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Abstract

In this paper we study Markov-perfect equilibria (MPE) of two-player multi-

mode differential games with controlled state dynamics, where one player controls

the transition between modes. Different types of MPE are characterized distin-

guishing between delay equilbria, inducing for some initial conditions mode switches

after a positive finite delay, and now or never equilbria, under which, depending on

the initial condition, a mode switch occurs immediately or never. These results are

applied to analyze the MPE of a game capturing the dynamic interaction between

two incumbent firms among which one has to decide when to extend its product

range by introducing a new product. The market appeal of the new product can

be (positively or negatively) influenced over time by the competing firms through

costly investments. It is shown that under a wide range of market introduction costs

a now or never equilibrium co-exists with a continuum of delay equilibria, with each

of them inducing a different time of product introduction.
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1 Introduction

The main agenda of this paper is to improve our understanding of strategic effects aris-

ing in dynamic economic and managerial settings characterized by potential structural

breaks, which induce jumps in the payoff functions of the economic actors, in the law

governing the dynamics of relevant state variables, or both. Areas of application where

such structural breaks, which we will refer to as mode changes, arise include environ-

mental economics dealing with potential catastrophic transitions (e.g. Haurie and Roche

(1994)), financial portfolio and real investment problems incorporating potential crashes

and macroeconomic regime shifts (e.g. Liu and Loewenstein (2013); Guo et al. (2005)) or

analyses of innovation dynamics capturing abrupt changes in the market structure due

to the adoption of new technologies or the introduction of new products by some market

participants (Chronopoulos and Lumbreras (2017); Dawid et al. (2015, 2017)). Whereas

all these different problems can be formulated as multi-mode models, crucial differences

arise with respect to the way mode transitions are triggered. In particular, the timing

and the type of mode transition might be deterministic or stochastic and might by purely

exogenous or directly respectively indirectly (through the state dynamics) controlled by

some economic agent(s).

In this paper we focus on multi-mode settings with deterministic, controlled mode

transitions and strategic interaction. In particular, we are interested in characterizing

Markov-perfect-equilibria (MPE) in multi-mode differential games with a finite number

of continuously evolving states, the dynamics of which are controlled by the actions of all

players, and a set of modes, where the time of the transition between the modes is deter-

mined by one of the players, for easier exposition we assume this is player 1. Problems

of this kind arise for example in dynamic competition models, like capital accumulation

games or dynamic models of reputation formation, where one of the competitors through

the introduction of new products or technologies to the market can change the demand

structure. Whereas the literature on MPE in timing games with stochastic un-controlled

state dynamics is large and well-established (see e.g. Hoppe and Lehmann-Grube (2005);

Huisman and Kort (2015); Steg (2018)), there is considerably less work dealing with sit-

uations with controlled mode transitions where the players can also influence the state

dynamics.1 Intuitively, characterizing MPE in such a setting generates intricate strategic

1Multi-mode games with controlled state dynamics, where however the mode transition is not directly

controlled by players but determined by state or time constraints have been analyzed in Reddy et al.
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effects. The Markovian strategy determining the time of the mode switch induces a split

of the state space in a given mode in regions with and without an immediate jump to

an alternative mode.2 In a setting where all players through their controls can influence

the state dynamics this implies that each player might influence the timing of the mode

switch and this has to be taken into account when determining the optimal strategies.

At the same time, player 1, when determining the optimal mode switching strategy, has

to take into account the state dynamics under the equilibrium strategies of all players.

Few contributions have addressed these issues. Closest to our paper is Long et al.

(2017), where in a differential game model with multiple regimes, the concept of piecewise-

closed loop Nash equilibria (PCNE) is introduced. They consider a two-player multi-

mode differential where both players can induce a change of the regime of the game and

study piecewise-closed loop Nash equilibria (PCNE). Under this equilibrium concept the

state at which a player carries out a mode switch is derived from the condition, that

it is optimal for the corresponding player to switch at that point, and the timing of

the mode-switches is determined as the point in time when the state variable under the

equilibrium controls arrives at that switching state. However, in their setting, it is as-

sumed that firms commit to their switching time in the sense, that they do not alter that

time even if the other firm would deviate from its equilibrium control path. Hence, the

considered equilibrium is not fully Markov perfect with respect to the timing decision.

Also in Dawid and Gezer (2021) a multi-mode differential game with controlled state

dynamics and mode switches is considered, but again the strategic interactions arising

under Markovian strategies are not fully captured. In particular, the authors consider a

strategy space where the players’ controls influencing the state dynamics are determined

by Markovian strategies, whereas the time of the regime switches is determined with full

commitment at time zero and hence can be seen as following an open-loop strategy. To

our best knowledge so far no characterizations of full MPE in a setting similar to that

considered in this paper are available in the literature.

To obtain first insights into the structure of MPE in multi-mode games with controlled

states and mode switches we restrict attention in this paper to a relative simple setting

with two players, two modes and a one-dimensional state space. We believe that main

(2015) and Gromov and Gromova (2017).
2Such a split is well known from the optimal stopping or the real-options literature, where typically

’continuation regions’ and ’stopping regions’ are distinguished.
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strategic effects occurring in such a setting and the types of equilibria arising can already

be seen in such a setup. We derive a set of sufficient conditions for a strategy profile to

be a MPE of the game and, based on these conditions, identify different possible types of

equilibria. There are delay equilibria, with the property that for some initial conditions

the mode switch occurs after some finite delay, and now or never equilibria, under which

the state space is partitioned in two areas with the property that for initial conditions

in one area the game stays in the first mode forever, whereas for initial conditions in the

other area player 1 already at t = 0 induces the switch to the second mode. Furthermore,

we show that among the delay equilibria only for a special class of MPE, labeled as

maximum delay equilibria, a standard smooth pasting condition holds for player 1. Such

equilibria always exist if the game has any delay equilibria, but generically in addition to

a maximum delay equilibrium there also exists a continuum of delay equilibria in which

the mode transition is triggered earlier compared to the maximum delay equilibrium.

For these equilibria no smooth pasting conditions holds at the mode switching threshold.

Intuitively, the mode switch by player 1 is triggered by the fact that, if the state would

cross the switching threshold while the game is in the initial mode, the action of player

2 would jump to an action with strong adversarial effects for player 1. Since under such

an equilibrium strategy profile the game never stays for a positive amount of time at a

state above the threshold in the first mode, any action of player 2 in this part of the

state space and the first mode can be supported in a MPE. These arguments show that

in the considered settings the fact that a strategy profile constitutes a Markov-perfect

equilibrium does not prevent the occurrence of what could be described as ’incredible

threats’ in the sense that a player’s strategy prescribes an action which would be sub-

optimal for the player to implement if forced to do so for a time interval with positive

measure.

We illustrate these findings by studying the optimal timing of new product introduction

for a producer (firm 1) facing on an established market a competitor (firm 2), which has

not developed a new product yet and therefore does not have the option of a new product

introduction. The new product introduction corresponds to a mode change and the

state variable of the considered differential game is the appeal of the new product with

consumers, which is influenced by the two firms through advertising (firm 1) and negative

campaigning (firm 2).3 Furthermore, the market introduction of the new product is

3Our modeling approach is embedded in a large literature using differential game models to study
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associated with lump-sum costs. We show that for a wide range of values of the market

introduction costs all three types of equilibria mentioned above co-exist, and therefore

for a substantial subset of initial values of the new product’s market appeal no clear

cut prediction about the time of market introduction of the new product is possible.

Furthermore, we determine a threshold such that for values of the market introduction

costs above this value only now or never equilibria exist. Overall, this analysis highlights

that multi-mode timing games of this kind almost generically give rise to multiplicity

of Markov-perfect-equilibria. A potential implication of this insight is that more refined

equilibrium concepts than MPE should be considered to analyze such games.

The remainder of the paper is organized as follows. In Section 2 we introduce the type

of multi-mode games we are considering and in Section 3 derive necessary conditions

for MPE in such a setting and also some additional results on equilibrium profiles. In

Section 4 we study the optimal timing of new product introduction, thereby illustrating

our general findings. A discussion of our results and conclusions are provided in Section

5. The Appendix contains all proofs and some additional analysis.

2 The Model

We consider a differential game between two players i = 1, 2, in which each player intends

to maximize an infinite horizon discounted payoff stream of the form

Ji =

∫ ∞
0

e−rtFi(x(t), u(t),m(t))dt− 1[i=1]e
−rτκ, (1)

where x ∈ R is a 1-dimensional state and m(t) ∈ {m1,m2} is the mode of the game.

The interval X = [xl, xu] is the state-space of the game. Here, 1 denotes the indicator

function and τ = inf{t ≥ 0|m(t) = m2} is the point in time in which the mode process

moves from m1 to m2. In case no transition to m2 occurs we set τ = ∞. At time

τ transition costs of κ ≥ 0 arise for player 1. The vector u = (u1, u2) denotes the

controls of both players with ui ∈ Ui ⊆ Rni . We assume that Fi(x, u,m) is continuous

and differentiable with respect to x and u for each m ∈ {m1,m2}. The state evolves

according to

ẋ = f(x, u,m(t)), x(0) = xini ∈ X (2)

where f(x, u,m) is Lipschitz continuous and differentiable with respect to x and u for

all m ∈ {m1,m2}. The mode process m(t) initially is in m(0) = m1 and is controlled

advertising under dynamic competition, see Jorgensen and Zaccour (2004) for a survey.
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by player 1. More precisely, player 1 can determine at which point in time the process

jumps from m1 to m2. Once m(t) = m2 no additional mode transitions are possible.

