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Abstract
Hotter years are associated with lower economic output in developing countries. We show that the effect 
of temperature on labor is an important part of the explanation. Using microdata from selected firms in 
India, we estimate reduced worker productivity and increased absenteeism on hot days. Climate control 
significantly mitigates productivity losses. In a national panel of Indian factories, annual plant output falls 
by about 2% per degree Celsius. This response appears to be driven by a reduction in the output elasticity of 
labor. Our estimates are large enough to explain previously observed output losses in cross-country panels.
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1 Introduction

Recent research has uncovered a systematic negative correlation between temperature and

aggregate national output, especially in tropical developing countries (Dell, Jones, and Olken,

2012; Burke, Hsiang, and Miguel, 2015). High temperatures are associated with reduced crop

yields as well as lower output in non-agricultural sectors.1 Explanations for this relationship

include heat stress on workers and temperature-related increases in mortality, conflict, and

natural disasters.2 Establishing and quantifying the relative importance of these mechanisms

is crucial for identifying possibilities of adapting to a hotter world.

In this paper we focus on understanding and quantifying the role of heat stress in mediating

the temperature-output relation. Our knowledge of human physiology suggests that work-

ers should respond fairly quickly when made to work in uncomfortable temperatures. Heat

impacts on labor can therefore be identified both in daily or weekly output and in data at

higher levels of aggregation. This distinguishes heat stress from many alternative mecha-

nisms. We use several microdata sets and a nationally representative panel of manufacturing

plants to estimate the effects of high temperatures on labor. Although we focus on Indian

manufacturing, since heat stress is a universal physiological mechanism, the implications of

our results may extend to other sectors and countries.

There are two channels through which high temperatures might affect factory workers. They

may produce less while at work and also be absent more often. We assemble high-frequency

data on workers in three different manufacturing settings; cloth weaving, garment sewing,

and steel products, and separately identify these two effects. We find that the output of

individual workers and worker teams declines on hot days as well as in weeks with more

hot days. Absenteeism is increasing in both contemporaneous temperatures as well as those

1For evidence on yields, see Mendelsohn and Dinar (1999), Auffhammer, Ramanathan, and Vincent
(2006), Schlenker and Roberts (2009), Lobell, Schlenker, and Costa-Roberts (2011), and Gupta, Somanathan,
and Dey (2017).

2Hsiang (2010) discusses heat stress, Hsiang, Burke, and Miguel (2013) identify a temperature-conflict
relationship and Burgess et al. (2017) study effects on mortality.
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experienced over the preceding week. Stronger effects are visible for paid leave, with a weaker

temperature-absenteeism relationship for unpaid leave. Climate control in the workplace

eliminates productivity declines but not absenteeism, presumably because workers remain

exposed to high temperatures at home and outside.

To examine whether the temperature effects for workers in these firms are more generally

reflected in India’s factory sector, we use a 15-year nationally representative panel of man-

ufacturing plants. We find that the value of plant output declines in years with more hot

days. Annual output is predicted to fall by 2.1 percent if every day warms by 1o C. We

use a Cobb-Douglas specification to show that temperature-induced reductions in the out-

put elasticity of labor, rather than capital or other factors, drive this response. This is not

surprising, given that industrial air-conditioning was rare in India even in 2012, the last year

covered by our data. The demand for large commercial units was a small fraction of the

demand in both China and the United States, in spite of India being the warmest of these

three countries.3

After presenting our main results, we consider some alternatives to the heat stress channel,

including natural disasters, power outages, and conflict. For the years covered by our plant

panel, we collect data on instances of flooding, power shortages, and workdays lost in all

recorded industrial disputes. We find that these variables cannot account for the estimated

effect of temperature on output. Other possible explanations for the negative effect of high

temperatures on manufacturing plant output include temperature effects acting through

input prices and via linkages with agriculture. However, we find no effect of temperatures

on input prices after controlling for state and year fixed effects, so this cannot account

for our results. Also, we find that output declines occur across manufacturing sectors, so

agricultural linkages (which vary greatly across sectors), are unlikely to be an important part

of the explanation.

3We discuss this further in Section 4.
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Our final set of results are at a yet higher level of aggregation, the Indian district. Official

data on manufacturing sector GDP is available for Indian districts for the period between

1998 and 2009. We use a panel of 438 districts with unchanged boundaries over this period to

directly estimate the impact of a one-degree increase in temperature on district output. We

estimate declines of 3 percent per degree Celsius. This is comparable to the plant response.

To situate these findings within the context of the country-level relationships that motivate

this paper, it is helpful to compare the temperature-output relationship estimated at several

different levels of aggregation. Putting together our results from worker, plant, and district

data, we find that effect sizes in all three cases are similar. Strikingly, these effects are large

enough to account for the country-level response to temperature observed in the literature.

Although this does not imply that heat stress is the sole reason for country-level decreases

in manufacturing sector output during hot years, it does indicate that this may be a much

more important mechanism than previously believed.

Notwithstanding the importance of these temperature effects, adaptation through climate

control is limited. For example, the cloth-weaving firms we study are labor-intensive but do

not use climate control. Given the costs of electricity, value added per worker may be too

low to justify these investments. In the garment firms, value addition by workers is greater

and we see partial climate control. In our national plant panel, we find that temperature

effects on output fall over time, perhaps the result of investments in adaptation.

If heat stress plays an important role in reducing output, then firms that do make costly cli-

mate control investments should strategically allocate these resources towards tasks that are

labor-intensive and add significant value. We surveyed the management of 150 plants in the

diamond processing industry to test these hypotheses. We find that air-conditioning is selec-

tively used in rooms with activities that are both labor-intensive and critical in determining

diamond quality.

3
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The remainder of this paper is organized as follows. Section 2 summarizes the physiological

evidence on heat stress. Section 3 describes our data sources. Our main results are in

Section 4. In Section 5 we compare effect sizes from our worker, plant, and district-level

data and show that these are of similar magnitude and are also consistent with country-level

estimates in the literature. Section 6 examines the adoption of climate control investments

within firms. Section 7 discusses alternative explanations and the robustness of our main

results. Section 8 concludes.

2 Prior Literature

The science of how temperature affects human beings is straightforward. Heat generated

while working must be dissipated to maintain body temperatures and avoid heat stress.

If body temperatures cannot be maintained at a given activity level, it becomes necessary

to reduce the intensity of work (Kjellstrom, Holmer, and Lemke, 2009; Iso, 1989). The

efficiency of this process depends primarily on ambient temperature but is also influenced

by humidity and wind speed (Parsons, 1993; Iso, 1989). Laboratory studies often use an

adjusted measure of heat that accounts for these factors - the wet bulb temperature or

WBT (Lemke and Kjellstrom, 2012). Unfortunately, outside the lab, data on humidity is

often unavailable. For this reason, and to enable comparisons with prior work, we use daily

maximum temperatures as our measure of heat throughout this paper.4

There have been a number of studies in the physiology and engineering literature that find

that high temperatures reduce labor productivity. Mackworth (1946) conducted an early

artefactual field experiment with wireless telegraph operators and found that they made

more mistakes at high temperatures. Parsons (1993) and Seppanen, Fisk, and Faulkner

(2003) summarize important findings in this area. Hsiang (2010) presents a meta analysis

of recent laboratory evidence which shows that once wet bulb temperatures rise above 25

4Section A.3 in the Appendix provides estimates using WBT for our factory sites.
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degrees Celsius, task efficiency appears to fall by approximately 1 to 2 percent per degree.

A WBT of 25 degrees Celsius at 65 percent relative humidity is roughly equivalent to a

temperature of 31 degrees Celsius in dry conditions.5 These temperatures are not considered

unsafe from the point of view of occupational safety and commonly occur in many countries.6

Controlled experiments in the laboratory or workplace provide a useful benchmark but do

not fully capture real manufacturing environments. Workers and management generally op-

erate well within physical limits and have room to increase effort in response to incentives.

The output-temperature relationship therefore depends on the physical as well as behavioral

aspects of employment such as the wage contract, particularities of production, management

techniques, and mechanization. This makes data from non-experimental settings partic-

ularly valuable. As early as 1915, Huntington exploited daily variations in temperatures

experienced by workers and students performing various tasks and found that high temper-

atures appeared to reduce output (Huntington, 1915).7 More recently, Adhvaryu, Kala, and

Nyshadham (2019) exploit variation in workplace temperatures induced by low-heat LED

lighting and conclude that worker productivity increases when temperatures are reduced.

Workplace productivity aside, high temperatures may also reduce our willingness and ability

to even be present at work. Much less prior evidence exists on absenteeism although Zivin

and Neidell (2014) find that people in the United States allocate less time to work in exposed

industries when temperatures are very high.

3 Data Sources

Our labor and output data are at three levels of aggregation: the worker or worker-team, the

plant, and the district. For each data set, we match output to measures of temperature. We

5The WBT scale is compressed relative to temperature, so a one-degree change in WBT corresponds to
a higher than one-degree change in temperature.

6Temperature exposure in sectors such as mining can be high enough to create serious health hazards.
These settings have long been used for research on heat stress and occupational safety (Wyndham, 1969).

7We are grateful to an anonymous reviewer for pointing us to some of this literature.
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also conduct a survey of diamond firms to study the selective use of climate control. Official

data in India is typically available for financial years, which run from April 01 through March

31. When referring to a financial year, we use the initial calendar year. Our data sets are

described below and summarized in Table 1.

3.1 Worker Data

We collected worker output and attendance data from selected firms in three industries:

cloth weaving, garment sewing, and the production of large infrastructural steel products.

Figure A.1 in the Appendix has photographs of production lines in each of these industries.

Our three cloth-weaving factories are all located in the industrial city of Surat in the state

of Gujarat, in western India. Our garment factories are managed by a single firm, with

six plants located in the National Capital Region (NCR) in North India, and two others in

the cities of Hyderabad and Chhindwara in south and central India. Our steel production

data are from the rail and structural mill of a large public sector steel plant in the town of

Bhilai in central India. Each of these sites is part of an important manufacturing sector in

the Indian and global economy. The textile sector (which includes spinning, weaving, and

dyeing) employs about 12 percent of factory workers in India. The garment sector employs

about 7 percent of factory workers, and the Bhilai steel mill is the largest producer of steel

rails in the world.8

For the three cloth-weaving factories, we gathered daily data on meters of cloth woven and

attendance of 147 workers employed during the financial year starting April 2012. A worker in

each of these factories operates about 6 mechanized looms producing woven cloth. Workers

are engaged in monitoring looms, adjusting alignment, restarting feeds when interrupted,

and making other necessary corrections. The cloth produced is sold in wholesale markets or

to dyeing and printing firms. Workers are paid based on the meters of cloth woven by these

8For employment shares, see Annual Survey of Industries, 2009-10, Volume 1. A description of the steel
plant at Bhilai is available from the Steel Authority of India Ltd. The steel rails from Bhilai are used for
the entire network of public railroads in the country.
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looms and no payments are made for days absent. Protection from heat is limited to the

use of windows and some fans. We obtained payment slips for each day and digitized these

to generate a worker-level dataset of daily output and attendance. For most types of cloth,

workers were paid 2 rupees per meter.

