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At Boiling Point: Temperature Shocks 

in Global Business Groups

Abstract

This paper investigates the impact of temperature on operating revenue as a measure of economic output 

for more than a quarter of a million business group firms operating in 32 countries. For this purpose, we 

construct a novel global dataset that combines information on firm financials, ownership and location 

with global data on heat and precipitation from 2002 to 2012. The temperature-output-relationship takes a 

non-linear shape, with particularly strong negative effects at high temperatures. On average, an additional 

day with temperature above 32°C decreases annual operating revenue by 1.3%. This effect is driven by 

firms that operate in countries with relatively hot climates, i.e. average yearly temperature above 13°C. 

We then assess if shocks propagate within firm networks with exposure to these countries. We find that 

the weighted local shocks from subsidiaries translate into an on average drop in annual headquarter 

operating revenue by 4.2% per additional heat day. The estimates suggest that, under future warming, 

specific business group production networks might be severely impacted by heat-induced output losses.

JEL-Code: D22, F23, Q54

Keywords: Climate change; temperature extremes; multinational corporation

April 2021   

1 Michael Themann, RWI. - I am grateful to Nicolas Koch, Leonie Wenz, Manuel Frondel, Christoph M. Schmidt and Nils 
aus dem Moore for helpful comments and suggestions. Claudia Günther provided excellent research assistance. – All 
correspondence to: Michael Themann, RWI, Hohenzollernstr. 1-3, 45128 Essen, Germany, e-mail: michael.themann@
rwi-essen.de



1 Introduction

The scientific evidence for anthropogenic climate change is overwhelming. The global mean

temperature is projected to increase by 2.6 - 4.8°C by the end of this century which would en-

tail major consequences for ecosystems, economies and societies (Field et al. 2014; Pachauri

et al. 2015). Although the economic costs associated with these impacts are generally ex-

pected to decrease average global incomes by 2100 (Burke et al. 2015), fundamental ques-

tions on the eventual size, distribution and functional form of the social cost of carbon and its

underlying drivers still persist. In a warming world, addressing these questions is crucial

to properly design effective policy responses both in terms of mitigation and adaptation.

Recent empirical studies have thus sought to provide an empirical basis for the so-called

damage function, the central component of Integrated Assessment Models (IAMs) that are

commonly used to estimate the economic costs of climate change. Until recently IAMs have

been widely challenged as lacking a sufficient theoretical and empirical foundation in this

important aspect (Pindyck 2013; Stern 2016).

Extreme weather and high temperatures in particular have been identified as one of the

main drivers that strongly lower local economic output in many world regions (Dell et al.

2014; Carleton and Hsiang 2016). At the same time, the world economy has grown increas-

ingly integrated. This poses the question if local shocks can be transmitted between firms,

sectors and countries. Business groups are an important pillar of the global economy. For

instance, multinational companies account for around a third of total global output and

half of global exports (OECD 2018). These companies integrate supply, production and

sales within their firm networks that can span different economic sectors, world regions and

climatic zones (Altomonte and Rungi 2013). Despite this economic importance, the poten-

tial impacts of climate change on global business groups and the potential transmission of

shocks within their networks has received relatively little attention by policymakers.

This study aims to contribute to this discussion by estimating the impact of temperature

on economic output for more than a quarter of a million business group firms operating

in 32 countries. In a second step, we identify the sources of temperature shocks by assess-

ing different responses across climatic regions. In a third step, we aggregate local weather

variation at the subsidiary level and estimate its impact at the level of the business group

headquarter to investigate whether temperature shocks propagate within business group

networks.
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For this purpose, we construct a novel dataset that combines information on firm finan-

cials, ownership and location with global data on temperature and precipitation from 2002

to 2012. We focus on the climate impact channel with the most direct first-order effects,

i.e. the impact of temperature on output and economic performance (Carleton and Hsiang

2016). The empirical framework draws from the advances of recent empirical studies in

terms of data and methodology (Dell et al. 2014). It utilizes yearly exogenous variation in

local weather to identify the effect of temperature on operating revenue as a measure of a

firm’s economic output. We employ a semi-parametric approach that allows for non-linear

temperature effects. The annual temperature distribution is divided into bins and the effect

of each bin is estimated all while maintaining the daily variation in temperature to accu-

rately depict the impact of heat days.

The key assumption to identify the effects is that weather is random conditional on a

set of time-invariant and time-varying factors. In this vein, we utilize the panel structure of

our data to isolate the effect of weather on firm operating revenue from any confounding

factors. Given the overlap in current and future weather distributions, the approach can pro-

vide us with a useful estimate of potential medium-run impacts of climate change induced

heat stress. It also enables us to learn about adaptation by analyzing different responses in

different world regions and climatic zones.