In what follows we restrict attention to time-homogeneous Markovian strategies. More

precisely, we consider strategy profiles ((Φ1(x,m),Ψ(x)),Φ2(x,m)) with Φi : R×{m1,m2} →

Rni and Ψ : R→ {0, 1} such that ui(t) = Φi(x(t),m(t)), i = 1, 2 for all t and the process

m(·) jumps from m1 to m2 at t if and only if m(τ) = m1 ∀τ < t and Ψ(x(t)) = 1. A

Markov Perfect Equilibrium of the game is a strategy profile such that each player solves

the dynamic optimization problem defined by (1) and (2) given that the other player

determines her control using her equilibrium strategy.

3 Markov Perfect Equilibria

In this section we derive necessary conditions to be satisfied by a Markov Perfect equi-

librium profile of the problem described in Section 2. The fact that one of the players

controls the transition from mode m1 to m2 implies that in addition to standard condi-

tions characterizing the value functions and optimal strategies in each of the two modes

the effect of the endogenous timing of the mode transition has to be taken into account.

Intuitively, this means that on the one hand the time of the mode transition has to be op-

timal for player 1, thereby fulfilling standard conditions for optimal stopping problems.

On the other hand, for a given mode switching strategy Ψ of player 1, the opponent

player 2 can also influence the dynamics of x and thereby the time of the mode switch,

by choosing her controls in mode m1. The interplay of these effects has to be taken into

account when characterizing a MPE profile. In what follows we focus on equilibria in

which the mode switching strategy Ψ is of threshold type, i.e. there exists a threshold

x̄ ∈ X such that Ψ(x) = 1 if and only if x ≥ x̄.4 We denote such a threshold strategy

by Ψx̄(x). The following set of sufficient conditions characterizes MPE of such threshold

type (the proof of this and all following propositions is given in Appendix A).

Proposition 1. Consider a multi-mode differential game described in Section 2. If

there exists a set of except at (x̄,m1) everywhere continuous and continuously differ-

entiable value functions Vi : R × {m1,m2} → R and a profile of Markovian strategies

((Φ1(x,m),Ψx̄(x)),Φ2(x,m)) such that the conditions below are satisfied, then this profile

4The fact that we assume that the mode switch happens for all states above the threshold is not

restrictive, since our equilibrium characterization also applies after transforming the state from x to −x.
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constitutes to a Markov Perfect Equilibrium of the game (i = 1, 2):

i)

Vi(x,m2) = 1
r

(
Fi(x, (Φ1(x,m2),Φ2(x,m2)),m2)+

+∂Vi(x,m2)
∂x f(x, (Φ1(x,m2),Φ2(x,m2)),m2)

)
x ∈ X,

ii)

Φi(x,m2) ∈ argmaxui∈Ui
(
Fi(x, (ui,Φj(x,m2)),m2)+

+∂Vi(x,m2)
∂x f(x, (ui,Φj(x,m2)),m2)

)
x ∈ X, j 6= i,

iii)

lim sup
t→∞

e−rtVi(x,m2) ≤ 0, i = 1, 2

iv)

Vi(x,m1) =


1
r

(
Fi(x, (Φ1(x,m1),Φ2(x,m1)),m1)+

+∂Vi(x,m1)
∂x f(x, (Φ1(x,m1),Φ2(x,m1)),m1)

)
x < x̄,

Vi(x,m2)− 1[i=1]κ x ≥ x̄,

v)

limx→x̄− V1(x,m1) = V1(x̄,m1)

limx→x̄− V2(x,m1) ≥ V2(x̄,m1),

where the inequality for player 2 has to hold as equality if there exists an ε > 0

such that f(x, (Φ1(x,m1),Φ2(x,m1)),m1) > 0 for all x ∈ (x̄− ε, x̄).

vi)

V1(x,m2)− κ < V1(x,m1), ∀x < x̄

vii)

r(V1(x,m2)− κ) > maxu1∈U1

[
F1(x, (u1,Φ2(x,m1)),m1)+

+∂V1(x,m2)
∂x f(x, (u1,Φ2(x,m1)),m1)

]
, ∀x > x̄

viii)

Φi(x,m1)


∈ argmaxui∈Ui

(
Fi(x, (ui,Φj(x,m1)),m1)+

+∂Vi(x,m1)
∂x f(x, (ui,Φj(x,m1)),m1)

)
x < x̄, j 6= i,

= Φ̃i(x) x ≥ x̄

for some functions Φ̃i : [x̄,∞)→ Rni , i = 1, 2.
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In order to interpret the conditions listed in the proposition, we first observe that

conditions (i) and (ii) are standard conditions for a MPE of the game in mode m2. Since

for any value of the state x above the threshold x̄ player 1 immediately switches to mode

m2 the value functions in mode m1 in this part of the state space coincide with that in

mode m2 net of the costs associated to the switch from m1 to m2. For values of x below x̄

the value function and the equilibrium strategies are characterized by standard Hamilton-

Jacobi-Bellman (HJB) equations (see (iv) and (viii))). The boundary condition for these

HJB equations are given by the value matching condition in (v) which guarantees that

the value function of player 1 is continuous at the threshold x̄, whereas the value function

of player 2 might exhibit a jump at the threshold x̄ at which player 1 switches to mode

m2. However, as we will illustrate below, a non-continuous value function for player 2

can arise only if the the state dynamics in equilibrium is such that the switch to mode m2

occurs either immediately or never, depending on the initial state, i.e. if the dynamics

in mode m1 leads the state away from the threshold x̄ (cf. condition (v)). If the switch

does not occur immediately, i.e. in an equilibrium where for some initial states τ > 0,

condition (vi) ensures that it is not optimal for player 1 to switch to mode m2 at any

x ∈ [xl, x̄) and (vii) guarantees that for any x > x̄ it is optimal for player 1 to switch

immediately to mode m2.

Finally, we like to point out that the characterization of MPEs provided in Proposition

1 does impose hardly any restrictions on the strategies φi(x,m1) for x > x̄. This implies

that in spite of the fact that we consider Markov perfect equilibria, which constitute

equilibria of every subgame defined by the current state and mode, the players might

use strategies which for x > x̄ in mode m1 induce actions that would not be optimal for

that player if implemented for a positive amount of time. This is still optimal because

for these states the game immediately switches to mode m2. We will discuss this issue

in more detail below and illustrate that this feature might give rise to a wide range of

co-existing equilibria.

For our further discussion it is helpful to distinguish different types of equilibria that

can arise in our setting. The main property to be considered is whether the state

dynamics under the equilibrium strategies (φ1(x), φ2(x)) for x < x̄ in the neighborhood

of x̄ points towards the threshold x̄ , i.e. whether f(x, (φ1(x,m1), φ2(x,m1)),m1) > 0

for x ∈ (x̄ − ε, x̄). If this condition holds, then for xini ∈ (x̄ − ε, x̄) the game switches

to m2 with some positive delay. We refer to such equilibria as delay equilibria. On the
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other hand, if f(x, (φ1(x,m1), φ2(x,m1)),m1) < 0 for all x ∈ (x̄ − ε, x̄) then the game

either switches immediately to mode m2, for x(0) ≥ x̄, or remains in mode m1 forever

(for x(0) < x̄). We denote such equilibria as now or never equilibria. Considering delay

equilibria, the fact that player 1 has incentives to delay the switch to mode m2 for any

x ∈ (x̄− ε, x̄) induces that the inequality

r(V1(x,m2)− κ) < F1(x, (Φ1(x,m1),Φ2(x,m1),m1)+

+∂V1(x,m2)
∂x f(x, (Φ1(x,m1),Φ2(x,m1),m1)

(3)

holds for x ∈ (x̄ − ε, x̄). It should be noted that in general (3) might hold as a strict

inequality even in the limit as x converges to x̄. In an equilibrium with this property

player 1 has strict incentives to delay the switch to mode m2 for any value of the state

x up to x̄ and the switch to m2 at x̄ is then triggered by a jump the action of player 2

would exhibit if the game would remain in mode m1. If player 2 does not trigger the

transition to mode m2 by such a jump of its action, player 1 delays the switch until a

value of x is reached where (3) holds as equality. We refer to such an equilibrium as a

maximum delay equilibrium. It follows directly from (3) and the HJB equation in mode

m1 that in such equilibria a standard smooth pasting condition for player 1 holds at

x = x̄.

Generally speaking, the actions of both players might exhibit jumps at the point in

time when the game switches from mode m1 to mode m2. This raises the question under

which conditions the controls of the players are continuous at the time of the switch.

Given that we consider deterministic models, where for a given strategy profile both

player can perfectly predict the time of the switch to mode m1, intuitively one could

think that in equilibrium controls are continuous as long as the marginal effects of the

controls on the players instantaneous profits and on the state dynamics is the same in

both modes.