For garment sewing, we have production data from eight factories owned by a single firm

producing garments for foreign apparel brands. Unlike in the cloth-weaving firms described

above, these workers are paid monthly wages that do not directly penalize workers for small

variations in productivity or occasional absences. In each plant, production is organized in

sewing lines of 10-20 workers, with each line creating part or all of a clothing item. Lines

are usually stable in their composition of workers, while the garment manufactured by a

given line changes based on production orders. Our productivity measure relates to the

entire sewing line. The garment sector is highly competitive and firms track worker output

in sophisticated ways. In our case, the firm used an hourly production target for each

line, based on the time taken to complete the desired garment by an experienced line of

‘master craftsmen’. The actual hourly output, controlling for the target, provides a measure

of the line productivity. The target is not revised each day so it is not sensitive to daily

temperatures. The firm management provided us with daily production from 103 sewing

lines over a period of 730 days during the calendar years 2012 and 2013. They also gave us

attendance records over the same period, allowing us to construct a daily count of absences

within sewing lines in their factories.9

These garment factories also provide us an opportunity to study the effects of climate control

investments on productivity. During the period for which we have data, the firm was in the

process of installing cooling equipment on its shopfloors. This installation of climate control

9Not all sewing lines are operational for all days during these two years. The number of observations
over the time span of 730 days therefore varies by sewing line. Our attendance data covers more workers
than our output data, for example, employees engaged in cloth cutting but not sewing activities in the same
factories. Since output data does not identify individual workers and lines are labeled differently in the two
data sets we separately analyze productivity and absenteeism and do not investigate interactions.
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had been completed in five of the manufacturing units in the capital region (NCR) before

2012, but the sixth unit did not get this until 2014. Of the 103 sewing lines, 84 lines

were located in the NCR, of which 74 had climate control. Two factories in Hyderabad and

Chhindwara (19 sewing lines) were also without climate control, but average temperatures in

these areas are lower than in the NCR. This phased roll-out allows us to compare temperature

effects in co-located factories with and without climate control.

The rail and structural mill in Bhilai is the primary supplier of rails to the Indian Railways

and also produces steel products used for large infrastructural projects. Rectangular blocks

of steel called blooms form the basic input for all these products. They enter a furnace and

are then shaped into rails or structurals to meet ordered specifications.10 When a bloom

is successfully shaped, it is said to have been rolled. The number of blooms rolled in an

eight-hour shift is our measure of output.

There are three shifts on most days, starting at 6 a.m., and workers are assigned to one of

three teams which rotate across these shifts. The median number of workers on the factory

floor is 66. Our production data records the team and the number of blooms rolled for

each working shift during the period 1999-2008. We observe a total of 9172 shifts over 3337

working days. In addition to the team output in each shift, we also have team-level absences

over a shorter period of 857 working days between February 2000 and March 2003.11

Unlike the weaving and garment units, the production of rails is highly mechanized and the

mill runs continuously with breaks only for repair, maintenance, and adjustment for different

products. Workers who manipulate the machinery used to shape rails sit in air-conditioned

cabins. Others perform operations on the factory floor. This is the most capital-intensive of

our case study sites with both automation and climate control.

10Structurals refer to a miscellaneous set of steel products used mostly in construction projects such as
roads and bridges.

11These data were first used by Das et al. (2013), who provide a detailed account of the production process
in the mill.
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3.2 Panel of Manufacturing Plants

We purchased secondary data from the Annual Survey of Industries (ASI) covering the

financial years 1998-99 to 2012-13. The ASI is a Government of India census of large plants

and a random sample of about one-fifth of smaller plants registered under the Indian Factories

Act. Large plants are defined as those employing over 100 workers.12 The ASI provides

annual data on output, the value of fixed assets, debt, cash on hand, inventories, input

expenditures, and the employment of workers and management. The format is similar to

census data on manufacturing in many other countries.13

The ASI provides plant identifiers for the period 2000-2010 but not in other years. To create a

longer panel requires matching observations across different years using time-invariant plant

characteristics. Following a procedure similar to Allcott, Collard-Wexler, and O’Connell

(2016), we create an unbalanced panel of 58,377 plants from 1998 to 2012.14 We match

plants to temperature and rainfall at the level of the district.15

3.3 District Panel of Manufacturing GDP

The Planning Commission of India has published data on district-level manufacturing sector

GDP over a 12-year period from 1998 to 2009. These figures include ASI plants as well as

estimates from unregistered manufacturing and smaller factories not covered by the ASI.

We use these statistics to directly estimate the effect of temperature on economic output,

aggregated at the level of districts. Unfortunately, after 2009 this information has not been

systematically compiled. Data for some districts was either not available in this dataset,

or not reliable because of changes in boundaries over this period. Kumar and Somanathan

(2009) provide a review of these boundary modifications. Therefore our estimates are based

12For regions with very little manufacturing, the ASI covers all plants, irrespective of their size.
13See Berman, Somanathan, and Tan (2005) for a discussion on the measurement of variables in the ASI

and its comparability with manufacturing data in other countries.
14Appendix Section A.4 provides details on panel construction.
15There are 529 districts with at least one plant in the data set. Figure A.4 in the Appendix shows the

geographic distribution of ASI plants and locations of our microdata sites.
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Table 1: Summary of Worker and Firm Datasets

Source Location Unit
(# of obs)

Dependent
Variables

Time Climate
Control

Cloth
Weaving Firms

Surat Worker
(147)

Meters of cloth,
Worker Attendance

365 days No

Garment
Sewing Plants

NCR,
Hyderabad,
Chhindwara

Sewing Line
(103)

Operations completed 730 days
(varies by line)

Partial
(74 lines)

Garment
Sewing Plants

NCR,
Hyderabad,
Chhindwara

Sewing Line
(266)

Absences 730 days
(varies by line)

Partial
(224 lines)

Steel Mill Bhilai Shift-Team
(9)

Blooms rolled,
Team Absences

3337 days
(Production)
857 days
(Attendance)

Yes

Association of
Diamond Firms

Surat Plants ×
Operations
(150×5)

AC Indicator Cross-section Partial

Annual Survey
of Industry

National Plant
(58,377)

Value of output 15 years NA

Planning
Commission
of India

National District
(438)

Manufacturing GDP 12 years NA

10



Working Paper

on a sub-sample of 438 districts with static boundaries and at least 2 non-missing observations

over this period.

3.4 Weather Data

Our weather data come from two sources. We use recordings from public weather stations

within the cities where our cloth-weaving and garment-sewing factories are located. We also

use a 1◦ × 1◦ gridded data product sold by the India Meteorological Department (IMD),

which provides daily historical temperature and rainfall measurements interpolated over the

IMD’s network of monitoring stations across the country. The first of these provides a more

precise measure for locations near a weather station. The second is best suited to averaging

over larger areas.16

In the case of our worker data, we know the precise factory locations and can use data from

nearby public weather stations wherever available. We characterize the temperature of a day

using the daily maximum temperature, which occurs during working hours and is therefore

a useful proxy for heat exposure at the workplace. There were no public weather stations in

the proximity of the Bhilai Steel Plant over the period for which we have data. For this plant,

we instead rely on the IMD gridded dataset and use an inverse distance weighted average of

grid points within 50 km of the plant to assign daily maximum temperature values.

For our annual panel of manufacturing plants we use daily maximum temperatures from the

IMD gridded datasets as well as daily precipitation. Since we do not have precise location

coordinates from the ASI, we assign to each plant the temperature and rainfall corresponding

to the district in which it is situated. These numbers are obtained by spatially averaging

grid temperatures over the geographical boundaries of each district. Additional details are

in Appendix Section A.4.

16The physiology literature often uses wet bulb temperatures (WBT) to study heat stress. This measure
combines temperature and humidity. We are not aware of a good source of time-varying measures of wet
bulb temperatures for the whole country. For this reason, and to ease comparison with previous work, we
use maximum temperatures throughout the main paper.

11
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When using the ASI data, in our main specification we aggregate daily temperatures up to the

annual level using counts of the number of days in the year falling within different tempera-

ture bins. We use temperature bins defined as {(0, 20], (20, 25], (25, 30], (30, 35], (35, 50]}.
To summarize the temperature distribution over the year, we construct a vector T =

(T 1, T 2, T 3, T 4, T 5) with counts of the number of days in each of these bins. This is cal-

culated for every district and each year. Taken together, these bins are non-overlapping

and span the observed range of temperatures in the data, so that any given day is assigned

to exactly one bin. We also estimate additional specifications using alternative functions

of daily maximum temperatures over the year, including a degree-day measure. These are

described in Section 4.2.

When using worker-level data we also use similar binned specifications. The cut-offs and

width of these bins vary, reflecting differences in the distribution of weather in different

sites. Bin definitions for workers are discussed in Section 4.1 and shown in Figure 1.

3.5 Climate Control within Diamond Firms

In August 2014, we surveyed 150 diamond-cutting plants, randomly sampled from over 500

units formally registered with the industry association of the city of Surat (the same location

as our cloth weaving units). Each plant carries out five operations: (i) sorting and grading (ii)

planning and marking (iii) bruting (rounding a diamond) (iv) cutting (v) polishing. Although

these factories are small and labor-intensive like the cloth-weaving plants, the value added

in production is much greater and these units commonly deploy air-conditioning in at least

some parts of the plant.

We asked the management of each firm about the number of workers and machines and the

use of air-conditioning in each of the five operations. They were also asked to rate, on a

scale of 1-5, the importance of each of these processes to the quality of final output. We use

these responses to study the selective deployment of climate control.

12
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4 Results

4.1 Temperature Effects on Worker Output

Temperature can influence worker output through different channels. People may be more

likely to miss work on very hot days. They may also be less productive at the workplace

because of heat stress. Both contemporaneous and lagged temperatures potentially matter.

