	PG11 a	score
			ppb		ppb		ppb		ppb		ppb	
TN01			498,9	0,0	259,9	-0,2	106,8	0,1	150,5	0,0	29,7	-0,1
TN02			490,3	-0,4	253,8	-0,8	105,7	-0,2	148	-0,4	29,5	-0,2
TN03			499,9	0,1	263,3	0,1	106,1	-0,1	151,4	0,1	29,6	-0,2
TN05			489,3	-0,5	254,3	-0,7	101,7	-1,0	145,7	-0,8	27,4	-1,3
TN08			490,1	-0,4	253,9	-0,7	104,8	-0,3	147,2	-0,6	28,9	-0,5
TN18			490,4	-0,4	254,7	-0,7	106,4	0,0	148,1	-0,4	29,2	-0,4
TN20			496,7	-0,1	261	-0,1	106,2	0,0	150,1	-0,1	29,8	-0,1
TN24			499,2	0,0	262,7	0,1	106,5	0,0	151	0,0	30,1	0,1
TN25			502,3	0,2	264,5	0,2	107,2	0,2	151,9	0,2	30,2	0,2
TN27			498,5	0,0	261,3	-0,1	106,5	0,0	150,9	0,0	29,7	-0,1
TN28			502,6	0,2	264,2	0,2	107,5	0,2	152,2	0,2	30,5	0,3
TN31			502,4	0,2	263,2	0,1	106,7	0,1	151,8	0,2	29,9	0,0
TN35			501,3	0,1	263,1	0,1	111,2	1,0	153,7	0,5	33,4	1,8
TN42			489,3	-0,5	254,3	-0,7	101,7	-1,0	145,7	-0,8	27,4	-1,3
X			498,8		262		106,4		150,8		29,9	
σ			20,2		10,9		4,6		6,3		1,9	
Anzahl			14		14		14		14		14	

