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Abstract

Bayesian estimation of reduced rank regression models requires careful consideration of the

well known identi�cation problem. We demonstrate that this identi�cation problem can be han-

dled e�ciently by using prior distributions that restrict a part of the parameter space to the

Stiefel manifold and post-processing the obtained Gibbs sampler output according to an appro-

priately speci�ed loss function. This extends the possibilities for Bayesian inference in reduced

rank regression models. Besides inference, we also discuss model selection in terms of posterior

predictive assessment. We choose this approach because computing the marginal data likelihood

under the identifying restrictions implies prohibitive computational burden. We illustrate the

proposed approach with a simulation study and an empirical application.
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1 Introduction

Bayesian analysis of reduced rank regression models is a well established tool in economics, psychol-

ogy, or neuroscience, see Aguilar and West (2000), Chib et al. (2006),Woolley et al. (2010), Edwards

(2010), or Sadtler et al. (2014). Reduced rank models can take various forms dealt with in the

Bayesian context as discussed by Geweke (1996) or Ba³türk et al. (2017). Recent work covers several

variants of reduced rank models, e.g. Man and Culpepper (2020), Chan et al. (2018), and Aÿmann

et al. (2016) deal with factor models, while Koop et al. (2010) discuss vector error correction models,

and Zellner et al. (2014) show the link to models with instrumental variables.

Typically, reduced rank regression models need additional identifying restrictions to come up with

interpretable empirical results. In certain setups this has troublesome consequences as the choice of

ex-ante identifying restrictions can in�uence model evidence, see Chan et al. (2018), and the posterior

distribution can exhibit multimodality, see Gelman and Rubin (1992), Lopes and West (2004), and

Ro£ková and George (2016). With regard to factor models as one prominent reduced rank regression

model, multimodality can occur if identi�cation is reached by constraining the loadings matrix to

a positive lower triangular (PLT) matrix a priori as proposed by Geweke and Zhou (1996). As the

constraints are imposed on particular elements of the loadings matrix, inference results may depend

on the ordering of the variables. This is likewise observed by Carvalho et al. (2008). Altogether,

the use of ex-ante identi�cation via constraining the parameter space may in�uence inference results

with respect to the model parameters and functions of these parameters. Hence, Chan et al. (2018)

advise to refrain from this kind of identi�cation. In this line, Aÿmann et al. (2016) and Erosheva and

Curtis (2017) propose ex-post approaches to achieve identi�ed inference on factors and loadings.1

Likewise, in vector error correction models, where rank reduction is linked to the cointegration

space, this cointegration space is only identi�ed up to an arbitrary linear combination of the cointe-

gration vectors. Several authors, e.g. Villani (2005), Kleibergen and van Dijk (1994), and Kleibergen

and Paap (2002), suggest to enforce linear identifying restrictions a priori. Resulting Bayesian estima-

tion is typically straightforward. However, enforcing linear restrictions a priori can induce estimation

results depending on the ordering of the variables. To address this issue, several papers, e.g. Strachan

(2003), Strachan and van Dijk (2003), and Strachan and Inder (2004), follow an alternative identi-

�cation strategy related to the classical setup in Johansen (1988, 1991) and provide order-invariant

Bayesian estimation approaches. However, Villani (2006) argues that point estimates based on the

method in Strachan (2003) may provide counterintuitive interpretations and proposes an alternative

ex-post point estimator for the cointegration space. However, this ex-post point estimator has the

drawback that inference is only possible for the cointegration space as a whole and not for a speci�c

cointegration vector. Thus, identi�ying assumptions that allow for structural interpretations cannot

1Ex-post identi�cation has also attracted wider use in the literature on �nite mixture models, compare Celeux
(1998), Celeux et al. (2000), and Stephens (2000). Ex-post identi�cation can be motivated in terms of a decision-
theoretic approach, see e.g. Stephens (2000), where a loss function is used to assess the di�erence between the parameter
and the corresponding estimator.
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be included. Further, Villani (2005) proposes a sampler where identi�cation is not imposed by means

of the prior distribution, however the reduced rank has to be taken into account. Finally, Koop et al.

(2010) propose an approach that is order invariant and e�cient. In this approach cointegrating vec-

tors stem from the Stiefel manifold and Koop et al. (2010) also suggest a sampler that is easy to

implement. Their approach solves the identi�cation problem up to an orthogonal transformation.

In the light of the literature summarized above, the contribution of our paper is twofold. First,

we develop an ex-post identi�cation scheme for the sampler of Koop et al. (2010). By modifying the

post-processing approach in Aÿmann et al. (2016), we propose an identi�cation scheme that allows to

employ di�erent additional identifying assumptions to reach inference for single cointegration vectors

and not just the whole cointegration space. The suggested ex-post identi�cation then allows for

inference on the cointegrating vectors and extends the point estimator of Villani (2006). Second, we

migrate the approach of Koop et al. (2010) to the class of static factor models. Modelling the factors

on the Stiefel manifold ensures that the covariance of the factors is the identity matrix. Thus, it

allows for the classical variance decomposition in factor analysis. We thereby extend the possibilities

to perform ex-post identi�cation in the context of reduced rank regressions involving identifying

restrictions to the Stiefel manifold. Further, to avoid the prohibitively large computational burden

involved in the calculation of marginal likelihoods for model selection, we propose the use of a

posterior predictive assessment approach for model selection and discuss its performance by means

of a simulation study for static factor models. The simulation study con�rms the possibility to identify

the reduced rank dimensionality correctly via posterior predictive assessment. We demonstrate the

applicability of the suggested Bayesian approach in terms of an illustrative empirical example using

exchange rate data of 22 currencies against the Euro. This empirical illustration highlights the

capability of the suggested approach to obtain interpretable estimation results.

The paper proceeds as follows. Section 2 states the considered reduced rank regression models

and discusses the involved identi�cation issues. Section 3 provides the suggested ex-post approach

towards identi�cation in reduced rank regression models. Section 4 evaluates the suggested approach

via simulation and numerical experiments. Section 5 provides details regarding the selection of rank

order in terms of posterior predictive assessment. Section 6 provides an empirical illustration. Section

7 concludes.

2 Model setup, identi�cation, and estimation

Following Geweke (1996), the reduced rank regression model setup including the vector error correc-

tion and the factor model can be stated as

Y = ΨX + ΞW + E, (1)

2



where Y = (y1, . . . , yT ) is the P × T matrix of dependent variables, E = (e1, . . . , eT ) is the corre-

sponding matrix of error terms with vec(E) having multivariate normal distribution with mean zero

and covariance IT ⊗Σ, where Σ denotes a P × P covariance matrix.2 Further, W is a Q× T matrix

of explanatory variables with corresponding parameter matrix Ξ of size P × Q. ΨX incorporates

the reduced rank structure of the model, where Ψ denotes a P × J matrix and X a corresponding

J × T matrix. The vector error correction model, see e.g. Villani (2006), arises when Y corresponds

to �rst di�erences of observed variables, i.e. Y = (∆y1, . . . ,∆yT ) with y0 = . . . = y2−K = 0 implying

∆y1 = y1 and ∆y0 = . . . = ∆y1−K = 0. Correspondingly, we have X = (y0, . . . , yT−1) and W

summarizing K lagged di�erences and exogenous variables, i.e.

W =


∆y0 · · · ∆yT−1

...
...

