
INFORMATIK
BERICHTE

383 – 06/2021

BBoxDB Streams - Scalable Processing of Multi-

Dimensional Data Streams

Jan Kristof Nidzwetzki
Ralf Hartmut Güting

Fakultät für Mathematik und Informatik

D-58084 Hagen

BBoxDB Streams – Scalable Processing of Multi-Dimensional

Data Streams

Jan Kristof Nidzwetzki
Ralf Hartmut Güting

Faculty of Mathematics and Computer Science
FernUniversität Hagen
58084 Hagen, Germany

{jan.nidzwetzki@studium.,rhg@}fernuni-hagen.de

June 14, 2021

Abstract

BBoxDB Streams is a distributed stream processing system, which allows the handling of
multi-dimensional data. Multi-dimensional streams consist of n-dimensional elements, such as
position data (e.g., two-dimensional positions of cars or three-dimensional positions of aircraft).
The software is an enhancement of BBoxDB, a distributed key-bounding-box-value store that
allows the handling of n-dimensional big data. BBoxDB Streams supports continuous range
queries and continuous spatial joins; n-dimensional point and non-point data are supported.
Operations in BBoxDB Streams are performed primarily on the bounding boxes of the data.
With user-defined filters (UDFs), custom data formats can be decoded, and the bounding box-
based operations are refined (e.g., a UDF decodes and performs intersection tests on the real
geometries of WKT encoded stream elements). A unique feature of BBoxDB Streams is the
ability to perform continuous spatial joins between stream elements and previously stored multi-
dimensional big data. For example, the dynamic position of a car can be efficiently joined with
the static spatial data of a street network.

1 Introduction

Data streams consisting of multi-dimensional elements are ubiquitous. For instance, when the po-
sition of a moving object is determined continuously and stored, a data stream is created. Every
observed position can be considered as a two-dimensional stream element.

Examples of data streams containing multi-dimensional data are: (1) the price of a stock, (2) the
position of a car or a ship, or (3) the position of an aircraft. The first stream consists of price values;
each price can be considered as a point in the one-dimensional space. The second stream consists
of coordinates in the two-dimensional space (i.e., longitude and latitude of the vehicle). The last
stream consists of coordinates in the three-dimensional space (i.e., the longitude, the latitude, and
the altitude of the aircraft).

Example. A very simple stream of two-dimensional position data looks as follows: (54.0044,

8.65926), (53.9336, 8.69052), (53.8972, 8.78316), Each bracket pair represents a
stream element, consisting of a WGS84 [53] coordinate.

Apart from simple bracket structured data, well-known data formats such as CSV or JSON can
be used for the encoding of the stream elements. This makes it possible to add further information
such as the observation time or the id of the entity (e.g., a license plate or a flight number) to the
stream elements.

1

1.1 Multi-Dimensional Data Streams

There are many different types of multi-dimensional data. Such data can have: (1) an extension in
space (e.g., the geometry of a ship) or (2) no extension in space (e.g., the coordinates of a point).
In the first case, we call the data of the object non-point data while in the second case point data.
Often, multi-dimensional data describe the position of an object of the real-world. The position of
an object can be described in the following ways: (1) as a point in space, (2) as an n-dimensional
axis-aligned bounding box, and (3) with the full geometry of the object (see Figure 1).

•

(a) Point in
space

(b) Bounding box (c) Complete
geometry

Figure 1: Three ways to describe the position of an object (e.g., a ship) in the two-dimensional
space.

Using the complete geometry is the most precise way to describe the position of an object in
space. In contrast, the bounding box 1 gives only a rough estimation of the location of the object in
space. However, the simple structure of a bounding box makes operations like intersection tests fast
to calculate; such operations are expensive to compute on the complete geometry of an object.

The most inaccurate way to describe an object is a point in space. The whole object, whether it
has an extension or not, is described only by an n-dimensional point. Many real-world data streams
such as: (1) ADS-B (Automatic Dependent Surveillance-Broadcast), which contain the position data
of aircraft, (2) AIS (Automatic Identification System), which contain the positions of ships, or (3)
GTFS real-time (General Transit Feed Specification), which contain the position data of public
transport vehicles, express the position only with point data2.

Definition. A multi-dimensional data stream Sn of the dimensionality n is a potentially unbounded
continuous sequence of stream elements e, Sn = (e0, e1, e2, . . . , e∞). Each stream element e =
(id, t, valuen, . . .) consists at least of an object identifier, denoted as id, the event time t when the
element was produced, and an n-dimensional value valuen.

1.2 Processing Data Streams

Stream processing systems [1] are software systems developed to handle data streams. In contrast to
database management systems, which store data first and answer queries afterward, stream process-
ing systems work in exactly the opposite way. In the first step, queries are registered, and afterward,
a data stream is processed [68]. Every element in the data stream that fulfills a query predicate is
reported. Depending on the stream processing system that is used, the query predicate can contain
complex filters or transformations.

The near real-time (low-latency) processing of data streams is essential for many areas of appli-
cation. For example, on a stream of position data, the following queries might be interesting: (1) Is
an aircraft about to enter a certain airspace? (2) Which taxis are located near a passenger? (3) Has
a convoy of vehicles broken apart and the cars do not drive next to each other anymore? All these
queries need to be answered fast so that actions based on these events can be executed. Figure 2
shows a further application from the field of maritime observation.