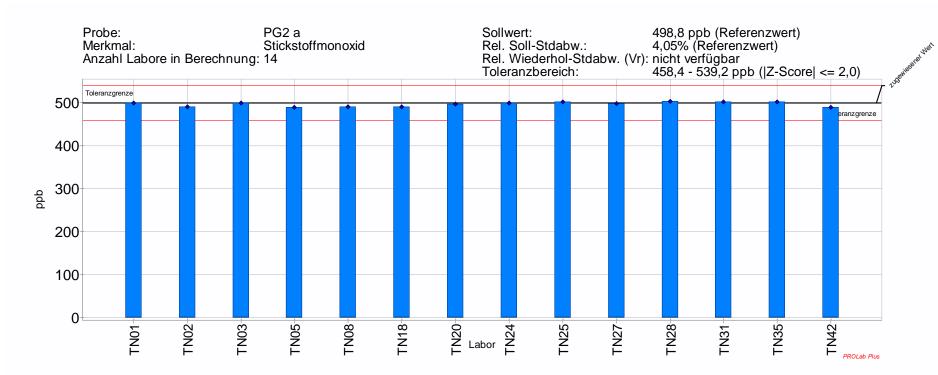


Abbildung 13: Prüfgasangebot 2 a Komponente Stickstoffmonoxid

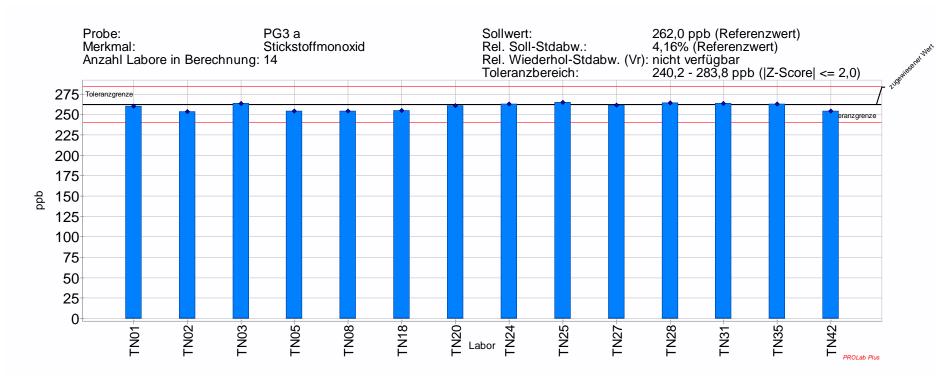


Abbildung 14: Prüfgasangebot 3 a Komponente Stickstoffmonoxid

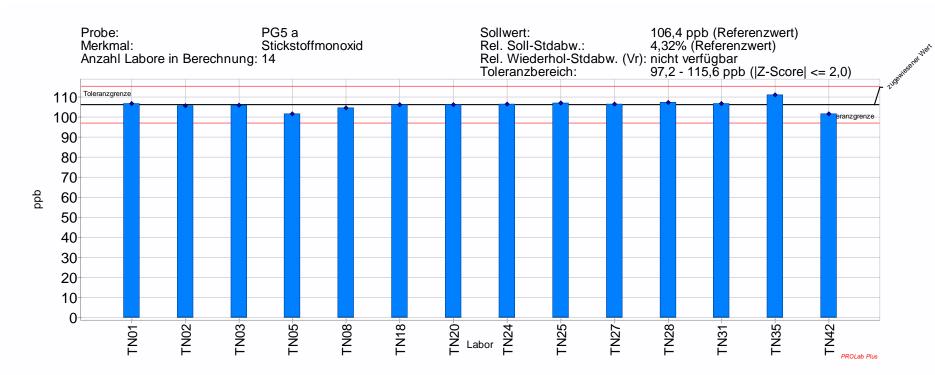


Abbildung 15: Prüfgasangebot 5 a Komponente Stickstoffmonoxid

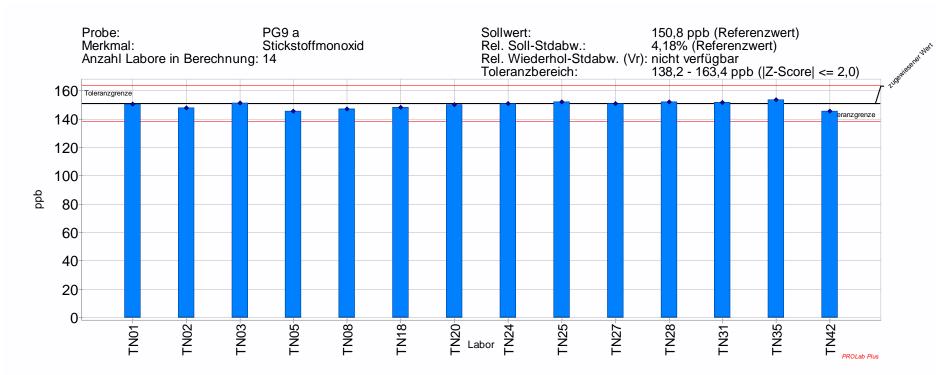


Abbildung 16: Prüfgasangebot 9 a Komponente Stickstoffmonoxid



Abbildung 17: Prüfgasangebot 11 a Komponente Stickstoffmonoxid

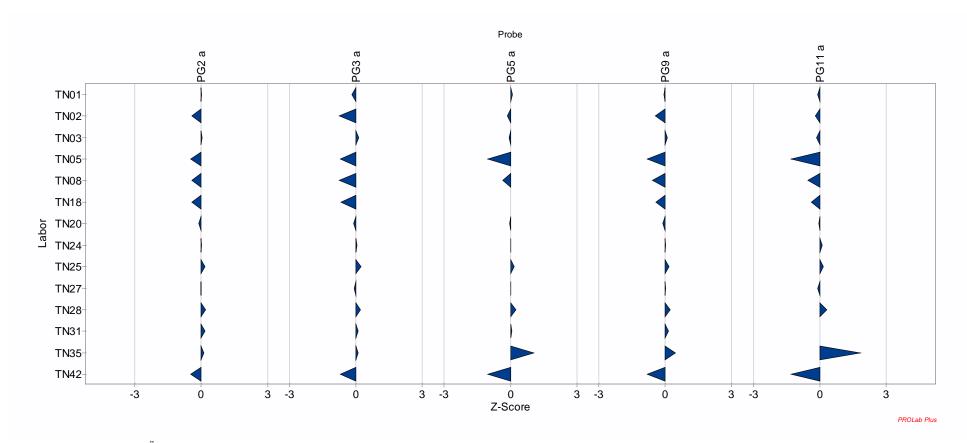


Abbildung 18: z'-score Übersicht Stickstoffmonoxid Gruppe I

3.6. Teilnehmer der Gruppe II

3.6.1. z'-score Auswertung Stickstoffdioxid

Tabelle 10: z'-score Auswertung Stickstoffdioxid Gruppe II

Tabelle 10.	2 0001	z '-	turig Stick	z'-	и Отирро	z'-		z'-		z'-
Teilnehmer	PG3 b	score	PG5 b	score	PG7 b	score	PG9 b	score	PG11 b	score
	ppb		ppb		ppb		ppb		ppb	
TN04	242,4	0,9	115,6	0,8	14,7	0,5	63,0	1,1	25,7	0,6
TN06	235,2	0,1	112,3	0,1	13,9	-0,2	59,8	0,0	24,7	-0,1
TN09	237,4	0,4	109,9	-0,4	14,1	0,0	59,8	0,0	24,5	-0,2
TN10	233,5	0,0	112,1	0,1	14,1	0,0	59,8	0,0	24,9	0,1
TN15	240,9	0,7	115,5	0,8	15,2	0,8	62,4	0,9	26,3	1,0
TN17	237,0	0,3	113,3	0,3	14,3	0,2	60,9	0,4	25,2	0,3
TN19	231,9	-0,2	110,8	-0,2	13,9	-0,2	59,0	-0,3	24,6	-0,1
TN20	232,8	-0,1	110,8	-0,2	13,8	-0,2	59,4	-0,1	24,4	-0,3
TN24	235,4	0,2	112,9	0,2	14,7	0,5	60,4	0,2	25,4	0,4
TN26	232,4	-0,1	110,9	-0,2	14,0	-0,1	59,5	-0,1	24,7	-0,1
TN29	241,8	0,8	117,0	1,1	16,1	1,5	64,3	1,6	27,2	1,6
TN30	235,6	0,2	112,8	0,2	14,3	0,2	60,6	0,3	25,3	0,3
TN31	235,7	0,2	112,9	0,2	14,1	0,0	60,1	0,1	25,0	0,1
TN32	236,0	0,2	112,4	0,1	14,0	-0,1	59,9	0,0	24,9	0,1
TN34	237,0	0,3	109,1	-0,5	13,3	-0,7	59,4	-0,1	23,9	-0,6
TN37	239,3	0,6	114,4	0,6	14,2	0,1	61,3	0,5	25,6	0,5
TN38	232,7	-0,1	111,3	-0,1	13,6	-0,4	58,6	-0,4	23,6	-0,8
X	233,8		111,7		14,1		59,8		24,8	
σ	9,8		4,9		1,3		2,8		1,5	
Anzahl	17		17		17		17		17	