We begin by estimating the effects of temperature on the output of workers at the weekly

level. These estimates reflect the combined effects of absenteeism and reduced productivity

at work. We then use daily data to separately examine the non-linear effects of contempo-

raneous and lagged temperatures on productivity and attendance.

Output is related to temperature using the following binned specification:

yiw = αi + γM + γt +
J∑

j=2

βjT
j
iw + θRiw + λXiw + εiw (1)

Our output measure is in physical units in each of the three types of firms that we study.

For cloth weaving, yiw is the inverse hyperbolic sine transformation of the daily meters of

cloth produced by worker i averaged over the course of week w. If a worker is absent, we set

output for that day at zero. We use this transformation instead of logarithms since our output

indicator can take zero values. For the steel mill, yiw is the logarithm of the average number

of rectangular blooms rolled in shift i during week w. As described in Section 3, a bloom is

an intermediate steel product that is used in the manufacture of railway tracks. There are

three shifts in the workday each manned by a different worker team. For garment plants,

yiw is the logarithm of the ‘efficiency’ of each sewing line (a team of workers). ‘Efficiency’ is

a performance metric used by the garment firm and it is based on the number of operations

completed every hour by the sewing line. We also control for a line-specific target efficiency

that is set by the firm, as described in Section 3. We do this because the lines carry out

13
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operations of varying complexity over time and the target helps to control for this. Note

that the target itself is not updated daily and is therefore independent of temperature.

We include a range of fixed effects to control for idiosyncratic worker productivity and

temporal and seasonal shocks. Fixed-effects for the ith unit are denoted by αi. A unit is an

individual worker in the cloth-weaving firms, a sewing line in garment firms, and a team-shift

for the steel mill. As mentioned in Section 3, for the steel mill there are 3 shifts a day, and

three teams of workers rotating across shifts, producing a total of 9 indicator variables.

Output is likely to respond to (possibly seasonal) demand, so we also include month and

year fixed effects (γM , γt). Riw is a weekly average of daily rainfall, and Xiw are other

controls- the number of working days in the week, and additionally for garment workers,

the target efficiency. T j is a count of the number of days in the reference week that fall in

a given temperature bin j. We use the following temperature bins: (0,19], (19,21], (21,23],

(23,25], (25,27], (27,29], (29,31], (31,33], (33,35], (35,50]. Taken together, these capture the

non-linear relationship between output and temperature.

The temperature range we observe for each unit depends on its location. For units in the

National Capital Region (NCR) around Delhi we use all 10 temperature bins. For each of

the other factory locations, we combine some of the lower temperature bins because observed

temperatures span a smaller range. To facilitate comparisons, the highest bin is pegged at

maximum temperatures above 35 degrees Celsius. The cloth-weaving workers in Surat face

warmer temperatures so our first bin ends at 29 degrees Celsius. This produces 5 bins:

(0,29], (29,31], (31,33], (33,35], and (35,50]. For the steel plant and the garment sewing lines

outside the NCR, our first bin ends at 27 degrees Celsius. Because the sum of all bin counts

is a constant, we omit the lowest bin in our regressions. The estimate of the coefficient of

T j should be interpreted as the effect of a single day in the week moving from the lowest

(coldest) temperature bin, T 1, to a warmer temperature range corresponding to bin j.
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Figure 1 presents coefficient estimates βj for all worker sites, with 90 percent confidence

intervals. In the absence of climate control, output falls in weeks with more hot days.17

In climate-controlled garment plants in the NCR (Panel A), we see no negative effects of

temperature on output. For the steel mill, which is largely automated and has climate

control, if anything, output rises slightly at higher temperatures (Panel D). This might

occur if climate control is turned on only on hot days, making workplace conditions on those

days actually more comfortable. It is also possible that foundry operations are negatively

affected by cold weather because metal may set too quickly, causing faults in the final output

(Fiorese et al., 2015). We return to the question of interactions of capital equipment with

temperature in Section 4.2.18

Our estimates are heterogeneous across workplace settings. For garment plants in the NCR

without climate control, the effect of an additional day in a week moving from the lowest

to highest temperature bin is to reduce average daily efficiency by as much as 8 percent.

The estimate for the garment plants in Hyderabad and Chhindwara is about half of this.

For weaving workers, it is as low as 2 percent. These differences are not surprising because

the omitted bin is not the same across sites - in warmer regions the omitted bin spans

higher temperatures than for sites in the NCR. That said, workplaces vary along many

other dimensions such as worker health and income, the nature of physical or cognitive

tasks they perform, differences in the output measure, financial incentives and the nature of

employment contracts. These factors may lead to heterogeneous effects of heat even if the

observed temperature ranges are the same.

For worker sites, we are also able to obtain data on temperature and humidity and can

estimate wet bulb temperatures (WBT) that are commonly used in the physiology literature

17Large shop-floors are not cooled by typical air-conditioning units. Thus when we refer to climate control
we mean a plant that has a centralized cooling system such as an air-washer installed.

18High temperatures could directly reduce productivity if they are associated with power outages. All the
factories in our dataset have a power backup, so this is not a concern. Also, if outages were driving our
results, we should expect to see this effect in plants with and without climate control.
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to measure heat stress. In the Appendix (Figure A.3) we replicate the results in Figure

1 using bins in WBT instead of maximum temperatures. We find the same patterns of

output response as we do when using maximum temperatures to proxy for heat. If anything,

standard errors are smaller and effect sizes slightly larger.

Lagged Effects on Output and Absenteeism

To examine the effect of contemporaneous and lagged temperatures on workplace produc-

tivity and absenteeism, we turn to our disaggregated daily data. Exposure to very hot days

may generate fatigue and illness, lowering output and increasing absenteeism. Strokes, fa-

tigue, and even cases of organ damage have been directly linked to heat stress, and continued

exposure may increase overall vulnerability (Kovats and Hajat, 2008). Other illnesses may

be influenced by sustained warm weather through different mechanisms, for example, the

increased breeding of pathogens and disease vectors.

We modify (1) to include lagged temperature bins. Lj
id is a count of the number of days

falling in bin j in the six days preceding day d. Our output and other variables are as before,

except now at the daily rather than weekly level. In the case of weaving workers, we include

only those present at work on day d. We estimate

yid = αi + γM + γt +
∑
j

βjT
j
id +

∑
j

ωjL
j
id + θRid + λXid + εid (2)

T j is now an indicator for the day falling in temperature bin j. Rid is daily rainfall and

Xid now includes a fixed effect for the day of the week, and as before, for sewing lines it

also includes the target efficiency for the line. Our estimates from weekly data in Figure

1 suggest that most of the temperature effects occur in the two highest bins. We focus on

these temperatures by aggregating over cooler bins. Therefore, there are a total of three bins

in both T and L.19

19Including lagged variables for all temperature bins increases the number of coefficients being estimated
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Our results are in Table 2. Declines in daily output on hotter days are seen only in sites

without climate control.20 Lagged temperatures reduce output for some sites. The clearest

effects are found for weaving workers, where an additional day above 35oC in the six preceding

days causes a 2.7 percent decrease in contemporaneous daily output. Notice that lagged

temperatures seem to matter even in climate-controlled garment plants. This may reflect

exposure outside the workplace. This is related to our findings on absenteeism which we

turn to next.

We have a daily indicator of absenteeism for our cloth-weaving workers. In the case of

garment and steel plants, we have daily counts of the number of absences in the worker-

team. Using these measures of absenteeism as the dependent variable, we estimate (2). From

Table 3, we see absenteeism effects in settings with and without climate control. Lagged high

temperatures increase the likelihood of missed work in climate-controlled garment factories,

the steel plant, and the weaving plants. For garment plants with no climate control our

coefficients are imprecisely estimated.

The garment workers in our sample provide us with some insight into how workers re-

spond to incentives. These workers are allocated a certain amount of paid leave and our

data distinguishes paid and unpaid absences for each worker. In climate-controlled garment

plants in the NCR (columns 1-2) we find that the number of paid absences increases with

both contemporaneous and lagged temperatures but the probability of unpaid leave does

not change with temperature. This suggests that monetary disincentives could weaken the

temperature-absenteeism link.21 For non-climate-controlled garment plants (columns 5-6),

our point estimates are too noisy to draw any conclusions.

and reduces the precision of our estimates.
20As before we see positive effects on output in the case of climate-controlled sites. Standard errors are

high for the garment plants in central and south India and we are unable to draw clear conclusions.
21We focus here on daily absenteeism. The incentives generated by employment contracts may affect

other types of absences and also the duration of employment. Section A.2 in the Appendix provides data
on monthly absences for these two types of workers. Those without paid leave are much more likely to leave
during summer months. This is also borne out by interviews with factory owners in the city of Surat, where
our cloth weaving plants are located.

18



Working Paper

Absenteeism driven by contemporaneous high temperatures may be partially due to time-

allocation decisions and labor-leisure trade-offs (Zivin and Neidell, 2014). Lagged effects

may also reflect the effects of morbidity. Although workplace climate control may reduce the

effects of temperature on worker productivity on the shop-floor, it may not remove negative

output effects caused by absenteeism. Absenteeism might also result in costs we do not

measure, such as firms hiring redundant workers. The presence of redundant labor has been

documented for the steel plant we study (Parry, 1999) and this might explain why we do

not see output effects in climate-controlled plants in spite of increased absenteeism.

For the garment and steel plants there is no straightforward way to translate increased

absenteeism within worker teams into impacts on output. For weaving workers, an additional

day above 35oC in the six preceding days causes a 0.005 increase in the probability of missing

work. The mean worker output, on a day when the worker is present, is 134.3 meters of

cloth. Since absenteeism takes output to zero, this is equivalent to a reduction of 0.7 meters.

Weaving workers come to work intermittently so their average daily output, net of absences,

is about 51 meters of cloth per day. An additional hot day in the six preceding days therefore

reduces output by about 1.4 percent through the absenteeism channel. This can be compared

with a loss of 2.7 percent via the on-the-job productivity channel (Table 2).