∆y1−K · · · ∆yT−K

Z1 · · · ZT

 and Ξ = (Φ1, . . . ,ΦK , ϕ),

where Zt, t = 1 . . . , T denotes the vectors of exogenous variables each of dimension M × 1. Hence,

we have J = P and Q = KP +M . A static factor model arises for X = IT , W = (Z1, . . . , ZT ) and

Ξ = ϕ, J = T , and Q = M .3

The reduced rank structure is captured via decomposing Ψ = αβ′ with α denoting a parameter

matrix of size P ×R and β a parameter matrix of dimension J ×R, with R� min{J, P}. In case of

the vector error correction model α governs the adjustment back to equilibrium and β′X denotes the

T vectors of stationary departures from the R long run equilibria, while in case of the static factor

model α denotes the matrix of factor loadings and β the matrix of factors. Then with

Θ = (vec(α)′, vec(β)′, vec(Ξ)′, vech(Σ)′)′, (2)

the resulting likelihood for both models is given as

L(Y |Θ, X,W ) =
|Σ|−

T
2

(2π)
TP
2

exp

{
−1

2
tr
[(
Y − αβ′X − ΞW

)′
Σ−1

(
Y − αβ′X − ΞW

)]}
. (3)

For Σ and Ξ, we choose the commonly used conjugate priors as independent inverse Wishart and

multivariate normal distributions with probability densities given as

π(Σ) ∝ |ΩΣ|
νΣ
2 |Σ|−

νΣ+P+1

2 exp

{
−1

2
tr[ΩΣΣ−1]

}
2Note that in the following � and ⊗ denote Hadamard and Kronecker tensor products as de�ned in Lütkepohl

(1996) respectively, and ι and I denote a row vector of ones and an identity matrix of indicated size.
3In restricting the parameter space to the Stiefel manifold the model deviates from the static factor models e.g. ap-

plied in Aÿmann et al. (2016) or Chan et al. (2018). The restriction ensures that the factors are uncorrelated and
have unit variance. Without this restriction, the posterior distribution of the factors may exhibit correlation and the
scaling depends on the prior variance of the loadings.

3



and

π(Ξ) ∝ exp

{
−1

2
tr[(Ξ− µΞ)Ω−1

Ξ (Ξ− µΞ)′]

}
.

The prior for α and β has to address the identi�cation problem arising in factor and cointegration

analysis, as for an invertible matrix D of dimension R×R, we have

(αD)(βD−1′)′ = αDD−1β′

thus the likelihood is invariant under this transformation. One part of this identi�cation problem is

typically addressed via restricting the scaling of α or β, where restrictions on the scaling of β are

prominent within the literature, see Villani (2005). We follow Koop et al. (2010) and Villani (2006)

and restrict the scaling of β by assuming that β′β = IR, i.e., β is semiorthogonal. The corresponding

prior distribution is hence de�ned on the Stiefel manifold. In principle, the prior is constructed

in relation to the free elements in α and β, where the number of free elements can be calculated

as follows. With the semiorthogonality restriction imposed on β, i.e. β′β = IR, it must hold that

βr,J = ±
√

1−
∑J−1

j=1 β
2
r,j , where the sign is determined by the equality Ψ = αβ′. This reduces the

number of free elements in β by R. Moreover, α and β can be replaced by α∗ = αD and β∗ = βD.

Then D can be represented as D = ED ·diag(sgn(l1,1, . . . , sgn(lR,R)), where ED and L result from the

QR-decomposition β′ = EDL
′, see e.g. Golub and van Loan (2013), and hence, D is an orthogonal

matrix. This reduces the number of free elements in β by another R(R − 1)/2. Thus, the number

of free elements in α is RP , and the number of free elements in β is RJ − R(R + 1)/2. Koop et al.

(2010) suggests to use a prior setup for α and β given as

π(α, β|Σ) ∝ |Σ|−
R
2 exp

{
−1

2
tr
[
τ−1β′C−1

τ βα′Σ−1α
]}
I(β′β = IR),

where I(·) denotes the indicator matrix. This joint prior distribution relates to a marginal matrix

angular central Gaussian distribution conditional on matrix Cτ for β and a conditional multivariate

normal prior for α conditional on β with expected value zero and covariance matrix τ(β′C−1
τ β)−1⊗Σ.4

Although this prior distribution for α and β identi�es the scaling of β, the so far implied posterior

distribution

p(Θ|Y,X,W ) ∝ L(Y |Θ, X,W )π(Ξ)π(α, β|Σ)π(Σ),

remains invariant when restricting D to be an orthogonal matrix. To formalize, de�ne for any

4Following Koop et al. (2010), Cτ is constructed as Cτ = CC′ + τC̃C̃′, where τ denotes a scaling hyperparameter
and C̃ denotes the null space matrix of C, and C = Ĉ(Ĉ′Ĉ)−.5 with elements of Ĉ, say e.g. c, are each independently
drawn from uniform density 1

2
I(−1 < c < 1). This ensures that Cτ is positive de�nite as required and provides the

�exibility to possibly consider di�erent a priori orientations and scalings. A discussion of the matrix angular central
Gaussian distribution is provided in Chikuse (1990, 2003).
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orthogonal R×R matrix D the transformation

H(D)Θ = (vec(αD)′, vec(βD)′, vec(Ξ)′, vech(Σ)′)′

= (vec(α̃)′, vec(β̃)′, vec(Ξ)′, vech(Σ)′)′ = Θ̃, (4)

with

H(D) =

(
(D′ ⊗ IP+J) 0

0 IPQ+P (P+1)/2

)
. (5)

Taking into account that the transformation described in Equation (4) has no impact on the range

of parameters and dΘ̃ = |det(H(D)−1)|dΘ with |det((H(D)−1)| = 1, also the marginal likelihood

M(Y |X,W ) =

∫
p(Y,Θ|X,W )dΘ =

∫
p(Y, Θ̃|X,W )dΘ̃, (6)

is invariant and thus is the posterior distribution p(Θ|Y,X,W ) = p(H(D)Θ|Y,X,W ).

The considered model setup allows for sampling from the posterior distribution via use of the

Gibbs sampler, which we call the unconstrained Gibbs sampler in the following, because it only im-

poses scale restrictions on α and β. To facilitate e�cient closed form sampling Koop et al. (2010)

discuss a reparametrization using the transformation A = α(α′α)−
1
2 and B = β(α′α)

1
2 with corre-

sponding inverse functions given as α = A(B′B)
1
2 and β = B(B′B)−

1
2 implying αβ′ = AB′. This

transformation yields

π(A,B|Σ) ∝ |Σ|−
R
2 exp

{
−1

2
tr
[
τ−1A′Σ−1AB′C−1

τ B
]}
I(A′A = IR).

The considered reparametrization corresponds then to ΘAB = (vec(A)′, vec(B)′, vec(Ξ)′, vech(Σ)′)′

with corresponding posterior distribution

p(ΘAB|Y,X,W ) ∝ L(Y |ΘAB, X,W )π(Ξ)π(A,B|Σ)π(Σ). (7)

Note that the posterior is also invariant when considering the reparametrization in terms of A

and B and under any permutation of the P variables in Y , the corresponding rows of each α, β, Ξ,

and the corresponding rows and columns of Σ, see also Appendix A. Following Koop et al. (2010)

and considering the reparameterization in terms of A and B allowing for e�cient sampling yields the

following set of full conditional distributions. For the covariance matrix Σ we have

f(Σ|·) ∝ |Σ|−
ϕΣ+P+R+1

2 exp

{
−1

2
tr[ΨΣΣ−1]

}
,

with ϕΣ = νΣ + T − 1 and ΨΣ = ΩΣ + (Y − αβ′X − ΞW )(Y − αβ′X − ΞW )′ + 1
τ αβ

′C−1
τ βα′. For
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the parameters Ξ, the full conditional distribution is given as

f(Ξ|·) ∝ exp

{
−1

2
(vec(Ξ)− ϕΞ)′Ψ−1

Ξ (vec(Ξ)− ϕΞ)