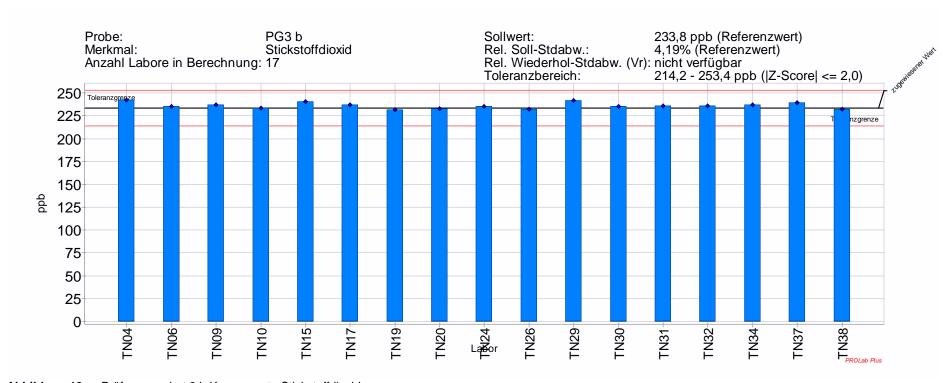


Abbildung 19: Prüfgasangebot 3 b Komponente Stickstoffdioxid

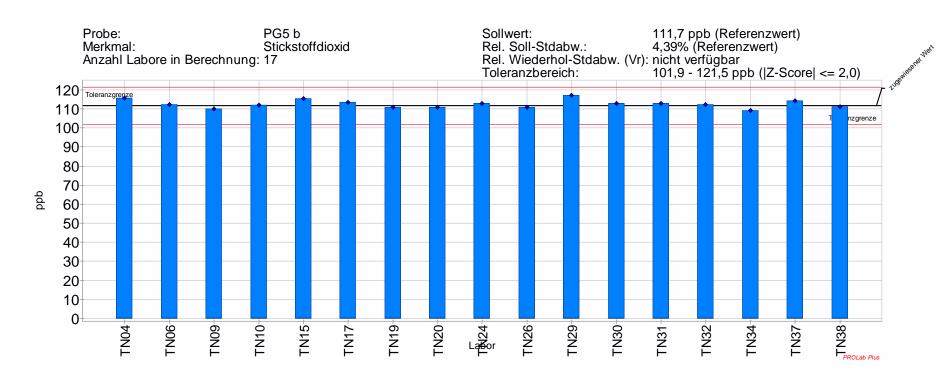


Abbildung 20: Prüfgasangebot 5 b Komponente Stickstoffdioxid

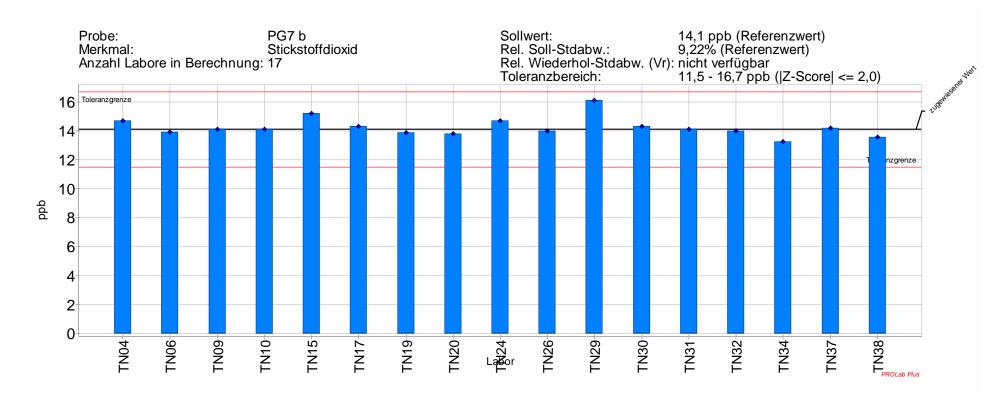


Abbildung 21: Prüfgasangebot 7 b Komponente Stickstoffdioxid

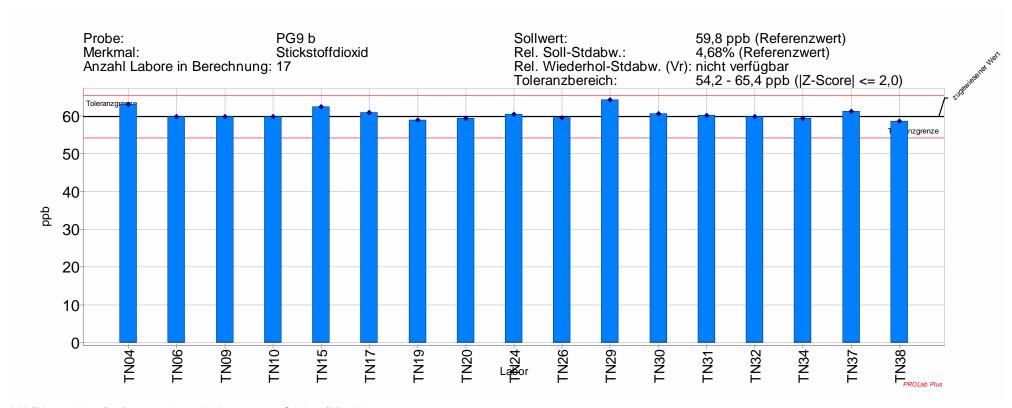


Abbildung 22: Prüfgasangebot 9 b Komponente Stickstoffdioxid

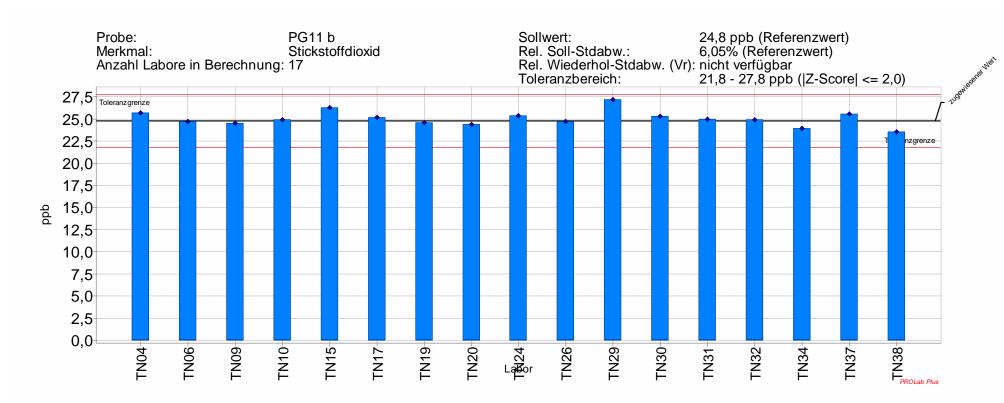


Abbildung 23: Prüfgasangebot 11 b Komponente Stickstoffdioxid

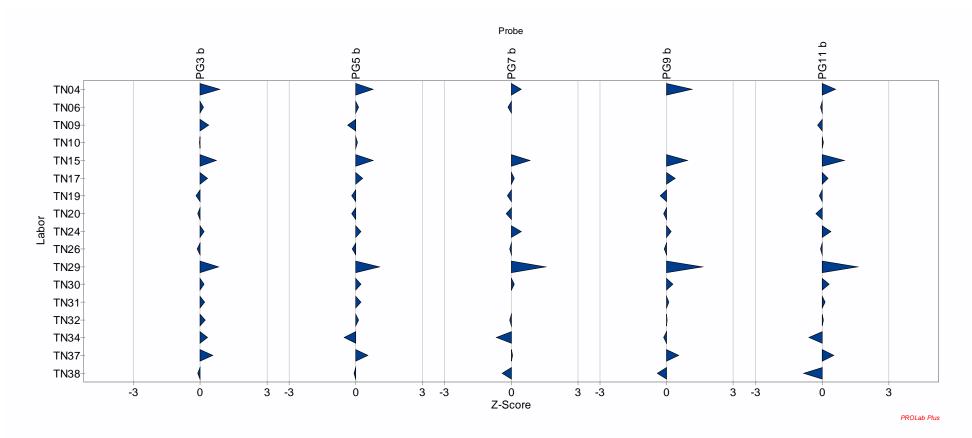


Abbildung 24: z'-score Übersicht Gruppe II Stickstoffdioxid

3.6.2. z'-score Auswertung Ozon

 Tabelle 11:
 z'-score Auswertung Ozon Gruppe II

Tabelle 11.	2 000	z'-	iturig Ozo	z'-		z'-		z'-		z'-
Teilnehmer	PG4 b	score	PG6 b	score	PG8 b	score	PG10 b	score	PG12 b	score
	ppb		ppb		ppb		ppb		ppb	
TN04	240,9	0,6	92,0	0,6	17,0	0,4	60,6	0,7	29,9	0,7
TN06	234,2	-0,1	89,8	0,1	16,7	0,1	58,9	0,0	29,4	0,3
TN09	235,0	-0,1	88,9	-0,2	16,6	0,0	58,7	-0,1	29,1	0,0
TN15	232,9	-0,3	88,7	-0,2	16,2	-0,4	58,4	-0,2	28,7	-0,3
TN17	233,1	-0,3	88,9	-0,2	16,5	-0,1	58,5	-0,2	29,0	-0,1
TN19	232,8	-0,3	88,6	-0,3	16,4	-0,2	58,3	-0,3	28,7	-0,4
TN20	235,0	-0,1	89,2	-0,1	16,4	-0,2	58,7	-0,1	28,9	-0,2
TN24	236,8	0,1	90,3	0,2	16,9	0,3	59,4	0,2	29,4	0,3
TN26	235,4	0,0	89,9	0,1	17,0	0,4	59,3	0,2	29,5	0,3
TN29	241,4	0,6	91,8	0,6	16,8	0,2	60,3	0,6	29,7	0,5
TN30	233,2	-0,2	89,1	-0,1	16,5	-0,1	58,6	-0,1	28,9	-0,2
TN31	235,0	-0,1	89,6	0,0	16,8	0,2	58,9	0,0	29,1	0,0
TN34	223,7	-1,3	84,6	-1,3	15,8	-0,7	55,7	-1,3	27,7	-1,2
TN38	230,6	-0,5	88,3	-0,3	16,7	0,1	58,4	-0,2	29,2	0,1
X	235,5		89,6		16,6		58,9		29,1	
σ	9,4		3,7		1,1		2,4		1,2	
Anzahl	14		14		14		14		14	

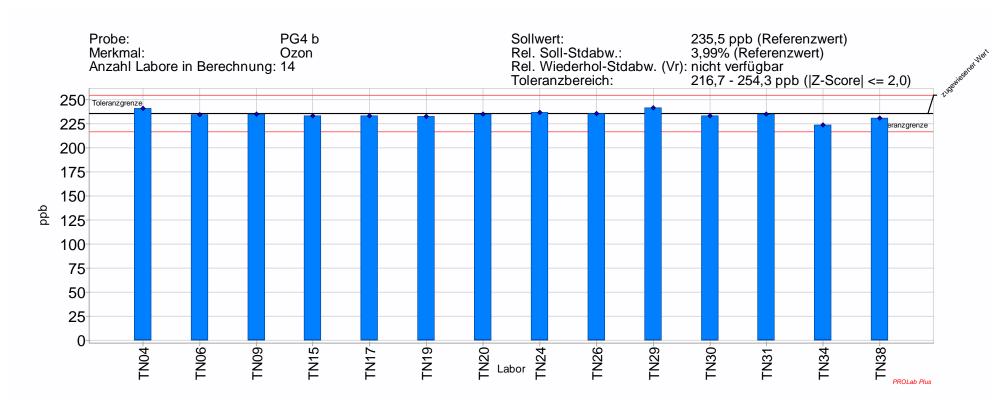
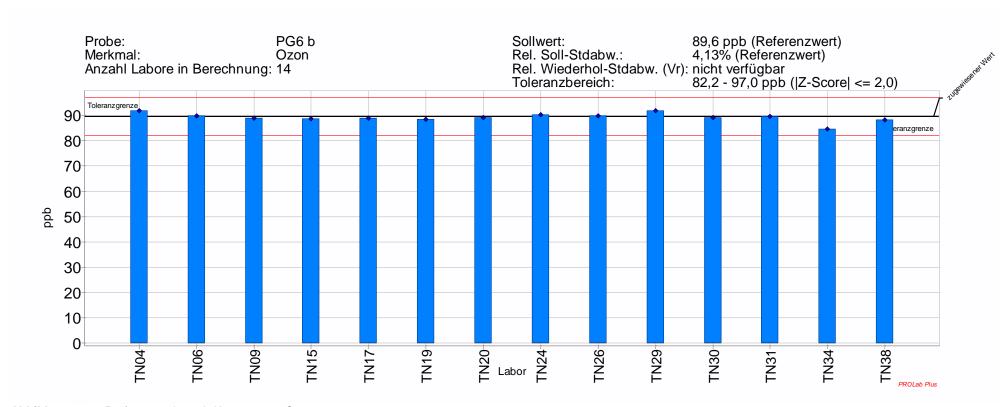