The results show that the temperature-output-relationship takes a non-linear shape, with

particularly strong negative effects at high temperatures. On average, an additional day

with temperature above 32°C decreases annual operating revenue by 1.3%. This effect is

driven by firms that operate in countries with hot climates, i.e. average yearly tempera-

ture above 13°C. We then assess if shocks propagate within firm networks with exposure

to these countries. We find that the weighted local shocks from subsidiaries translate into

an on average drop in annual headquarter operating revenue by 4.2% per additional heat

day. This is in line with previous empirical findings which have indicated that economic

impacts can be greatly aggravated if important firm relationships (e.g. supplier-customer)

are affected by the shock, especially if it results in important inputs shortages (Wenz and

Levermann 2016; Giroud and Mueller 2019). Since our data consists of stable, long-term

owner-subsidiary relationships, it appears plausible that the estimates we obtain capture

losses incurred by the specific structure of economic dependencies within the firm network.

The estimates would then suggest that, under future warming, specific business group pro-

duction networks might be severely impacted by heat-induced output losses.

3



Related studies The contributions of this study relate to two fields of research. First,

the new field of climate econometrics has shown that non-linearities in responses to tem-

perature exposure are a key factor that can drive costs to levels many times above previous

estimates (Heal and Park 2016; Burke and Tanutama 2019). Studies have demonstrated that

temperature increases can substantially reduce average global incomes (Burke et al. 2015),

increase global inequalities in economic output (Kalkuhl and Wenz 2018) and can be partic-

ularly important for economies that are well integrated in the world economy (Zhang et al.

2018).

Analyzing the impacts of temperature on output in a global context remains challenging

due to limitations with respect to econometric identification and data availability. Cross-

country studies use data at the sector, county or country level and thus cannot adequately

control for heterogeneous firm responses. Studies that do use firm data are often constrained

to analyzing a single sector in a specific country. This paper attempts to resolve these is-

sues by delivering a cross-country analysis based on global firm data that accounts for firm,

sector and country heterogeneity. The results confirm previous findings of a non-linear

temperature-output-relationship with strong responses at high temperatures for a cross-

country sample of business group firms that comprises different world regions and climatic

zones. We also find that responses to heat are particularly robust and driven by companies

that operate in countries with average yearly temperature above 13°C.

Second, this study provides new evidence on the transmission of shocks in business

groups. The economic response in production networks to external shocks is a long-standing

issue in theoretical and empirical studies (Bena and Erel 2017). Most empirical studies lack

data that consistently combines information on firm ownership with financial data. Hence,

they do not identify global firm networks across time and space. The difficulty of finding

the exogenous variation that is needed to properly identify shocks in these networks further

contributes to the scarcity in empirical studies.

In this field, the contributions of this paper are manifold. First, our dataset allows us

to identify and track firm networks consistently across time, space and different climate

areas. Second, utilizing exogenous variation in weather jointly with panel data the re-

search design aims to identify shock transmission isolated from other factors that may im-

pact the economic output of business groups. Third, this paper delivers a first attempt at

providing evidence on vertical spillovers that occur upstream, i.e. from a subsidiary to

the headquarter. It also sheds light on a key factor in shock transmission by focusing on
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long term headquarter-affiliate-relationships that are potentially of strategic importance to

the network. Fourth, empirical results indicate that shock transmission occurs by exposure

to countries with hot climates via long-standing network relationships. At the same time,

transmitted shocks are more sizeable than the initial local shocks. This suggests that local

shocks may be absorbed to some degree by the network. In this sense, this paper comple-

ments recent empirical research on the propagation of natural disasters in production net-

works (Barrot and Sauvagnat 2016), that sales growth between subsidiaries and headquar-

ters co-move and that source-country shocks are transmitted to foreign affiliates (Cravino

and Levchenko 2017) and that network structures can provide additional resilience to their

subsidiaries (Giroud and Mueller 2019). In the context of the economy-climate literature,

these cross-border and transmission effects, although potentially critical for damage func-

tions, remain largely under-investigated (Dell et al. 2014). The findings contribute to recent

sector-level studies that show that local temperature induced losses can cascade through

value chains (Wenz and Levermann 2016).

The remainder of this paper is structured as follows: Section 2 details the identification

strategy. Section 3 describes the data. Section 4 presents the empirical results. Section 5

concludes with a discussion of the results.

2 Empirical framework

To design our empirical strategy, we bring together the insights from the literature on cli-

mate econometrics and global business group production.

First, we follow the semi-parametric approach by Deschênes and Greenstone (2011) that

allows temperature to affect economic output in a non-linear shape. Measuring the poten-

tial non-linear impact of temperature on different economic and non-economic outcomes in

such a way is well established (e.g. Deryugina and Hsiang (2014) and Auffhammer (2018)).

For this purpose, we divide the annual temperature distribution into m = 1. . . 10 bins

and estimate the effect of these bins on economic output. Each temperature bin m corre-

sponds to the number of days per year that fall into the given category. Utilizing the data

in such a way preserves the daily variation in temperature which is important to accurately

depict the impact of a certain heat day on economic output (Dell et al. 2014). For instance,

m = 3, counts the number of days at a certain location that fall into this bin (]-7°C,-1°C])

in a given year. The bins are constructed at a 6-7°C width with temperatures below minus

12°C at the lower end and temperatures above 32°C at the upper end. The full list of 10
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bins is thus the following in °C: ]-12; [-12,-7]; ]-7,-1]; ]-1,4]; ]4,10]; ]10,16]; ]16,21]; ]21,27];

]27,32]; ]32. We apply the standard practice to omit the middle temperature bin bin (in our

case: ]16,21]) to avoid multicollinearity (Zhang et al. 2018). Results are robust to omitting

alternative bins.