}
,

where ΨΞ = ((WW ′ ⊗Σ−1) + Ω−1
Ξ )−1 and ϕΞ = ΨΞ(vec(Σ−1(Y −αβ′X)W ′) + Ω−1

Ξ µΞ). For the full

conditional of α we have

f(α|·) ∝ exp

{
−1

2
(vec(α)− ϕα)′Ψ−1

α (vec(α)− ϕα)

}
,

with Ψα = ((β′XX ′β ⊗ Σ−1) + 1
τ (β′C−1

τ β ⊗ Σ−1))−1 and ϕα = Ψα(vec(Σ−1(Y − ΞW )X ′β)). This

draw of α is then transformed in A = α(α′α)−
1
2 . Given A, we have the full conditional of B as

f(B|·) ∝ exp

{
−1

2
(vec(B)− ϕB)′Ψ−1

B (vec(B)− ϕB)

}
,

with ΨB = ((A′Σ−1A ⊗ X ′X) + (A′Σ−1A ⊗ 1
τC
−1
τ ))−1 and ϕB = ΨB(vec(X ′(Y − ΞW )Σ−1A)).

The draw of B is then transformed to obtain β = B(B′B)−
1
2 . The prior hyperparameters used in

estimation and simulation are documented in Table (1).

Given this sampling algorithm, a posterior sample can be established. However, this sample

and the involved draws are subject to the identi�cation invariance as described above. This makes

estimation and inference feasible merely for quantities not subject to the identi�cation problem,

such as αβ′.5 To obtain estimates for all other quantities, we propose the following post-processing

procedure.

3 Solving the identi�cation problem via post-processing

To address the identi�cation problem arising in Bayesian analysis of reduced rank regressions, we

adapt the ex-post identi�cation approach by Aÿmann et al. (2016) that introduces post-processing

for factor models. In the following, we outline the post-processing approach we propose for reduced

rank models with the parameter space of β restricted to the Stiefel manifold. The presentation is

closely related to the one in Aÿmann et al. (2016), since this is a modi�cation of the approach for

factor models. The modi�cation is needed to guarantee that the result of the post-processing lies on

the Stiefel manifold.

A loss function L(Θ∗,Θ) is de�ned as a mapping of the estimators Θ∗ from the set of possible

estimators Ξ and each of the parameter values Θ within the parameter space on the real line, i.e. L :

5Villani (2006) proposes a point estimator for the cointegration vector β in the context of vector error correction
models, which is the posterior mean cointegration space (PMCS) estimator. This estimator consists of the �rst R

eigenvectors of β̂′β. This speci�c setup, however, does not allow for inference on single parameters. We use the PMCS
estimator in our simulation studies in section 4 as a reference point.
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Ξ×Θ→ [0,∞). The optimal estimator in terms of minimal expected loss is then de�ned as

Θ̃∗ = arg min
Θ∗

∫
Θ
L(Θ∗,Θ)p(Θ|Y,X,W )dΘ.

To solve the identi�cation problem, we propose to extend the loss function approach in order to

discriminate between invariant losses of estimators invoked under the transformation described in

Equation (4) depending on an orthogonal matrix D. The extended loss function then takes the form

L(Θ∗,Θ) = min
D
{LD(Θ∗, H(D)Θ)}, s.t. D′D = IR,

with LD(Θ∗, H(D)Θ) denoting for given Θ∗ the loss invoked for any transformation of Θ as described

in Equation (4).6 As this minimization is done for each Θ, the parameter space of Θ is restricted

ex-post via the corresponding �rst order conditions. As recommended by Larsson and Villani (2001),

we use

LD(Θ∗, H(D)Θ) = (H(D)Θ−Θ∗)′(H(D)Θ−Θ∗)

for the considered reduced rank model speci�cations.7 Since the integral involved in the expected pos-

terior loss is approximated via Monte Carlo (MC) methods the corresponding minimization problem

takes the form

{{D̃(s)}Ss=1, Θ̃
∗} = arg min

{D(s)}Ss=1,Θ
∗

S∑
s=1

LD(Θ∗, H(D(s))Θ(s)), (8)

subject to β∗′β∗ = IR and D(s)′D(s) = IR, s = 1, . . . , S, where Θ(s), s = 1, . . . , S denotes

a sample from the unconstrained posterior distribution. Note that all samples taking the form

{H(D(s))Θ(s)}Ss=1 for arbitrary sequences of orthogonal matrices {D(s)}Ss=1 have the same posterior

probability. For all elements of Θ∗ not referring to β, the estimator implied by the de�ned loss

function takes the form of

H(D)Θ =
1

S

S∑
s=1

H(D(s))Θ(s). (9)

For β, the elements of H(D)Θ do not ful�ll the restriction β∗′β∗ = IR. This restriction turns the

minimization of the posterior expected loss with regard to β into an orthogonal Procrustes problem.

6Note that this extension corresponds to the choice of an optimal permutation that is proposed in the aforementioned
relabeling literature, see e.g. Jasra et al. (2005), Section 5.1.

7Note that under general regularity conditions, see Cheng et al. (1999), the suggested loss function is �rst-order
equivalent to the Kullback-Leibler distance, see Clarke et al. (1990) for a discussion of corresponding properties.
Further, the suggested loss function corresponds to the square of the Frobenius norm.
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The de�ned loss function implies

arg min
β∗

tr

[
−β∗

S∑
s=1

β(s)D(s)

]
s.t. β∗′β∗ = IR. (10)

The structure of an orthogonal Procrustes problem arises also with regard to determining D(s),

as the corresponding minimization problem arising from Equation (8) takes the form

arg min
D(s)

tr[(Λ̄(s)D − Λ̄∗)′(Λ̄(s)D − Λ̄∗)], s.t. D(s)′D(s) = IR, (11)

with Λ̄∗ denoting the estimator of the stacked matrix Λ̄ = (α′, β′)′ and Λ̄(s) denoting a draw of

Λ̄ from the unconstrained sampler. The post-processing approach as discussed here transforms the

output from the unconstrained sampler given a �xed point, i.e. the estimator. The following para-

graph outlines how a solution for the vector error correction model can be obtained via a sequential

algorithm. The algorithm needs an initialization with regard to Θ∗, where we choose the last draw

of the unconstrained sampler for convenience.8

Step 1 For given Θ∗ the minimization problem implied by Equation (11) resembles the orthogonal

Procrustes problem discussed by Kristof (1964) and Schönemann (1966), see also Golub and

van Loan (2013). The solution involves the following calculations.

1.1 De�ne ΥD(s) = Λ̄(s)′Λ̄∗.

1.2 Do the singular value decomposition ΥD(s) = UD(s)MD(s)V ′D(s) , where UD(s) and VD(s)

denote the matrix of eigenvectors of ΥD(s)Υ′D(s) and Υ′
D(s)ΥD(s) , respectively, and MD(s)

denotes a diagonal matrix of singular values, which are the square roots of the eigenvalues

of ΥD(s)Υ′D(s) and Υ′
D(s)ΥD(s) . Note that the nonzero eigenvalues of ΥD(s)Υ′D(s) and

Υ′
D(s)ΥD(s) are identical.

1.3 Obtain the orthogonal transformation matrix D(s) = UD(s)V ′D(s) .

For further details on the derivation of this solution, see Schönemann (1966).

Step 2 Choose α∗, Φ∗, and Σ∗ as implied by H(D)Θ. With regard to β∗, the minimization problem

also takes the form of an orthogonal Procrustes problem, where the solution then involves the

following calculations.