The figure depicts the real geometries and the bounding boxes of a ship and a reef. A continuous
query is registered, which should report all ships that come dangerously close to a reef. To be able
to warn the ship about a possible collision, the bounding box of the ship is enlarged by a constant

1The axis-aligned minimal bounding box is the smallest box in space that encloses the object completely. In the
rest of this paper, the terms axis-aligned minimal bounding box and bounding box are used as synonyms.

2When point data (data without an extension in space) is used, the bounding box degenerates also to a point in
space; the point and the bounding box are identical.

2

Figure 2: Does a ship collide with a reef? The bounding boxes of the ship and the reef are shown
as dotted boxes. In addition, the enlarged bounding box of the ship is shown as a dashed box.

factor3. Therefore, the intersection between the enlarged bounding box of the ship and the bounding
box reef is reported by the query before the reef is actually hit.

1.3 Challenges

We have identified five major challenges when multi-dimensional data streams are processed:

Scalability: The number of elements in a data stream per time unit can fluctuate significantly; a
large number of stream elements can occur within a short period of time. The receiving system
needs to process the elements with a low latency delay. A scalable and distributed approach
is required, which is capable of utilizing the resources of multiple nodes.

Multi-dimensional data: Objects of any dimensionality can be contained in a data stream. For
example, the position of a car is two-dimensional (latitude and longitude); the position of an
aircraft also contains an altitude and is three-dimensional. Therefore, the proposed solution
should be able to handle n-dimensional data.

Non-Point data: A data stream can contain point and non-point data; the solution should be
able to process both types of data (see Section 1.1).

Spatial Joins: For some applications, the stream elements need to be joined with already stored
data. For example, the position of a car needs to be joined with a road network to determine
in which street the car is currently located. Therefore, the solution needs to provide efficient
access to previously stored multi-dimensional big data.

Transformations and Data Distribution: Some continuous queries require the transformation
of stream elements (e.g., the enlargement of the bounding box of the spatial join as depicted
in Figure 2 in Section 1.2). To execute such a join efficiently, the stream data needs to
be distributed to nodes that contain the join partners. Joins in distributed stream processing
systems are usually performed in two steps: (1) the data are distributed, and (2) the continuous
join queries are executed by the nodes. The enlargement of the stream elements is performed
in the continuous join query. This means that the enlargement of the stream elements is
calculated after they are distributed, which makes it hard to distribute the data to all needed
nodes. However, spatial joins that contain transformations should be supported by a stream
processing system.

1.4 Proposed Solution

In this paper, we propose BBoxDB Streams [57] as a novel solution to process multi-dimensional
data streams. The paper provides the following major contributions:

• A generic stream processing solution for multi-dimensional data, which supports n-dimensional
point and non-point data.

3Instead of enlarging the bounding box of the ship, the bounding box of the reef could also be enlarged.

3

• A novel approach for the execution of continuous spatial joins between static multi-dimensional
big data and multi-dimensional data streams.

• An efficient way to express queries (e.g., continuous range queries and spatial joins) and tran-
formations on data streams and stored data.

• A solution to distribute stream elements to nodes, even when transformations are applied and
spatial joins should be performed.

• A GUI which can be used to execute queries on real-world data streams.

• A free implementation that is available under an open-source license on GitHub [14].

BBoxDB Streams is an extension of BBoxDB [56]; a distributed key-bounding-box value store,
optimized for the handling of multi-dimensional data. To the best of our knowledge, BBoxDB is
the first freely available data store that is capable of handling n-dimensional point and non-point
big data efficiently; data can be retrieved in O(log n + k) time. In contrast to a key-value store,
BBoxDB stores each value together with a bounding box. The space is partitioned dynamically
into distribution regions, and these regions are assigned to the nodes of a cluster. In BBoxDB,
operations are executed primarily on the bounding boxes of the data. User-defined filters (UDFs)
are used to enhance the generic query processor [55]; they refine the query results and decode custom
data formats. In BBoxDB Streams, UDFs are used to decode the various data stream formats and
process the geometries of the stream elements (see Section 3.6).

The rest of the paper is organized as follows: Section 2 gives an overview of the related work.
Section 3 contains the details of BBoxDB that are required for the understanding of BBoxDB
Streams. Section 4 describes our solution for the handling of data streams. Section 5 shows how
queries can be expressed and executed. Section 6 contains a performance evaluation of BBoxDB
Streams, while Section 7 concludes the paper.

2 Related Work

The handling of data streams, the execution of continuous queries, and the calculation of joins has
related work in the areas of: (1) rule engines (the evaluation of query predicates), (2) database
management engines (storing large amounts of data and allow the efficient data retrieval), and
(3) stream processing systems (the handling of continuously changing values).

The related work of these areas is discussed in the following sections. The related systems are
compared with BBoxDB (for the data storage part) and BBoxDB Streams (for the stream handling
part).