19



Table 2: Effect of hot days on worker output

Climate Control No Climate Control

Garments Steel Weaving Garments

Log Efficiency Log Blooms Rolled IHS Meters Log Efficiency

(1) (2) (3) (4) (5)

T (33-35 C) 0.025∗∗ 0.028∗ −0.040∗∗ −0.129∗∗∗ −0.007
(0.010) (0.017) (0.019) (0.042) (0.037)

T (above 35 C) 0.035∗∗∗ 0.020∗∗ 0.011 −0.154∗∗∗ 0.008
(0.014) (0.009) (0.022) (0.041) (0.046)

L (33-35 C) −0.004 0.005 −0.033∗∗∗ −0.009 0.004
(0.005) (0.004) (0.011) (0.012) (0.010)

L (above 35 C) −0.011∗∗ −0.002 −0.027∗∗∗ −0.019 0.015
(0.005) (0.005) (0.009) (0.027) (0.018)

Climate Control Yes Yes No No No
Number of Units 74 lines 9 teams 147 workers 10 lines 19 lines
Time Span 730 days 3337 days 365 days 730 days 730 days

Notes: Robust standard errors clustered at worker level. T is an indicator for a day falling in the specified
temperature bin. L is a count of the number of days falling in the specified temperature bins in the six
preceding days. Models include unit level fixed effects (individuals for weaving and teams for garments and
steel) and fixed effects for the month, year, and day of the week. Columns 1 and 2 have estimates from
climate-controlled garment plants in the NCR and the steel mill in Bhilai. Columns 3-5 are for settings
without climate control - weaving workers in Surat and garment sewing lines in the NCR and south and
central India. Output for weaving workers is an inverse hyperbolic sine transformation of meters of cloth
woven. The output variable for garment workers is the logarithm of the efficiency measure. Rainfall is
included as a control but estimates are not presented.
∗∗∗p < 0.01, ∗∗p < .0.05, ∗p < . 0.1
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Table 3: Effect of hot days on worker absenteeism

Climate Control No Climate Control

Garments Steel Weaving Garments

Paid Unpaid All All Paid Unpaid

(1) (2) (3) (4) (5) (6)

T (33-35 C) 0.082∗∗∗ −0.083 −0.011 0.003 −0.001 0.796
(0.022) (0.065) (0.048) (0.004) (0.128) (0.678)

T (above 35 C) 0.115∗∗∗ 0.031 0.051 −0.004 −0.034 1.001
(0.027) (0.049) (0.068) (0.004) (0.117) (0.862)

L (33-35 C) −0.018 −0.047 0.044∗∗∗ 0.006∗∗∗ 0.017 0.772
(0.011) (0.032) (0.014) (0.002) (0.077) (0.686)

L (above 35 C) 0.021∗∗ −0.001 0.045∗∗ 0.005∗∗∗ 0.078 0.567
(0.010) (0.022) (0.020) (0.002) (0.083) (0.426)

Number of Units 224 lines 9 teams 147 workers 42 lines
Time Span 730 days 3337 days 365 days 730 days

Notes: Robust standard errors clustered at worker level. T is an indicator for a day falling in the
specified temperature bin. L is a count of the number of days falling in the specified temperature
bins in the six preceding days. Models include unit level fixed effects (individuals for weaving and
teams for garments and steel) and fixed effects for the month, year, and day of the week. (1),
(2) present estimates of the effect of temperature on the number of paid and unpaid leaves for
sewing lines in climate-controlled garment plants. (3) reports coefficients for absences in climate-
controlled steel worker teams. (4) reports the probability of a weaving worker being absent. (5)
and (6) give estimates of temperature effects on paid and unpaid leaves for sewing lines in non
climate-controlled garment plants.
∗∗∗p < 0.01, ∗∗p < .0.05, ∗p < . 0.1
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4.2 Temperature Effects on Plant Output

Main Results

Thus far we have used high-frequency data to show that worker productivity declines on hot

days. We now turn to our nation-wide panel of manufacturing plants to examine whether

there are similar temperature effects on the value of plant output and if so, whether they

might be attributable to a decline in the productivity of labor.

We estimate a model analogous to (1):

yit = αi + γt +
5∑

j=2

βjT
j
it + θRit + εit (3)

The dependent variable y is now the log of the value of annual plant output. Plant and

year fixed effects are denoted by αi and γt respectively. For every plant i and year t, T j
it

is the number of days in the year with maximum temperature falling in bin j. We have

5 temperature bins: {(0, 20], (20, 25], (25, 30], (30, 35], (35, 50]}. Rit is the annual average of

daily rainfall in the district containing plant i in year t.22 We use wider bins here than with

our worker data to preserve precision. We have a shorter panel with only 15 years of data,

as opposed to the worker data where our shortest weekly panel is 52 weeks and our shortest

daily panel covers 365 days. The topmost bin for both worker and plant models is identical.

Our coefficient estimates βj are plotted in Figure 2 and indicate an inverse relationship

between temperature and annual plant output, akin to the relationship we see between tem-

perature and worker productivity.23 Each βj is the percentage change in annual plant output

from a single day in the year moving from the coldest bin to bin j. Shaded areas represent 90

percent confidence intervals with standard errors corrected for serial and spatial correlation

22Since temperature and rainfall data are available at the district level but not for individual plants, these
variables have the same values for all plants in a district.

23Two recent studies from China have similar findings (Chen and Yang, 2019; Zhang et al., 2018).
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following Conley (2008).24 A day moving from the lowest to the highest temperature bin

reduces annual output by 0.22 percent.

Figure 2: Temperature effects on the value of annual plant output

−0.300%

−0.200%

−0.100%

0.000%

15 20 25 30 35 40 45
Daily maximum temperature

Pe
rc

en
ta

ge
 c

ha
ng

e 
in

 o
ut

pu
t v

al
ue

The figure shows the percentage change in the annual value of plant output resulting from the daily maximum

temperature of a single day moving from below 20 degrees Celsius to the given temperature. Shaded areas

represent 90 percent confidence intervals with standard errors corrected for serial and spatial correlation

following Conley (2008). Data from the Annual Survey of Industries, 1998-2012.

Alternative Specifications and Warming Scenarios

We examine the robustness of these results by running a set of related specifications. In each

case we predict the percentage change in the value of annual plant output for alternative

warming scenarios. Our results are in Table 4. The first four rows of Columns 1- 4, show the

predicted percentage change in output when a single day in the year moves from 20 degrees

to the specified temperature. The first column has the estimates of Equation (3) already in

Figure 2. Column 2 adds state-specific quadratic time trends. Column 3 controls for floods

and industrial conflicts, while Column 4 controls for power outages. We discuss these three

24Conley errors are presented assuming a 150km radius of spatial correlation.
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variables further in Section 7. We see from Table 4 that the additional controls in Columns

2-4 do not substantially change the bin coefficients.

Columns 5-7 present models that do not use daily bin counts, but depend on the distribution

of daily temperature over the year in other ways. Column 5 presents a model that is piece-

wise linear in degree days. The calculation of degree days is best explained with an example.

A day with a temperature of 29 degrees contributes 20 degrees to the first bin (0-20], 5

degrees to the second bin (20-25], and 4 degrees to the third bin (25-30]. Thus, when a

single day moves from 20 degrees to 25 degrees (the scenario in Column 5, Row 1 of Table

4) there is an increase of 5 degrees in the second degree-day bin and no change in other bins.

More formally, denote the endpoints of our five temperature bins by (T 1j, T 2j], j = 1, 2 . . . 5.

A daily temperature T contributes positive degree days to all those bins for which T > T 1j

and zero to all others. If T ≥ T 2j, the day contributes T 2j − T 1j to bin j. If T 1j < T ≤ T 2j,

it contributes T − T 1j to bin j. As in (3), we now sum the degree days in each bin over the

year to obtain Dj
it for each unit i and estimate the following model:

yit = αi + γt +
5∑

j=2

βjD
j
it + θRit + εit. (4)

The effects of moving a day from 20oC to 25oC, 30oC, 35oC, and 45oC in the degree-day

model are shown in the first four rows of Column 5. These predictions are similar to those

from the binned specifications in the first four columns. Columns 6 and 7 provide results

from models where logged output depends on polynomial functions of daily maximum tem-

perature, summed over the year. Denoting by Tdit the maximum temperature for plant i on

day d of year t, Column 6 has predictions based on the following model:

yit = αi + γt +
365∑
d=1

β1Tdit +
365∑
d=1

β2T
2
dit + θRit + εit. (5)
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Column 7 is based on a variant without the quadratic temperature terms, so output depends

linearly on the sum of maximum daily temperatures over the year. The quadratic and

linear models show smaller point estimates than the binned and degree-day specifications of

Columns 1 through 5, although the confidence intervals are overlapping.

The fifth and sixth rows of the table use our models to generate predictions from two al-

ternative warming scenarios. We use the estimated coefficients from each of our models

to compute the change in log output that would occur if the distribution of temperature

changed from the one we actually observe in our data to a new warmer distribution. Row 5

shows predicted output changes when each day in the year is 1oC warmer, so that the annual

average of the daily maximum temperature increases by 1oC. The estimated reduction in out-

put ranges from 1.6 to 2.3 percent in the different models. Row 6 computes predicted output

changes based on projections of long-term warming obtained from the RCP 8.5 scenario of

the Hadley GEMS2 climate model. For every day in the year, we compute the daily average

of the 2075-2080 projections and the 2005-2010 projections. The difference between these

two give us an estimate of the change in temperature we can expect by 2075-2080 for each

day of the year. We add this change in temperature to the baseline temperature distribution

of average daily temperatures in our data.25 Row 6 provides predictions for output changes

under this warming scenario. These range between −4.5 and −8.9 percent.

To summarize, the inverse relationship between measures of temperature and plant output

is seen across the many model specifications we consider. Results from these alternative

models are broadly comparable, with some heterogeneity in effect sizes.26

The Labor Channel

We now examine the extent to which the aggregate effects we have found in the factory panel

25This baseline distribution averages over all plants in a year and all years in the data set so we work with
a single temperature number for each day of the year.

26Appendix Table A.2 is similar to Table 4 but with different bin cutoffs.
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can be explained by reductions in the productivity of labor as opposed to other factors. There

was very limited deployment of climate control in the Indian factory sector during the period

of our analysis. A study carried out by the Japan Refrigeration and Conditioning Industry

Association reports that the demand for commercial scale air-conditioning units in India in

2013 was about 10 percent that of China and 3 percent of the United States.27 This, together

with our results on declining labor productivity of workers in our microdata suggest heat

stress on labor may be an important explanation for the declines in the value of plant output

we have presented above.