Abbildung 25: Prüfgasangebot 4 b Komponente Ozon

Abbildung 26: Prüfgasangebot 6 b Komponente Ozon

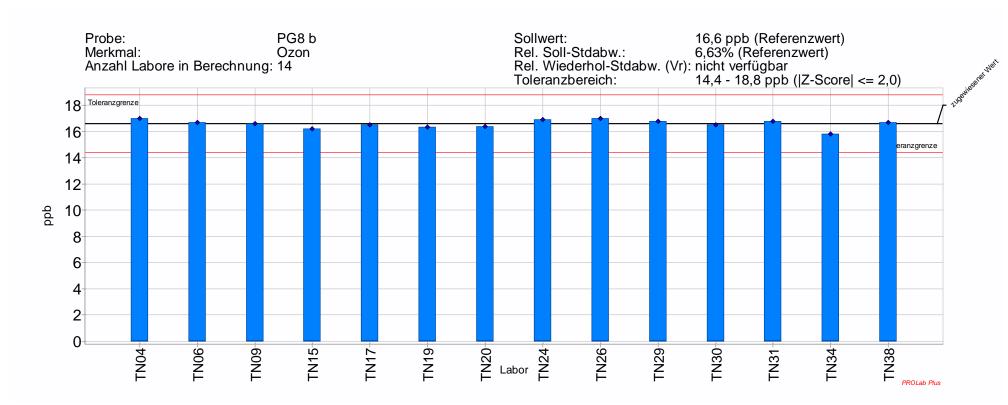


Abbildung 27: Prüfgasangebot 8 b Komponente Ozon

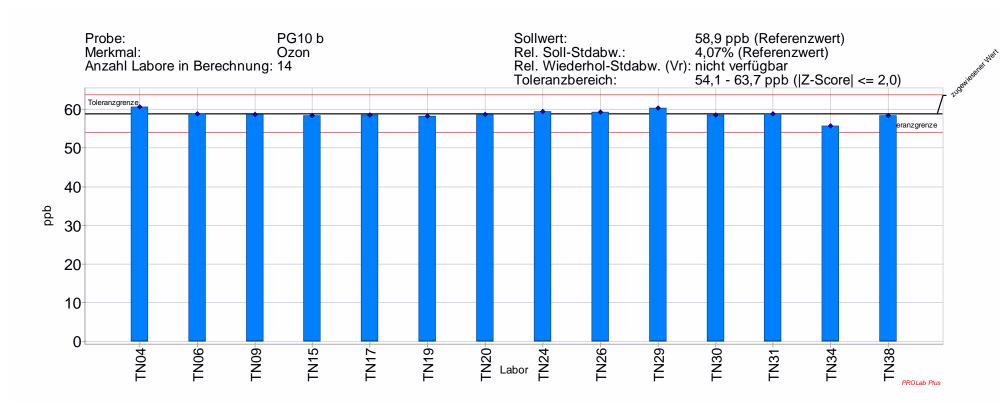


Abbildung 28: Prüfgasangebot 10 b Komponente Ozon

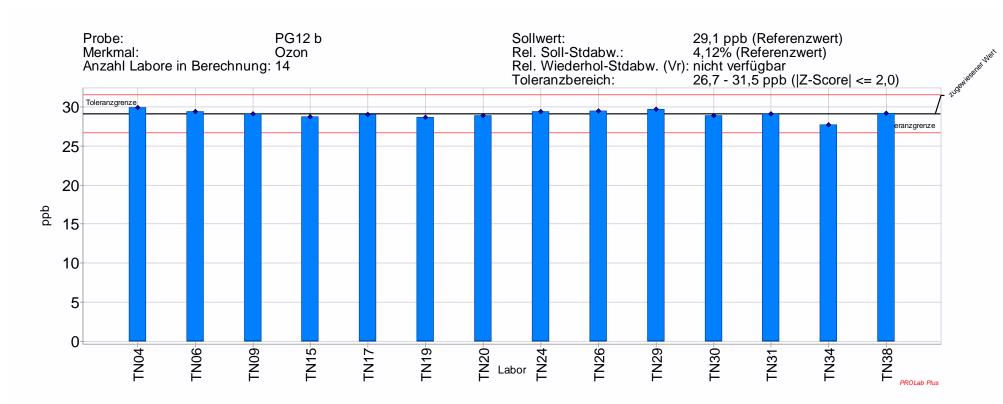


Abbildung 29: Prüfgasangebot 12 b Komponente Ozon

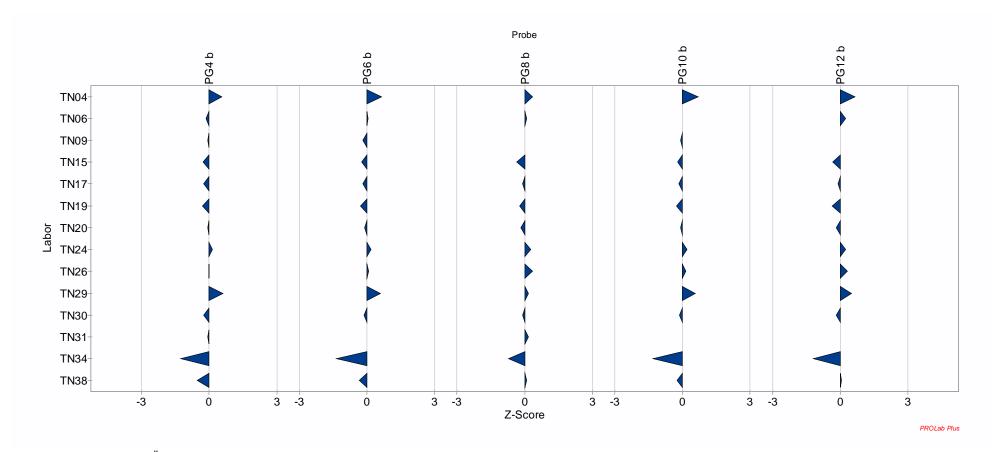


Abbildung 30: z'-score Übersicht Ozon Gruppe II

3.6.3. z'-score Auswertung Stickstoffmonoxid

 Tabelle 12:
 z'-score Auswertung Stickstoffmonoxid Gruppe II

Teilneh-	-	z '-	aowortarig	z '-	IIIIOIIOXIU	z '-		z'-		z'-
mer	PG2 b	score	PG3 b	score	PG5 b	score	PG9 b	score	PG11b	score
	ppb		ppb		ppb		ppb		ppb	
TN04	501,4	0,2	266,4	0,2	108,1	0,1	152,9	0,2	30,2	0,0
TN06	500,6	0,1	266,4	0,2	107,9	0,1	152,5	0,1	30,2	0,0
TN09	499,6	0,1	263,1	-0,1	109,9	0,5	152,8	0,1	30,2	0,0
TN15	507,3	0,5	269,5	0,4	109,4	0,4	154,8	0,5	30,9	0,4
TN17	498,3	0,0	265,2	0,0	107,6	0,0	152,3	0,1	30,4	0,1
TN19	493,8	-0,2	262,0	-0,2	106,5	-0,2	150,7	-0,2	30,0	-0,1
TN20	495,3	-0,1	263,5	-0,1	107,2	-0,1	151,2	-0,1	30,1	-0,1
TN24	498,0	0,0	265,0	0,0	107,5	0,0	151,9	0,0	30,3	0,1
TN26	494,8	-0,2	263,4	-0,1	107,7	0,0	151,7	0,0	31,0	0,4
TN29	503,6	0,3	274,9	0,9	111,7	0,9	155,1	0,5	30,2	0,0
TN30	497,5	0,0	265,4	0,1	107,6	0,0	152,0	0,0	30,1	-0,1
TN31	503,4	0,3	266,8	0,2	108,3	0,2	153,3	0,2	30,4	0,1
TN34	494,4	-0,2	259,2	-0,5	108,8	0,3	150,8	-0,2	29,9	-0,2
TN38	498,9	0,0	264,5	0,0	106,3	-0,3	149,4	-0,4	28,7	-0,8
X	498,0		264,7		107,6		151,9		30,2	
σ	20,2		11,0		4,6		6,3		1,9	
Anzahl	14		14		14		14		14	