2.1 Rule Engines

Rule engines apply condition and action pairs (usually expressed as if-then statements) on datasets.
One of the first rule engines was PLANNER [37]. PLANNER is a programming language that
allows the user to provide problem-solving primitives together with hierarchical control structures.
The Official Production System 5 (OPS5) [25] is a rule-based production language. OPS5 uses two
types of memory. The system stores: (1) data in the working memory, and (2) if-then rules in the
production memory. When the content of the working memory matches the condition of a rule,
the actions of the rule are applied. The logical programming language PROLOG [19] is also a rule
processing system. The language allows to define facts and rules. A calculation is performed by
running a query over the defined facts and rules. Newer approaches such as Jess [38] allow to define
and evaluate rules in the programming language Java.

BBoxDB and rule engines share in common the fact that predicates (or rules) are evaluated on
datasets. In contrast, rule engines are not optimized to store and access large amounts of data. In
addition, the concept of data streams and the comparison of streams with stored data are not part of

4

these systems. BBoxDB is instead designed to store and access large amounts of multi-dimensional
data efficiently.

2.2 Database Management Systems

For more than a decade, distributed storage and retrieval of large amounts of data (big data) has
been an important topic in research. The related systems of these areas are discussed in the following
sections.

2.2.1 Traditional Database Management Systems

Many database management systems (DBMS) that are used today focus on the relational data
model; such systems are called relational database management systems (RDBMS) [59, 75]. They
are optimized for ad-hoc query processing, transactions, and consistency. However, these features
make it hard to scale well across a cluster of nodes [17]; most RDBMS are only capable of running
on one node.

Compared to the relational data model, BBoxDB uses simpler key-bounding-box-value tuples.
The software supports queries such as range queries or spatial joins on n-dimensional data (see also
the discussion in Section 2.2.3). The queries are simpler than the queries supported by RDBMS,
but BBoxDB stores the data in a distributed way and re-distributes unevenly partitioned data
automatically in the background. Such concepts are not supported by most DBMS. Therefore,
BBoxDB can work on larger datasets.

Extensible DBMS like SECONDO [33] do support more data models, such as nested relations
or graphs. In addition, SECONDO can be easily extended by own operators or data models (called
algebra modules [32]).

User-defined filters (see Section 3.6) extend the query processor of BBoxDB. This is a simpler
but similar concept as the algebra modules used in SECONDO or user-defined functions in the
open-source DBMS MySQL [50]. In BBoxDB Streams, these UDFs can be used to process data
streams with custom data formats like GeoJSON (see Section 3.6.2 for an example).

2.2.2 Key-Value Stores

Key-value stores (KVS) belong to the family of NoSQL systems. They use a simple data model,
consisting of key and value tuples. To store large amounts of data, they can be implemented as a
distributed key-value store (DKVS), such as Cassandra [43] or HBase [5].

In a DKVS, the data are distributed across a cluster of nodes and each node stores only a
partition of the data. A partitioning function like a range- or a hash-partitioning function is applied
to the key of the tuple to determine to which node the tuple belongs.

(D)KVS provide simple methods to manage large amounts of key-value pairs. For storing data,
they provide an operation such as put(table, key, value). The given value is stored in a table
under a particular key. For retrieving data, another operation such as get(table, key) is provided.
This operation retrieves the stored value for a key from a table. (D)KVS focus on data storage, data
streams are not supported, and the features to execute queries on the data are limited.

2.2.3 Multi-Dimensional Data in KVS

Most (D)KVS are optimized to handle one-dimensional data; handling n-dimensional data is labori-
ous in these systems. Figure 3 depicts the problem for one- and two-dimensional data. In the figure,
we assume that the shown customer record is retrieved only via the customer id attribute. There-
fore, this attribute can be used as the key in the KVS. Choosing the key for a road (two-dimensional
non-point data) is much more difficult.

(D)KVS work with one-dimensional keys, and these keys are the only access path to the data.
Because of this, the key has to support the query processing. For example, when the road’s name
(e.g., Road 66) is chosen as key for a tuple that stores the spatial data of a road (see Figure 3 (b));

5

{
"customer id":1234,

"firstname":"John",

"lastname":"Doe",

"email":"jd@example.org"

}

Key 1234

a) Data that is accessed by one dimension (e.g., a customer record)
L

at
it

u
d
e

Longitude

Key ?

b) Data that is accessed by two dimensions (e.g., a road)

Figure 3: Determining a proper key for data in a (D)KVS can be a hard problem.

the road can be accessed by the name efficiently. However, the key does not contain information
about the location of the road in space. It is impossible to deduce the needed keys to retrieve
the data for a query such as Which roads are located in the following area? and in such cases an
expensive full data scan has to be performed.

In general, multi-dimensional range queries are not directly supported in regular (D)KVS; a full
data scan must be performed to answer such queries. A full data scan is an expensive operation;
the complete dataset has to be read from disk. To answer queries efficiently, full data scans have to
be avoided.

Linearization [49] can be used to encode the location of one-dimensional point data into a key.
Systems like MD-HBase [58] are using this technique to work with such data. MD-HBase is a multi-
dimensional extension of HBase, which allows the efficient storage of two-dimensional points. A K-D
Tree or a QuadTree partitions the space, and linearization is employed to generate ids for these
partitions. An additional indexing layer maps from these partition ids to HBase buckets, where the
data are stored. Queries like range queries are performed by determining the required partitions and
performing a scan of the affected buckets. BBoxDB works with n-dimensional data and can also
store non-point data. In addition, no bucket scans are performed in BBoxDB. The local index (see
Section 3.4) allows retrieving the required tuples directly.