We explore this using a Cobb-Douglas production function in which the total factor pro-

ductivity and the output elasticities of labor and capital are all allowed to depend on the

temperature distribution as represented by the number of days in each of five temperature

bins, T = (T 1, T 2, . . . , T 5). We assume that quantities of labor and capital within the fac-

tory are determined before the realization of T and so do not depend on it. While output

elasticities equal input cost shares on average, they will not do so in any given year since

temperature distributions are not predictable. Denoting logged values of output, capital and

labor by y, k, and l respectively, we have:

y = α(T) + ω(T)k + β(T)l (6)

We assume that total factor productivity α, output elasticity of labor β, and the output

27The total sales of variable refrigerant flow air-conditioning systems, a common technology for larger
commercial and industrial applications, numbered about 22,000 units in India compared to almost 600,000
in China (The Japan Refrigeration and Air Conditioning Industry Association, 2019). Another technology
used in industrial cooling, chiller systems, was even less popular with about 4000 units sold (USAID and
Bureau of Energy Efficiency (Government of India), 2014). Low cost technologies such as industrial air
coolers that use water rather than a refrigerant were also uncommon. As recently as February 2019, in
an interview published in the leading Indian newspaper Hindu BusinessLine, the CEO of India’s largest
manufacturer of air-coolers characterized this market as ‘negligible’, saying that ‘the industrial/commercial
coolers segment doesn’t exist in the country at present.’
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elasticity of capital ω are all linear in temperature bins indexed by j. Thus we have,

α(T) = αo +
5∑

j=2

αjT
j

ω(T) = ωo +
5∑

j=2

ωjT
j

β(T) = βo +
5∑

j=2

βjT
j

Making these substitutions in (6) we obtain

y = αo +
5∑

j=2

αjT
j + ωo · k +

5∑
j=2

ωjT
jk + βo · l +

5∑
j=2

βjT
jl (7)

We use the net value of equipment and machinery at the start of each year as our measure

of capital, and the number of full-time workers as our measure of labor. We add controls for

plant and year fixed effects as well as rainfall to (7) and estimate ωj, βj, and αj.

Coefficient estimates from this model are in Column 3 of Table 5. Columns 1 and 2 show

estimates from models that build up to this one, by incrementally introducing labor and

capital interactions with temperature to our base model in Equation 3. We see that the

temperature-labor interaction terms in Column 3 are all negative and significant, while tem-

perature effects on the output elasticity of capital are positive. Controlling for temperature

interactions with labor and capital, the residual effect of temperature is also insignificant, as

seen in the first four rows. These results suggest that it is temperature-induced declines in

labor productivity that drive the negative effects of temperature on output.

One concern with estimating production functions of this type is potential endogeneity of

labor (Ackerberg, Caves, and Frazer, 2006; Levinsohn and Petrin, 2003). This may not

28



Table 5: Temperature interactions with factor inputs

(1) (2) (3) (4) (5)

T a 0.02324∗

(0.01345)
T 2 0.00256∗∗ 0.00008 -0.00008

(0.00097) (0.00211) (0.00162)
T 3 0.00147 -0.00205 -0.00009

(0.00103) (0.00229) (0.00165)
T 4 0.00081 -0.00094 -0.00028

(0.00108) (0.00237) (0.00170)
T 5 0.00003 -0.00499∗ -0.00171

(0.00118) (0.00259) (0.00185)

l 0.8612∗∗∗ 0.91426∗∗∗ 0.36520∗∗∗

(0.0957) (0.09660) (0.05910)
k 0.20433∗∗ 0.06629

(0.05674) (0.04114)
l×T 2 -0.00098∗∗∗ -0.00134∗∗∗ -0.00056∗∗

(0.00027) (0.00034) (0.00022)
l×T 3 -0.00067∗∗ -0.00104∗∗∗ -0.00038∗∗

(0.00027) (0.00027) (0.00017)
l×T 4 -0.00052∗ -0.00077∗∗∗ -0.00030∗

(0.00027) (0.00027) (0.00017)
l×T 5 -0.00036 -0.00075∗∗∗ -0.00039∗∗

(0.00029) (0.00029) (0.00018)
k×T 2 -0.00009 0.00028∗

(0.00015) (0.00015)
k×T 3 0.00005 0.00022∗

(0.00016) (0.00012)
k×T 4 -0.00003 0.00016

(0.00016) (0.00011)
k×T 5 0.00022 0.00024∗∗

(0.00018) (0.00012)

T a×Ql2 -0.04037∗∗∗

(0.01215)
T a×Ql3 -0.08313∗∗∗

(0.01312)
T a×Ql4 -0.13986∗∗∗

(0.01794)
T a×Qk2 0.04452∗∗∗

(0.01154)
T a×Qk3 0.03544∗∗∗

(0.01224)
T a×Qk4 0.00876∗∗∗

(0.0149)

Observations 179107 179107 179107 179107 176620

Notes: Data are from the Annual Survey of Industry. Standard errors are corrected for serial and spatial
correlation following Conley (2008). Models include plant and year fixed effects. Temperature bins are
{(0, 20], (20, 25], (25, 30], (30, 35], (35, 50]}. T j is the number of days in the jth bin. T 1 is the omitted bin.
(1) and (2) add interactions with labor and capital to our base model. (3) presents OLS estimates of the
production function. (4) presents the first stage of a Levinsohn-Petrin estimate of the production function.
Capital-temperature interactions and residual temperature effects are subsumed in a non-linear control
function and not separately reported. (5) interacts annual temperatures with quartiles of labor and capital
intensities. Coefficients on rainfall and quartile dummies are omitted. ∗∗∗p < 0.01, ∗∗p < .0.05, ∗p < . 0.1
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be a significant concern in our setting, given India’s notoriously inflexible labor market.

In 2017, the World Bank ranked India as low as 130 on its global Ease of Doing Business

index, citing rigid labor laws as a primary reason for the country’s poor performance. Among

several other weaknesses, the report draws attention to India’s Industrial Disputes Act (IDA)

of 1947, which requires that firms with more than 100 employees obtain explicit government

approval before dismissing workers. Since our measure of capital is the value of plant and

machinery at the start of the year, this too is relatively inflexible and cannot be influenced

by temperature shocks during the year.

Nevertheless, as a robustness check, we also estimate our production function using the

Levinsohn-Petrin (LP) estimator that allows for endogenous labor (Levinsohn and Petrin,

2003). This approach assumes that labor is highly flexible and chosen by the firm in each

period, after the realization of any shocks. Section A.5 of the Appendix describes the way

in which we apply this method to our data and Column 4 of Table 5 reports the relevant

coefficient estimates. The point estimates for the labor-temperature interactions are smaller

but remain negative and are statistically indistinguishable from those in Column 3.28

Lastly, we investigate how temperature effects vary by labor and capital intensity. We

measure labor intensity by the ratio of the total annual wage bill to total annual output for

all plants in our sample. We measure capital intensity by the ratio of the value of capital to

annual output. We classify plants into quartiles, Qlj and Qkj, based on their mean values of

labor and capital intensity across all years, and estimate the model below:

yit = αi + γt + β0T
a
it +

4∑
j=2

βl
jT

a
itQ

lj
i +

4∑
j=2

βk
j T

a
itQ

kj
i + θRit + εit (8)

Column 5 of Table 5 reports coefficients βl
j and βk

j from this model. The negative effects

28Capital-temperature interactions and residual temperature effects are subsumed in a non-linear control
function and not separately estimated here. See Section A.5 for details.

30



Working Paper

of the annual average of daily maximum temperature (T a) are greatest in plants with high

wage-share output ratios. On the other hand, capital intensity is positively associated with

temperature. These models include plant fixed effects so these results cannot simply be

driven by plant size.29

Taken together, the evidence in this section not only suggests that temperature negatively

affects manufacturing output but also that this response operates through labor productivity.

5 Comparison with Macro-level Estimates

In this section, we show that our estimated temperature effects at worker and plant levels are

consistent with each other, and with estimates based on district-level manufacturing output.

We also compare our results with prior country-level studies. These comparisons suggest

that temperature effects on labor are large enough to account for much of the country-level

response of manufacturing GDP to temperature.

Prior studies have estimated the effect of a one-degree increase in annual temperature on

country GDP. To compare our estimates with these, we must report our worker and plant

results in similar terms. This requires specifying how the distribution of daily temperatures

across the year changes when the average annual temperature increases by one degree. There

is of course, no unique way to map changes in temperature distribution to changes in annual

average temperatures. We simply assume that every day in the year warms by one degree.

Under this assumption, the change in plant output for our primary specification is -2.1

percent with a 90 percent confidence interval of ±1.32. This is plotted in Bar 2 of Figure 3

and is from Row 5, Column 1 of Table 4.

Our worker-level estimates in Figure 1 exhibit heterogeneity across sites, depending on the

29For parsimony, this model interacts only the average daily maximum temperature with quartile dum-
mies. We obtain similar results using days in the highest temperature bin rather than average maximum
temperature. We could also interact all temperature bins with quartile dummies but this produces a large
number of imprecisely estimated coefficients.
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type of work and the degree of protection from heat. Noting that no single setting is repre-

sentative of all workers, we estimate the effect of a one-degree uniform increase in the daily

temperature distribution for garment workers in the NCR who are not working in cooled

environments. We use this site because it has a wide temperature range that corresponds

most closely to that observed in the nationally representative plant data. The estimated

percentage reduction in output is 3 ±1.35 (Bar 1 of Figure 3).30

If the output from manufacturing plants drops in hot years, we should see corresponding

changes in manufacturing GDP at the sub-national level. Using the district panel described

in Section 3, we regress manufacturing GDP on average annual maximum temperature, T a,

controlling for rainfall as well as district and year fixed effects. The coefficient on T a gives

us the effect of a one-degree increase in temperature on district output. The estimated

percentage reduction in manufacturing GDP is -3.5±2.6. This is shown in Bar 3 of Figure

3.31

The last two bars in Figure 3 depict estimates from two recent country-level studies; Dell,

Jones, and Olken (2012) and Burke, Hsiang, and Miguel (2015). Both these studies use

annual average temperatures for many countries across the world, observed over long periods

of time. The specifications in these studies are not directly comparable with ours but their

results provide a useful benchmark. In Figure 3, the fourth bar, labeled DJO, provides the

contemporaneous effect of temperature on industrial sector growth rates in poor countries in

a model with no lags (Table 5 of Dell, Jones, and Olken (2012)). The last bar, with the label

BHM, provides the contemporaneous marginal effect of temperature on all-sector country

output growth, at thirty degrees Celsius from a similar model with no lagged effects (Table

S2 of Burke, Hsiang, and Miguel (2015)). It is interesting that temperature effects on the

30Since we model the relationship between temperature and worker output using a ‘days in temperature-
bins’ specification, we translate a one-degree increase in the daily temperature into corresponding changes
in temperature bins in order to compute this effect.