The main identifying assumption is that variation in weather is random conditional on

a set of fixed effects (Deschênes and Greenstone 2007; Deschênes and Greenstone 2011;

Auffhammer 2018). Conditional on these controls, the coefficient βm
1

is a semi-elasticity that

measures the marginal effect of an additional day in temperature bin m relative to a day in

the 16-20°C bin (Zhang et al. 2018). This approach has strong identification properties as,

under these conditions, it appears very plausible that weather variation is exogenous (Blanc

and Schlenker 2017; Dell et al. 2014). These considerations result in the following baseline

specification. For firm i in year t, we model a log-linear regression specification:

ln yit =
∑

m

βm
1 Tm

it + δWit +Dit +Xit + ǫit, (1)

where yit is the operating revenue and Tm
it is the number of days in year t experienced by

firm i with daily temperature that falls in bin m. In addition, we include both linear and

quadratic effects of precipitation in vector Wit which is a standard practice to account for

general weather conditions (e.g. Blanc and Schlenker (2017), Burke and Emerick (2016), and

Kalkuhl and Wenz (2018)).

We exploit the panel structure of our data to isolate the effect of weather on economic

output from any time-invariant and time-varying factors that could be associated with tem-

perature and economic output. Accounting for these sources of omitted variable bias has

been a major contribution in the recent literature (Hsiang 2016). We therefore include vec-

tors of fixed effects D to account for observed and unobserved heterogeneity.

Included are firm fixed effects, country-industry-specific characteristics (such as tech-

nology), sector-year fixed effects (such as overall technological progress, changes in input or

output prices), and country-year fixed effects (country-specific annual shocks such as eco-

nomic progress). We also include a set of control variables Xit to account for important time-

variant developments at the firm level, such as firm growth. However, these variables can be

affected by weather and are potentially endogenous. We thus follow Barrot and Sauvagnat

(2016) and instead include dummies for each tercile of the yearly distribution of each control

variable (total assets, return on assets and firm age) interacted with year-dummies.
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Second, we adapt the approach by Barrot and Sauvagnat (2016) and conduct a two-step

analysis to estimate the impact of external shocks on global business groups. In a first stage,

we estimate specification 1 for a global sample that contains all companies that are part of

a business group at some point in time. This provides us with a comprehensive picture

of this fundamental part of the global economy. These results are then tested in terms of

robustness. In a second step, we analyze how temperature shocks at the subsidiary level

affect economic outcomes at the level of headquarters.

Short-term weather data provides a great deal of variation to properly identify the causal

effects of temperature on economic performance, especially in a global sample with a great

variety of locations. In addition, it can help to provide an intuition on medium-term im-

pacts of climate change since, for most locations, there is a substantial overlap between the

distributions of current weather and future weather (Hsiang 2016; Dell et al. 2014). Hence,

while climate change will shift its distribution, temperature will largely remain within the

historical support. This enables us to learn to some degree about the propensity of adap-

tation under future warming (Dell et al. 2014). For instance, if hot regions already suffer

from negative impacts of high temperatures, these effects may continue and the potential

for adaptation may be limited. For this purpose, we conduct a heterogeneity analysis to

identify differences in responses in different world regions and climate zones. In addition,

we assess if firms operating under moderate to hot climates have already adapted to extreme

heat days and thereby give an indication of the potential for future adaptation.

Some limitations to the econometric approach remain (Hsiang 2016; Dell et al. 2014).

Our estimates may underestimate actual outcomes if the current distribution does not con-

tain observations on important future events. For instance, the surpassing of tipping points

in the earth system may lead to non-linearities that can increase costs beyond current esti-

mates (Steffen et al. 2018; Lemoine and Traeger 2014). Also, our approach may overestimate

future impacts if adaptation becomes more viable, e.g. via innovation or economic growth.

However, persistent impacts in developed and developing economies suggest until now

that economic convergence may not necessarily offset the problem (Burke and Tanutama

2019).

3 Data

We construct a novel database that is suitable for assessing the impacts of weather variation

on business groups in a global cross-country setting. For the period of 2002-2012, we bring
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together three sources of raw data: Firm financial data and information on firm ownership

from ORBIS and weather data from the WATCH-Forcing-Data-ERA-Interim meteorological

data set (WFDEI).

3.1 Firm financial and location data

Our main source of data is the ORBIS database as provided by Bureau van Dijk (BvD).

ORBIS compiles firm data from administrative sources, such as detailed balance sheets, in-

come statements, and profit and loss accounts. The database is constantly being updated

and particularly suitable for cross-country comparisons: Information on firm financials and

ownership is harmonized across countries and delivered in a global standard format. The

financial data we use was retrieved by BvD in the last week of November 2015. The data

comprises all firms above total assets of 2 million Euro, a turnover of one million Euro, or

a total number of 15 employees in 2015. This corresponds to a sample of around 12.5 mil-

lion firms. Our financial accounting data is reported in thousands of Euros for the years

2002-2012. We employ unconsolidated financial data from local registry filings to ensure a

high quality of the raw information. Industries are classified according to their four-digit

industry NACE Rev. 2 codes.