More formally we say that a game has mode independent control effects if and only if

∂Fi(·,m1)

∂ui
=
∂Fi(·,m2)

∂ui
and

∂f(·,m1)

∂ui
=
∂f(·,m2)

∂ui
, i = 1, 2. (4)

As will become clear below, even in such games a mode change might induce a jump

in the control of some player. In that respect it is important to distinguish between

games, depending on whether jumps in the opponent’s control directly affect the (cur-

rent) incentives of the other player or not. In many types of games, including for example

different variants of investment games, such a direct effect on the incentives of the other

9



player does not exist. We say a game has separable control effects if

∂Fi(x, (ui, uj),m)

∂ui
and

∂f(x, (ui, uj),m)

∂ui

do not depend on uj for all x ∈ X and m ∈ {m1,m2}.

Even if we consider games that have both of these properties, in general equilibrium

profiles, as characterized by Proposition 1, might exhibit jumps in their feedback strate-

gies such that limx→x̄−Φi(x,m1) 6= Φi(x,m2). In case of now or never equilibria the

trajectories of the actions of both players are nevertheless continuous over time, since

no switch from m1 to m2 occurs for t > 0. However, in the case of delay equilibria, as

will be illustrated below, in general the actions of both player jump at the point in time

when the modes switches to m2. The only exception in this respect is the maximum

delay equilibrium, for which the following proposition shows that the action of player 1

is continuous over time although the mode changes at some positive t from m1 to m2.

Proposition 2. If ((Φ1(x,m),Ψx̄(x)),Φ2(x,m)) is a maximum delay equilibrium profile

of a game with mode independent and separable control effects such that in each mode

m the strategies Φi, i = 1, 2 are continuous with respect to the state x and the right hand

side of condition (ii) in Proposition 1 has a unique maximizer at x = x̄. Then,

lim
x→x̄−

Φ1(x,m1) = Φ1(x,m2).

The intuition for this result is straight forward. For the maximal delay equilibrium

the smooth pasting condition holds for player 1 at the threshold x̄. This ensures that

the slope with respect to the state of her value function is identical in modes m1 and m2

at this point. If the marginal effects of the own control on the instantaneous payoff and

the state dynamics is not affected directly by the change in mode and by the potential

change in the other player’s control due to the mode switch, then the optimization

problem which player 1 faces at state x̄ is equivalent, no matter whether the firm is in

mode m1 or in m2. Hence, its equilibrium feedback strategy is continuous at x̄.

Concerning the investment of player 2, who cannot directly control the switch from

mode m1 to m2, in general jumps in the control occur as the game moves from mode m1

to mode m2 in all types of delay equilibria. In equilibrium player 2 perfectly predicts

the time of the mode switch and also the value of its investment in mode m1 for her

future profits in mode m2. Therefore, at first sight the discontinuity of the investment of

player 2 might be surprising, in particular in the maximum delay equilibrium in which
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the control of player 1 is continuous. The jump in the action of player 2 results from the

fact that in mode m1 player 2 can influence the time of the switch to mode m2, since the

choice of her control affects the dynamics of the state and thereby the time the state hits

the threshold x̄ determined by the equilibrium strategy of player 1. This effect, which

influences the optimal choice of the control of player 2, immediately disappears, at the

point in time when the mode changes to m2. Hence, the equilibrium strategy of player

2 in general exhibits a jump at the state x̄ even in games with mode independent and

separable control effects.

In delay equilibria which are different from the maximal delay equilibrium, in general

the controls of both players jump at the point in time when the game moves from m1 to

m2. In such an equilibrium player 1 has strict incentives to delay the jump to mode m2

for all values of the state below the threshold x̄, and, differently to the maximal delay

equilibrium, this incentive to delay does not converge to zero as x approaches x̄. The

reason for player 1 to switch to mode m2 at x̄ is that player 2 threatens to discontinuously

change its action at x̄ if the game would stay in mode m1. Hence, for a given strategy

of player 2, the threshold x̄ at which player 1 switches to mode m2 is de-facto given

and, in order to influence the duration of the game in mode m1, player 1 has to adjust

its investment. Similarly to what we described for player 2 above, this effect disappears

as soon as the mode is m2 and hence also the action of player 1 in general exhibits a

jump at the mode switch. More formally, in the absence of a smooth pasting condition

the value function of player 1 exhibits a kink at x̄, and therefore the marginal return of

investment for player 1 jumps as the game switches from mode m1 to m2 at x̄. In the

following section we will illustrate these scenarios using a simple example analyzing the

optimal timing of new product introduction in a duopoly.

4 An Illustrative Example: Optimal Timing of New Prod-

uct Introduction

To illustrate our general findings we now consider the timing problem of a firm, denoted

as firm 1, which has to decide when to introduce a new product, that it has developed.

We assume that the firm is already active producing an established product and competes

with a second firm (firm 2) on the market for the established product. Only firm 1 has

developed the new product and therefore has the option to introduce that product at
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any point in time t ≥ 0.

Before the new product is introduced (modem1) the inverse demand for the established

product is given by

po = αo − (q1o + q2o),

where po denotes the price of established product and qio the quantity of that product

supplied by firm i, i = 1, 2. After the introduction of the new product (mode m2) the

inverse demand changes to

po(q1o + q2o, q1n) = αo − (q1o + q2o)− ηq1n

pn(q1o + q2o, q1n) = α0
n + αn − η(q1o + q2o)− q1n.

Here α0
n is a minimal value for the reservation price of the new product, whereas αn ≥ 0

is a state variable capturing the effects of the efforts of the two competitors to influence

the demand for the new product. More precisely, we assume that

α̇n = f(αn, (u1, u2,m) := u1 − γu2 − δαn, m ∈ {m1,m2}, (5)

where ui denotes the effort of firm i, γ > 0 is a parameter, and δ is the rate by which

the effect of firms’ effort on demand vanishes. We assume that both controls ui are

non-negative, which means that firm 1, as the (potential) innovator, tries to increase

the demand of the new product, whereas the competitor firm 2 might invest in reducing

this demand, e.g. by providing information to consumers about negative features of the

new product or by negative campaigning. The costs of effort of both firms are given by

ξi(ui) = ci
2 u

2
i with ci > 0. Production costs for the established product are assumed

to be symmetric across firms and given by νo
2 q

2
io, i = 1, 2 and analogously for the new

product firm 1 has production costs νn
2 q

2
1n.

Firms maximize profits by choosing the production quantities as well as the effort ui

at every point in time t. In addition firm 1 decides about the time at which the new

product is introduced. The introduction of the new product is associated with lump-sum

costs of κ > 0.

Since the quantity choice in this setting does not have any intertemporal effects, firms

at t choose quantities according to the Cournot equilibrium, which depends on the value

of αn(t) for all t after the introduction of the new product. Standard calculations show

that before the introduction of the new product we have

qm1
io =

αo
3 + νo

i = 1, 2,

12



and the market profit of each firm is given by
(
1 + νo

2

)
(qm1
io )2. Hence, we obtain for the

instantaneous profit in mode m1

Fi(αn, ui,m1) =
(

1 +
νo
2

)
(qm1
io )2 − ξi(ui) i = 1, 2. (6)

In order to guarantee that after the introduction of the new product also a positive

amount of this good is produced in equilibrium regardless of the value of αn, we assume

that α0
n >

3ηαo

3+νo
. Furthermore, we restrict to attention scenarios where in equilibrium

both firms also sell a positive quantity of the established product. This is true as long

as αn < αUBn := (2+νn)(1+νo)+η2

η(3+2νo) αo − α0
n.5 For values of αn ∈ [0, αUBn ] we obtain as the

equilibrium quantities in mode m2:

qm2
1o (αn) = αo((1+νo)(2+νn)+η2)−η(α0

n+αn)(3+2νo)
(1−η2)(6+5νo)+3(νo+νn)+(2+νn)ν2o+4νoνn

qm2
2o (αn) = αo((1+νo)(2+νn)−2η2)−η(α0

n+αn)νo
(1−η2)(6+5νo)+3(νo+νn)+(2+νn)ν2o+4νoνn

qm2
1n (αn) = (1+νo)((α0

n+αn)(3+νo)−3αoη)
(1−η2)(6+5νo)+3(νo+νn)+(2+νn)ν2o+4νoνn

(7)

The corresponding instantaneous profit in mode m2 is

F1(αn, u1,m2) =

(
1 +

ν2
o

2

)
(qm2

1o (αn))2 +

(
1 +

ν2
n

2

)
(qm2

1n (αn))2 + 2ηqm2
1o (αn)qm2

1n (αn)− ξ1(u1)

F2(αn, u2,m2) =

(
1 +

ν2
o

2

)
(qm2

2o (αn))2 − ξ2(u2) (8)

Overall, the dynamic strategic interaction between the two firms constitutes a two-

mode differential game of the form considered in Section 2 with the single state αn

evolving according to (5) and the instantaneous profits in mode m1 given by (6) and

those in mode m2 given by (8). Both firms decide on their effort ui and additionally firm

1 determines the timing of the switch from m1 to m2. In accordance with Section 3 we

consider profiles of Markovian strategies of the form ((Φ1(αn,m),Ψᾱn(αn)),Φ2(αn,m))

and in what follows characterize Markov Perfect Equilibria of this game.

4.1 MPE in mode m2

In order to characterize the different types of equilibria in our game we first consider

the final mode m2. Since the instantaneous profits given in (8) are quadratic functions

of state and controls and the state dynamics (5) is linear, the game in mode m2 is of

5This condition is obtained by considering the condition po(q∗2o, q
∗
1n) > ηq∗1n and inserting the optimal

quantities q∗2o, q
∗
1n under the assumption that q1o = 0.