The source code of MD-HBase is not publicly available. With Tiny MD-HBase [70] an open-
source implementation does exist. Tiny MD-HBase is a sample implementation that shows the
implementation aspects of the system. However, this version is not designed for handling large
amounts of data.

Systems such as EDMI - Efficient Distributed Multi-dimensional Index [79], Pyro [44], and
HGrid [36] are also enhancements of HBase which use an additional index layer to store multi-
dimensional data in HBase. However, operations such as spatial joins or continuous queries are not
supported by these systems. In addition, these systems only support point data.

HyperDex [23] is a distributed key-value store that supports multi-dimensional point data di-
rectly. However, non-point data are not supported by HyperDex. In [27], a spatio-temporal indexing
extension to the key-value store Apache Accumulo [3] is discussed, which is based on GeoHashing [30].
However, this extension can handle only spatio-temporal (three-dimensional) data and does not sup-
port data streams. The GeoMesa project [31, 39] has developed a spatio-temporal database built
on top of existing NoSQL databases like Cassandra, HBase, or Accumulo. Two- and three-dimen-
sional point and non-point data are supported. Also, GeoMesa allows the handling of data streams.
However, the software supports only very simple queries on data streams.

6

2.2.4 Further Approaches

Array databases such as Rasdaman (raster data manager) [12], SciDB [67], or SciQL [78] allow the
processing of multi-dimensional arrays (data cubes). In addition to these dedicated software systems,
raster data extensions for relational database management systems such as PostGIS Raster [65] or
Oracle GeoRaster [62] exist. Array databases allow the handling of data like maps (two-dimensional)
or satellite image time series (three-dimensional). These systems are optimized for storing and
retrieving data. Handling data streams or continuous queries is not covered by all these systems.

Parallel SECONDO [34] and Distributed SECONDO [54] are distributed versions of SECONDO.
They also allow the handling of multi-dimensional data. However, the distribution of the data
is based on a static grid, and uneven partitions are not re-balanced automatically. In addition,
continuous queries are not supported by these systems.

MapReduce [20] is an approach for the processing of large amounts of data on a cluster of unreli-
able nodes. With Apache Hadoop [4], an open-source implementation of the MapReduce algorithm
does exist. Specialized extensions for the processing of spatial data (like SpatialHadoop [22]) or
Spatio-Temporal Data (like ST-Hadoop [2]) were developed. However, these systems do not support
to process data streams.

2.3 Stream Processing Systems

This section compares popular stream processing systems and common architecture patterns with
BBoxDB Streams. Besides, other approaches for the handling of multi-dimensional stream data are
discussed.

2.3.1 First Stream Processing Systems

The STanford stREamdatA M anagement (STREAM) system [10] was one of the first publicly
available systems to evaluate continuous queries over data streams. The system uses a centralized
architecture and does not focus on the special characteristics of multi-dimensional data. In contrast,
BBoxDB is a distributed system that is specialized in the handling of multi-dimensional data.

The Tapestry system [68] introduces the concept of continuous queries. Continuous queries are
registered by a user and evaluated as soon as new data are stored. Tapestry is an append-only
database, and the continuous queries are formulated in the Tapestry Query Language, which is
similar to SQL. In contrast to BBoxDB, data can not be deleted, and the system can only utilize
the resources of a single node.

2.3.2 Current Stream Processing Systems

The Apache project hosts four of the most widespread stream processing systems: Apache Flink [28],
Apache Spark Streams [51], Apache Kafka [52], and Apache Storm [9].

Modern stream processing systems allow splitting up the stream into so-called windows. A
window is a small partition of stream elements (e.g., based on the number of elements or the time)
that are processed at once. On these windows, operations such as aggregations can be executed.
Some systems allow to build up distributed tables of previous stream elements or with the most
recent stream value (e.g., KTables in Apache Kafka [8]). These tables are stored in a distributed
manner, but features such as the dynamic re-partitioning of these tables are not supported. However,
stream processing systems provide the ability to store the result of the stream processing into
data sinks such as Cassandra. These stream processing systems are not optimized to compare
the elements of the streams with larger previously stored datasets. These systems do not support
operations such as geometric indexing or spatial joins. BBoxDB instead re-distributes datasets
dynamically in the background without interrupting access to the data. The system supports multi-
dimensional indexing and spatial joins are supported out of the box. BBoxDB Streams allows
performing continuous spatial joins between the elements of a data stream and stored data.

7

2.3.3 Data Streams and Continuous Joins

Joining previously stored data with stream elements is an important topic for many areas of ap-
plication. In general, joins in stream processing systems can be divided into: (1) windowed joins
and (2) unwindowed joins [1, p. 254]. In a windowed join, the data of the stream is joined with a
fixed range (e.g., a fixed time range of one day) or a sliding range (e.g., the last 100 elements of the
stream) of the previously received data. In an unwindowed join, the data of the stream are joined
with the complete history of the stream.