We then follow a thorough four-step procedure of data cleaning that is based on Gopinath

et al. (2017). First, we account for reporting mistakes and drop observations with missing

information or implausible values. Second, we assess the internal consistency of the bal-

ance sheet data. For example, we calculate the sum of tangible fixed assets, intangible fixed

assets, and other fixed assets as a ratio of their respective aggregate, i.e. total fixed assets.

1 We then estimate the distribution of this ratio and remove extreme values (below the 0.1

percentile and above the 99.9 percentile. Third, we control the quality of all variables that

are part of our analysis more specifically. Fourth, we winsorize these variables at the 1 and

99 percentiles. In addition, we account for missing values by interpolating data for one pe-

riod, i.e. if data is missing for one year between two periods with reported values for the

respective variable.

In order to properly identify shocks in business groups, we then account for firm-year

observations that exhibit a lot of noise or can be related to shell firms. For this purpose,

we drop any firms that are part of the financial services industries and government-related

sectors (Bena and Erel 2017).

1This process is also applied to the following aggregates: total assets, total current assets, total shareholder funds
and liabilities.
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All nominal variables used in our analysis are deflated with a yearly GDP price defla-

tor as retrieved from the Worldbank.2 This procedure ensures that the growth rates of the

variables are not driven by price changes (Gal 2013). After deflating all financial covariates

over time, we account for price differences across countries. We then convert them into a

common currency (USD). In order to mitigate the influence of fluctuating exchange rates,

we fix the exchange rate at the middle of the sample period, in 2007 (Gal 2013).

We then identify latitudes and longitudes for each firm location. For this step, we ap-

ply algorithms provided by OpenCage and Google3 to the address data contained in ORBIS

(street, postal code, city, region and country) to obtain each geographic location. For each

country, we conduct a thorough testing process and assess (i) general quality of the match

and (ii) precision based on the respective indicators provided by each algorithm. We also

compare geo-coded output on location and addresses with the address data in ORBIS and

own identification done via Google Maps and Open Street Maps. We then account for sys-

tematic matching errors and adjust the matching algorithms accordingly. For 94% of the

matched sample, the precision is very high, i.e. within a grid cell radius of less than 2 km.

For 4%, the grid cell radius is less than 15 km. We remove any firms with a grid cell ra-

dius above 15 km (2%). Given that the spatial correlation of weather is very high, especially

in small geographical grid cells, measurement error should be minimal (Auffhammer et al.

2013). In sum, this indicates a very high matching quality.

3.2 Weather data

Weather data is obtained for the period of 2002-2012 from the WATCH-Forcing-Data-ERA-

Interim meteorological data set (WFDEI, Weedon et al. (2018) and Dee et al. (2011)). This

dataset provides extensive coverage on a complete global grid all while providing the vari-

ation of high frequency daily average weather data.4 In contrast, many other datasets ei-

ther suffer from incomplete coverage in certain world regions and/or deliver only monthly

weather averages. We refer to Dell et al. (2014) and Auffhammer et al. (2013) for an overview

and discussion of different weather data types in the context of econometric analyses. Subse-

quently, temperature data is converted into Celsius and sorted into bins. Annual precipita-

2As retrieved from https://data.worldbank.org/indicator/NY.GDP.DEFL.ZS
3Available on https://opencagedata.com/ and https://developers.google.com/maps/documentation/geocoding/
4ERA-interim reanalysis data combines information from ground stations, satellites and other sources with a
climate model to create gridded weather data and extend global coverage. This data is then bias corrected such
that the monthly temperature means correspond to observational data.
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tion is obtained by adding snowfall to rainfall data, converted into mm/day and aggregated

to a full year.5

We then match the geographic location of each firm in ORBIS with the corresponding

0.5x.0.5 grid cell in the WFDEI data. We also match each firm location with its respective

administrative area as contained in the GADM database of Global Administrative Areas.6

Matching and mapping exercises are conducted via shape files and algorithms in GNU R.

Hence, we obtain for each firm-year-combination in ORBIS the average weather in the re-

spective cell. For the matched ORBIS dataset, Figure 1 plots the distribution of unique firm

observations along with the temperature data on a world map (Figure 2: Europe). Adminis-

trative areas are presented according to the GADM classification system. For each area, we

calculate (i) the average daily temperature based on the corresponding grid cells and (ii) the

total number of firms. Black dots constitute administrative areas with less than 10,000 firms

(Figure 2: 200 firms). Bubbles represent areas with up to more than 70,000 firms (Figure 2:

1,000 firms). Regions are ranked with respect to their heat exposure using the average num-

ber of days with average temperature above 27°C in 2002-2012. The dataset covers a wide

range of climatic zones. As it is common in ORBIS, data availability differs substantially

across world regions. While most firms are concentrated in European countries, the sam-

ple still covers firms from non-European countries. We then apply the three country-based

criteria established by Cravino and Levchenko (2017) to construct data that is suitable for a

global analysis of firm networks in ORBIS: (i) countries need to have at least 750 firms on av-

erage in 2002-2012, (ii) aggregate revenues in ORBIS need to cover at least 40% of aggregate

economic output and (iii) the correlation between the growth rates in GDP as measured

by the Worldbank and in aggregate revenues in ORBIS needs to be above 0.50. We then

limit our sample to the 32 countries that jointly meet these criteria.7 We consider such an

approach crucial for obtaining empirically meaningful results both in terms of a consistent

global analysis of business groups and the analysis of shock transmissions within them.