13
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Figure 1: Value functions in mode m2.

linear quadratic structure. Following a wide range of literature about such games (see

e.g. Dockner et al. (2000)) we assume that the game has a MPE with linear feedback

strategies6, giving rise to quadratic value functions of both players. The value and

feedback functions can then be determined by a guess and verify approach using the first

order conditions and Hamilton-Jacobi-Bellman equations, see Appendix B for details.

Figure 1 shows the value functions of both players in the MPE for our benchmark

parameter setting.7 The green arrows indicate the direction of the state dynamics under

the equilibrium feedback strategies. There is a unique stable steady state α∗,m2
n and it

is easy to verify that α∗,m2
n < αUBn under our parameter setting such that both firms sell

positive quantities of the old product in the steady state. Figure 1 clearly shows that,

as expected, the value of firm 1 increases with αn, whereas firm 2 is hurt by an increase

of the attractiveness of the new product.

4.2 Different types of MPEs in mode m1

In order to characterize MPE strategies in mode m1, we first determine the value func-

tions of both players under the extreme scenarios in which the new product, regardless

6It should be noted that the game might as well have additional MPEs with non-linear feedback

strategies.
7Since the purpose of the analysis of this model is to illustrate our theoretical findings we abstain

from carrying out a systematic calibration exercise for our model. The parameters have been chosen in a

way that they give rise to the different types of equilibria discussed in the previous Section. The values

are η = 0.5, c1 = c2 = 45, r = 0.04, γ = 0.5, αo = 1, α0
n = 0.5, δ = 0.1, νo = 0.4, νn = 0.2.
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of the initial condition, is either immediately or never introduced. We denote the value

function of firm i in the former case of immediate introduction by V 0
i (αn,m1). Clearly

we have

V 0
i (αn,m1) = Vi(αn,m2)− 1I [i=1]κ,

where 1I denotes the indicator function. If the new product is never introduced, positive

investment is never optimal for either firm, i.e. ui(t) = 0, i = 1, 2, t ≥ 0, and hence the

value functions read

V∞i (αn,m1) =
(

1 +
νo
2

) (qm1
io )2

r
, i = 1, 2.

Note that V∞i is constant with respect to αn because the attractiveness of the new

product is irrelevant if this product is never introduced. Given that V 0
1 (αn,m1) increases

with αn, it follows that V 0
1 (0,m1) > V∞1 (0,m1) implies V 0

1 (αn,m1) > V∞1 (αn,m1) ∀α ∈

[0, αUBn ] and it is optimal for firm 1 to introduce the new product at some finite point in

time t. If this inequality is violated, then in general it might depend on the initial value

αn(0) whether the new product is introduced. In order to gain a better understanding of

the potential structure of equilibria under which the new product introduction depends

on the initial state, we first characterize the properties of equilibrium state dynamics on

(0, ᾱn).

The following proposition shows that under an MPE profile the state αn is either

monotonously increasing or decreasing on the entire interval below the threshold value

at which firm 1 introduces the new product (i.e. for α ∈ (0, ᾱn)).

Proposition 3. If ((Φ1(αn,m),Ψᾱn(αn)),Φ2(αn,m)) is a MPE profile of the game,

then it holds for all α1
n, α

2
n ∈ (0, ᾱn) that

sgn
[
f(α1

n, (Φ1(α1
n,m1),Φ2(α1

n,m1)))
]

= sgn
[
f(α2

n, (Φ1(α2
n,m1),Φ2(α2

n,m1)))
]
.

The observation that in equilibrium the state αn is either strictly increasing or strictly

decreasing on the entire interval (0, ᾱn) has several important implications. If in a given

equilibrium the new product is introduced after a positive and finite delay for some

initial value αn(0), then under this equilibrium profile the product is introduced after

finite time regardless of the initial state αn(0). Conversely, if in a given equilibrium

the product is never introduced for some initial value of the new market size, then

under this equilibrium a positive finite delay in product introduction can never occur,

regardless of αn(0). Relating to the different types of equilibria introduced in Section 3,

15



the Proposition shows that the properties ’delay equilibrium’ respectively ’now or never

equilibrium’, which were defined locally around the threshold ᾱn, are actually global

properties in the sense that in any delay equilibrium the switch to m2 occurs after a

positive finite delay for all αn ∈ [0, ᾱn), whereas in any now or never equilibrium the

switch never occurs for any initial value of the state below the threshold.

In what follows we illustrate our general results from Section 3 by showing that,

depending on the size of the new product introduction costs κ, qualitatively different

types of MPE constellations exist in in our model.

4.2.1 Small costs of market introduction

If κ is sufficiently small, i.e. κ < κ := V1(0,m2) − V∞1 (0,m1) then it follows directly

that immediate introduction is more profitable for Firm 1 than no introduction regard-

less of the value of αn.8 Hence, in equilibrium the new product is always introduced.

Concentrating first on a maximum delay equilibrium, we need to characterize the thresh-

old value of ᾱn, above which the product is introduced. Denoting the threshold in the

maximum delay equilibrium by ᾱmdn , we obtain that the following condition have to be

satisfied for some positive value of um1
2 (see Appendix C):

r
(
V1(ᾱmdn ,m2)− κ

)
= F1(ᾱmdn ,Φ1(ᾱmdn ,m2),m1) +

∂V1(ᾱmdn ,m2)

∂αn
f(ᾱmdn ,Φ1(ᾱmdn ,m2), um1

2 ),

rV2(ᾱmdn ,m2) = F2(ᾱmdn , um1
2 ,m1)− c2u

m1
2

γ
f(ᾱmdn ,Φ1(ᾱmdn ,m2), um1

2 ) (9)

Whereas the first equation captures the smooth pasting condition, the second is the

HJB equation of firm 2 at αmdn . To obtain these equations we have used the fact that

the equilibrium value function of firm 2 has to coincide between the two modes for all

αn ≥ ᾱn (see Proposition 1) and that the control of firm 1 is identical in both modes for

αn = ᾱmdn since all conditions of Proposition 2 are satisfied in our model.

For our benchmark parametrization together with market introduction costs of κ =

0.095 the system (9) has a unique positive solution given by ᾱmdn = 0.036 and um1
2 =

0.0047. The corresponding maximum delay equilibrium is illustrated in Figures 2 and

3(a). The solid lines in the two panels of Figure 2 show the value functions of the

two firms in mode m1 under such an equilibrium. More precisely, these functions have

been determined as the solutions of the HJB equations for mode m1 on [0, ᾱmdn ] under

8For our benchmark parameter constellation, we have V1(0,m2) = 2.7 and V∞1 (0,m1) = 2.6 such

that for all values κ < 0.1 this condition is fulfilled.
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Figure 2: Value functions of firm 1 (left panel) and firm 2 (right panel) under the

maximum delay equilibrium (solid line), a delay equilibrium with ᾱn = ᾱdn = 0.01

(coarsely dashed line) and immediate introduction of the new product (dashed line).

The dotted line indicates the value function if the new product is never introduced

(κ = 0.095).

the boundary conditions that Vi(ᾱ
md
n ,m1) = Vi(ᾱ

md
n ,m2) − 1I [i=1]κ, i = 1, 2. It can be

easily checked that these value functions in combination with feedback functions derived

from the maximization of the right hand side of the HJB equation on [0, ᾱmdn ] satisfy all

conditions of Proposition 1 for any profile (Φ1,Φ2) satisfying Φ2(αn,m1) ≥ Φ2(ᾱmdn ,m1)

for all αn ≥ ᾱmdn (in order to ensure condition (vii) of Proposition 1). The equilibrium

investment functions under the maximum delay equilibrium are shown in Figure 3(a). It

can be clearly seen that the investment of firm 1 in mode m1 (solid black line) intersects

with the equilibrium investment in mode m2 (black dashed line) exactly at the threshold

ᾱmdn above which firm 1 immediately introduces the new product. We do not show any

values for the function Φ1(αn,m1) for αn ≥ ᾱmdn since any choice of the function on this

interval is compatible with equilibrium. The figure also illustrates the downward jump

of the investment of firm 2 at the threshold αn = ᾱmdn where the mode switches from

m1 to m2. In mode m1, there is an additional incentive for player 2 to invest. Such

investment decreases the speed of the increase of αn and delays the point in time when

the state variable arrives at ᾱmdn and the new product is introduced. Firm 2 has an

incentive to delay the new product introduction, which provides additional investment

incentives. Once the new product is introduced, this additional incentive vanishes which
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Figure 3: Investment strategies of firm 1 (black) and firm 2 (red) in the maximum delay

equilibrium and the a delay equilibrium with ᾱn = ᾱdn = 0.01 (κ = 0.095). Strategies in

mode m1 are indicated by solid lines, those in mode m2 by dashed lines.

results in a downward jump in player 2’s investment.