Performing joins on streams is discussed in papers like [41, 64]. Both papers propose Distributed
Hash Tables [45] to distribute the tuples of a data stream in a way that joins can be efficiently
executed. In contrast to BBoxDB Streams, these systems focus only on one-dimensional point data.
Systems such as DEDUCE [71] allow the usage of MapReduce jobs to access large amounts of static
data in stream processing systems. These systems allow joining data streams with static data;
however, they focus also on one-dimensional key-value pairs, which MapReduce can process. Topics
such as spatial data are not covered by these systems.

A unique feature of BBoxDB Streams is the efficient continuous unwindowed spatial join between
a data stream and previously stored n-dimensional big data.

We have chosen Apache Kafka for a more detailed comparison to discuss the differences between
BBoxDB Streams and a typical stream processing system in-depth. The architecture of Apache
Kafka and the implemented join types are discussed subsequently. The comparison is also valid for
other typical stream processing systems.

In Apache Kafka, a data stream is called KStream. Each element of a KStream consists of a key
and a value. The key is used to partition the stream elements across the nodes of the cluster. Each
node processes only a partition of the whole data stream. A KTable is an “abstraction of a changelog
stream” [8]; for each key it contains the most recent value. Just like the data stream, KTables are
partitioned across the nodes of the Kafka cluster. GlobalKTables are similar to KTables, with the
difference that they are not partitioned; each Kafka node stores a full copy of the table. Therefore,
GlobalKTables allow joins over non-key stream attributes. Regardless of how the stream data are
partitioned, the join partners are present on the nodes.

Apache Kafka supports five different join operations [7]: (1) the KStream-KStream Join, (2) the
KTable-KTable Join, (3) the KStream-KTable Join, (4) the KStream-GlobalKTable Join, and (5) the
KTable-to-GlobalKTable Join. The KStream-KStream join is a windowed join; the remaining joins
are unwindowed.

Similar to a key-value store, Kafka works with simple data types for the key and the value of
the stream elements (e.g., byte, string, int, long) [6]. However, this leads to the same problems
as discussed in Section 2.2.3 when multi-dimensional data or non-point data have to be processed.
Determining a proper key is problematic for such kind of data. Therefore, it is problematic to
distribute a stream of n-dimensional data across a cluster of nodes in a way that KStream-KTable
joins can be performed. To perform this type of join, the stream elements have to be partitioned in
the same way as the KTable.

As an alternative, the KStream-Global-KTable join can be performed. However, in this case, the
table is not partitioned and has to be stored on each Kafka node completely. The resources of the
nodes limit the size of the table. Therefore, such joins can only be performed on small tables.

The spatial join of BBoxDB Streams can be compared to the KStream-KTable Join of Apache
Kafka. The data of the table containing the join partners of the stream elements are partitioned
across the cluster of nodes; the stream is partitioned in the same way. So, the stream elements
are processed by the same nodes that store the join candidates. The difference between Kafka
and BBoxDB Streams is that BBoxDB Streams uses a partitioned n-dimensional space and n-
dimensional bounding boxes of the stream elements to distribute the data. Apache Kafka uses only
a one-dimensional key to distribute the data, which leads to the problems discussed above.

8

2.3.4 Data Streams and Multi-Dimensional Data

The systems PLACE [48] and Tornado [46] are built to handle data streams of spatial data. PLACE
focuses on spatio-temporal data streams and supports continuous queries, and implements operations
like spatial joins. However, the system is not a distributed system. Therefore, the system can only
employ the resources of one node, to handle the data stream and to calculate the continuous queries.
Tornado focuses on spatio-textual datasets (e.g., geo-tagged text messages from Twitter). The
distributed architecture allows the system to process data streams and register continuous queries.
In contrast to BBoxDB, the system can handle only point data with two spatial dimensions and one
temporal dimension. In addition, both of these systems are not publicly available, and they focus
only on two- and three-dimensional data.

In [76] an extension of Apache Storm for the handling of spatial data streams is proposed.
However, the paper focuses only on two-dimensional point data. In contrast, BBoxDB Streams can
handle n-dimensional point and non-point data.

The paper [77] focuses on the handling of continuous spatial joins on moving objects. However,
it does not cover topics such as the handling of previously stored n-dimensional big data or the
distributed computing on a cluster of nodes.

When a data stream of position data is processed, the continuous queries are evaluated on each
position update. This requires a certain amount of resources. To reduce the needed resources,
concepts such as the safe region [66] were introduced. A safe region is a region in space where
the object can move without changing the result of a continuous query; this reduces the number of
calculations required. The safe region gives only a rough estimation of the location of an object.
Applications that need the exact position of the object can not work with safe regions. BBoxDB is
a highly scalable system that is designed to handle large amounts of data and updates. Concepts to
reduce the number of updates or query re-calculations are not implemented at the moment. Instead,
more resources can be added easily, and the existing data are re-distributed in the background
without interrupting the service. Besides, the GUI of BBoxDB is used to visualize the stream data
in real-time. Therefore, all changes need to be processed by the registered continuous queries (see
Section 4.8).