2.1 De�ne Sβ =
∑S

s=1 β
(s)D(s).

2.2 Do the singular value decomposition Sβ = UβMβV
′
β , where Uβ denotes the matrix of

the eigenvectors of SβS ′β corresponding to the R largest eigenvectors, and Vβ denotes

the matrix of eigenvectors arising from S ′βSβ . Further, Mβ denotes a diagonal matrix of

8Note that the �rst step is the same as in Aÿmann et al. (2016). Step 2 entails the modi�cation to cope with the
restriction on the Stiefel manifold.
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singular values, which are the square roots of the eigenvalues of SβS ′β and S ′βSβ . Note

that the largest R eigenvalues of SβS ′β and S ′βSβ are identical.

2.3 Obtain the semiorthogonal matrix β∗ = UβV
′
β .

With regard to convergence of the post-processing algorithm, we have found that for arbitrary

initial choices of Θ∗ taken from the unconstrained sampler output, less than ten iterations usually

su�ce to achieve convergence to a �xed point Θ∗ providing the Bayes estimator. Convergence is

assumed if the sum of squared deviations between two successive Θ∗ does not exceed a prede�ned

threshold value, where we use 10−9. The iterative procedure of the algorithm suggests to use the

transformed output of the unconstrained sample, i.e. H(D(s))Θ(s), as input for the next iteration,

thus, reducing required computer memory capacities. In this line, Vito et al. (2018) have found

that also a single iteration may result in estimates su�ciently close to the �nal estimates. The post

processed posterior sample provides then the basis to calculate posterior summary statistics including

uncertainty measures allowing for inference. Note that all estimation and simulation routines have

been implemented in MATLAB R© and are available from the authors upon request.

4 Simulation and numerical experiments

To illustrate the properties of the suggested identi�cation approach, we perform a simulation exper-

iment for a vector error correction model. We use the posterior mean cointegration space (PMCS)

estimator proposed by Villani (2006) to provide an orientation for the directed inference. We show

that the point estimator is extremely close to the PMCS, while our approach also provides posterior

distributions for each parameter.

The results obtained from the simulation experiment are based on the following setup. We simulate

T = 500 observations following a vector error correction model with R = 2 cointegrating vectors for

P = 4 variables. Moreover, we set K = 3. The values used within the data generating process

(DGP) with regard to αβ′ and thus α and β are given in the �rst column of Table (2) and Table

(3) respectively. To obtain a sample from the posterior distribution of α and β, we run the Koop

et al. (2010) sampler with S = 20000 after a burn-in phase of 5000 iterations, incorporating the scale

restriction ββ′ = IR.

Figure 1 illustrates the identi�cation problem by showing the circular shape of the posterior

distribution when plotting pairwise parameter trajectories arising from the unconstrained Koop et al.

(2010) sampler. The β matrices are semiorthogonal, so their columns have unit length. Note,

however, that their rows vary in length. There is therefore some variability in the length of the

plotted draws in terms of row vectors. A plot of the draws in terms of column vectors would make

the semi-orthogonality property obvious, however, it would have to be four-dimensional. We therefore

show the distribution of the lengths of the row and column vectors of β, respectively, in Figure 2.

Note that these quantities are quantities that are invariant under the transformation described in
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Equation (4), and that the distribution of the lengths of the column vectors of β is degenerate due

to the incorporated scale restriction β′β = IR.

Since the quantity αβ′ is invariant under the aforementioned transformation, we can use the output

from the unconstrained Koop et al. (2010) sampler directly without post-processing for inference on

this quantity. The second column of Table (2) shows the point estimates for αβ′ based on the output

of the Koop et al. (2010) sampler, which is quite accurate. The third column shows the product

of the point estimate for α and the transpose of the point estimate of β. We observe a substantial

deviation between this result and the estimate for the invariant quantity αβ′ if the output from the

sampler without post-processing is used. This re�ects the equally imprecise estimates for α and β,

which are not separately reported.

The e�ects of post-processing the output of the unconstrained sampler can also be seen by looking

at the shape of the posterior distribution of β. The lower panels of Figure 1 indicate that the posterior

distributions of the rows are no longer circular. They also allow for proper inference on the elements

of α and β. If the output is post-processed, the estimate for the invariant quantity αβ′ stays the

same, as can be seen in the fourth column of Table (2). The product of the point estimates for

α and β, however, shown in the last column of Table (2), is now almost identical to the invariant

estimate. This, in turn, indicates that the estimates for α and β must be much more precise than if

no post-processing is applied.

Note that the estimates for α and β, and indeed the entire samples from the respective posterior

distributions, can be transformed by a single orthogonal matrix to satisfy identifying assumptions.

The point estimates and highest posterior density intervals (HPDIs) in Table (3) show the results of

two di�erent treatments of the same post-processed output in that respect. In the �rst �ve columns

of Table (3), we choose the rotation that minimizes the Frobenius norm of the distance between

the estimates and the parameters α and β that were used to simulate the data set. In the last �ve

columns of Table (3), on the other hand, we choose the rotation that minimizes the Frobenius norm

of the distance between the estimates and the PMCS estimate for β obtained from the approach by

Villani (2006). Conversely, the PMCS estimate reported in the second column of Table (3) has been

subject to the inverse rotation, in order to make it comparable to the remaining results.

The resulting point estimates for α and β are given in the third and eighth column of Table

(3). In the latter column, the point estimate for β from the proposed post-processing approach is

identical to the PMCS estimate. This happens because the singular value decomposition that is used

to obtain the �x point β∗ in the post-processing approach yields singular vectors that are identical

up to an orthogonal transformation to the eigenvectors obtained from β̂′β in the PMCS approach of

Villani (2006). It is therefore possible to �nd an orthogonal transformation in the two dimensional

real space that maps our estimate for β exactly onto the PMCS estimate. In the second column

of Table (3), on the other hand, the rotated PMCS estimate di�ers from the rotated estimate from

the post-processing approach, because the optimal rotation for the PMCS estimate only takes β into

account, whereas the post-processing approach takes both α and β into account. To sum up, the
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point estimates for β obtained from the post-processing approach are - depending on the chosen

reference point - very similar or identical to the PMCS estimate. The post-processing approach,

however, also provides point estimates for α and provides samples from the posterior distributions

of both α and β, thus allowing for proper inference, as illustrated by the reported 84% HPDIs for all

elements of α and β in Table (3).

5 Model selection via posterior predictive assessment

In a Bayesian context, model selection and speci�cation is conceptually straightforward in terms

of the marginal model likelihood M(Y |X,W ) stated in Equation 6, see Chib (1995) and Kass and

Raftery (1995). However, for the considered reduced rank regression model framework the use of the

marginal likelihood for specifying the reduced rank dimension relating to the number of latent factors

or cointegrating vectors on the Stiefel manifold, involves computational di�culties that prevent use

the marginal likelihood for model selection purposes in the context of reduced rank regression models.

Typically, the computation of the marginal likelihood is based on the full conditional distributions

including the corresponding normalizing constants, see Chib (1995) and Chib and Jeliazkov (2001).

As the functional form of the involved full conditional distribution for β is given as a Bingham-von

Mises-Fisher distribution, as discussed by Chikuse (2003), Gupta and Nagar (2000) and Ho� (2009),

the integrating constant required for computation of the marginal model likelihood involves Hayakawa

polynomials, see Mathai et al. (1995) and Crowther (1975), or the hypergeometric function with

matrix argument, see Herz (1955) and Koev and Edelman (2006). However, the analytical calculation

is non trivial and the saddlepoint approximation suggested by Kume et al. (2013) generalizing the

work of Butler and Wood (2003) and Kume (2005), does not provide su�cient numerical precision

for typical dimensions relevant in application contexts. The same holds for alternative numerical

approaches as power posterior sampling, see Friel and Pettitt (2008), as a version of thermodynamic

integration closely related to annealed importance sampling, see Neal (2001), bridge sampling, see

Meng and Wong (1996), and path sampling, see Gelman and Meng (1998).