For the heterogeneity analysis, we divide our sample broadly along the lines of the stan-

dard Koeppen-Geiger climate classification system (Beck et al. 2018) and define countries

with average yearly temperature above 13°C as having a moderate to hot climate. For the

5The data was provided by the Inter-Sectoral Impact Model Intercomparison Project
(https://www.isimip.org/). We thank Leonie Wenz and Stefan Lange for their continued guidance on
this data and the necessary processing steps. The steps were conducted via Python.

6The data can be retrieved from https://gadm.org/
7The selected countries are Austria, Australia, Belgium, Bulgaria, the Czech Republic, Germany, Estonia, Spain,
Finland, France, Great Britain, Greece, Croatia, Hungary, Ireland, Italy, Japan, South Korea, Lithuania, Latvia,
the Netherlands, Norway, Poland, Portugal, Romania, Serbia, Sweden, Singapore, Slovenia, Slovak Republic,
Turkey and Ukraine.
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period of our analysis, this definition applies to 10 out of 32 countries in our sample.8 In

practice, we utilize the WFDEI data and calculate yearly temperature in the sample period

of 2002-2012. We then split our sample accordingly in two subsamples: one with moderate

to hot climates (subsequently “Southern sample”) and one with moderate to cold climates

(“Northern sample”).

8The selected countries for the Southern sample are Australia, Bulgaria, Croatia, Greece, Italy, Portugal, Roma-
nia, Singapore, Spain and Turkey. This corresponds for instance to countries with mostly dry or hot summer
climates under the Koeppen-Geiger classification (Beck et al. 2018).
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Figure 1: Firm coverage and temperature distribution: World
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Figure 2: Firm coverage and temperature distribution: Europe

3.3 Ownership data

We utilize a novel dataset on firm ownership as prepared in aus dem Moore et al. (2019).

This dataset identifies business groups based on the raw information on firm ownership in

ORBIS. In principle, firms with more than 50.01% ownership shares are linked until the top

of the command chain is reached. This allows the identification of each firm belonging to

a certain network along with the network’s global ultimate owner (GUO). For a detailed

description of the methodology we refer to aus dem Moore et al. (2019). The novelty of this

approach is that, unlike the static approaches employed in the vast majority of empirical

studies, the data allows to track ownership relations across time, i.e. for each firm and each
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year in 2002-2012. Many empirical studies have used time-invariant information based on

the last year of the panel thus introducing a potentially strong measurement error.

However, the yearly ownership data contains substantial amounts of noise as the data in

ORBIS is constantly updated and extended (aus dem Moore et al. 2019). Missing informa-

tion over longer periods of time can impede the proper tracking of network structures and

severely hamper the identification of shock transmission (Cravino and Levchenko 2017), e.g.

through unobserved changes in ownership.

We therefore clean the data in various steps. First, we fill in ownership gaps if the in-

formation before and after the gap is identical.9 Second, we require firms to report at least

ownership information for one year meaning that they are either a subsidiary and/or a GUO

at some point in time and thus discard any firms with continuously missing information.

Table 1: Summary statistics: Firm financials (in logs)

Mean Std. Dev.
Operating revenue 4.92 2.58

Total assets 4.97 2.55
Return on assets -2.76 1.35

Firm age 2.61 0.91

Summary statistics are reported in Tables 1 and 2. Table 2 shows that the final sam-

ple contains around a quarter of a million firms (Column 2) that at some point between

2002 and 2012 are either a subsidiary (Column 4) and/or a GUO (Column 6). The sample

is comprehensive in size for both firm types (subsidiaries: 213,931, GUOs: 67,474). It is

also dominated by firms operating in European countries (around 240,000) but still retains

around 10,000 firms from the rest of the world and covers a range of climatic zones.

Table 2: Summary statistics: Firm observations

# Obs # Firms
Total 1,971,108 250,767

Subsidiaries 1,184,481 213,931
GUOs 253,839 67,474

Indep/Miss 532,788 172,030

Note: Number of subsidiary firms plus number of GUO firms exceeds number of total firms as firms can be
subsidiaries and GUOs at different points in time.

Note that there is still a substantial amount of observations with missing ownership in-

formation (Column 7, “Independent/missing”) as the availability of ownership data in OR-

9For instance, if a subsidiary is owned by the same firm in the years 2002 and 2004, but the information in
the year 2003 is missing, we take this firm as the respective GUO in year 2003. This is done for up to four
consecutive years. The vast majority of observations recuperated from this step stems from one-year gaps.
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BIS gradually increases over time. Two thirds of firms are affected by missing data at least

to some degree (Column 8). Third, for the spillover analysis, we thus focus on relationships

where in the period of 2002-2012 a subsidiary has (i) full ownership information and (ii) is

owned by the same GUO. While this step does substantially reduce sample size, it allows us

to focus on high quality, stable business group firm data that is suitable to properly identify

the transmission of spillovers in a panel data context. The "spillover" sample still contains

more than 5,100 GUOs that own a total of around 105,000 subsidiaries.