2.3.5 Software Architecture

The lambda architecture [47] is a software architecture pattern that deals with the low-latency
processing of data streams. A stream-processing system and a batch-processing system are used
in parallel to get the best of both worlds: accurate and up-to-date results. The stream-processing
system is used to get the most recent but inaccurate results. The batch-processing system re-
processes the complete data periodically. The output of this system is a bit outdated but accurate.
For the batch processing component, the complete data history has to be available. The drawback
of the architecture is that the same logic has to be implemented twice: (1) in the batch-, and (2) in
the stream-processing system.

A more recent approach is the kappa architecture [42]. The batch processing engine is passed,
and so, the duplicate implementation of the logic is omitted. The data are still stored in an append-
only way, but everything is treated as a data stream. The stream processing engine periodically
re-processes the historical and the most recent data. The history data are read entry per entry and
processed as a regular data stream.

In BBoxDB, continuous spatial join queries are performed between stream elements and previ-
ously stored data. The software can store the stream elements in a persistent way. In this situation,
the spatial joins are performed between current stream elements and all previously stored stream
elements. This means that BBoxDB Streams is inspired by the kappa architecture.

9

3 BBoxDB Basics

BBoxDB is a distributed key-bounding-box-value store designed to handle multi-dimensional big
data. In contrast to regular key-value stores, which store key-value pairs, BBoxDB stores each value
together with an n-dimensional bounding box. The system is optimized for the handling of low-
dimensional (e.g., spatial and spatial-temporal) data4. BBoxDB is licensed under the Apache 2.0
license and is available for download on the website of the project [14]. More information about the
concepts can be found in papers such as [55, 56].

Building a highly-available distributed system is a complex and error-prone task. Failures such
as node or network outages have to be handled properly. Apache ZooKeeper [40] is a software that
was developed to simplify the implementation of distributed systems. The software provides a simple
tree-oriented structure, which can be used to realize more complex tasks. BBoxDB uses ZooKeeper
for tasks such as service discovery (i.e., which BBoxDB nodes are available) or sharing information
(e.g., which part of the space is handled by which node).

3.1 Tuples and Consistency

Definition. A tuple t consists of a key, a value, a bounding box and a version; t = (key, bounding box,
value, version). (1) The key identifies the tuple, (2) the bounding box is used as a generic description
of the location of the tuple in the n-dimensional space (see Section 3.3), (3) the value contains the
data, and (4) the version is used to identify the newest version of the tuple5. Table 1 lists the
attributes of a tuple.

Name Description

Key The key is a string that identifies the tuple.

Bounding box The bounding box is an n-dimensional hyperrectangle
consisting of double values.

Value The value is a byte array that contains the data of
the tuple.

Version The version is a long which identifies the most recent
version of a tuple.

Table 1: The attributes of a tuple in BBoxDB.

BBoxDB uses eventual consistency [72] to deal with outages such as network partitions or un-
available replicates. The timestamp of the tuple is used to keep track of the most recent version of a
tuple. Eventual consistency means that all replicates become eventually synchronized with the last
version of the data when no updates are made.

3.2 Operations

BBoxDB has some similarities to key-value-stores. But in contrast to a KVS, BBoxDB uses slightly
different operations. New data are stored with the put(table, key, hrect, value) operation. In
addition to the already described parameters, an n-dimensional bounding box (a hyperrectangle; see
Section 3.3 for a detailed description) has to be specified when the data are stored.

Data are retrieved using the operation queryByRect(table, hrect), which retrieves all tuples
whose bounding box intersects with the query bounding box. Besides, further operations such as
a spatial join (operation join(table1, table2, hrect)) are implemented. Table 2 lists BBoxDB
operations that are used in this paper6.

BBoxDB is a generic data store that can store any kind of data (e.g., a geometry encoded in
GeoJSON or WKT format, or a trajectory encoded in CSV format). Each stored value is a plain

4In general, BBoxDB can handle data of any dimension. However, due to the “the curse of dimensionality” [15, p.
ix] and the increasing volume of hyperectangles (used as bounding boxes, see Section 3.3) the data model can become

10

Most important operations of BBoxDB

put table × string × hrect × bytes → table

delete table × string → table

getByRect table × hrect → stream(tuple)

join table × table × hrect → stream(tuple)

Table 2: The most important operations of BBoxDB.

array of bytes for the datastore. Only the bounding box of the value is encoded in a format that
BBoxDB can decode. Therefore, the query processor takes only the bounding boxes of the tuples
into consideration. Some operations, such as spatial joins on polygons, need to decode the stored
values to produce the correct query result. User-defined filters (UDFs) can decode the value and
can refine the bounding box based operations (see Section 3.6).

3.3 Bounding Boxes

In BBoxDB, each value is stored together with an n-dimensional bounding box. To calculate the
bounding box for a value, the minimum and maximum coordinates have to be determined for each
dimension. BBoxDB provides some helper functions which calculate a bounding box for common
data formats like GeoJSON, WKT, or GTFS.

Definition. The n-dimensional axis-aligned minimum bounding box, which is simply called bounding
box in this paper, is represented by an n-dimensional hyperrectangle consisting of 2n values of the
datatype double. The value 2(i − 1) describes the lowest included coordinate in the dimension i,
while the value 2(i−1)+1 describes the highest included coordinate in the dimension i. For example,
the tuple (0.5, 2.5, 0.2, 3.0) describes a two-dimensional hyperrectangle. In the first dimension, the
range [0.5, 2.5] and in the second dimension, the range [0.2, 3.0] are covered (see Figure 4).