31We favor using this district panel rather than the Reserve Bank of India GDP figures for Indian states
because these data are interpolated in several years and therefore unreliable. In our district panel we have
missing data in some years, but no imputed estimates.
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Figure 3: Bars 1-3 provide marginal effect of temperature on log output at different levels of production
with 90 percent confidence intervals as estimated in this paper. DJO provides the contemporaneous effect
of temperature on industrial sector growth rates in poor countries in a model with no lags from Dell, Jones,
and Olken (2012). BHM provides the contemporaneous marginal effect of temperature on all-sector country
output growth, at thirty degrees Celsius from a similar model with no lagged effects in Burke, Hsiang, and
Miguel (2015).

economy as a whole are similar in magnitude to those observed for manufacturing alone, and

in turn are similar to our estimates at lower levels of aggregation. Part of the explanation

might be that changes in labor productivity affect all sectors of the economy.

This exercise, does not, of course, imply that the negative effects of temperature on GDP

found in these cross-country studies is occurring wholly or mainly through labor. However,

both studies use data going back to the 1950s, covering long periods of time when climate

control was uncommon in many parts of the world. Our estimates suggest that if the effect

of temperature on labor productivity in the countries and sectors studied by these authors

is of the same size as what we find in Indian manufacturing, then it would be enough to
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explain the entire temperature effect found there.

6 Adaptation

The loss in output caused by high temperatures encourages adaptive responses by firms. In

the short-term, decisions to invest in climate control depend on the costs of cooling, relative

to the expected output losses resulting from heat stress.32 Over longer time periods, firms

may increase automation, relocate plants, or change the composition of output.

Firms may also selectively invest in climate control. If labor productivity plays an important

role in output losses associated with hot days, we would expect that processes which are

labor-intensive and add high value would be preferentially protected. To study this we

conducted a survey of 150 diamond-cutting factories located in the same city of Surat as our

cloth-weaving units. These are drawn randomly from all factories registered with the local

diamond industry association.

Diamond processing plants use several distinct processes, some of which are largely mecha-

nized (such as cutting stones), while others have much greater worker input (such as sorting

uncut diamonds by quality). Our survey allowed us to study the selective adoption of air-

conditioning within plants. We find that climate control is indeed more likely to be used for

processes that are labor-intensive and contribute most to diamond quality. We describe our

data and results in Appendix Section A.10.3.

In our national plant panel we find that the effects of a degree-rise in temperature seem

to be falling over a 15-year period. We modify (3) to include a full set of interactions of

temperature bin counts with a continuous time variable. The negative effect on output from

an additional day in the fourth and fifth temperature bins reduces by about 6 to 8 percent

32In Appendix Section A.10.2, we carry out a back-of-the-envelope cost benefit analysis of climate control
for weaving plants and show that electricity costs of air-conditioning are high relative to output losses.
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per year. Column 1 of Table A.5 in the Appendix provides these coefficient estimates.33 As

countries grow richer, it is possible that their manufacturing sector becomes less vulnerable

to output losses associated with heat.

7 Alternative Explanations

Reduced labor productivity is not the only way in which high temperatures may reduce

output. Climatic changes may increase conflict (Hsiang, Burke, and Miguel, 2013) or the

frequency of natural disasters (Kahn, 2005). Neither of these would influence our worker-

level results because they occur on time-scales that are much longer than a day. They

could potentially mediate the temperature effects on output that we observe in our national

panel of manufacturing plants. Other factors that may influence plant output, without

necessarily changing the productivity of labor, include power outages, input price changes,

and agricultural spillovers.

We test some of these explanations and find that they are unable to explain our results. We

have already shown in Table 4, that temperature effects on output remain almost unchanged

when controlling for floods, conflicts and power outages. In Appendix Section A.6 we describe

the construction of these variables and also provide coefficient estimates associated with them

when they are included in modified versions of (3).

To examine whether input prices change with temperature, we use data on the price of the

input with the largest expenditure share, as reported in the ASI (Table A.4). We find no

evidence of temperature effects on input prices in our data. It may be that most changes

in prices are captured by the year fixed-effects in our models, and price shocks from local

temperature fluctuations are neutralized by storage.

33Since climate control requires electricity, we also look for heterogeneity in the temperature response
by the electricity intensity of output. We find that plants with above-median levels of electricity intensity
respond more weakly to high temperatures (Table A.5, Column 2).
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Finally, to examine the role of agricultural spillovers, we provide sector-wise estimates of

temperature effects by estimating a model in which we include interactions of average an-

nual maximum temperature with indicators for 2-digit manufacturing sectors. We observe

negative temperature effects across sectors, even for activities with no obvious connection to

agriculture (Appendix Figure A.6).

8 Conclusions

This paper estimates the impact of temperature on manufacturing output. We use se-

lected factory settings to separately study temperature effects on the daily productivity and

attendance of workers. We show that, in the absence of climate control, worker productiv-

ity declines on hot days. For absenteeism, we find effects of contemporaneous and lagged

temperatures even for workers in factories with climate control, suggesting that workplace

adaptation alone is insufficient to mitigate all the effects of heat. In a 15-year national panel

of manufacturing plants, we find that the effect of temperature on the value of annual plant

output appears to be driven in large part by its effect on the output elasticity of labor.

Our estimates from both worker and annual plant data are comparable to those found in

studies of country-level manufacturing GDP. This suggests that heat stress, through its

effects on productivity, time-allocation and morbidity, is an important underlying cause for

the declines in non-agricultural GDP at high temperatures.

The evidence we provide on the effectiveness of climate control and on its limited adoption,

has implications for how we should think about the costs of climate change going forward.

Research into low-cost technologies to protect workers from ambient temperatures may have

significant social value. In the long term, there are other ways in which the industrial sector

might respond to high temperatures. These include increasing automation and shifting away

from labor-intensive sectors in hot parts of the world. These adaptive responses may have
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significant distributional implications. If directed towards more productive workers, they

will tend to increase wage inequality.

Although our focus throughout this paper has been on the manufacturing sector, the poten-

tial ramifications of our findings are wider. Our conclusion that a physiological mechanism

is economically important suggests that these effects may exist in labor-intensive activities

across the world, such as construction and agriculture, where heat exposure is high and

adaption through climate control is expensive or infeasible. Observed productivity losses in

agriculture that have been attributed by default to plant growth responses to high temper-

atures, may in fact be partly driven by lower labor productivity. These possibilities are yet

to be researched.
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Appendix: For Online Publication

A.1 Microdata Sites

Figure A.1 shows the shop-floors of each of our worker microdata sites. In the garment

manufacturing factories shown in Panel A, workers are arranged in lines, with each person

repeatedly carrying out a specific task. For example, one worker may repeatedly sew on

buttons, further down the line another person may finish the collar and so on.

In the cloth weaving plants of Panel B, workers walk up and down in the aisles between

looms, adjusting alignment, restarting feeds when interrupted, and making other necessary

corrections. One worker typically covers about 6 machines.

The steel mill shown in Panel C uses smelting, casting and forging processes, all of which

are capital intensive. Worker tasks and teams have been already discussed in some detail in

Section 3.

A.2 Seasonal Patterns in Worker Absenteeism

We carried out open-ended interviews with the owner-managers of several cloth-weaving firms

in Surat in addition to the three factories in our data sample. We found that these units

were similar in that there was no climate control and workers were paid daily wages based

on output with no full-time contracts. Several owners spoke of workers being less willing to

work in their factories during the hot summer months. Many return to their home villages

and rely on income from India’s National Rural Employment Guarantee Scheme. This safety

net is lower paid than factory wages so this narrative suggests that the disutility from heat

exposure exceeds this difference in wages. Thus one response to sustained high temperatures

(as opposed to the occasional hot day) may be to shift to other occupations. Some owners

reported that they were considering a summer attendance bonus to keep workers while others

felt this bonus would depress profit margins too much to make it worthwhile.
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The identification strategies used in this paper do not allow us to utilize long-run temperature

variation since there are other seasonal factors that may be associated with attendance.

However worker attendance in the cloth weaving and garment plants we study can be plotted

over the year. Figure A.2 shows seasonal reductions in the attendance of daily wage cloth

weaving workers, concentrated in high temperature months. These patterns are absent

for the garment sewing workers who are both paid more, and have long term employment

contracts.

Many factors differentiate the two types of work settings, but it is plausible that formal

employment contracts reduce the costs of taking an occasional day of paid leave and also

make it difficult to seasonally switch occupations. When accounting for long-term responses

to temperature, formal employment contracts might therefore do better at retaining labour.

This is an area that would benefit from further research.

A.3 Effect of wet bulb temperatures on worker output

In this section we replicate Figure 1 using wet bulb temperatures in place of maximum

temperatures. The measurement of WBT requires specialized instruments but it can be

approximated by combining temperature and relative humidity. We use a formula provided

by Lemke and Kjellstrom (2012):

WBT = 0.567TA + 0.216ρ+ 3.38 (9)

where TA is air temperature in degrees Celsius and ρ is water vapor pressure which is calcu-

lated from relative humidity, RH as follows:

ρ = (RH/100)× 6.105 exp

(
17.27TA

237.7 + TA

)
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We see that wet bulb temperature (WBT) is a non-linear function of ambient temperature

and is also on a compressed scale, so a one degree increase in WBT corresponds to a greater

than one degree increase in maximum temperatures. For these reasons we cannot use the

same temperature bins. For the NCR, the steel workers in Bhilai, and the garment workers

outside the NCR, we use 2-degree bins as before, but have different bin cut-offs. For the

NCR, the first bin ends at 15oC and our top bin starts at 27oC. For steel workers in Bhilai,

corresponding figures are 21oC and 29oC and for garment workers outside the NCR, they

are 23oC and 31oC. For weaving workers in Surat, we use bins of width 1.5 degrees since wet

bulb temperatures are most concentrated in that location. Our first bin there ends at 20oC

and the top bin starts at 27.5oC.