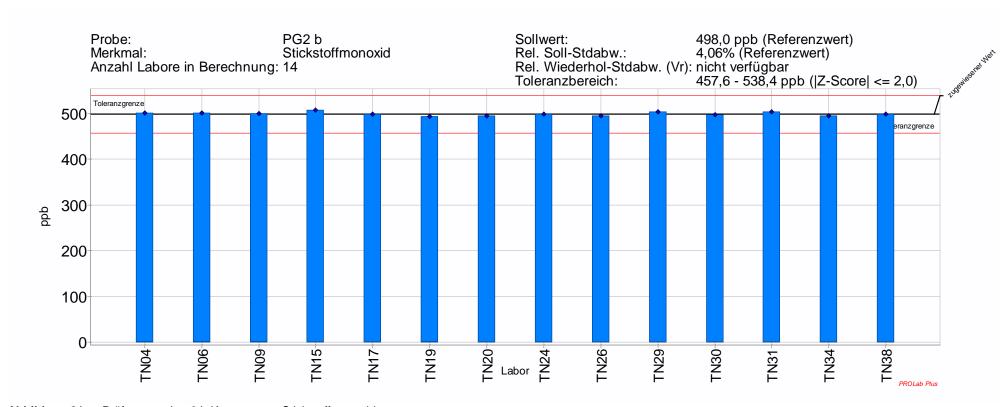


Abbildung 31: Prüfgasangebot 2 b Komponente Stickstoffmonoxid

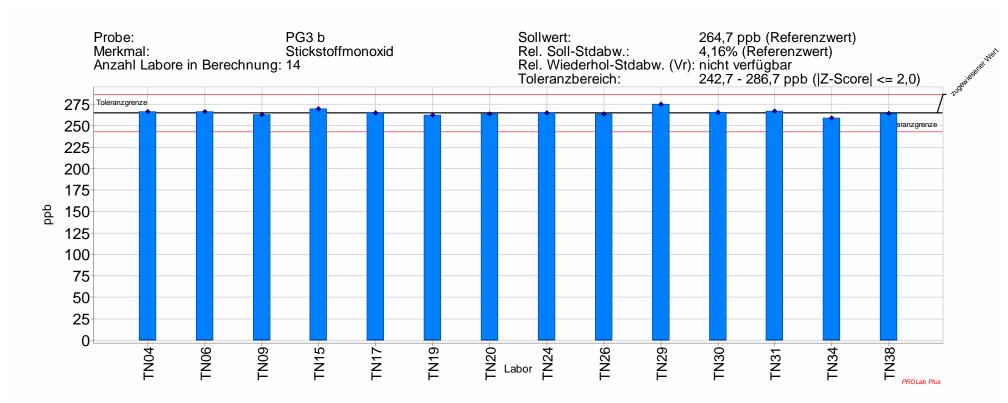


Abbildung 32: Prüfgasangebot 3 b Komponente Stickstoffmonoxid

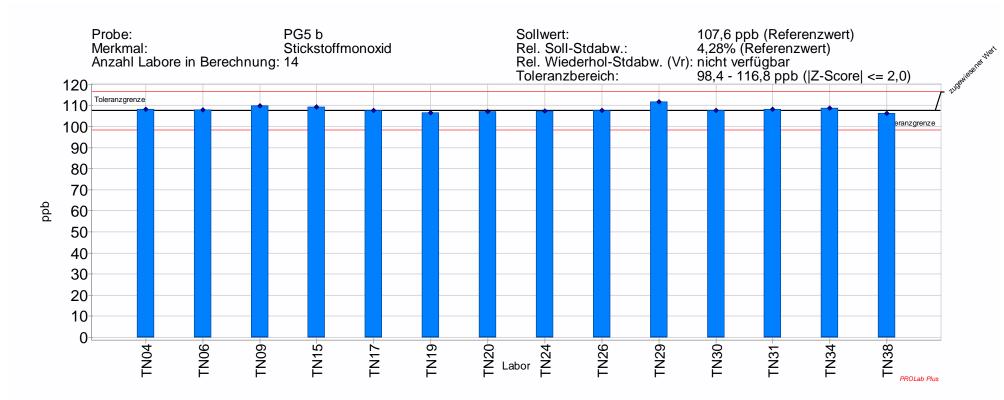


Abbildung 33: Prüfgasangebot 5 b Komponente Stickstoffmonoxid

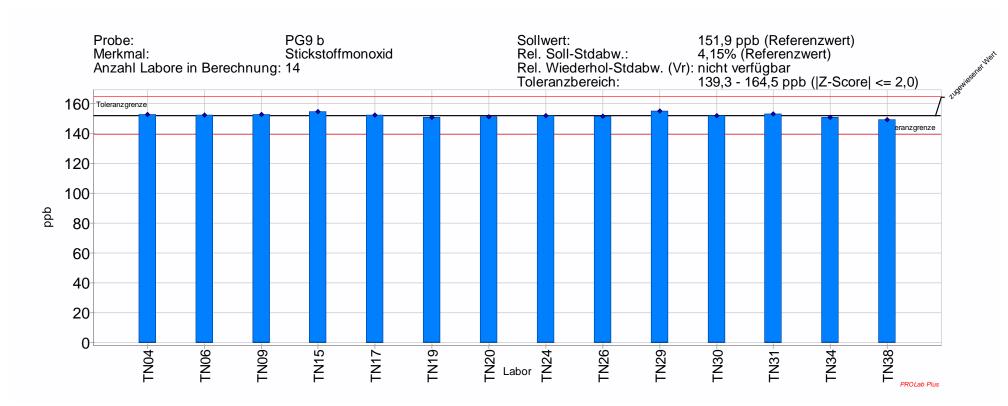


Abbildung 34: Prüfgasangebot 9 b Komponente Stickstoffmonoxid

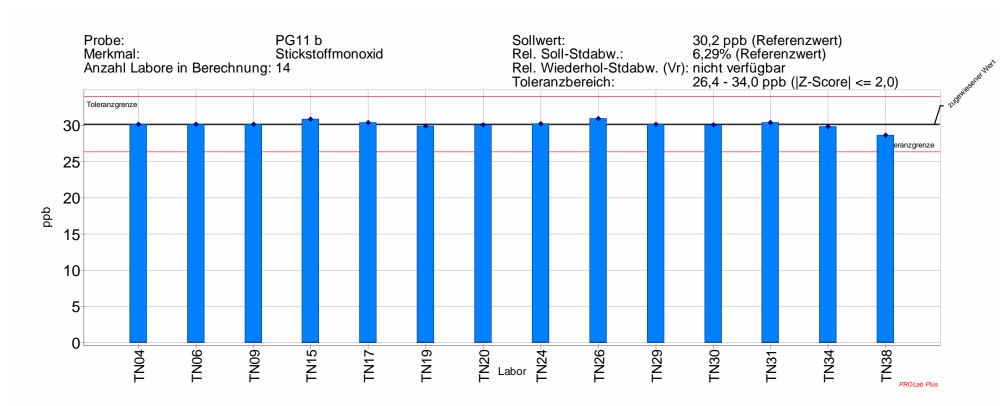


Abbildung 35: Prüfgasangebot 11 b Komponente Stickstoffmonoxid

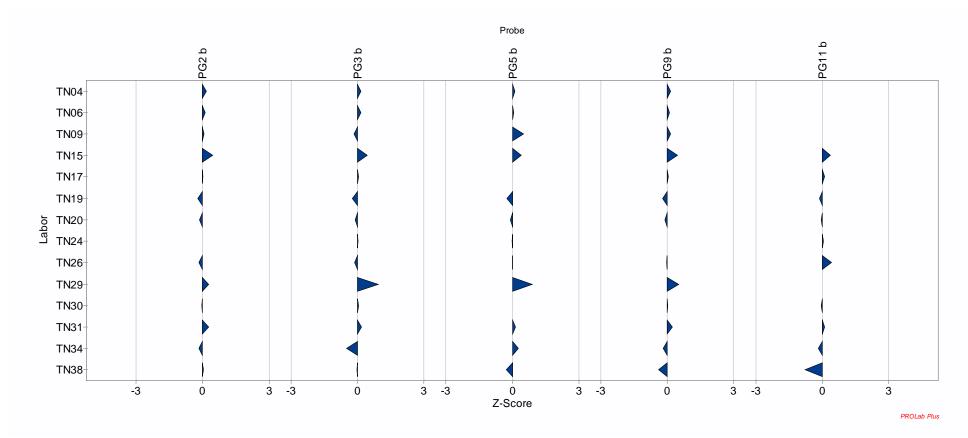


Abbildung 36: z'-score Übersicht Stickstoffmonoxid Gruppe II

4. Ergänzende Prüfgasangebote und Auswertungen

4.1. Messunsicherheiten der Teilnehmer – E_n-Zahlen

Zusätzlich zu den Messergebnissen der Angebote des Bewertungsteils wurden die Messunsicherheiten der Teilnehmer erfasst und, wo sie vorlagen, ausgewertet. Die Ermittlung der Messunsicherheit und die Angabe der erweiterten Messunsicherheit zu jedem Messergebnis ist Bestandteil der europäischen Richtlinien zur Bestimmung der anorganischen Gase. Daher wird zusätzlich zum z'-score für die Beurteilung des Messwertes dessen Unsicherheit herangezogen und hierzu die sog. E_n-Zahl berechnet:

$$E_n = \frac{x - X}{\sqrt{U_x^2 + U_{ref}^2}}$$

x Konzentration des Teilnehmers

X zugewiesener Wert (Sollwert)

Ux erweiterte Unsicherheit des Teilnehmerwertes

U_{ref} erweiterte Unsicherheit des Vorgabewertes (Sollwert)

Da zur Berechnung der E_n-Zahl erweiterte Unsicherheiten verwendet werden, ist hier die Grenze von 1 für kritische Werte üblich.

Die vom Teilnehmer angegebene Unsicherheit kann zusätzlich auf Plausibilität geprüft werden, indem diese kleiner oder gleich der Unsicherheitsanforderungen für Prüfgase der europäischen Richtlinien σ_{D} sind:

Tabelle 13: Präzisionsanforderungen an Null- und Prüfgase aus den CEN-Richtlinien

	σ _ρ =a⋅c+b							
Gas	а	b						
		nmol/mol						
SO ₂	0,022	1						
CO	0,024	100						
O_3	0,020	1						
NO	0,024	1						
NO ₂	0,020	1						

4.2. Gruppe I

4.2.1. E_n-Zahlen Stickstoffdioxid

Tabelle 14: En-Zahlen und Standardunsicherheiten für die NO₂-Bewertungsangebote der Gruppe I

Prüfgas	PC	33 a	PG	35 a	PG	€7 a	PC	39 a	PG	11 a
Teilnehmer	En	u(x) [ppb]								
TN01	0,2	9,0	0,0	4,3	0,3	0,8	0,1	2,4	0,2	1,1
TN02	0,1	8,5	-0,3	4,3	0,0	2,1	0,0	2,9	0,0	2,2
TN03	0,1	3,7	0,2	2,0	0,1	1,0	0,2	1,4	0,2	1,1
TN05	0,2	5,5	-0,1	2,6	-0,3	0,5	0,1	1,4	-0,5	0,6
TN08	0,1	8,7	-0,2	7,3	-0,1	1,9	0,0	7,7	-0,2	1,8
TN10	0,0	4,0	0,1	2,3	0,2	1,0	0,1	1,6	0,2	1,1
TN16	0,0	6,8	-0,3	3,4	-0,2	0,7	-0,1	1,9	-0,1	1,0
TN18	0,1	8,5	-0,2	4,3	0,1	2,1	0,2	2,9	0,0	2,2
TN20	-0,1	5,3	-0,1	2,7	-0,1	0,8	-0,1	1,6	-0,1	0,9
TN24	0,1	4,0	0,1	2,3	0,1	1,0	0,1	1,6	0,1	1,1
TN25	0,0	9,1	0,0	4,4	0,2	0,9	0,0	2,4	0,2	1,2
TN27	0,2	8,3	-0,1	3,9	-0,1	0,8	0,0	2,2	0,0	1,1
TN28	0,0	9,8	0,1	4,7	0,1	1,1	0,0	2,7	0,1	1,4
TN31	0,1	4,0	0,2	2,3	0,0	1,0	0,1	1,6	0,1	1,1
TN35	0,6	4,9	0,0	2,3	0,1	0,6	0,5	1,3	0,1	0,6
TN37	0,5	4,2	0,5	2,2	0,1	0,7	0,5	1,1	0,4	0,7
TN42	0,2	5,5	-0,1	2,6	-0,3	0,5	0,1	1,4	-0,5	0,6

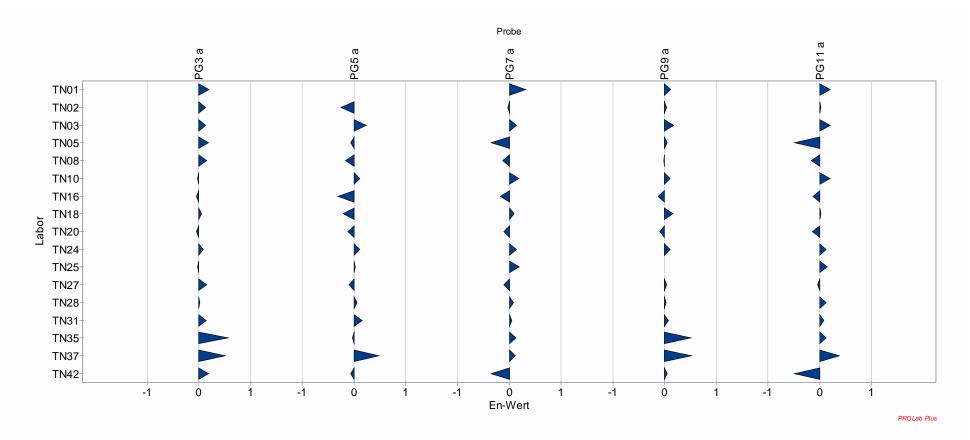


Abbildung 37: E_n-Zahlen Stickstoffdioxid Gruppe I

4.2.2. En-Zahlen Ozon

Tabelle 15: E_n-Zahlen und Standardunsicherheiten für die Ozon-Bewertungsangebote der Gruppe I