Taking the aforementioned di�culties into account, we propose to make use of posterior predictive

assessment, see Gelman et al. (1996), to perform model selection with regard to the dimensionality

of the reduced rank structure. For this purpose, a de�ned fraction of Y , e.g. within the range from

1% to 10%, are discarded from the data, hence we can partition the data in discarded (Y DIS) and

remaining (Y REM) observations. The partition implies yDISt = LDISt yt and y
REM
t = LREMt yt for all

t = 1 . . . , T , where LDISt and LREMt , t = 1, . . . , T denote appropriately de�ned elimination matrices.

The discarded observations are then augmented to the parameter vector and subject to sampling

within the Gibbs sampling algorithm. Posterior predictive assessment is then based on extending the

Gibbs sampling scheme with the full conditional distributions of the discarded observations Y DIS. For

the factor model setup, this set of full conditional distributions is directly arising from the likelihood

function given in Equation (3). Since the likelihood in the static factor model setup (F) can be
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factored as

LF(Y |Θ, X,W ) =
T∏
t=1

fF(yt|Θ, Zt),

the corresponding posterior predictive distribution is given as

fF(Y DIS|Y REM,Θ, X,W ) =

T∏
t=1

f(yDISt |yREMt ,Θ, Zt)

where f(yDISt |yREMt ,Θ, Zt) is given as multivariate normal as implied by multivariate normal distri-

bution theory.

For the vector error correction setup (VECM), sampling from the set of full conditional distribu-

tions of the discarded observation values is more elaborate. First, the vector error correction model

is reformulated as a vector autoregressive model in levels yt, i.e.,

yt = (I + αβ′ + Φ1)yt−1 +

K∑
k=1

(Φk+1 − Φk)yt−k + et,

where ΦK+1 = 0. The corresponding state space representation has yDISt = LDISt yt as the measure-

ment equation, whereas the corresponding transition equation is given by

Ỹt = ΓỸt−1 + Z̃tφ+ Ẽt,

where Ỹt = (yt, yt−1, . . . , yt−K)′,

Γ =



IP + αβ′ + Φ1 Φ2 − Φ1 Φ3 − Φ2 . . . −ΦK

IP 0 0 . . . 0

0 IP 0 0
...

. . .
...

0 . . . 0 IP 0


,

Ỹt−1 = (yt−1, yt−2, . . . , yt−K−1)′, Z̃t = (Zt, 0, . . . 0)′, and Ẽt = (et, 0, . . . , 0)′. A sample of all discarded

values Y DIS in the vector error correction context can then be obtained by iteratively sampling

from the set of full conditional distributions of yt for all yt included in Y DIS. The full conditional

distribution of yt corresponds to the smoothed distribution arising from forward (predicting) and

backward (smoothing) recursion of the Kalman �lter. The corresponding sample provides the basis

for posterior predictive model assessment. Note that the involved predictive distribution (PR) is

directly provided by the transition equation, whereas the full conditional distribution (SM) implied
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via the backward smoothing recursion. Given the model setup, we have

fVECM(yt|y1, . . . , yt−1, yt+1, yT , Z1, . . . , ZT ,Θ) ∝
K∏
k=0

f(yt+k|yt+k−1, . . . , y1, Z1, . . . , ZT ,Θ),

where f(yt+k|yt+k−1, . . . , y1, Z1, . . . , ZT ,Θ) for k = 0, . . . ,K corresponds to the predictive distribu-

tion as implied by the transition equation corresponding to a normal distribution with expected value

and covariance matrix given as

µPRyt = (IP + αβ′ + Φ1)yt−1 +
K∑
k=1

(Φk+1 − Φk)yt−k and ΩPR

yt = Σ.

Hence, the full conditional distribution corresponds to a normal distribution as implied by

fVECM(yt|y1, . . . , yt−1, yt+1, yT , Z1, . . . , ZT ,Θ) ∝
K∏
k=0

exp

{
−1

2
(yt+k − µPyt+k)′Σ−1(yt+k − µPyt+k)

}
.

The corresponding full conditional expectation and covariance are given as

ΩSM

yt = [Σ−1 + (IP + αβ′ + Φ1)′Σ−1(IP + αβ′ + Φ1) +
K∑
k=2

(Φk − Φk−1)′Σ−1(Φk − Φk−1)]−1

and µSMyt = ΩSM
yt κ

SM
yt , where

κSMyt = Σ−1

(
(IP + αβ′ + Φ1 +

K∑
k=1

(Φk+1 − Φk)yt−k−1)

)
+(

(Ip + αβ′ + Φ1)′Σ−1(yt+1 −
K∑
k=1

(Φk+1 − Φk)yt−k)

)
+

K∑
k=1

(Φk+1 − Φk)
′Σ−1

yt+k+1 − (IP + αβ′ + Φ1)yt+k −
K∑
k′=1
k′ 6=k

(Φk′+1 − Φk′)yt−k′+1


 .

Using the observed values as initializations of the discarded values, sampling of the set of discarded

values {yDISt }Tt=1 is then possible via iteratively sampling from

fVECM(yDISt |yCOM1 , . . . , yCOMt−1 , yREMt , yCOMt+1 , . . . , yCOMT , Z1, . . . , ZT ,Θ),

as implied by multivariate normal theory and with yCOMt denoting if applicable the completed vector

yt, where the discarded values are replaced by their sampled counterparts.

Given a sample of the discarded values drawn from the posterior predictive distributions, model

�t is measured as SSE =
∑S

s=1 vec(Y − Y
(s)
COM

)′vec(Y − Y (s)
COM

), where Y
(s)
COM

denotes the matrix of
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completed observations with discarded values replaced by the draws from the posterior predictive dis-

tribution at each iteration s = 1, . . . , S.9 Model selection using posterior predictive assessment does

not require a postprocessed sample, as the quantities involved in the posterior predictive distribution,

i.e. the full conditional distribution of the discarded values, are all invariant quantities.

To highlight the precision of the posterior predictive assessment approach, the number of cross

sections P , the number of observations in time T , the signal to noise ratio, and the way the infor-

mation from the incomplete data sets is used are varied within a simulation study. The fraction

of data missing is set to equal 1%, but the correspondingly implied partition is di�erent for each

incomplete data set.10 The SSE is then calculated for all of these data sets, conditional on the same

speci�c choice of the number of factors R. The choices for the parameters are P = {10, 20, 40, 80},
T = {100, 200}, and R = {2, 3}, and the signal-to-noise ratio is varied between 10 and 1. The

simulation study hence covers the arising 32 scenarios. For each scenario, G = 50 data sets are

simulated. From each data set, J = 100 incomplete versions are generated, removing 1% of the data

at random. For each incomplete data set per scenario, the model is estimated for a set of candidate

values given as RC = {1, 2, 3, 4, 5}, thus providing �ve Gibbs sequences of length S = 5, 000 after

discarding burn-in sequences of length 2, 000. Now for each simulated data set, there are J = 100

vectors of size 5× 1 containing the SSE values for the set of candidate values RC . Hence SSEg,j(R̃)

with g = 1, . . . , G and j = 1, . . . , J denotes the sum of squared errors for the jth incomplete version

of the gth simulated data set when the number of factors in the estimation is set to R̃. Next, in a

bootstrap step, L = 10, 000 bootstrap samples of size Q = {25, 100} each are drawn with replacement

along the j dimension for each of the G = 50 data sets per scenario. The index set Bl,g contains the
indices of the bootstrapped elements, which range from 1 to J , including possible duplicates. We

then calculate Cl,g(R̃) = 1
Q

∑
q∈Bl,g SSEg,q(R̃) for all R̃ ∈ RC , and estimate the number of factors as

R̂l,g = arg minR̃∈RC Cl,g(R̃). With l ∈ {1, . . . , L} and g ∈ {1, . . . , G}, this gives us 500, 000 estimates

for the number of factors per scenario.