All WBT computations require humidity measures. For all locations outside the NCR, we

use reanalysis measures purchased from Weather Online. For NCR plants, we use informa-

tion from a weather station in the Indira Gandhi International Airport (Station 33934 in the

National Climatic Data Center dataset of weather stations across the world). One disadvan-

tage of using WBT is that there may be sizeable error in our estimates because humidity

varies over short time scales. On the other hand, WBT is a better indicator of heat stress

than dry temperature. It is therefore instructive to compare WBT results with those in the

main paper that have used daily maximum temperatures. As Figure A.3 shows, we find a

very similar output response to heat in both cases. If anything, standard errors are smaller

and effect sizes slightly larger when using WBT.
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Figure A.1: Shop floors of garment sewing plants (Panel A), cloth-weaving plants (Panel B), the rail mill
of the steel plant (Panel C).

45



Figure A.2: Worker attendance by month for daily wage workers in cloth-weaving factories (Panel A) and
salaried workers in garment plants (Panel B).
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A.4 Annual Survey of Industries Data Cleaning

This section describes how our 15-year panel is constructed from the Annual Survey of

Industries (ASI) datasets purchased from the Indian Central Statistics Office.

At the time of writing, the latest survey with plant-level data available for sale was for

the financial year 2012-2013. Between 1998 and 2007, ASI data are available in two forms.

The first is a panel with plant identifiers and no district identifiers, while the second is a

cross section with district identifiers but no plant identifiers. For these years we purchased

both data sets and merged them using plant characteristics to obtain a panel with district

identifiers which we could then match with temperature data. We use the state code, the

National Industrial Classification (NIC) code, the year of starting operations, and value of

output to complete this matching.

From 2008 until 2012, only a cross-section without district identifiers is available so the above

procedure cannot be used. For these years, we first list plants that are uniquely identified

based on time-invariant characteristics. These are the state location, the four-digit industry

codes (NIC), and the year operations started. We then search for matches based on these

three characteristics in each year of our 1998-2007 panel. All such matches are accordingly

assigned the firm identifier from the panel and are added to it. This matching process

requires searching over all years in the panel because plants are not necessarily surveyed

every year. In cases where these time-invariant characteristics do not identify a unique plant

in the non-panel years (2008-2012), or do not match to a unique plant in the panel years

(1998-2007), the corresponding observation is given a new firm identifier.

Most matches are completed this way. A few additional matches were obtained using two

additional variables: the start-of-year cash on hand, and the end-of-year cash on hand. For

any plant surveyed in successive years t and t+1, the end of year balance in year t must be

the same as the start of year balance in year t+1.
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After constructing the panel, we performed the following data cleaning operations:

1. Removed observations where values of output, workers, total wages, value of capital,

or total value of inputs is less than or equal to zero. We also dropped observations

with missing values for these variables.

2. The ASI dataset contains observations with implausibly high or low reported values

of output. For instance there are plants with reported annual output less than a few

dollars. We dropped the top 2 percent and bottom 2 percent of values of output. This

was done to transparently eliminate these outliers.

3. As with output, we also have a small number of implausible values in the number of

reported workers (over 10000 workers in a factory), total value of the capital measure

(less than 2 USD), and value of total wages aggregated across all employees (less than

300 USD per year). We dropped such values, which together form only 0.5 percent of

our original data set. Our results are robust to omitting this step.

4. We dropped plants where the reported state or district changes over the panel duration.

Misreported locations will induce significant errors when assigning temperatures to

these plants.

5. We dropped plants observed only once in the panel.

Our final sample has 53,015 manufacturing plants distributed all over India spanning the

industrial sectors. These plants are matched to district temperature and precipitation mea-

sures as described in the text. District counts of plants, along with the sites for our daily

worker data, are shown in Figure A.4.

To calculate district average temperatures, we use a gridded dataset sold by the India Mete-

orological Department. The resolution of the original temperature grid is at the 1◦ level. We

create a finer grid by linear interpolation down to 0.083◦ (5 arc-minutes), and then average
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over all points falling within district polygon boundaries.
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Figure A.4: Distribution of ASI plants over Indian districts, and location of microdata sites.
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A.5 Additional specifications using plant data

In the main text (Table 5) we presented Levinsohn-Petrin first-stage estimates that allow

for flexible, endogenous labor inputs in the estimation of the production function. The

Levinsohn-Petrin estimator uses a control function approach to removing bias. The control

function is a flexible function of the capital measure and variable intermediate inputs m that

are correlated with unobserved productivity shocks. As is common in the literature, we let

m be the total value of the ten largest inputs used by the plant. Then we estimate the model

below, where φ is the sum of a fully interacted two degree polynomial in capital k and the

material input measure m, and a similar polynomial in capital k and temperature bins T j.

yit = αi + γt + βo · l +
5∑

j=2

βjT
jl + φ(kit,mit, T

j
it) + θRit + εit (10)

The coefficients on labor and the labor-temperature interactions, βj, can be estimated using

OLS. These are of primary interest to us and are correspondingly reported in the main paper.

In addition to specifications presented in Table 5, we present additional specifications in Table

A.1. Column 1 provides OLS estimates from a production function specification without any

temperature interactions. Column 2 presents the specification from (3) but controlling for

state-year fixed effects. These capture most of the variation in the data and our point

estimates are correspondingly less precise. Column 3 presents our main specification but

controls only for labor, and Column 4 controls only for capital. Models with interaction

terms and both factor inputs are in the main text.

In addition to the models in Table A.1 we also reproduce Table 2 in the main text using a

different set of bin-cutoffs. These results are in Table A.2 and show similar patterns to our

original specification.
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Table A.1: Effect of temperature on plant output, additional specifications

Log Plant Output

(1) (2) (3) (4)

l 0.60526∗∗∗ 0.66521∗∗∗

(0.00655) (0.00808)
k 0.13645∗∗∗ 0.21999∗∗∗

(0.00318) (0.00585)
T 2 0.00063 −0.00111∗∗ −0.00118∗∗

(0.00090) (0.00035) (0.00042)
T 3 −0.00028 −0.00099∗∗ −0.00129∗∗

(0.00093) (0.00039) (0.00047)
T 4 −0.00071 −0.00099∗∗ −0.00140∗∗

(0.00100) (0.00041) (0.00049)
T 5 −0.00127 −0.00110∗∗ −0.00168∗∗∗

(0.00101) (0.00044) (0.00055)

State-Trends N N N N
State-Year FE N Y N N
Observations 179,107 179,107 179,107 179,107

Notes: Data on the value of output and inputs are at the plant level from
the Annual Survey of Industries. Standard errors are corrected for serial and
spatial correlation following Conley (2008). Coefficient on rainfall omitted
for brevity. All models include plant and year fixed effects. Temperature
bins are defined as {(0, 20], (20, 25], (25, 30], (30, 35], (35, 50]} and T j is the
number of days in the jth bin. T 1 is the omitted bin in all models.
∗∗∗p < 0.01, ∗∗p < .0.05, ∗p < . 0.1
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A.6 Alternative Explanations

Power Outages

High temperatures are often accompanied by power outages in India, so it is legitimate to

ask whether these outages could be partly responsible for the temperature effects we observe.

We investigate the possible impact of outages by using annual, state-level measures of supply

shortfalls published by India’s Central Electricity Authority in its annual Load Generation

Balance Report. This measure is the difference between an imputed measure of average

monthly electricity demand and average monthly electricity supply. This difference takes a

negative value in a little over two percent of our observations and is zero in a few others.

These cases denote years with no shortfalls. We set the negative observations equal to zero

and take the log of this truncated difference as a proxy for outages. To handle our zero

observations we add 1 before taking logs. The mean value of the difference is 387 MWh. We

find that introducing this logged outage proxy into (3), our main specification, leaves our

temperature effects intact as seen in Column 4 of Table 4. The outage coefficient is negative

and statistically significant at the 5% level as seen in Column 2 of Table A.3.

These results are not surprising because large plants are typically served by dedicated high-

voltage (33kV) grid feeders with fixed supply schedules. When load shedding is unavoidable,

these feeders are generally shed last, so that only large grid disruptions will percolate down

to plants served by high voltage lines. As a result, unscheduled, temperature-dependent

outages are relatively rare.

Floods and Conflict

Among natural disasters in India, floods are the most widespread and directly reduce indus-

trial output. For example, in the industrial city of Surat (the site of our weaving workers and

diamond firms), there were floods in 1998, 2006, and 2013. Likewise, industrial disputes are
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a relevant measure of conflict for manufacturing plants. Both of these can severely disrupt

manufacturing activity.

For floods, we use data from the Dartmouth Flood Observatory Archive. These data combine

remote sensing information, news stories, government releases, and ground instruments to

measure the severity, duration, and damage caused by each flooding incident. The magnitude

of each flood is defined as log(Duration x Severity x Affected Area). For each year, and each

state, we use the total magnitude of all flooding as a proxy for the flood exposure of all

plants in a state.

For conflict, we use the total number of workday minutes lost every year due to industrial

disputes in each state. These data are published by India’s Ministry of Labor and Statistics

as part of its annual publication Statistics on Industrial Disputes, Closures, Retrenchments

and Lay-Offs. This statistic takes only non-zero values and has a skewed distribution. We

use the logarithm of lost minutes as a proxy for the annual exposure to conflict for each

plant. 34

We modify (3) to include these measures as additional regressors. Denoting by Mit and Cit

our measures of flooding and conflict for year t in the state in which plant i is located, we

estimate:

yit = αi + γt +
5∑

j=2

βjT
j
it + θRit + ω1Mit + ω2Cit + εit. (11)

As already noted in the main text and seen in Table 4, the estimated coefficients on temper-

ature bins are very similar to those from (3). The coefficients on M and C are reported in

Column 3 of Table A.3.

34Our data are complete from 2003 onwards and missing for a few years before that.
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Table A.3: Temperature effects on output controlling for outages, floods and disputes

Log Plant Output

(1) (2) (3)

T 2 −0.00139∗∗ −0.00173∗∗ −0.00145∗∗
(.00044) (.00053) (0.00044)

T 3 −0.00164∗∗∗ −0.00183∗∗∗ −0.00163∗∗∗
(.00049) (.00055) (0.00049)

T 4 −0.00189∗∗∗ −0.00225∗∗∗ −0.00193∗∗∗
(.00051) (.00058) (0.00051)

T 5 −0.00217∗∗∗ −0.00238∗∗∗ −0.00223∗∗∗
(.00056) (.00066) (0.00057)

log outages −0.01283∗∗
(0.0047)

M −0.00055
(0.00049)

C −0.00092
(0.00176)

N 179,107 143,695 177,916

Notes: Data on the value of output are from the Annual Sur-
vey of Industries. Standard errors are corrected for serial and
spatial correlation following Conley (2008). All models in-
clude plant and year fixed effects. Rainfall coefficients omit-
ted for brevity. M denotes the total magnitude of flood ex-
posure and C is the log of total minutes lost to industrial dis-
putes. (1) reproduces estimates from Table 4, Column 1 in the
main text. T 1, T 2, T 3, T 4, T 5 are days in (0,20], (20,25], (25,30],
(30,35],(35,50] bins and all bin coefficients are relative to T 1.
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.