del Gruppe i										
Prüfgas	PG	34 a	PC	€6 a	PC	€8 a	PG	10 a	PG	12 a
Teilnehmer	En	u(x) [ppb]								
TN01	-0,5	4,3	-0,4	1,8	-0,2	0,9	-0,4	1,3	-0,3	0,9
TN02	-0,1	7,7	-0,2	3,0	-0,2	0,9	-0,2	2,1	-0,2	1,2
TN03	-0,3	2,4	-0,2	1,1	-0,3	0,5	-0,3	0,8	-0,4	0,6
TN05	0,0	5,0	-0,1	1,9	-0,2	0,5	-0,1	1,3	-0,2	0,6
TN08	0,1	7,7	0,0	3,4	0,0	1,0	0,0	2,3	0,0	1,4
TN18	-0,1	7,7	-0,3	3,0	-0,3	0,9	-0,2	2,1	-0,2	1,2
TN20	-0,1	4,1	-0,1	2,1	-0,2	0,7	-0,1	1,4	-0,2	0,8
TN24	0,2	2,3	0,2	1,1	0,2	0,5	0,3	0,8	0,1	0,6
TN25	0,1	6,7	0,2	2,7	0,1	1,0	0,2	1,9	0,1	1,2
TN27	-0,1	3,6	0,1	1,5	-0,1	0,8	0,0	1,1	-0,1	0,9
TN28	-0,2	7,3	-0,2	2,9	-0,1	0,9	-0,1	2,0	-0,1	1,2
TN31	0,0	2,2	0,1	1,1	0,3	0,5	0,1	0,8	0,1	0,6
TN35	0,2	4,8	0,1	1,8	-0,1	0,6	0,1	1,2	0,2	0,6
TN42	0,0	5,0	-0,1	1,9	-0,2	0,5	-0,1	1,3	-0,2	0,6

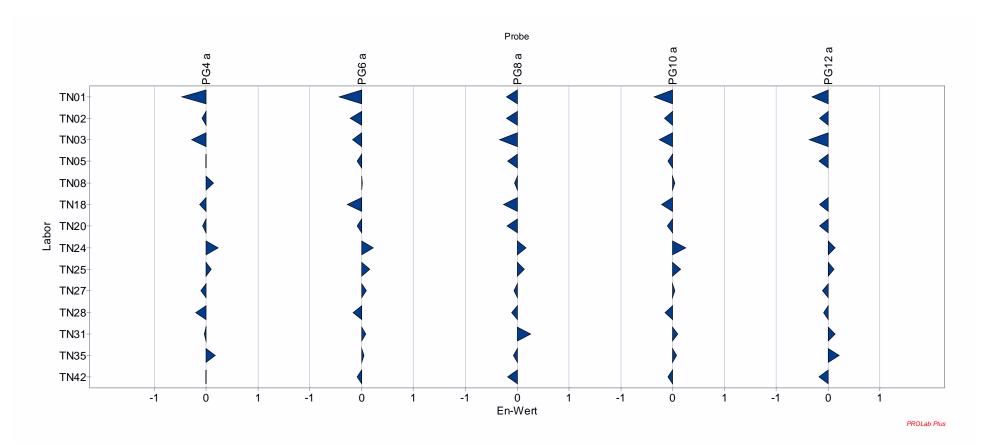


Abbildung 38: E_n-Zahlen Ozon Gruppe I

4.2.3. En-Zahlen Stickstoffmonoxid

Tabelle 16: E_n-Zahlen und Standardunsicherheiten für die NO-Bewertungsangebote der Gruppe **I**

Prüfgas	er Gru	•	D/	22.0	PG5 a			PG9 a		PG11 a	
Teilnehmer	E _n	62 a u(x) [ppb]	E _n	33 a u(x) [ppb]	E _n	u(x) [ppb]	E _n	u(x) [ppb]	E _n	u(x) [ppb]	
TN01	0,0	18,6	-0,1	9,7	0,0	4,0	0,0	5,6	-0,1	1,3	
TN02	-0,3	12,6	-0,5	6,6	-0,1	2,9	-0,3	3,9	-0,1	1,2	
TN03	0,1	7,6	0,1	4,1	-0,1	1,9	0,1	2,5	-0,1	1,1	
TN05	-0,3	11,3	-0,5	5,9	-0,7	2,3	-0,6	3,4	-1,0	0,6	
TN08	-0,2	16,2	-0,4	8,6	-0,2	4,0	-0,3	5,3	-0,3	1,5	
TN18	-0,3	12,6	-0,5	6,6	0,0	2,9	-0,3	3,9	-0,2	1,2	
TN20	-0,1	5,2	-0,1	4,3	0,0	1,8	-0,1	1,7	0,0	0,9	
TN24	0,0	7,5	0,1	4,3	0,0	2,2	0,0	2,8	0,1	1,2	
TN25	0,1	19,4	0,1	10,2	0,1	4,2	0,1	5,9	0,1	1,3	
TN27	0,0	17,4	0,0	9,1	0,0	3,8	0,0	5,3	-0,1	1,2	
TN28	0,1	20,6	0,1	10,9	0,1	4,5	0,1	6,3	0,2	1,5	
TN31	0,2	7,6	0,1	4,3	0,0	2,2	0,1	2,8	0,0	1,2	
TN35	0,1	10,0	0,1	5,3	0,8	2,2	0,4	3,1	1,3	0,7	
TN42	-0,3	11,3	-0,5	5,9	-0,7	2,3	-0,6	3,4	-1,0	0,6	

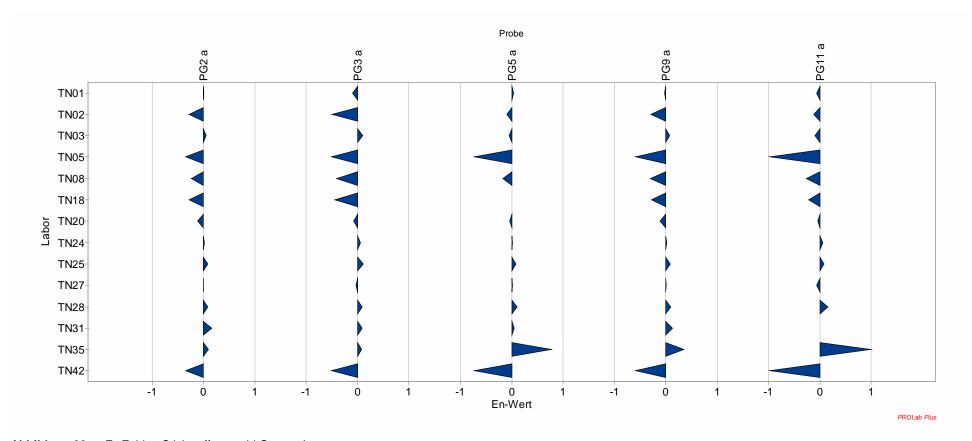


Abbildung 39: E_n-Zahlen Stickstoffmonoxid Gruppe I

4.3. Gruppe II

4.3.1. E_n-Zahlen Stickstoffdioxid

Tabelle 17: En-Zahlen und Standardunsicherheiten für die NO2-Bewertungsangebote der Gruppe II

Prüfgas	Р	G3 b	PC	35 b	P	37 b	PG	9 b	PG11 b		
Teilnehmer	En	u(x) [ppb]	En	u(x) [ppb]	En	u(x) [ppb]	En	u(x) [ppb]	En	u(x) [ppb]	
TN04	1,7	1,3	1,1	1,3	0,2	1,3	1,0	1,3	0,3	1,3	
TN06	0,2	3,4	0,1	2,1	-0,1	1,1	0,0	1,6	0,0	1,2	
TN09	0,4	4,3	-0,4	2,1	0,0	0,7	0,0	1,3	-0,2	0,8	
TN10	0,0	3,9	0,1	2,3	0,0	1,0	0,0	1,6	0,0	1,1	
TN15	0,5	6,5	0,4	4,4	0,2	3,6	0,3	3,9	0,2	3,7	
TN17	0,2	8,4	0,2	4,1	0,1	0,8	0,2	2,2	0,2	1,1	
TN19	0,2	5,0	-0,2	2,5	-0,1	0,7	-0,2	1,4	-0,1	0,8	
TN20	0,1	4,4	-0,1	2,9	-0,3	0,4	-0,1	1,7	-0,2	1,0	
TN24	0,2	4,0	0,2	2,3	0,3	1,0	0,2	1,6	0,2	1,1	
TN26	0,1	6,7	-0,1	3,3	-0,1	0,8	-0,1	1,8	0,0	1,0	
TN29	0,5	8,0	0,6	3,9	1,3	0,6	1,0	2,1	1,1	0,9	
TN30	0,1	8,4	0,1	4,0	0,1	0,8	0,2	2,2	0,2	1,1	
TN31	0,2	4,0	0,2	2,3	0,0	1,0	0,1	1,6	0,1	1,1	
TN32	0,3	3,8	0,2	1,8	-0,1	0,2	0,0	1,0	0,1	0,4	
TN34	0,2	8,2	-0,3	3,8	-0,5	0,8	-0,1	2,1	-0,4	1,1	
TN37	0,5	4,5	0,5	2,3	0,1	0,7	0,5	1,1	0,4	0,7	
TN38	- 0,1	3,7	-0,1	2,3	-0,1	2,4	-0,3	2,2	-0,3	2,3	