However, the maximum dealy equilibrium is not the only MPE in our setting. Actually,

for any threshold ᾱdn ∈ [0, ᾱmdn ] there is an MPE such that firm 1 introduces the new

product immediately for all αn ≥ ᾱdn. In Figure 2 the value functions corresponding to

such an equilibrium with ᾱdn = 0.01 are illustrated with coarsely dashed lines. It can be

clearly seen that both value functions have a kink at αn = ᾱdn such that also for firm 1

the smooth pasting condition does not hold at this threshold where the firm introduces

the new product. The equilibrium feedback function corresponding to this MPE are

shown in Figure 3(b).The figure illustrates that the investments of both firms jump at

the point in time when the new product is introduced, where the jump is upwards for

firm 1 and downwards for firm 2. Whereas the intuition for the downward jump of

firm 2 is analogous to that developed for the maximum delay equilibrium, the upward

jump for firm 1 is due to the fact that after the introduction of the new product an

increase of αn has a positive impact on the instantaneous profit of firm 1, whereas in

mode m1 such an increase only has impact on the remaining time till the new product

is introduced. If the new product is introduced at a level of αn where the value function

in mode m2 is still strictly steeper than that in mode m1 the investment incentives

jump upwards at the point of market introduction. A crucial feature of this equilibrium

profile is that Φ2(αn,m1) for αn ≥ ᾱdn is sufficiently large such that it is optimal for firm
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Figure 4: Value functions of firm 1 (left panel) and firm 2 (right panel) under the

maximum delay equilibrium (solid line), the equilibrium with minimal delay (coarsely

dashed line) and immediate introduction of the new product (dashed line). The dotted

line indicates the value function if the new product is never introduced (κ = 0.1025).

1 to introduce the new product immediately at ᾱdn. In our example this is guaranteed

by setting Φ2(ᾱdn,m1) > 1
γΦ1(ᾱdn,m1), which implies that under optimal investment by

firm 1 the state variable αn does not move above ᾱdn. As discussed in Section 3, although

such high investments by firm 2 would not be optimal, if it were to be carried out for

a time interval with positive measure, in equilibrium the firm is never required to carry

out such investment, regardless of the value of αn(0).

4.2.2 Intermediate costs of market introduction

We now consider the case where κ > κ, which implies that for αn(0) = 0 immediate

introduction of the new product yields a lower value for firm 1 than never introducing

the new product and abstaining from any investment into the build-up of αn. Although

immediate introduction of the new product is not optimal, an introduction with some

delay might still be more profitable than no introduction. Taking into account that the

largest value for firm 1 is obtained under the maximum delay equilibrium, V md
1 (0,m1) >

V∞1 (0,m1) is a necessary and sufficient condition for the existence of delay equilibria in

our setting. It should be noted that V md
1 (0,m1) is a decreasing function of κ such that

this condition implies an upper bound κ̄ for the costs of market introduction such that

for all κ ≤ κ̄ there exists an equilibrium such that for all αn(0) ≥ 0 the new product is
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introduced to the market after finite time. For this subsection we assume that κ ∈ [κ, κ̄],

i.e. the market introduction costs are in an intermediate range such that for αn(0) = 0

immediate introduction is not optimal but there exists an equilibrium which induces new

product introduction with some delay for this initial value.

In Figure 4 this case is illustrated by showing the value functions for immediate mar-

ket introduction (dashed lines), the maximum delay equilibrium (solid line) and no

market introduction (dotted line). We denote by ᾱnnn the largest value of αn such that

V∞1 (αn,m1) ≥ V1(αn,m2) − κ. Clearly, for all values of αn < ᾱnnn immediate market

introduction is not optimal, therefore the range of threshold values ᾱdn for which delay

equilibria can exist is restricted to ᾱdn ∈ [ᾱnnn , ᾱmdn ]. However, for a delay equilibrium

to exist, the associated value function must also satisfy V d
1 (0,m1; ᾱdn) ≥ V∞1 (0,m1),

where we denote by V d
1 (0,m1; ᾱdn) the value function of firm 1 under a (candidate for

a) delay equilibrium with threshold ᾱdn. If this inequality does not hold condition (ii)

in Proposition 1 would be violated at αn = 0. This can be seen by realizing that by

choosing ui = 0 for αn = 0 we have α̇ = 0 and the value of the right hand side of the

HJB equation becomes(
1 +

νo
2

)
(qm1
io )2 = rV∞1 (0,m1) > rV d

1 (0,m1; ᾱdn).

Since under the equilibrium feedback functions in the delay equilibrium the right hand

side of the HJB equation has to be equal to rV d
1 (0,m1; ᾱdn) (see condition (i) in Propo-

sition 1) the feedback function Φd(αn,m1; ᾱdn) in that equilibrium candidate does not

maximize the right hand side of the HJB equation. This shows that no delay equilibrium

with V d
1 (0,m1; ᾱdn) < V∞1 (0,m1) can exist with the property that the new product is

introduced after a positive delay for αn(0) = 0. Furthermore, we know from Propo-

sition 3 that in any equilibrium the sign of the state dynamics cannot change on the

interval [0, ᾱn]. This rules out any equilibrium profile under which the new product is

never introduced (and hence αn decreases over time) for a small value of αn(0), but is

introduced after a delay for larger values of αn(0). Put together these arguments es-

tablish that for any threshold ᾱdn with V d
1 (0,m1; ᾱdn) < V∞1 (0,m1) no delay equilibrium

can exist. However, there exists a continuum of delay equilibria where at the market

introduction threshold this inequality is violated. In particular, there exists a unique

αdn ∈ (ᾱnnn , ᾱmdn ] such that V d
1 (0,m1; ᾱdn) ≥ V∞1 (0,m1) for all ᾱdn ∈ [αdn, ᾱ

md
n ]. To see this

note that since the smooth pasting condition is satisfied at ᾱmdn ] for all α < ᾱmdn ] a later
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Figure 5: Equilibrium investment strategies under the MPE with ’now or never’ product

introduction (κ = 0.1025). The strategies of player 2 are depicted in red.

switch to m2 increases the value for Firm 1. Hence, V d
1 (0,m1; ᾱdn) is an increasing and

continuous function of ᾱdn. Furthermore, in light of the definition of ᾱnnn we have

V d
1 (0,m1; ᾱnnn ) < V d

1 (ᾱnnn ,m1; ᾱnnn ) = V1(ᾱnnn ,m2)− κ = V∞1 (ᾱnnn ,m1)

Since without market introduction of the new product the value of firm 1 does not

depend on αn, we have V∞1 (0,m1) = V∞1 (ᾱnnn ,m1) > V d
1 (0,m1; ᾱnnn ). Since κ < κ̄ we

also have V∞1 (0,m1) < V d
1 (0,m1; ᾱmdn ) and the intermediate value theorem implies the

existence of αdn with V d
1 (0,m1;αdnα

d
n) = V∞1 (0,m1). In the two panels of Figure 4 we

illustrate this observation by showing, as coarsely dashed lines, the value functions of

the two firms under the delay equilibrium with threshold ᾱdn = αdn. For any threshold

value ᾱdn in the interval [αdn, ᾱ
md
n ] a delay equilibrium profile can be constructed in the

same way as discussed in the previous subsection.

However, in the case of intermediate values of market introduction costs considered

here, there also exists a now or never equilibrium, as discussed in Section 3. Similarly

to the delay equilibria, also this equilibrium is characterized by a threat of a strong

investment of player 2 in m1 as soon as the state variable αn is larger or equal than ᾱnnn .

Hence, firm 1 introduces the product immediately if αn ≥ ᾱnnn . As discussed above,

under a potential delay equilibrium in which firm 1 invests positive amounts we would

have

V d
1 (αn,m1; ᾱnnn ) < V d

1 (ᾱnnn ,m1; ᾱnnn ) = V∞1 (ᾱnnn ,m1) = V∞1 (αn,m1)

for all αn < ᾱnnn and therefore setting Φ1(αn,m1) = 0 is the optimal strategy for firm 1 on
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Figure 6: Dynamic of the attractiveness of the new product (a) and the investments of

both firms (b) for αn(0) = ᾱnnn = 0.004 under the maximum delay equilibrium (solid

line), the equilibrium with minimal delay (ᾱdn = 0.015, dashed line) and the now or never

equilibrium (dotted line) for κ = 0.1025.

this interval. Hence, in equilibrium we also must have Φ2(αn,m1) = 0 for all αn < ᾱnnn .

We obtain a MPE profile under which for all αn(0) < ᾱnnn both firms invest nothing and

the new product is never introduced, whereas for αn(0) ≥ ᾱnnn the product is introduced

at t = 0 and both firms afterwards invest according to the MPE strategies in mode m2.

The equilibrium feedback functions underlying this equilibrium are illustrated in Figure

5, where, as in Figure 3, we do not show any values of Φ1(αn,m1) for αn ≥ ᾱnnn since

any choice is compatible with an equilibrium profile.

Figure 6 illustrates the dynamics emerging under the different types of equilibria that

co-exist for an intermediate level of the market introduction costs. In particular, the

trajectories of the market attractiveness (αn) and of the investments of both firms (u1, u2)

is depicted for a small initial value of the market attractiveness. The dotted lines,

corresponding to the now or never equilibrium shows that in such an equilibrium, due

to absence of any investments the attractiveness of the new product decreases towards

zero and the product is never introduced. The dashed and the solid lines correspond

to the dynamics under the delay equilibrium with the minimal possible threshold, i.e.