A.7 Price Shocks

High-temperature years could raise input prices and thereby induce firms to reduce output.

These higher prices could result from temperature-induced productivity shocks in other

sectors. The Annual Survey of Industries reports prices of the ten most important inputs

for each plant, based on total expenditure shares. We regress the logarithm of price of the

primary input for each plant (the one with the largest expenditure among all inputs) on

linear and binned specifications of temperature as below:

log(Pit) = αi + γt + βT a
it + θRit + εit. (12)

log(Pit) = αi + γt +
5∑

j=2

βjT
j
it + θRit + εit. (13)
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Table A.4 reports results from both specifications. We find no evidence that temperature

influences the price of plant input materials. This does not imply that long-term changes in

the number of hot days in a year will leave prices unaffected, only that this factor cannot

explain the results in this paper.

Table A.4: Temperature Effects on Price

Logged Price of Primary Input
(1) (2)

T a -0.00954
(0.0301)

T 2 0.0005
(.0017)

T 3 0.0004
(.002)

T 4 0.0002
(.002)

T 5 0.0012
(.0021)

N 144,531 144,531

Notes: Data on input prices are available from the Annual Survey of
Industries. ∗∗∗p < 0.01; ∗∗p < 0.05 ∗p < 0.1. Standard errors are cor-
rected for serial and spatial correlation following Conley (2008). All
models have plant and year fixed effects. Rainfall coefficients omitted
for brevity. Prices are in Indian Rupees, (T 1, T 2, T 3, T 4, T 5) are days
in {(0, 20], (20, 25], (25, 30], (30, 35], (35, 50]}, and all coefficients are
relative to T 1.

A.8 Leads and Lags in Temperature Variables

As a robustness check, we also estimate a variant of (3) including both lags and leads of the

highest temperature bin. We find that only the contemporaneous temperature bin explains

any variation in output, with both lags and leads statistically indistinguishable from zero.
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Figure A.5 shows estimates for the coefficient on the highest temperature bin for three lagged

years, the contemporaneous year, and three years in the future.

-0.003

-0.002

-0.001

0.000

-3 -2 -1 0 1 2 3
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Figure A.5: Effects of lags and leads of days in the highest temperature bin (T 5) on plant output.

A.9 Sector-wise Temperature Effects

To study heterogeneous impacts across manufacturing sectors, we regress plant output on

annual average maximum temperatures interacted with an indicator for each 2-digit manu-
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Figure A.6: Sector-wise percentage change in output for a one degree increase in annual
averages of daily highs.

facturing sector:35

yit = αi + γt + βoT
a
it + βk(T

a
it × Sk) + ωkSk + θRit + εit. (14)

Sk is a sector dummy and other variables are defined as before. Figure A.6 shows sector-wise

temperature effects on output plotted with 90 percent confidence intervals. Plotted estimates

in Figure A.6 are the sector effects βo + βk. Temperature effects on output are consistently

negative, to varying degrees.

35We use the ISIC system to define sectors. This is the same as the industrial classification used in India
up to the 4-digit level.
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Figure A.7: Temperature effect on output for different manufacturing sector compositions.

We also use an alternative method to evaluate the robustness of our results to the composition

of plants in our sample. There are 89 sectors represented in our plant panel at the 3-digit

level. From this list, we draw with replacement a sample of 40 sectors. Using the subset of

plants belonging to these sectors, we evaluate our main specification (3). We repeat this 100

times and in Figure A.7 we plot a histogram of the effect of an additional day in the highest

temperature bin. Each of these estimates can be viewed as being drawn from an economy

with a different, and less diverse, manufacturing sector composition than India as a whole.

Across all but one draw we see negative temperature effects on output, varying from close to

zero to a reduction of slightly under 0.5 percent of output, with a mean close to the overall

effect size of -0.22 percent reported in the paper.
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A.10 Adaptation

A.10.1 Evidence from ASI Plant Panel

We introduce time trends into (3) to examine the changing relationship between temperature

and plant output changes over the study panel:

yit = αi + γt +
5∑

j=2

βjT
j
it +

5∑
j=2

δjT
j
it × t+ θRit + εit. (15)

Estimates are in Table A.5. As before, T j
it are the number of days in our different temperature

bins, omitting the lowest bin. We now also interact these with t, a continuous time trend.

We find evidence of decreasing temperature sensitivity over time, as shown in Column 1 of

Table A.5.

We also examine how the temperature-output relationship varies by the electricity intensity

of the plant. We do this because climate control is electricity intensive and, as we have

seen in our worker data, has the potential to eliminate heat stress at work. We define

electricity intensity as the ratio of electricity purchased to the number of employees and

create a dummy variable that takes the value 1 when plant electricity intensity is above the

median. We include this as an additional regressor in (3) and also allow for interactions with

the temperature bins. These results, in Column 2 of Table A.5, show that the output of

electricity-intensive plants is less sensitive to temperature. Note that these results are net of

plant fixed effects and therefore do not simply represent a comparison of larger and smaller

plants but rather increases in electricity use within plants.

A.10.2 Costs and benefits in cloth weaving firms

Although we find cloth-weaving workers are less productive on hot days, we do not see

these firms invest in climate control. This is in contrast to our garment sewing firm, which
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Table A.5: Variation in Temperature Sensitivity over Time and by Electricity Intensity

Log Plant Output

(1) (2)

T 2 −0.00280∗ −0.0022∗∗∗

(0.00119) (0.00053)
T 3 −0.00366∗∗∗ −0.00255∗∗∗

(0.00082) (0.00054)
T 4 −0.00300∗∗∗ −0.00285∗∗∗

(0.00085) (0.00057)
T 5 −0.00434∗∗∗ −0.00316∗∗∗

(0.00091) (0.00062)
T 2×t 0.00022

(0.00014)
T 3×t 0.00032∗∗∗

(0.00009)
T 4×t 0.00020∗

(0.00009)
T 5×t 0.00038∗∗∗

(0.0010)
elec intensity −0.5189∗∗∗

(0.1405)
T 2×elec intensity 0.00166∗∗∗

(0.00056)
T 3×elec intensity 0.00173∗∗∗

(0.00039)
T 4×elec intensity 0.00186∗∗∗

(0.00039)
T 5×elec intensity 0.00195∗∗∗

(0.00042)

Observations 179,107 173,398

Notes: Data on the value of output are from the Annual Survey of Industries. *,
**, *** denote estimates significant at 10, 5, 1 percent level. Standard errors are
corrected for serial and spatial correlation following Conley (2008). All models
include plant and year fixed effects. Rainfall coefficients omitted for brevity. elec
intensity is a dummy indicating whether a plant has an electricity intensity that is
higher than the median.
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gradually introduced climate control in all its plants. One reason for this might be that

weaving workers have limited value added since they operate early in the garment supply

chain. In this section, we use rough estimates of energy and wage costs from these plants to

do a back-of-the-envelope cost-benefit analysis of climate control.

Our three cloth-weaving firms collectively produced a median daily output of about 7200

meters of cloth and workers were paid INR 2.0 per meter, implying a median daily wage

bill of about INR 14,400. Cooling the shop-floors of all three factories would require an

air-conditioning load of roughly 24 tonnes or 84 kW. At the time of our data collection,

electricity tariffs for industry in the state of Gujarat were about 5 INR per kWh. Assuming

8 hours of operation, and an energy efficiency ratio of 2.0, daily air conditioning costs would

be INR 1680. The costs of climate control would therefore be about 11.6 percent of the total

wage bill. Given our estimates of a reduction in productivity of about 2 percent in the highest

temperature bin relative to the lowest, these investments are unlikely to be profitable for firms

with small price mark-ups. For such firms, the negative effects of increasing temperatures

may not be mitigated by technological solutions.

A.10.3 Selective climate control in diamond firms

This section presents results using data from a survey of 150 diamond-cutting factories

located in the city of Surat. These firms have much higher value-added than our cloth-

weaving firms and we find they exhibit different behavior even though they are in the same

city. The surveyed factories were drawn randomly from a list of all plants registered with

the local diamond industry association. Each plant uses five main processes: (i) sorting and

grading, (ii) planning and marking cuts in the stone (iii) bruting (rounding a diamond),

(iv) cutting, and (v) polishing. These vary in the amount of labor they use, and in their

contribution to overall diamond value.

We observe the presence or absence of air-conditioning in the different rooms in which these
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activities take place. With 5 processes in each of the 150 firms, we have 750 observations.

We estimate the probability of using air conditioning as a function of firm and process char-

acteristics. For firm characteristics, we use firm size as measured by the number of workers,

as well as the age of the firm in years. For process characteristics, we use labor intensity

(defined as the share of total workers engaged in the process), mechanization (defined as the

share of total machines used in the process), and an ‘importance’ rating. The importance

rating is a self-reported assessment by management on a scale of 1 to 5. Based on this rating

we construct an importance dummy which takes the value 1 when the manager rating is 5.

The middle three processes (marking, rounding and cutting) are largely manual. On average,

they accounted for less than 10 per cent of the machines used. Cutting, for instance, was

rated one of the most important process in determining final quality but accounted for only

4.5 percent of the machines in the firm. Over 98 percent of firms in our sample used climate

control in the rooms where diamond cutting occurred. This contrasts with polishing, also

an important process, but accounting for 63 percent of machines used. Only 33 percent of

rooms where polishing occurred were climate controlled.

Figure A.8 shows marginal effects on the probability of air-conditioning from a logit model.

These estimates are consistent with firms choosing to optimally allocate air-conditioning

investments to protect workers. These estimates suggest that if the share of workers in a

process were to fall by 10 percent, the probability of observing climate control for that process

reduces by 0.17. Correspondingly other processes would see an increase in the probability

of air-conditioning, as these workers are moved elsewhere. A process characterized as very

important by the firm management has a 0.27 higher probability of climate control. Re-

placing labor by machines significantly reduces the probability of observing climate control

investments.

65



Figure A.8: Average marginal effects for logit model describing diamond firm decisions to
selectively invest in climate control for different processes.
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