D
im

en
si

on
2

Dimension 1

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Ro
ad

B
o
u
n
d
i
n
g

B
o
x

(0.5, 2.5, 0.2, 3.0)

Bounding Box of the road

Dimension 1 Dimension 2

Figure 4: The bounding box for a two-dimensional non-point entity (e.g., a road).

3.4 Data Distribution

BBoxDB stores tuples in tables. Tables of the same dimensionality can be grouped together in a
distribution group. To address a table in BBoxDB, the complete name consisting of the name of the
distribution group and the table has to be specified. For example, dgroup table1 denotes the table
table1 of the distribution group dgroup.

By splitting the space, BBoxDB splits the data of a distribution group into almost equal-sized
partitions (distribution regions) and spreads the data of these partitions across a cluster of nodes.
Therefore, each node stores only a part of the whole dataset.

inefficient in the high dimensional space.
5The version can be provided by the user; if no version is provided the current timestamp is used.
6BBoxDB provides further operations for the management of distribution groups and tables. These operations are

discussed in papers such as [56, pp. 14ff.].

11

Geometric data structures (such as the K-D Tree [16] or the Quad-Tree [24]) are used as space
partitioner to partition the space into distribution regions. The space is split and merged based on
the actual distribution of the stored tuples. The used partitioning algorithm can be chosen when
the distribution group is created.

The global index contains two types of information: (1) the current partitioning that is generated
by the space partitioner (space → distribution region) and (2) the assignment of these partitions
to the nodes of the cluster (distribution region→ P(nodes))7.

On the nodes, data are indexed by an R-Tree [35]; this data structure is called the local index.
The local index maps from the n-dimensional space to the stored tuples (space → tuples). Both
indexes are stored in ZooKeeper.

Figure 5 shows an example of stored tuples, their bounding boxes, and the partitioned space.
The mapping between the space and the nodes is the global index. All the tuples whose bounding
box belongs to multiple distribution regions (e.g., Tuple G in the figure) are duplicated and stored
multiple times.

Tuple H

Tuple G

Tuple A Tuple B

Tuple C

Tuple DTuple E

Tuple F

Distribution

region 0
Distribution region 1

Distribution region 2

Node c

Node b

Node a

Figure 5: BBoxDB partitions the space into distribution regions and assigns these regions to the
nodes of a cluster. The different symbols of the tuples represent the different values. The box around
the symbol represents the bounding box of the value.

BBoxDB is designed to handle growing and shrinking datasets. To ensure an equal data distri-
bution, the data are re-partitioned and re-distributed dynamically. When a distribution group is
created, an upper- and a lower threshold (tupper and tlower) are defined. Each node of the BBoxDB
cluster calculates the size of the locally stored distribution regions periodically. When a distribution
region becomes larger than tupper, the region is split. When a region becomes smaller than tlower, the
region is merged. BBoxDB re-distributes the data in the background without interrupting access to
the data8.

When a new distribution group is created, the entire space is covered by one distribution region.
By storing data and the re-partitioning of the space performed by BBoxDB, the space is partitioned
into more and more distribution regions. It takes some time until the space is partitioned in enough
partitions that each node can store at least the data of one distribution region. Nodes that do
not store any distribution regions are idle. To utilize the nodes directly from the beginning and to
reduce the amount of data re-distribution tasks, BBoxDB allows one to pre-partition the space of
a new distribution region into n distribution regions by a provided sample. BBoxDB determines
the distribution of the data from the sample and creates matching partitions. Because no data are

7When replication is used, one distribution region is mapped to multiple nodes.
8See [56, pp. 23ff.] for a detailed discussion of this functionality.

12

stored in the distribution region, the partitions can be created and assigned to the nodes without
re-distributing any data. When data are stored after the region is pre-partitioned, the data is
distributed directly to all nodes of the cluster.

3.5 Efficient Data Access

The two-level index structure of BBoxDB, consisting of (1) the global index, and (2) the local index
allows the efficient retrieval of tuples. Most of the operations in BBoxDB take a hyperrectangle as a
parameter. The hyperrectangle is compared with the global index to determine which distribution
regions are affected by the operation. The nodes that are responsible for these regions are contacted,
and the operation is performed on these nodes. The local index on the nodes is used to identify all
the local stored tuples that intersect with the hyperrectangle9.

All tables of a distribution group share the same global index. This means that the data are
spread in the same manner (co-partitioned) across the nodes of the cluster; the same regions in
space are stored on the same nodes.

Definition. For a join ./p, we call two partitioned tables R = {R1, ..., Rn} and S = {S1, ..., Sn}
co-partitioned iff R ./p S =

⋃
i=1,...,nRi ./p Si.

On co-partitioned data, spatial joins (performed by the join() operation) can be efficiently
performed. No data need to be transferred through the network; all join partners are stored on the
same node. The join() operation also takes a hyperrectangle as a parameter. This hyperrectangle
determines the area in space where the spatial join is performed. The global index is employed
to determine the distribution regions on which the operation needs to be performed. These nodes
are contacted and the local index on these nodes is used for an index nested loop join. Figure 6
illustrates a spatial join on two co-partitioned tables.