4 Empirical results

4.1 Main results

Table 3 presents the results for our baseline and preferred specification.

For the baseline specification (Column 1), effects for the hot section of the temperature

spectrum are highly significant at the 1% level for temperatures between 27 and 32°C and

above 32°C. In economic terms, the magnitude of the effect of extreme temperature days are

important. Relative to a day in the 16-20°C bin, an extra day with temperature above 32°C

decreases annual output by 1.3% (0.1% for temperature between 27-32°C). Some coefficients

for the cold section are significant at the 5% level. However, these effects are minor in terms

of magnitude. Relative to a day in the 16-20°C bin, an extra day with temperature in the

minus 12°C-minus 7°C bin decreases annual output by 0.1% (0.07% for temperature between

minus 7°C and minus 1°C).

Figure 3 illustrates the non-linear shape of the temperature-output relationship. For this

purpose, we plot the point estimates and the corresponding 95% confidence intervals for

each β1
m as in our baseline specification.

4.2 Robustness

A source of potential bias may arise if past temperatures affect both contemporaneous eco-

nomic outcomes and temperature (Deschênes and Greenstone 2011). We account for this and

augment the baseline specification by controlling for weather with a one-year lag. Column

2 in Table 3 shows the coefficients when jointly estimating current and lagged temperature

bins. The shape of the relationship between output and current temperature remains very

similar to the original findings. Our main results in terms of heat appear to be robust to
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Table 3: Temperature effects on firm output

Baseline Baseline + Wit-1
(1) (2)

]- 12°C -0.0009 0.0001
(0.0007) (0.0006)

[- 12°C, - 7°C] -0.0011** -0.0007
(0.0005) (0.0005)

]-7°C,- 1°C] -0.0007** -0.0003
(0.0004) (0.0003)

]- 1°C, 4°C] -0.0005 -0.0002
(0.0002) (0.0003)

]4°C, 10°C] -0.0003 -0.0001
(0.0002) (0.0002)

]10°C, 16°C] 0.0000 0.0000
(0.0002) (0.0002)

]21°C, 27°C] -0.0002 -0.0002
(0.0002) (0.0002)

]27°C, 32°C] -0.0011*** -0.0010**
(0.0004) (0.0004)

]32°C -0.0127*** -0.0128**
(0.0046) (0.0050)

precipitation 1.31 1.59
(1.577) (1.567)

precipitation2 -26.43 -21.64
(39.020) (38.872)

Firm FE Yes Yes
Year x country FE Yes Yes
Country x industry FE Yes Yes
Year x industry FE Yes Yes
Control variables Yes Yes
Temperature, precipitation t-1 - Yes
Observations 1,511,588 1,287,622
Note: Standard errors (in parentheses) are clustered at the firm level.* p<0.10, ** p<0.05, *** p<0.01.
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Figure 3: Non-linear temperature effect on firm output

this potential bias. In contrast, bins at the cold part of the temperature spectrum are now

insignificant.

In addition, the impact of lagged temperature on output is highly insignificant. These

results are consistent with the tests conducted in previous studies on the shape of the output-

temperature relationship (e.g. Deschênes and Greenstone (2011), Burke and Tanutama (2019),

and Zhang et al. (2018)). We include lagged temperature for the subsequent analysis for ad-

ditional robustness as our preferred specification.

4.3 Heterogeneous treatment effects

A heterogeneity analysis provides a number of insights. First, we identify differences in

responses in different world regions and climate zones. Second, we can assess if firms op-

erating under moderate to hot climates have adapted to extreme heat days and thereby

provide some insights of the potential for adaptation under future warming.

Table 4 presents the results for our preferred specification in the hot and cold countries.

For the sample of comparatively hot countries, effects for three temperature bins of the hot

part of the spectrum are highly significant at the 1% level (21-27°C bin, 27-32°C bin, and

>32°C bin). Again, the magnitude for the coefficient of extreme heat days is economically

important. Relative to a day in the 16-20°C bin, an extra day with temperature above 32°C
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Table 4: Temperature effects on firm output: Heterogeneity

Baseline Southern Countries Northern Countries
(1) (2) (3)

]- 12°C 0.0001 0.0052 0.0001
(0.0006) (0.0034) (0.0007)

[- 12°C, - 7°C] -0.0007 -0.0019 -0.0006
(0.0005) (0.0015) (0.0006)

]-7°C,- 1°C] -0.0003 -0.0001 -0.0002
(0.0003) (0.0007) (0.0004)

]- 1°C, 4°C] -0.0002 -0.0005 0.0001
(0.0003) (0.0005) (0.0003)

]4°C, 10°C] -0.0001 0.0000 0.0001
(0.0002) (0.0004) (0.0003)