ᾱdn = αdn, and the maximum delay equilibrium. The points in time at which the new

product is introduced under the delay and the maximum delay equilibrium are denoted

by τd and τmd, where τd < τmd. The figure illustrates that under both equilibria the
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state αn increases over time. In the time interval [0, τd] the increase is slower under the

delay equilibrium than under the maximum delay equilibrium, because the investments

of firm 2, which decrease the speed of growth of αn, are larger under the delay than

under the maximum delay equilibrium. The investments of firm 1, fostering the growth

of αn, are virtually identical under both equilibria. Intuitively, firm 2 invests more under

the delay equilibrium, because the downward jump of its instantaneous profit associated

with the switch to mode m2 is much closer time-wise in the delay equilibrium than

in the maximum delay equilibrium and therefore less heavily discounted. Hence, the

incentive to invest in delaying the switch is stronger in the delay equilibrium. For firm

1, no such effect occurs and the incentive to invest during mode m1 is hardly affected by

the type of the delay equilibrium. Under the delay equilibrium, both controls exhibit a

jump at τd with the investment of firm 1 jumping upwards and those of firm 2 jumping

downwards. As a result, αn grows faster after τd compared to the time before the new

product introduction and we observe a higher attractiveness of the new market under

the delay equilibrium than under the maximum delay equilibrium. It should however be

noticed that under both equilibria the state αn converges to the steady state in mode m2

(α∗,m2
n ) and therefore this difference between the two equilibria disappears in the long

run. Finally, Figure 6(b) illustrates again that in the maximum delay equilibrium the

investment of firm 1 is continuous throughout the entire trajectory, i.e. also at period

τmd at which the mode switches from m1 to m2.

4.2.3 Large costs of market introduction

If market introduction costs are large, i.e. κ > κ̄ then we have V md
1 (0,m1) < V∞1 (0,m1),

which means that any candidate for a delay equilibrium yields a smaller value for firm

1 at αn(0) = 0 than not investing in the build-up of αn and never introducing the new

product. We illustrate the value functions of both firms for this case in Figure 7. Due

to V md
1 (0,m1) < V∞1 (0,m1) there can be no equilibria where for the initial condition

αn(0) = 0 firm 1 invests in the build-up of αn and eventually introduces the new product.

Using the same arguments as developed in the previous subsection, this rules out the

existence of any MPE under which the product is introduced with delay for some initial

value αn(0). Hence, the only equilibrium that still exists in this scenario is the now or

never equilibrium. The value functions of both firms corresponding to this equilibrium

are indicated in bold in Figure 7. It should be noted that under this equilibrium value
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Figure 7: Value functions of firm 1 (left panel) and firm 2 (right panel) under the

candidate for a maximum delay equilibrium (solid line), the immediate introduction of

the new product (dashed line) and if the new product is never introduced. The value

functions under the now or never equilibrium are indicated in bold (κ = 0.11).

of the game for firm 2 exhibits a downward jump as the initial state αn(0) crosses the

threshold ᾱnnn (see panel (b)).

5 Discussion and Conclusions

Our analysis of a simple model of dynamic competition under potential new product

introduction illustrates the properties of all three types of equilibria identified in Section

3 and also shows that delay equilibria, maximum delay equilibra and now or never

equilibria, might co-exist for some parameter constellations. More precisely, we have

demonstrated that the following three scenarios arise:

(i) κ ≤ κ: There exists a maximum delay equilibrium with product introduction at

α = αmdn and a continuous investment path of player 1 across both modes of the

game. Furthermore, for any α̃n ∈ [0, αmdn ) there exists a MPE with new product

introduction at α̃n. In each of these equilibria the investments of both players

jump as the mode switches from m1 to m2.

(ii) κ < κ ≤ κ̄: There exists a maximum delay equilibrium plus for each ᾱdn ∈ [αdn, ᾱ
md
n )

there is also a delay equilibrium. Furthermore, a now or never MPE exists.
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(iii) κ > κ̄: Whereas strategy profiles inducing market introduction with delay for

some initial value of αn do not constitute a MPE, the now or never equilibrium

still exists.

In scenario (iii) for each initial condition a unique prediction about the occurrence and

timing of the new product introduction can be made if we restrict attention to the MPE

analyzed here. This is not true in the first two cases. In case (ii) there is a set of initial

conditions αn(0) ∈ [0, ᾱnnn ] such that MPEs under which the new product is eventually

introduced co-exist with the now or never equilibrium under which no introduction of the

new product occurs. For αn(0) > ᾱnnn the new product is introduced under all existing

equilibria although the time of the introduction varies across equilibria. Similarly, under

scenario (i) the product is eventually introduced for all initial conditions, where the time

of the introduction depends on the chosen equilibrium.

Whereas, all equilibria considered here are Markov perfect, intuitively the delay equi-

libria seem less plausible compared to the maximum delay and the now or never equi-

librium. As discussed above, the equilibrium profiles underlying these equilibria include

strategies for firm 2, under which in mode m1 for αn ≥ ᾱdn investments are chosen which

would not be optimal if the game would stay in mode m1 for an amount of time with

positive measure even after the state αn has crossed the threshold ᾱdn. Since in equi-

librium the state is never larger or equal than αdn in mode m1 for a positive amount of

time, this feature does not contradict the optimality of the strategy of firm 2. However,

it nevertheless constitutes an ’incredible threat’ in the sense that it would not be optimal

for firm 2 to stick to this investment strategy in case firm 1 would deviate from its own

equilibrium strategy by increasing the threshold at which it switches to mode m2.

A main insight of our analysis is that a strategy profile might be Markov perfect even

though the strategy of some players induces actions in some parts of the state space

which would not be optimal for the player if carried out for a positive amount of time.

Although this phenomenon has been demonstrated in this paper only for multi-mode

games, it seems that it might arise also in other classes of differential games. For exam-

ple, in games in which the state dynamics is controlled by potentially singular controls

of both players MPEs might exist in which the strategy of one player in a certain region

of the state space make it optimal for some other player to induce a jump of the state

out of that region by means of a singular control. Similar to our setup, Markov perfec-

tion does not put any restrictions on the regular control of that player in the region in
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which the other player chooses a singular control.9 Intuitively, under such a MPE profile

the state always immediately jumps out of that singular control region such that the

amount of time for which the actions induced by the players’ strategies in that region

are actually implemented has measure zero. Hence, also in the framework of such dif-

ferential games incredible threats, in the sense that actions are chosen which would be

suboptimal if implemented for a positive amount of time, can occur as part of Markov

perfect equilibrium profiles. An interesting question for future research might be to ex-

plore whether such Markov perfect equilibria with ’incredible threats’ in multi-mode or

singular control games can be eliminated by appropriate equilibrium refinements. Devel-

oping such a refinement would also provide a valuable theoretical basis for alleviating the

problem of non-uniqueness of predictions about equilibrium timing of regime switches

in applications like the dynamic innovation model considered in this paper.
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Appendix A: Proofs

Proof of Proposition 1

In order to prove that the considered profile is an equilibrium, we first observe that

conditions (i) to (iii) are standard conditions implying that the profile in mode m2 is a

Markov Perfect Equilibrium of the infinite horizon game in this mode (see Theorem 4.4

in Dockner et al. (2000)).

Consider now the optimization problem of player 2 in mode m1 for a given strategy

Φ1(x,m1),Ψx̄(x) of player 1. Given that player 1 switches to mode m2 instantaneously

for x > x̄ the choice of Φ2(x,m1) for all x > x̄ does not affect the objective function of

firm 2. Hence any choice for Φ̃2(x) is optimal.

We now turn to the problem of player 2 for an arbitrary initial state xini ∈ [xl, x̄).

Define an auxiliary value function V̂2(x) on [xl, x̄] as follows

V̂2(x) =

 V2(x,m1) x ∈ [xl, x̂),

limx→x̄− V2(x,m1) x = x̄.

By definition this auxiliary value function is continuous and differentiable on [xl, x̄]

and due to (iv) satisfies the Hamilton Jacobi Bellman equation for the optimal control

problem of player 2 on that interval. Standard results show that this is therefore the

value function of the auxiliary control problem of player 2, in which player 2 receives the

payoff limx→x̄− V2(x,m1) once the state hits x̄. Furthermore, because of condition (viii),

Φ2(x,m1) is the optimal feedback function for player 2 with respect to this auxiliary

problem. It should be noted that any control path under which the state does not

hit x̄ yields the same value for player 2 under the auxiliary and the original problem.

Any control path under which the state hits x̄, due to condition (v) yields a larger or

equal value for player 2 under the auxiliary problem than under the original problem.

In particular this implies that, if a path under which x̄ is not hit is optimal under the

auxiliary problem, it is also optimal under the original problem.

Consider now an arbitrary xini ∈ [xl, x̄). If the optimal path under the auxiliary

problem, induced by Φ2(x,m1) does not hit x̄ then it is also optimal under the original

problem. If the optimal path under the auxiliary problem, induced by Φ2(x,m1) hits x̄,

then we must have f(x, (Φ1(x,m1),Φ2(x,m1)),m1) > 0 for all x ∈ (x̄ − ε, x̄) for some

ε > 0. By condition (v) this implies that V̂2(x̄) = V2(x̄,m1) and therefore the auxiliary

problem coincides with the original problem. Hence Φ2(xini,m1) is optimal for player 2
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under the original problem for any xini ∈ [xl, x̄).