Table (4) reports the corresponding shares for R̂ from RC for each scenario. Overall, the obtained

results indicate that the chance to underestimate R is virtually zero for all scenarios, except those

with P = 10 and R = 3, where a signal-to-noise ratio of 1 results in frequent underestimations. The

underestimation is thereby more pronounced for the scenarios with T = 100. In the following, the

scenarios with with P = {20, 40, 80} are summarized. In these 30 scenarios, the number of factors

is sometimes overestimated, but it must be noted that in all of these scenarios, the correct model is

identi�ed in more than 90% of the cases. On average, models are correctly identi�ed in about 97% of

all cases for the signal-to-noise ratio of 1 and in about 96% of all cases for the signal-to-noise ratio of

9In order to reduce the computational burden in terms of the required memory capacity, calculation of the SSE is
based on the set of discarded values only, as not discarded values do not contribute to SSE.

10We have also inspected higher rates of discarded values, i.e., 2%, 5%, and 10%. While such higher rates of discarded
rates generally only slightly increase the accuracy of model detection, the involved computational burden arising from
required storage capacity becomes even larger. The reported combination of 1% discarded values and 100 incomplete
versions of a data set can hence be recommended to handle the implicit trade-o� between model detection accuracy
and computational burden.
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10. If Q is reduced to 25, the correct model is identi�ed in more than 88% of the cases. On average,

models are correctly identi�ed in about 94% of all cases for the signal-to-noise ratio of 1 and in about

92% of all cases for the signal-to-noise ratio of 10.11

6 Empirical illustration

In this section, we illustrate the suggested ex-post approach using a data set from �nancial eco-

nomics. This empirical illustration closely follows Frühwirth-Schnatter and Lopes (2018). The data

set consists of monthly log returns of 22 exchange rates against the Euro from February 1999 to

September 2018, see Figure 3.12 The data are demeaned and standardized. In the �rst step, the

posterior predictive assessment as described above is used to determine the appropriate number of

factors. Of course, there is only one available data set here, however, the method is applied in the

same fashion via generating 100 incomplete data sets from the available one, and then using the boot-

strap procedure to produce 100 samples to determine R̂. Figure 4 shows that the SSE is minimized

for R̂ = 2, so that the model is estimated with two factors.13

After estimation, both the factors and factor loadings are orthogonally transformed. The orthog-

onal transformation performed here turns the �rst factor into a U.S. dollar factor , maximizing the

loading on the �rst factor for the exchange rate between U.S. dollar and the Euro. The estimates of

rotated factor loadings and corresponding 84% HPDIs are shown in Table 5, whereas the estimated

factors and corresponding 84% HPDIs are displayed in Figure 5. Indeed, the rotated �rst factor is

virtually identical to the exchange rate between U.S. dollar and the Euro, with a factor loading of

0.9999, or a correlation coe�cient of 0.9998. The U.S. dollar factor also clearly shows the (�exible)

peg between the U.S. dollar and the Hongkong dollar, which has a factor loading of 0.9997, and

strong loadings with a number of south east Asian currencies, such as the Indonesian rupee, the

Malaysian ringgit, the Philippine peso, the Singapore dollar, and the Thai baht. Less pronounced

loadings are found for the Japanese yen, the Canadian dollar and the Korean won. The factor is

virtually orthogonal to the Czech koruna, the Mexican peso, the Norwegian krone, the Swedish krona

and the Romanian leu and a�ects the Polish zloty slightly negatively. The second factor cannot be

linked to any particular exchange rate, but shows largest loadings for the Australian dollar and the

11We have also tried bootstrap samples of size Q = 10 and Q = 1, respectively, the latter corresponding to model
choice based on a single incomplete data set. While for Q = 10, models are still correctly identi�ed in about 85% of
all cases on average, for Q = 1, this share drops to less than 60%.

12Data has been extracted from the European Central Banks Statistical Data Warehouse on September 20, 2018. The
considered currency are Australian dollar (AUS), Canadian dollar (CAD), Swiss franc (CHF), Czech koruna (CZK),
Danish krone (DKK), UK pound sterling (GBP), Hong Kong dollar (HKD), Indonesian rupiah (IDR), Japanese yen
(JPY), South Korean won (KRW), Mexican peso (MXN), Malaysian ringgit (MYR), Norwegian krone (NOK), New
Zealand dollar (NZD), Philippine peso (PHP), Polish zloty (PLN), Romanian leu (RON), Russian rouble (RUB),
Swedish krona (SEK), Singapore dollar (SGD), Thai baht (THB), US dollar (USD).

13Figure 4 also shows the quantiles of the distribution for the average SSE, indicating that the distributions display
quite strong separation for the di�erent choices of R. In fact, the 88.35% quantile of the distribution for R = 1 equals
the 11.65% quantile of the distribution for R = 2, and the 94.33% quantile of the distribution for R = 2 equals the
5.67% quantile of the distribution for R = 3.
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Korean won. From the perspective of investors from the euro area this gives rise for the opportunity

to diversify exchange rate risks. Overall, the estimation uncertainty for the U.S. dollar factor is

substantially lower than for the second factor.

7 Conclusion

This paper discusses the handling of identifying restrictions on the Stiefel manifold in the context of

reduced rank regressions. We illustrate the rotational invariance of the likelihood as one part of the

identi�cation problem. To provide Bayesian estimation, the sampler of Koop et al. (2010) is used to

provide a sample from the posterior distribution. This paper proposes a post-processing algorithm

for the posterior sample that allows for identi�cation and directed inference, and thereby extends the

possibilities to conduct valid inference, when the cointegration vectors or factors are restricted on

the Stiefel manifold. The post-processing algorithm is an extended version of the ex-post algorithm

proposed by Aÿmann et al. (2016) for static and dynamic factor models. We illustrate how the post-

processing works for vector error correction models via a simulation study and show an application

of the sampling procedure suggested by Koop et al. (2010) for factor models. Further, we propose

to use posterior predictive assessment to obtain model evidence and to compare models. We do so,

because obtaining the marginal likelihood is computational extremely demanding when the Stiefel

manifold is involved. Finally, our approach to the analysis of reduced rank models is illustrated

in an empirical example. Future research may focus on alternative possibilities to provide model

comparison and assessment in a Bayesian framework.
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Tables

Table 1: Prior hyperparameter setting

parameter distribution hyperparameter
Σ inverse Wishart νΣ = 3, ΩΣ = 1/1000IP
Ξ multivariate normal µΞ = 0, ΩΞ = 100IPQ
β matrix angular central Gaussian Cτ = CC ′ + τC̃C̃ ′, where τ = 1 and C̃ denotes the

null space matrix of C, and C = Ĉ(Ĉ ′Ĉ)−.5 with
elements of Ĉ, say e.g. c, are each independently
drawn from uniform density 1