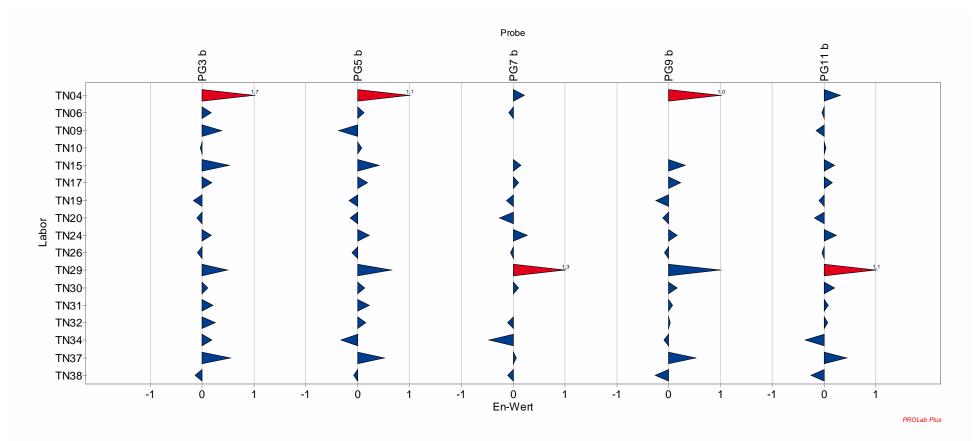


Abbildung 40: En-Zahlen Stickstoffdioxid Gruppe II

4.3.2. E_n-Zahlen Ozon

Tabelle 18: En-Zahlen und Standardunsicherheiten für die O3-Bewertungsangebote der Gruppe II

Prüfgas	PG	i4 b	P	36 b	PO	38 b	PG	10 b	PG12 b	
Teilnehmer	En	u(x) [ppb]	En	u(x) [ppb]	En	u(x) [ppb]	En	u(x) [ppb]	En	u(x) [ppb]
TN04	0,8	2,9	0,4	2,9	0,1	2,9	0,3	2,9	0,1	2,9
TN06	-0,2	3,3	0,0	1,9	0,0	1,2	0,0	1,6	0,1	1,3
TN09	-0,1	2,2	-0,2	1,2	0,0	0,6	-0,1	0,9	0,0	0,7
TN15	-0,2	6,3	-0,1	4,0	-0,1	3,4	-0,1	3,7	-0,1	3,5
TN17	-0,4	2,6	-0,3	1,0	-0,1	0,3	-0,2	0,7	-0,1	0,4
TN19	-0,2	6,5	-0,2	2,7	-0,1	1,1	-0,2	1,9	-0,2	1,3
TN20	-0,1	3,8	-0,1	1,9	-0,1	1,2	-0,1	1,1	-0,2	0,5
TN24	0,2	2,2	0,3	1,1	0,2	0,5	0,3	0,8	0,2	0,6
TN26	0,0	3,7	0,1	1,6	0,2	0,9	0,1	1,3	0,2	1,0
TN29	0,4	6,6	0,4	2,6	0,1	0,8	0,4	1,8	0,3	1,0
TN30	-0,4	2,6	-0,2	1,0	-0,1	0,3	-0,2	0,7	-0,2	0,4
TN31	-0,1	2,2	0,0	1,0	0,2	0,5	0,0	0,8	0,0	0,6
TN34	-0,9	6,6	-0,9	2,5	-0,4	0,8	-0,9	1,8	-0,7	1,0
TN38	-0,3	8,6	-0,2	3,5	0,0	1,1	-0,1	2,4	0,0	1,5

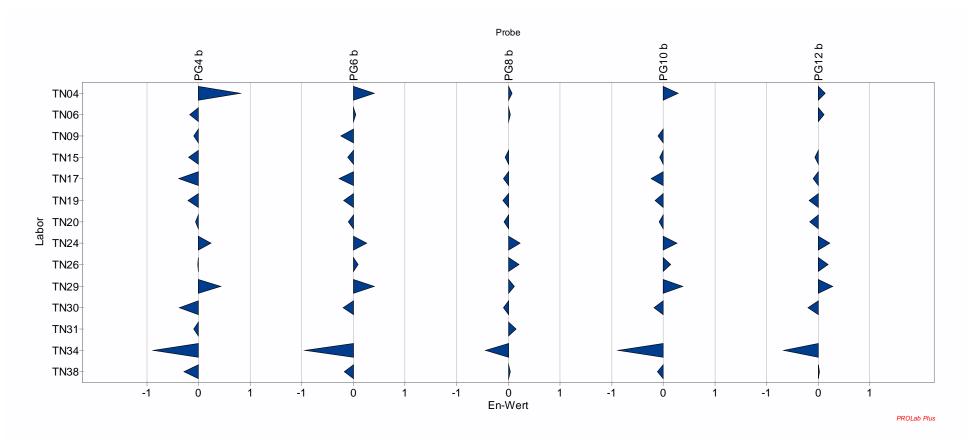


Abbildung 41: E_n-Zahlen Ozon Gruppe II

4.3.3. E_n-Zahlen Stickstoffmonoxid

Tabelle 19: En-Zahlen und Standardunsicherheiten für die NO-Bewertungsangebote der Gruppe II

Prüfgas	PG	i2 b	PG	3 b	P	G5 b	PC	39 b	PG11 b	
Teilnehmer	En	u(x) [ppb]	En	u(x) [ppb]	En	u(x) [ppb]	En	u(x) [ppb]	En	u(x) [ppb]
TN04	0,2	1,3	0,2	1,3	0,1	1,3	0,3	1,3	0,0	1,3
TN06	0,1	6,0	0,1	3,7	0,0	2,1	0,1	2,5	0,0	1,3
TN09	0,1	12,2	-0,1	7,9	0,3	3,0	0,1	3,8	0,0	4,5
TN15	0,3	12,1	0,3	7,1	0,2	4,4	0,3	5,0	0,1	3,7
TN17	0,0	14,6	0,0	7,8	0,0	3,2	0,0	4,5	0,1	1,1
TN19	-0,2	9,5	-0,2	5,1	-0,2	2,1	-0,2	2,9	-0,1	0,8
TN20	-0,1	5,2	-0,1	4,5	-0,1	2,0	-0,2	1,6	0,0	0,9
TN24	0,0	7,5	0,0	4,4	0,0	2,2	0,0	2,8	0,0	1,2
TN26	-0,1	10,1	-0,1	5,4	0,0	2,3	0,0	3,2	0,4	0,9
TN29	0,2	16,7	0,5	9,1	0,5	3,7	0,3	5,1	0,0	1,0
TN30	0,0	14,5	0,0	7,8	0,0	3,2	0,0	4,5	0,0	1,1
TN31	0,2	7,6	0,2	4,4	0,1	2,2	0,2	2,8	0,1	1,2
TN34	-0,1	17,1	-0,3	9,0	0,1	3,8	-0,1	5,5	-0,1	1,2
TN38	0,0	6,4	0,0	3,1	-0,2	2,0	-0,5	2,1	-0,3	2,3

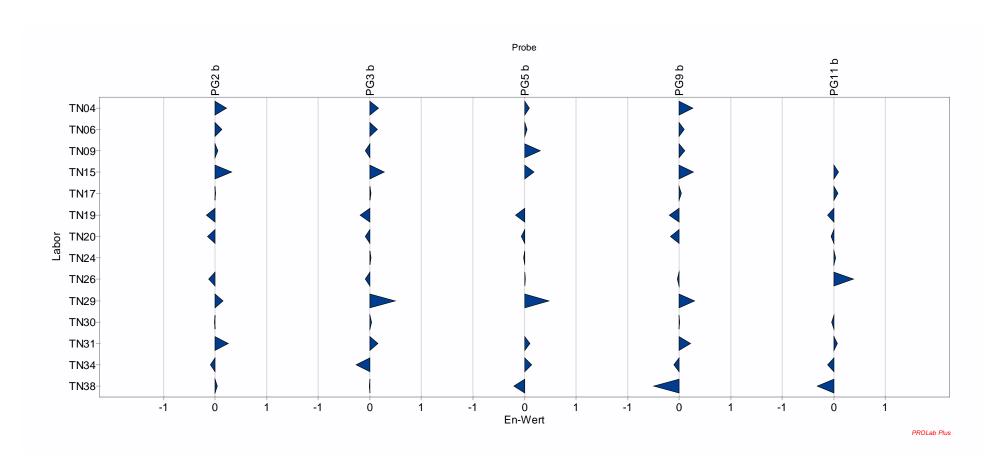


Abbildung 42: E_n-Zahlen Stickstoffmonoxid Gruppe II

4.4. Vergleichsmessungen ORSA-Röhrchen

Begleitend zum Ringversuch wurden an interessierte Teilnehmer zusätzlich mit Prüfgas beaufschlagte Aktivkohleröhrchen verteilt. Hierbei handelt es sich um sog. ORSA-Sammler. Diese werden als Passivsammler für BTEX in der Außenluft verwendet. Die Proben wurden durch das LANUV NRW im organischen Labor des Fachbereich 43 mit Prüfgas homogen belegt.

Hergestellt wurden Proben in zwei unterschiedlichen Konzentrationen. Die Proben wurden abschließend kodiert, um eine Zuordnung auszuschließen. Jeder Teilnehmer erhielt 4 Proben mit jeweils 2 Proben pro Prüfgas-Konzentration. Die Analysenwerte wurden nach der Abgabe durch die Teilnehmer als Doppelbestimmung zugeordnet.