]10°C, 16°C] 0.0000 0.0004 0.0000
(0.0002) (0.0003) (0.0002)

]21°C, 27°C] -0.0002 -0.0006** -0.0001
(0.0002) (0.0003) (0.0003)

]27°C, 32°C] -0.0010** -0.0014** -0.0004
(0.0004) (0.0006) (0.0006)

]32°C -0.0128** -0.0158*** -0.0064
(0.0050) (0.0057) (0.0098)

precipitation 1.59 1.77 .23
(1.567) (3.609) (1.749)

precipitation2 -21.64 29.67 -3.42
(38.872) (137.131) (40.038)

Firm FE Yes Yes Yes
Year x country FE Yes Yes Yes
Country x industry FE Yes Yes Yes
Year x industry FE Yes Yes Yes
Control variables Yes Yes Yes
Temperature, precipitation t-1 Yes Yes Yes
Observations 1,287,622 398,034 889,588
Note: Standard errors in parentheses.* p<0.10, ** p<0.05, *** p<0.01.
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decreases annual output by 1.6% (0.14% for the 27-32°C bin and 0.06% for the 21-27°C bin).

Compared to the results for our full sample (1.3%), the effect is notably more pronounced in

magnitude.

We can also identify small but highly significant effects of lesser temperature bins (21-

27°C bin). Like the results in the preferred specification of the full sample, we cannot identify

effects for colder temperatures. All bins in this part of the temperature spectrum are clearly

insignificant.

Figure 4: Non-linear temperature effect on firm output: Southern Countries

In Figure 4, we plot the point estimates for the Southern sample and the corresponding

95% confidence intervals for each β1
m (as in Column 2). The non-linearity of the effect of

temperature on output is again evident. Effects are zero in the cold and moderate parts but

highly significant in the hot parts of the temperature spectrum. For the Northern sample, we

do not find any evidence for temperature effects neither at the hot nor the cold spectrum.10

In sum, we find that temperature responses at the global level appear to be driven by

differences in long-term climate exposure. Strong negative effects from hot temperatures

are driven by firms operating in countries with relatively hot climates. In contrast, we do

not find any effects in cooler regions which may be a result of the notably lower variation

10When using the baseline specification we do find effects for five bins of the cold spectrum that are significant
but small in magnitude. However, they are not robust to using the preferred specification.
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in extreme heat days. Both findings are consistent with results obtained by other studies

(Zhang et al. 2018) showing that effects stem from regions with long-term exposure to high

temperatures.

Since only shocks from extreme heat, i.e. temperatures above 32°C, appear to be eco-

nomically meaningful, we focus our subsequent analysis on the question if heat shocks to

subsidiary firms operating in hot climates induce a shock transmission to the subsidiary’s

global ultimate owner, i.e. translate into output losses at the headquarter level.

4.4 Temperature shock transmission

The analysis on temperature shock transmission is conducted at the level of the headquarter,

i.e. for firm i that in year t is the global ultimate owner of subsidiary firm j. Hence, we

aggregate local weather shocks at the subsidiary level to the level of the respective global

ultimate owner in each year. Each local weather shock at the subsidiary level is weighted

by the affiliate’s respective annual shares in total operating revenue of the entire business

group to which it belongs.

We exploit the exogeneous variation in weather at the subsidiary level to identify its

causal effect on economic output at the headquarter level. We also control for network

specific characteristics such as the size of the network and include dummies for each tercile

of the number of companies in the network in a given year (Barrot and Sauvagnat 2016). In

addition, we account for the potential bias arising from past weather shocks and control for

lagged weather at the local subsidiary level (Zhang et al. 2018; Burke and Tanutama 2019).

This results in the following specification:

ln yit =
∑

m

βm
1 Tm

it +
∑

m

βm
2 TSm

it +
∑

m

βm
3 TSm

it−1 + δWit +Dit +Xit + ǫit, (2)

where TSm
it is the sum of weighted temperature bins. We define it as TSm

it =
∑

mitwijtT
m
ijt,

where wijt is the weight for each subsidiary j of firm i in year t and Tm
ijt is the respective

temperature in each bin m.

The results presented in Table 5 show that extreme temperature shocks propagate within

exposed firm networks.

Relative to a day in the 16-20°C bin, an additional day with temperature above 32°C

at the subsidiary level decreases annual output at the headquarter level by 4.2% and the

effect is significant at the 5% percent level. At the same time, exposures to more moderate

20



Table 5: Temperature transmission effects on firm output at the GUO level

(1)
]- 12°C 0.0122

(0.0124)
[- 12°C, - 7°C] -0.0008

(0.0045)
]-7°C,- 1°C] 0.0017

(0.0014)
]- 1°C, 4°C] 0.0007

(0.0009)
]4°C, 10°C] 0.0012

(0.0007)
]10°C, 16°C] 0.0008

(0.0006)
]21°C, 27°C] 0.0009

(0.0008)
]27°C, 32°C] 0.0010

(0.0009)
]32°C -0.0421**

(0.0213)
precipitation -6.87

(8.223)
precipitation2 54.52

(212.729)
Firm FE Yes
Year x country FE Yes
Country x industry FE Yes
Year x industry FE Yes
Control variables Yes
Temperature, precipitation (headquarter) Yes
Temperature, precipitation t-1 (subsidiary) Yes
Observations 36,302
Note: Standard errors in parentheses. * p<0.10, ** p<0.05, *** p<0.01.
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and colder temperatures are apparently not transmitted with the respective temperate bins

clearly insignificant.