2I(−1 < c < 1)
α multivariate normal µα = 0, Ωα = τ(β′C−1

τ β)−1 ⊗ Σ
A matrix angular central Gaussian CA = τ(B′C−1

τ B)−1 ⊗ Σ
B multivariate normal µB = 0, ΩB = τ(A′Σ−1A)−1 ⊗ Cτ
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Table 2: Parameter values and estimates for αβ′

DGP ββ′ = IR post-processed ββ′ = IR

vec(αβ′) vec(α̂β′) vec(α̂β̂′) vec(α̂β′) vec(α̂β̂′)
-0.0177 -0.0155 -0.0097 -0.0155 -0.0155
0.0826 0.0795 0.0537 0.0795 0.0796
0.0559 0.0477 0.0327 0.0477 0.0478
-0.0375 -0.0409 -0.0294 -0.0409 -0.0411
-0.3033 -0.3302 -0.2251 -0.3302 -0.3302
0.2151 0.2354 0.1597 0.2354 0.2354
0.0249 0.0170 0.0114 0.0170 0.0169
0.0800 0.0688 0.0460 0.0688 0.0689
-0.4022 -0.4364 -0.2985 -0.4364 -0.4364
0.1913 0.2248 0.1530 0.2248 0.2249
-0.0399 -0.0367 -0.0253 -0.0367 -0.0367
0.1626 0.1467 0.1005 0.1467 0.1467
-0.0992 -0.1044 -0.0712 -0.1044 -0.1044
0.0710 0.0773 0.0525 0.0773 0.0773
0.0086 0.0072 0.0050 0.0072 0.0074
0.0258 0.0200 0.0132 0.0200 0.0199

Notes: DGP refers to parameter values used in the data generating process.
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Table 3: Parameter values and estimates for α and β.

mapped onto α and β from DGP mapped onto PMCS estimate for β
DGP PMCS post-processed ββ′ = IR DGP PMCS post-processed ββ′ = IR
vec(α) vec(α̂) 84% HPDI vec(α) vec(α̂) 84% HPDI
-0.1981 -0.2140 -0.2387 -0.1889 -0.0230 -0.0279 -0.0408 -0.0146
0.1991 0.2097 0.1835 0.2369 -0.0800 -0.0723 -0.0866 -0.0588
0.0618 0.0502 0.0241 0.0752 -0.0729 -0.0617 -0.0747 -0.0472
0.0170 0.0077 -0.0196 0.0345 0.0640 0.0653 0.0509 0.0795
0.4740 0.5147 0.4658 0.5641 0.5132 0.5567 0.5052 0.6127
-0.2347 -0.2726 -0.3240 -0.2207 -0.2972 -0.3363 -0.3949 -0.2817
0.0399 0.0382 -0.0123 0.0909 0.0097 0.0129 -0.0439 0.0677
-0.1861 -0.1682 -0.2225 -0.1161 -0.1756 -0.1552 -0.2122 -0.0964
vec(β) vec(β̂) vec(β̂) 84% HPDI vec(β) vec(β̂) vec(β̂) 84% HPDI
0.7308 0.7422 0.7413 0.7183 0.7632 -0.7753 -0.7889 -0.7889 -0.8120 -0.7624
0.6427 0.6263 0.6276 0.5978 0.6606 -0.4229 -0.4032 -0.4032 -0.4398 -0.3701
-0.0776 -0.0685 -0.0656 -0.0856 -0.0473 0.4460 0.4352 0.4352 0.4163 0.4574
0.2166 0.2283 0.2286 0.2054 0.2502 -0.1453 -0.1602 -0.1602 -0.1832 -0.1335
0.2682 0.2756 0.2781 0.2662 0.2887 -0.0692 -0.0673 -0.0673 -0.0714 -0.0633
-0.3712 -0.3828 -0.3807 -0.3967 -0.3630 -0.6099 -0.6134 -0.6134 -0.6210 -0.6060
-0.8810 -0.8750 -0.8753 -0.8853 -0.8666 -0.7637 -0.7622 -0.7622 -0.7675 -0.7571
-0.1188 -0.1085 -0.1078 -0.1194 -0.0969 -0.1999 -0.1955 -0.1955 -0.1995 -0.1914

Notes: DGP denotes data generating process and PMCS denotes the posterior mean cointegration space

estimators as suggested by Villani (2006).
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Table 4: Results of the posterior predictive simulation study.

R̂ proportion for signal-to-noise ratio 1 R̂ proportion for signal-to-noise ratio 10
{Q,T,R,P} 1 2 3 4 5 1 2 3 4 5

{100, 100, 2, 10} 0.0000 0.9993 0.0007 0.0000 0.0000 0.0000 0.9953 0.0047 0.0000 0.0000
{100, 100, 3, 20} 0.0000 0.9862 0.0137 0.0000 0.0000 0.0000 0.9247 0.0737 0.0012 0.0004
{100, 100, 2, 40} 0.0000 0.9238 0.0675 0.0087 0.0000 0.0000 0.9463 0.0524 0.0013 0.0000
{100, 100, 3, 80} 0.0000 0.9949 0.0051 0.0000 0.0000 0.0000 0.9435 0.0562 0.0002 0.0001

{100, 100, 2, 10} 0.1540 0.2774 0.5656 0.0030 0.0000 0.0000 0.0000 0.9773 0.0227 0.0000
{100, 100, 3, 20} 0.0000 0.0000 0.9949 0.0048 0.0003 0.0000 0.0000 0.9195 0.0803 0.0002
{100, 100, 2, 40} 0.0000 0.0000 0.9437 0.0554 0.0009 0.0000 0.0000 0.9330 0.0424 0.0245
{100, 100, 3, 80} 0.0000 0.0000 0.9944 0.0056 0.0000 0.0000 0.0000 0.9125 0.0852 0.0023

{100, 200, 2, 10} 0.0000 0.9994 0.0006 0.0000 0.0000 0.0000 0.9999 0.0001 0.0000 0.0000
{100, 200, 3, 20} 0.0000 0.9751 0.0249 0.0000 0.0000 0.0000 0.9818 0.0180 0.0003 0.0000
{100, 200, 2, 40} 0.0000 0.9464 0.0492 0.0043 0.0000 0.0000 0.9582 0.0306 0.0111 0.0001
{100, 200, 3, 80} 0.0000 0.9561 0.0439 0.0000 0.0000 0.0000 0.9776 0.0224 0.0001 0.0000

{100, 200, 2, 10} 0.0000 0.5488 0.4512 0.0000 0.0000 0.0000 0.0000 0.9966 0.0034 0.0000
{100, 200, 3, 20} 0.0000 0.0000 0.9569 0.0431 0.0000 0.0000 0.0000 0.9691 0.0309 0.0000
{100, 200, 2, 40} 0.0000 0.0000 0.9587 0.0378 0.0035 0.0000 0.0000 0.9453 0.0537 0.0010
{100, 200, 3, 80} 0.0000 0.0000 0.9821 0.0179 0.0000 0.0000 0.0000 0.9402 0.0596 0.0002

{25, 100, 2, 10} 0.0000 0.9876 0.0124 0.0000 0.0000 0.0000 0.9717 0.0280 0.0004 0.0000
{25, 100, 3, 20} 0.0000 0.9465 0.0495 0.0028 0.0012 0.0000 0.8688 0.1212 0.0067 0.0033
{25, 100, 2, 40} 0.0000 0.8804 0.0918 0.0265 0.0013 0.0000 0.8921 0.0906 0.0159 0.0014
{25, 100, 3, 80} 0.0000 0.9753 0.0244 0.0003 0.0000 0.0000 0.9101 0.0841 0.0040 0.0019