Die Wiederholstandardabweichungen sind in der Regel um den Faktor 10 kleiner als die Vergleichsstandardabweichungen der Teilnehmermittelwert (siehe Tabelle 20 und Tabelle 21). Der zugewiesenen Wert wurden mit dem robuste Vorgabewert X* und die robuste Standardabweichung s* nach DIN ISO 13528 Anhang C berechnet. Der Referenzwert ist die Belegung, die sich aus der Dosierung rechnerisch ergibt. Er ist zur zusätzlichen Information mit angegeben.

4.4.1. Benzol

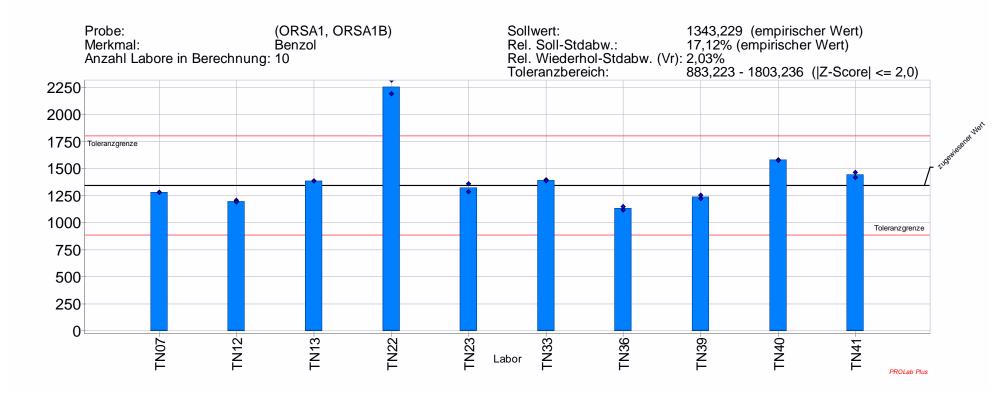


Abbildung 43: Robuste Auswertung Benzol - Doppelbestimmung Probe ORSA 1

Abbildung 44: Robuste Auswertung Benzol – Doppelbestimmung Probe ORSA 2

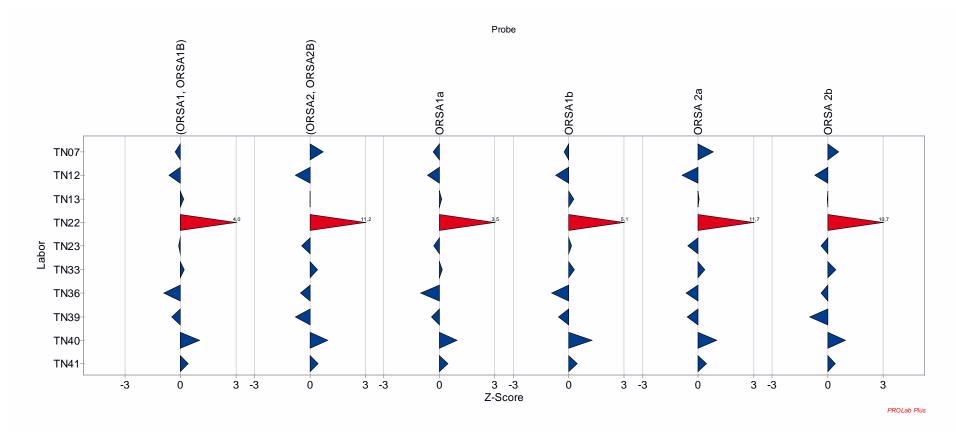


Abbildung 45: z-score Auswertung Benzol ORSA-Sammler

5. Anhang

5.1. ORSA-Vergleichsmessungen

Tabelle 20: Doppelbestimmung Probe ORSA 1

TN	Benzol	Toluol	Ethylbenzol	mp-Xylol	o-Xylol
	ng/Probe	ng/Probe	ng/Probe	ng/Probe	ng/Probe
TN07	1280				
TN12	1197	1423	1098	1154	1118
TN13	1386	1665	1221	1371	1342
TN22	2254	2311	1704	1885	3086
TN23	1322	1591	1185	1310	1202
TN33	1392	1612	1208	1309	1181
TN36	1131	1342	1123	1080	1149
TN39	1237	1442	1051	1212	1231
TN40	1578	1350	918	1019	972
TN41	1441	1741		1477	1436
X *	1343,2	1560,2	1154,4	1292,6	1203,8
σ	230,0	237,0	184,6	272,4	207,1
Wiederhol-Stdabw.	27,3	43,3	7,1	39,8	21,0
Referenzwert	1368,0	1658,1	1261,3	1387,3	1410,9
N	10	9	8	9	9

Tabelle 21: Doppelbestimmung Probe ORSA 2

TN	Benzol	Toluol	Ethylbenzol	mp-Xylol	o-Xylol
	ng/Probe	ng/Probe	ng/Probe	ng/Probe	ng/Probe
TN07	554				
TN12	439	523	405	399	402
TN13	499	597	438	501	485
TN22	1361	1099	628	856	2155
TN23	464	546	411	435	404
TN33	530	582	416	460	423
TN36	459	626	483	444	481
TN39	438	475	344	408	407
TN40	574	495	325	361	350
TN41	532	652		558	537
X*	498,6	561,8	419,9	447,4	436,1
σ	77,2	110,0	79,0	94,0	112,4
Wiederhol-Stdabw.	12,6	3,7	11,5	8,4	8,3
Referenzwert	491,7	596,0	453,4	498,7	507,2
N	10	9	8	9	9

 Tabelle 22:
 Messwerte und Kenngrößen - Probe ORSA 1 A

TN	Benzol	Toluol	Ethylbenzol	mp-Xylol	o-Xylol
	ng/Probe	ng/Probe	ng/Probe	ng/Probe	ng/Probe
TN07	1280				
TN12	1205	1423	1100	1149	1109
TN13	1388	1665	1218	1367	1336
TN22	2190	2250	1705	1839	3116
TN23	1285	1549	1149	1273	1172
TN33	1396	1613	1212	1312	1191
TN36	1117	1269	1119	1061	1150
TN39	1254	1464	1083	1238	1246
TN40	1583	1356	921	1025	974
TN41	1465	1765		1496	1458
X *	1356,3	1563,3	1123,4	1291,8	1204,4
σ Referenz-	237,2	268,3	143,0	275,4	207,1
wert	1368,0	1658,1	1261,3	1387,3	1410,9
N	10	9	8	9	9

 Tabelle 23:
 Messwerte und Kenngrößen - Probe ORSA 1 B

TN	Benzol ng/Probe	Toluol ng/Probe	Ethylbenzol ng/Probe	mp-Xylol ng/Probe	o-Xylol ng/Probe
TN07	1280				
TN12	1189	1422	1096	1159	1127
TN13	1384	1665	1224	1375	1347
TN22	2318	2371	1703	1930	3056
TN23	1359	1634	1222	1348	1232
TN33	1388	1611	1204	1306	1171
TN36	1146	1415	1126	1099	1148
TN39	1221	1419	1019	1187	1217
TN40	1573	1344	915	1012	969
TN41	1417	1717		1458	1415
X*	1328,5	1528,4	1161,0	1290,7	1203,2
σ Referenz-	195,4	169,8	214,0	254,9	192,8
wert	1368,0	1658,1	1261,3	1387,3	1410,9
N	10	9	8	9	9

Tabelle 24: Messwerte und Kenngrößen - Probe ORSA 2 A

TN	Benzol	Toluol	Ethylbenzol	mp-Xylol	o-Xylol
	ng/Probe	ng/Probe	ng/Probe	ng/Probe	ng/Probe
TN07	562				
TN12	432	526	412	401	404
TN13	502	597	436	503	487
TN22	1388	1105	636	878	2176
TN23	457	544	407	431	400

TN	Benzol ng/Probe	Toluol ng/Probe	Ethylbenzol ng/Probe	mp-Xylol ng/Probe	o-Xylol ng/Probe
TN33	527	580	412	455	415
TN36	448	621	513	451	485
TN39	453	495	362	424	425
TN40	574	495	322	357	355
TN41	534	651		558	537
X*	498,7	563,6	429,0	452,1	438,5
σ Referenz-	75,9	99,6	92,5	102,5	110,7
wert	491,7	596,0	453,4	498,7	507,2
N	10	9	8	9	9

Tabelle 25:	Mossworto un	d Kennarößen	Droho	ODCA 2 B
Labelle 25:	iviesswerte un	a Kennaroisen-	- Probe	UKSA / B

TN	Benzol ng/Probe	Toluol ng/Probe	Ethylbenzol ng/Probe	mp-Xylol ng/Probe	o-Xylol ng/Probe
TN07	545				
TN12	445	519	398	397	400
TN13	497	597	440	498	484
TN22	1333	1093	620	834	2134
TN23	470	548	415	439	408
TN33	532	583	420	465	430
TN36	470	631	452	437	478
TN39	422	456	326	391	389
TN40	574	494	327	364	345
TN41	531	652		559	536
X *	498,4	560,0	407,8	450,0	433,6
σ Referenz-	77,9	114,6	64,2	96,7	110,2
wert	491,7	596,0	453,4	498,7	507,2
N	10	9	8	9	9

Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen

Leibnizstraße 10 45659 Recklinghausen Telefon 02361 305-0 poststelle@lanuv.nrw.de

www.lanuv.nrw.de