We now consider the optimal control problem of player 1 in mode m1 for a given

strategy Φ2(x,m1) of player 2. Considering the switching strategy Ψx̄(x) as given, the

same arguments as just applied to player 2 establish the optimality of Φ1(x,m1). Hence,

what remains to be shown is that switching to mode m2 for all x ≥ x̄ is optimal for

player 1 given Φ2(x,m1). It follows from (iv) and (v) and by continuity that any path

from the initial state xini = x̄ which stays in the interval [xl, x̄] yields a value for player

1 that is not larger than limx→x̄− V1(x,m1) = V1(x̄,m2)− κ. Hence, switching to mode

m2 at x̄ yields at least the same value as any such path staying in [xl, x̄].

Consider now a potentially optimal path from x̄ which stays in mode m1 and has

x(t) > x̄ for all t > 0. Taking into account the compactness of the state space and the

monotonicity of any optimal path there must exist a steady state x̃ > x̄, associated with

a steady state control ũ1, of such a path and we must have

F1(x̃, (ũ1,Φ2(x̃,m1)))

r
≥ V (x̃,m2)− κ,

since otherwise it would be optimal for player 1 to switch to mode m2 at x̃. Taking into

account that f(x̃, (ũ1,Φ2(x̃,m1))) = 0 we obtain

F1(x̃, (ũ1,Φ2(x̃,m1))) +
∂V1(x̃,m2)

∂x
f(x̃, (ũ1,Φ2(x̃,m1))) ≥ r(V (x̃,m2)− κ),

which contradicts condition (vii). This shows that under the given conditions no path

from x̄ which never jumps to mode m2 can be strictly better than switching to mode

m2 at x̄. The same arguments establish that this holds also for any xini > x̄.

Focusing on paths on which player 1 switches to mode m2, it can be shown that

(vii) implies that by for x > x̄ switching immediately is strictly better than marginally

delaying the switch to mode m2.

To see this, consider for some x(t) > x̄ the value in mode m1 of delaying the switch

to mode m2 from t to t+ ε which is denoted by V ε
1 (x(t),m1):

V ε
1 (x(t),m1) = max

u1∈U1

∫ t+ε

t
F1(x(s), (u1,m1),Φ2(x(s),m1)),m1)ds+e−rε(V1(x(t+ε),m2)−κ).

We need to show that V ε
1 (x(t),m1) < V1(x(t),m2)−κ for all (small) ε. Direct calculations
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yield

lim
ε→0

V ε
1 (x,m1)− (V1(x,m2)− κ)

ε

= max
u1∈U1

[
F1(x, (u1,Φ2(x,m1)),m1) +

∂V1(x,m2)

∂x
f(x, (u1,Φ2(x,m1)),m1)

]
− r(V1(x,m2)− κ)

< 0,

where the last inequality follows from condition (vii). Hence, for all x > x̄ it is optimal

for player 1 to immediately switch to mode m2.

Consider now a value xini < x̄. Applying Φ1(x,m1) and switching to mode m2 once

the generated path hits x̄ yields a value given by V1(xini,m1). Due to (vi) we have ¡

V1(xini,m1) < V1(xini,m2)− κ and therefore switching to mode m2 at xini is not opti-

mal. This shows that the switching strategy Ψx̄(x) is indeed optimal for player 1.

Proof of Proposition 2

Considering conditions (ii) and (viii) of Proposition 1 we have to show that

lim
x→x̄−

arg max
u1∈U1

g1(x, u1) = arg max
u1∈U1

g2(u1) (10)

with

g1(x, u1) = F1(x, (u1,Φ2(x,m1)),m1) +
∂V1(x,m1)

∂x
f(x, (u1,Φ2(x,m1)),m1) (11)

g2(u1) = F1(x̄, (u1,Φ2(x̄,m2)),m2) +
∂V1(x̄,m2)

∂x
f(x̄, (u1,Φ2(x̄,m2)),m2). (12)

The derivatives with respect to u1 for the expressions to be maximized in the two modes

read:

∂F1(x, (u1,Φ2(x,m1)),m1)

∂u1
+
∂V1(x,m1)

∂x

∂f(x, (u1,Φ2(x,m1)),m1)

∂u1

∂F1(x̄, (u1,Φ2(x̄,m2)),m2)

∂u1
+
∂V1(x̄,m2)

∂x

∂f(x̄, (u1,Φ2(x̄,m2)),m2)

∂u1
.

Due to the assumption of mode independent and separable control effects we have

∂F1(x, (u1,Φ2(x̄,m1)),m1)

∂u1
=
∂F1(x, (u1,Φ2(x̄,m2)),m2)

∂u1

and

∂f(x, (u1,Φ2(x̄,m1)),m1)

∂u1
=
∂f(x, (u1,Φ2(x̄,m2)),m2)

∂u1
.
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for all u1 ∈ U1. Furthermore, since we consider a maximum delay equilibrium, at x = x̄

the following has to hold:

rV1(x̄,m1) =F1(x̄, (Φ1(x̄,m1),Φ2(x̄,m1)),m1)+ (13)

+
∂V1(x̄,m2)

∂x
f(x̄, (Φ1(x̄,m1),Φ2(x̄,m1)),m1).

The HJB equation (iv) in mode m1 for x < x̄ implies

rV1(x,m1) =F1(x̄, (Φ1(x,m1),Φ2(x,m1)),m1)+ (14)

+
∂V1(x,m1)

∂x
f(x, (Φ1(x,m1),Φ2(x,m1)),m1).

Taking into account the continuity of F1(·,m1), f(·,m1),Φ1(·,m1) and Φ2(·,m1) with

respect to x equations (13) and (14) together imply that the following smooth pasting

condition:

lim
x→x̄−

∂V1(x,m1)

∂x
=
∂V1(x̄,m2)

∂x
. (15)

Denote by

g3(u1) =
(
F1(x̄, (u1, û2),m1) +

∂V1(x̄,m2)

∂x
f(x̄, (u1, û2),m1)

)
with û2 = limx→x̄−Φ2(x,m1). Recalling g1 and g2 from (11) and (12) it follows directly

from our arguments above that g′2(u1) = g′3(u1) for all u1 ∈ U1. Therefore,

arg max
u1∈U1

g2(u1) = arg max
u1∈U1

g3(u1).

The assumption that the right hand side of condition (ii) in Proposition 1 has a single

maximizer implies that the argmax of g2 is unique, which means that also the argmax

of g3 has only a single element. Furthermore, using (15) we obtain

lim
x→x̄−

g1(x, u1)

= F1(x̄, (u1, lim
x→x̄−

Φ2(x,m1)),m1) + lim
x→x̄−

∂V1(x,m1)

∂x
f(x̄, (u1, lim

x→x̄−
Φ2(x,m1)),m1)

= F1(x̄, (u1, û2),m1) +
∂V1(x̄,m2)

∂x
f(x̄, (u1, û2),m1)

= g3(u1).

Since both g1 and g3 are continuous with respect to x and u1 it follows that

lim
x→x̄−

arg max
u1∈U1

g1(x, u1) = arg max
u1∈U1

g3(u1),
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where we have used that the argmax of g3 has only one element. Hence

lim
x→x̄−

arg max
u1∈U1

g1(x, u1) = arg max
u1∈U1

g2(u1),

and since φ1(x,m1) is a maximizer of g1 and φ1(x̄,m2) is the maximizer of g2, this proves

the proposition.

Proof of Proposition 3

We define as g(αn) = f(αn, (Φ1(αn,m1),Φ2(αn,m1))) the right hand side of the state dy-

namics under the equilibrium profile. Assume first that there exists a state α∗n ∈ (0, ᾱn)

such that in a neighborhood around α∗n we have g(αn) > 0 for all αn < α∗n and g(αn) < 0

for all αn > α∗n. Then this neighborhood is invariant under the state dynamics and for

initial values αn(0) in this neighborhood the threshold ᾱn is never reached and there-

fore the game never switches to mode m2. Given that m2 is never reached any positive

investment u1 > 0 is clearly suboptimal for player 1, which contradicts g(αn) > 0 for

αn < α∗n.

Therefore, the only remaining possibility for a scenario in which the direction of the

state dynamics change in the interval [0, ᾱn) is that there exists a unique point α∗n ∈

(0, ᾱn) such that g(αn) > 0 ∀αn > α∗n and g(αn) < 0 ∀αn < α∗n. Assume that such

an MPE exists and (Φ̃1(α1
n,m1), Φ̃2(α1

n,m1))) is the strategy profile giving rise to this

pattern. We denote the value functions of the two firms corresponding to this profile by

Ṽi(αn,m1), i = 1, 2.

The proof now proceeds by showing first that limε→0 Ṽ2(α∗n− ε,m1) > limε→0 Ṽ2(α∗n +

ε,m1) and, second, that in light of this inequality the optimal strategy of player 2 at a

state α∗n + ε for sufficiently small ε has to be such that g(α∗n + ε) < 0, which contradicts

our assumption and therefore rules out the existence of a state α∗n with the properties

given above.

To show that

lim
ε→0

Ṽ2(α∗n − ε,m1) > lim
ε→0

Ṽ2(α∗n + ε,m1) (16)

we first observe that in light of g(αn) < 0 for all αn ∈ [0, α∗n) and α∗n < ᾱn the new

product is never introduced under this investment profile. Therefore, any optimal in-

vestment strategy for firm 2 must have Φ̃2(αn,m1) = 0 for all αn ∈ [0, α∗n) and therefore

for any αn < α∗n we must have

Ṽ2(αn,m1) = V∞2 (αn,m1) =
(

1 +
νo
2

) (qm1
2o )2

r
.