Compared to the local effect on business group firms in the Southern sample (1.6%) re-

ported in Table 4, the transmission effect of extreme heat days at the headquarter level is

clearly more pronounced in magnitude. Local effects for the corresponding sample of sub-

sidiary firms are of similar magnitude as the coefficients for the Southern Sample (1.9%).11

Thus, the high coefficient for the transmission shock suggests that output losses due to ex-

treme temperatures can be amplified within certain firm networks, i.e. a local shock to a

subsidiary can affect headquarter revenues disproportionately.

5 Discussion

Recent studies on climate econometrics have aimed to substantially improve damage esti-

mates of climate change. This paper contributes to this discussion and assesses the impact

of temperature on economic output using a cross-country sample of business group firms

that comprises different world regions and climatic zones.

In a first step, the results show a non-linear temperature-output-relationship with strong

responses at high temperatures. An additional day with temperature above 32°C decreases

annual output by 1.3%. In the second analytical step, negative effects from hot temperatures

appear to arise from firms operating in countries with relatively hot climates and vice versa,

but to a far lesser extent, for cold temperatures. Results for hot temperatures are robust

to different sets of fixed effects, the inclusion of lagged weather data and time-variant firm

behavior. This evidence for a comprehensive sample of 32 countries is in line with previ-

ous firm level studies that focus on specific countries and sectors. For instance, Zhang et al.

(2018) detect for the Chinese manufacturing sector an inverted-U-shape relation, strong neg-

ative effects of extreme heat and differences among comparatively hot and cold sub-national

regions. Similar effects have been found among world regions by studies using comprehen-

sive county- and country-level data (Burke et al. 2015; Burke and Tanutama 2019).

In a third step, this study sheds light on a potentially important cost driver: The trans-

mission of temperature shocks within global business groups. An additional local day with

temperature above 32°C incurs annual output losses of 4.2%. Importantly, losses incurred at

the headquarter level are notably higher than the corresponding first order effect at the local

11Results are available upon request.
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subsidiary level. This means that, under future warming, temperature shocks could become

amplified within certain types of firm networks.

Given the nature of our data, it appears plausible that the estimates we obtain are driven

by higher order effects, i.e. losses incurred by the specific structure of economic depen-

dencies within the network (Wenz and Levermann 2016). Stable, long-term ownership can

possibly capture relationships that are of important value to the network. For instance,

Barrot and Sauvagnat (2016) show that shock propagation between supplier and customer

firms is substantially stronger and more significant if the supplier produces specific inputs

that are hard to replace. The divergence between first and higher order effect sizes might

also be related with subsidiary firms being more resilient to shocks as the bulk of the impact

is absorbed by the network. Giroud and Mueller (2019) demonstrate that subsidiaries have

smaller employment elasticities with respect to local shocks than independent companies.

However, one has to consider that our study aims to deliver a first analysis of a specific

type of ownership relation. More research on the interplay between shock exposure and

structural business group features is needed.

The strong impacts of extreme heat on and within business groups are in line with recent

findings on economic outcomes. For instance, studies demonstrated that average global

incomes could decrease by up to 23% by 2100 (Burke et al. 2015) or that losses in Chinese

manufacturing could incur yearly GDP losses of around 5% by 2050 (Zhang et al. 2018).

Wenz and Levermann (2016) find that inter-sectoral trade can greatly amplify heat-induced

losses. While we cannot provide representative aggregate estimates with our dataset, the

firm-based estimates suggest that the effects are economically important. Given the overlap

in current and future weather distributions, the results can provide us with a useful estimate

of potential medium-run impacts of climate change induced heat stress.

An important empirical question is to what degree the effects we obtain for the medium-

run persist into the long-run. Although firms that operate in relatively hot climates had

sufficient time to adapt, the magnitude of the coefficients is sizeable which suggests that

effects may continue into the future. However, no clear consensus has emerged so far on

adaptation with some studies detecting limited potentials and other studies indicating the

opposite (Behrer and Park 2018). More research on how to alleviate the impacts of extreme

temperature, particularly using longer time horizons, is needed (Kalkuhl and Wenz 2018).

From a policy perspective, it is important to understand if local shocks can be contained

and prevented from spreading to the regional and global level. In terms of adaptation, one
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would expect business groups to move their subsidiary locations or to integrate new, less ex-

posed firms into their networks. However, the empirical literature on network production

demonstrates that switching costs can be substantial and thus impede adaptation to eco-

nomic shocks at least in the short run (Antràs and Yeaple 2013; Bernard and Moxnes 2018).

In line with recent evidence (Barrot and Sauvagnat 2016), results suggest that the impor-

tance of switching costs may be high when it comes to specific long-standing relationships.

More research on the persistence of effects and the importance of switching costs in the long

run as well on how to alleviate these impacts is needed.
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