{25, 100, 2, 10} 0.1689 0.2769 0.5397 0.0146 0.0000 0.0000 0.0000 0.9520 0.0472 0.0008
{25, 100, 3, 20} 0.0000 0.0000 0.9631 0.0289 0.0080 0.0000 0.0000 0.8731 0.1178 0.0091
{25, 100, 2, 40} 0.0000 0.0000 0.9043 0.0838 0.0120 0.0000 0.0000 0.8673 0.0981 0.0346
{25, 100, 3, 80} 0.0000 0.0000 0.9802 0.0192 0.0006 0.0000 0.0000 0.8802 0.1109 0.0089

{25, 200, 2, 10} 0.0000 0.9887 0.0112 0.0000 0.0000 0.0000 0.9933 0.0066 0.0000 0.0000
{25, 200, 3, 20} 0.0000 0.9329 0.0649 0.0013 0.0009 0.0000 0.9292 0.0643 0.0062 0.0002
{25, 200, 2, 40} 0.0000 0.9038 0.0791 0.0154 0.0018 0.0000 0.9085 0.0719 0.0168 0.0028
{25, 200, 3, 80} 0.0000 0.9427 0.0569 0.0004 0.0000 0.0000 0.9413 0.0547 0.0035 0.0005

{25, 200, 2, 10} 0.0000 0.5508 0.4492 0.0000 0.0000 0.0000 0.0000 0.9856 0.0144 0.0000
{25, 200, 3, 20} 0.0000 0.0000 0.9083 0.0875 0.0042 0.0000 0.0000 0.9397 0.0594 0.0009
{25, 200, 2, 40} 0.0000 0.0000 0.9194 0.0641 0.0165 0.0000 0.0000 0.8915 0.0949 0.0136
{25, 200, 3, 80} 0.0000 0.0000 0.9695 0.0287 0.0018 0.0000 0.0000 0.8985 0.0917 0.0098

Notes: R denotes the number of factors used for data generation, R̂ denotes the estimated number of factors. For each

cell in the table, a distinct parameter set was simulated, for each of which G = 50 distinct data sets were simulated.

Out of each of these data sets, J = 100 di�erent incomplete data sets were created, with 1% of the data missing from

each incomplete data set, Q denotes the number of bootstrap samples, T denotes the number of observations for each

of the P variables.
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Table 5: Estimated factor loadings for the exchange rate data, after rotation (84% HPDIs in parentheses).

�rst factor second factor
AUD/EUR 0.3281 ( 0.2683, 0.3909) 0.7093 ( 0.6324, 0.7829)
CAD/EUR 0.5085 ( 0.4371, 0.5770) 0.4188 ( 0.3366, 0.5051)
CHF/EUR 0.4734 ( 0.3959, 0.5542) 0.0336 (-0.0635, 0.1266)
CZK/EUR -0.1728 (-0.2553, -0.0855) 0.3305 ( 0.2315, 0.4326)
DKK/EUR 0.2086 ( 0.1217, 0.2995) 0.0392 (-0.0663, 0.1425)
GBP/EUR 0.3009 ( 0.2161, 0.3814) 0.2999 ( 0.1969, 0.3908)
HKD/EUR 0.9997 ( 0.9963, 1.0030) 0.0039 (-0.0020, 0.0100)
IDR/EUR 0.7922 ( 0.7468, 0.8353) 0.4019 ( 0.3507, 0.4545)
JPY/EUR 0.6690 ( 0.5977, 0.7330) -0.0077 (-0.0881, 0.0692)
KRW/EUR 0.4931 ( 0.4385, 0.5544) 0.6536 ( 0.5847, 0.7234)
MXN/EUR 0.1344 ( 0.0560, 0.2110) 0.5165 ( 0.4272, 0.6162)
MYR/EUR 0.7908 ( 0.7375, 0.8382) 0.2727 ( 0.2126, 0.3295)
NOK/EUR 0.1088 ( 0.0301, 0.1834) 0.5500 ( 0.4582, 0.6462)
NZD/EUR 0.3605 ( 0.2899, 0.4340) 0.5254 ( 0.4425, 0.6115)
PHP/EUR 0.8227 ( 0.7713, 0.8717) 0.1545 ( 0.0947, 0.2114)
PLN/EUR -0.3490 (-0.4231, -0.2783) 0.5294 ( 0.4429, 0.6185)
RON/EUR -0.0603 (-0.1485, 0.0324) -0.0819 (-0.1897, 0.0209)
RUB/EUR 0.2900 ( 0.2087, 0.3682) 0.4036 ( 0.3096, 0.4991)
SEK/EUR -0.0173 (-0.0954, 0.0715) 0.4256 ( 0.3324, 0.5309)
SGD/EUR 0.8412 ( 0.8119, 0.8675) 0.4968 ( 0.4642, 0.5295)
THB/EUR 0.7985 ( 0.7567, 0.8412) 0.4194 ( 0.3719, 0.4719)
USD/EUR 0.9999 ( 0.9974, 1.0027) 0.0000 (-0.0056, 0.0055)

24



Figures

α1

-0.5 0 0.5

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

α2

-0.5 0 0.5

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

α3

-0.5 0 0.5

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

α4

-0.5 0 0.5

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

β1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
β2

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
β3

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
β4

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

α1

-0.5 0 0.5

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

α2

-0.5 0 0.5

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

α3

-0.5 0 0.5

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

α4

-0.5 0 0.5

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

β1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
β2

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
β3

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
β4

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Figure 1: Distribution of row vectors of α and of β without (�rst and second row) and with post-processing (third
and fourth row).
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Figure 2: Distribution of row vector lengths (top) and column vector lengths (bottom) of β.
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Figure 3: Demeaned and standardized monthly log returns based on the �rst trading day in a month for 22
currencies against the Euro from February 1999 until September 2018.
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Figure 5: Estimated factors for the exchange rate data, after rotation. Blue denotes the U.S. dollar factor , and
red denotes the second factor. Shaded areas denote 84% HPD intervals.
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A Invariance of the posterior when considering the reparametriza-

tion in terms of A and B

The posterior distribution is also invariant under the reparametrization of α and β considered to

facilitate e�cient sampling, i.e.

A = α(α′α)−
1
2 , B = β(α′α)

1
2 ,

as vec(αD) and vec(βD) imply vec(AD) and vec(BD), i.e.,

(αD)((αD)′(αD))−
1
2 = α(α′α)−

1
2D = AD, (12)

and

(βD)((αD)′(αD))
1
2 = β(α′α)

1
2D = BD. (13)

This follows from the singular value decomposition of a real symmetric matrix as de�ned in Lütkepohl

(1996), since

(α′α) = S1ΛS ′1 and ((αD)′(αD)) = S2ΛS ′2,

where S1 and S2 are orthogonal matrices and Λ is the diagonal matrix of eigenvalues the matrix α′α

and D′α′αD as multiplying α with an orthogonal matrix D does not render the eigenvalues. Then

S2ΛS ′2 = D′α′αD = D′S1ΛS ′1D,

implying S2 = D′S1. Then from the de�nition of the square root matrix given e.g. in Abadir and

Magnus (2005), we have

(D′α′αD)−
1
2 = S2Λ−

1
2S ′2 = D′S1Λ−

1
2S ′1D = D′(α′α)−

1
2D.

Therefore, we obtain

αD((αD)′(αD))−
1
2 = αDD′(α′α)−

1
2D = α(α′α)−

1
2D = AD. (14)

The result from Equation (3) can be derived analogously but using the square root of the elements in

Λ in contrast to the inverse square root. Inserting AD and BD into the corresponding posterior dis-

tribution provided in Equation (7) reveals invariance under the orthogonal transformation described

in Equation (4).
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