32



Hence,

lim
ε→0

Ṽ2(α∗n − ε,m1) =
(

1 +
νo
2

) (qm1
2o )2

r
.

Furthermore, taking into account that for αn(0) > α∗n, the threshold ᾱn is reached

in finite time under the strategies (Φ̃1(αn,m1), Φ̃2(αn,m1)), at which point the game

switches to mode m2. Hence, we obtain

lim
ε→0

Ṽ2(α∗n + ε) =

∫ τ

t=0
e−rt

(
1 +

νo
2

)
(qm1

2o )2 − ξ2(Φ2(αn,m1))dt

+

∫ ∞
t=τ

e−rt
(

1 +
νo
2

)
qm2

2o (αn)2 − ξ2(Φ2(αn,m2))dt,

where τ is the point in time when the mode switches from m1 to m2. Taking into account

that ξ2(u) ≥ 0 ∀u ≥ 0, it is sufficient for proving (16) to show that qm2
2o (αn) < qm1

2o for

all αn ≥ 0. To see this, we first observe that inserting αn = 0 and α0
n = 3ηαo

3+νo
into (7)

gives qm2
2o (0) = qm1

2o . Furthermore,

∂qm2
2o

∂αn
=
∂qm2

2o

∂α0
n

= − ηνo
(1− η2)(6 + 5νo) + 3(νo + νn) + (2 + νn)ν2

o + 4νoνn
< 0,

and therefore, due to our assumption that α0
n >

3ηαo

3+νo
we have qm2

2o (αn) < qm1
2o for all

αn ≥ 0. This establishes that the inequality (16) holds.

To complete the proof we show that there exists an alternative strategy Φ̂2(αn,m1)

such that for an initial value αn(0) = α∗n + ε̂ for sufficiently small ε̂ the generated value

for firm 2 is larger than Ṽ2(α∗n+ ε̂) if firm 1 sticks to Φ̃1(αn,m1). In particular, we define

Φ̂2(αn,m1) =


Φ̃2(αn,m1) αn 6∈ [α∗n, α

∗
n + ε̂]

1
γ Φ̃1(αn,m1) αn ∈ [α∗n, α

∗
n + ε̂]

Under the strategy profile (Φ̃1, Φ̂2) we have α̇n = −δαn < 0 for αn ∈ [α∗n, α
∗
n + ε̂]. Hence

for αn(0) = α∗n + ε̂ the state α∗n is reached at t = τ(ε̂) := ln(α∗n+ε̂)−α∗n
δ . The value for firm

2 generated by this strategy for αn(0) = α∗n + ε̂ therefore reads

V̂2(α∗n + ε̂) =

∫ τ(ε̂)

0
e−rt

(
1 +

νo
2

)
(qm1

2o )2 − ξ2(Φ̂2(αn,m1))dt+ e−rτ(ε̂)V̂2(α∗n,m1) (17)

Furthermore, since under this profile we have α̇n < 0 at αn = α∗n and therefore

V̂2(α∗n,m1) = limε→0 Ṽ2(α∗n− ε,m1). Taking into account that limε̂→0 τ(ε̂) = 0 we there-

fore obtain from (16) and (17) that

lim
ε̂→0

V̂2(α∗n + ε̂,m1) = lim
ε→0

Ṽ2(α∗n − ε,m1) > lim
ε→0

Ṽ2(α∗n + ε,m1)

holds. Accordingly, for sufficiently small ε̂ we have V̂2(α∗n + ε̂,m1) > Ṽ2(α∗n + ε̂,m1),

which contradicts our assumption that Φ̃2(αn,m1) is the optimal feedback strategy of

firm 2. This completes the proof of the proposition.
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Appendix B: Analysis of the MPE in linear strategies in

mode m2

In mode m2 the two firms interact through a linear quadratic differential game with a

one-dimensional state. Standard arguments (see Dockner et al. (2000)) establish that a

pair of functions Vi(.,m2), i = 1, 2 satisfying the Hamilton-Jacobi-Bellman equations

rVi(αn,m2) = max
ui

[
Fi(αn, ui,m2) +

∂Vi
∂αn

(u1 − γu2 − δαn))
]
, i = 1, 2 (18)

and the transversality conditions

lim
t→∞

e−rtVi(αn) = 0, i = 1, 2 (19)

constitute value function of a MPE. Maximizing the right hand side of the HJB-equations

yields

ui =
1

ci

∂Vi
∂αn

, i = 1, 2. (20)

Due to the linear-quadratic structure, the infinite time horizon and the time-autonomous

nature of the game, we assume the following form for the value function:

Vi = Ci +Diαn + Eiα
2
n, i = 1, 2. (21)

Comparison of coefficients yields the following system of 6 algebraic equations which are

solved by standard numerical methods:

rC1 =
1

2

(
D2

1

c1
+

2D1D2γ
2

c2

α2
o(2 + νn + η2(−2 + νo))(1 + νo)

2(−4η2 + (2 + νn)(2 + νo))

K

)
rD1 = −D1δ +

2D1E1

c1
+

2(D2E1 +D1E2)γ2

c2
− αoηνo(1 + νo)(2 + νo)(4η

2 − (2 + νn)(2 + νo))

K

rE1 =
2E2

1

c1
+

4E1E2γ
2

c2
− −(2 + νn)(1 + νo)

2(3 + νo)
2 + η2(3 + 2νo)(6 + νo(9 + 2νo)) + 4δE1K

2K

rC2 =
1

2

(
2D1D2

c1
+
D2

2γ
2

c2
+
α2
o(2 + νo)

(
(2 + νn)(1 + νo)− η2(2 + νo)

)2
K

)

rD2 = −D2δ +
2(D2E1 +D1E2)

c1
+

2D2E2γ
2

c2
+
αoηνo(2 + νo)(−(2 + νn)(1 + νo) + η2(2 + νo))

K

rE2 = 2E2(−δ +
2E1

c1
+
E2γ

2

c2
) +

η2ν2
o (2 + νo)

2K

(22)

where

K =
(
(2 + νn)(1 + νo)(3 + νo)− η2(6 + 5νo)

)2
(23)

The corresponding equilibrium feedback functions in mode m2 are then given by

Φi(αn,m2) =
1

ci
(Di + 2Eiαn).
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Appendix C: Characterization of the Maximum Delay Equi-

librium

In the maximum delay equilibrium, the unknown variables to be determined are the

threshold ᾱn and the control of player 2 in mode m1 for αn = ᾱn. In particular, we

denote by um1
2 equilibrium feedback of player 2 in mode m1 at αn = ᾱmdn . Then, requiring

that inequality (3) holds as an equality yields

r(V1(ᾱmdn ,m2)− κ) = lim
ε→0

[
F1

(
ᾱmdn ,Φ1

(
ᾱmdn − ε,m1

)
,m1

)
+

+
∂V1(ᾱmdn ,m2)

∂αn
f
(
ᾱmdn ,Φ1

(
ᾱmdn − ε,m1

)
,Φ2

(
ᾱmdn − ε,m1

)) ]
= F1

(
ᾱmdn ,Φ1

(
ᾱmdn ,m2

)
,m1

)
+

+
∂V1(ᾱmdn ,m2)

∂αn
f(ᾱmdn ,Φ1

(
ᾱmdn ,m2

)
, um1

2 ),

where we have used that due to the smooth pasting condition the control of player 1 is

continuous at αn = ᾱmdn .

Moreover, considering the limit of the HJB-equation of player 2 in mode m1 for αn →

ᾱmdn yields, again using the continuity of the control of player 1,

lim
ε→0

[
rV2(ᾱmdn − ε,m1)− F2(ᾱmdn − ε,Φ2

(
ᾱmdn − ε,m1

)
,m1)

− ∂V2(ᾱmdn − ε,m1)

∂αn
f(ᾱmdn − ε,Φ1

(
ᾱmdn − ε,m1

)
,Φ2

(
ᾱmdn − ε,m1

)
)
]

= rV2(ᾱmdn ,m2)− F2(ᾱmdn , um1
2 ,m1) (24)

−λ(ᾱmdn , um1
2 )f(ᾱmdn ,Φ1

(
ᾱmdn ,m2

)
, um1

2 )

= 0

with λ(ᾱmdn , um1
2 ) = limε→0

∂V2(ᾱmd
n −ε,m1)
∂αn

. To determine λ(ᾱmdn , um1
2 ) we use that the

first order condition for the optimal control of player 2 in mode m1 for αn < ᾱmdn is

given by
∂F2(αn, u2,m1

∂u2
+
∂V2(αn,m1)

∂αn

∂f(αn,Φ1(αn,m1), u2)

∂u2
= 0,

which yields λ(ᾱmdn , um1
2 ) = −

(
∂F2(ᾱmd

n ,u
m1
2 ,m1)

∂u2

)
/
(
∂f(ᾱmd

n ,Φ1(ᾱmd
n ,m2),u

m1
2 )

∂u2

)
, where again

we have used the equility of the control of player 1 across the two modes at αn =

ᾱmdn . Taking into account the fucntional forms of F2 and f in our model we obtain

λ(ᾱmdn , um1
2 ) = − c2u

m1
2
γ . Inserting this expression yields the second line in (9).
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