�
��

��

�

�
�

�

Dimension 1

Di
me
nsi
on

2

Relation A

��

�

�

�

Relation B

The spatial join operation

Figure 6: Executing a spatial-join on two co-partitioned tables.

3.6 User-Defined Filters

As a generic data store, BBoxDB is unable to interpret the bytes of the stored values. The bounding
box is stored in a standardized format that BBoxDB can interpret. Therefore, the query processor
can only perform operations on the bounding boxes of the data.

Example. Performing a spatial join on spatial data, which only considers the bounding boxes, leads
to incorrect results. Intersecting bounding boxes is a necessary criterion but not a sufficient criterion
for a spatial join (see Figure 7).

To solve this problem, user-defined filters (UDFs) are supported by the query processor of
BBoxDB. These filters contain the knowledge to decode a certain data format (e.g., GeoJSON en-
coded values) and to perform a certain operation on the data. UDFs refine the bounding box-based

9Operations without a hyperrectangle as a parameter can also be efficiently executed. This is realized with an
additional bounding box index, which is discussed in [56, pp. 32ff.].

13

(a) Two non-intersecting
spatial objects.

(b) Two intersecting spa-
tial objects.

Figure 7: Two spatial objects (solid line) with intersecting bounding boxes (dashed line). In (a),
the spatial objects do not intersect, while in (b), the spatial objects do intersect.

output of the generic query processor by applying a further filter step on the values (see Figure 8).
These filters are deployed to the nodes of the cluster and executed directly in the query processor.
Therefore, UDFs are executed in a distributed manner on different nodes, and the data is filtered
before it is transferred to the client.

Q
u
e
r
y

P
r
o
c
e
s
s
o
r

U
s
e
r
-
D
e
f
i
n
e
d

F
i
l
t
e
r

All tuples

Query result
based on

bounding boxes

Refined
query
result

Figure 8: Refining the bounding box based result of the generic query processor with a user-defined
filter. In a spatial join, a user-defined filter can consider the real geometries and let only the
intersecting geometries pass.

3.6.1 Implementation Details

UDFs are developed by the user of the system. Only the user who has stored the data knows how
to interpret the values of the data. However, BBoxDB contains some pre-defined UDFs for common
data formats (e.g., for decoding GeoJSON data or WKT). UDFs are written in Java and they can
use existing libraries. The filter are deployed and executed on the BBoxDB nodes. A UDF is a class
which implements the interface UserDefinedFilter, which is provided by BBoxDB. The interface
contains two methods that need to be implemented by every UDF (see Listing 1).

Listing 1: The interface UserDefinedFilter.

1 public interface UserDefinedFilter {

2
3 public boolean filterTuple(Tuple tuple , byte[] customData);

4
5 public boolean filterJoinCandidate(Tuple tuple1 , Tuple tuple2 , byte[]

customData);

6 }

• The method filterTuple in Line 3 is used to refine range queries: f(t) ∈ {true, false}. For
each tuple that has a bounding box which intersects with the query rectangle the method is
called.

• The method filterJoinCandidate in Line 5 is used to refine spatial join queries: f(t1, t2) ∈
{true, false}. The method is called with two join candidates that have intersecting bounding
boxes.

When these methods return true, the tuple is part of the final query result. Otherwise, the tuple
is not part of the final result. In addition, both methods accept a user defined value customData,

14

which can be used for further operations (e.g., test a property like the name of the road in the
GeoJSON encoded value).

3.6.2 A UDF for GeoJSON Encoded Data

In this paper, many examples work with GeoJSON encoded data. In this section, a UDF is discussed,
which decodes GeoJSON encoded data. The UDF can be used: (1) to refine range queries and (2)
to refine bounding box-based spatial joins to spatial joins on the real geometries.

The range query refinement is done by performing an intersection test between the real geometry
of a tuple and a provided geometry. The spatial join refinement is done by performing intersection
tests on the real geometries of the elements. Elements that have only intersecting bounding boxes
and no intersecting geometries (see Figure 7) are removed from the result. The ESRI Geometry
API for Java library [69] is used by the UserDefinedGeoJsonSpatialFilter UDF to perform the
intersection test. The UDF is used later in Section 5 to refine continuous queries. For a good
understanding of the examples, this UDF is described in this section in greater detail.

The UDF performs the following filter tasks on range queries:

• When the filterTuple method is called with only a tuple, all tuples can pass the filter.

• When the filterTuple method is called with a tuple and a GeoJSON element as custom
value, an intersection test is performed between these objects.

The UDF performs the following filter tasks on spatial join queries:

• When the filterJoinCandidate method is called with two tuples, the performed operation
depends on the type of the GeoJSON geometries:

– When both geometries are regions, an intersection test is performed.

– Otherwise (e.g. for a point and a region), a distance test of the geometries is performed.
Geometries that are closer than five meters are treated as intersecting and can pass the
filter. The distance test for lines or points is implemented for situations where a position of
a car (a point) should be compared with a road (a line). Due to measurement tolerances,
the geometries do not really intersect but they become close (see Listing 14 in Section 5.3
for an example). The distance of 5 meters is the default value and can be changed by the
user.

• When the filterJoinCandidate method is called with two tuples, and a custom value, the
same calculation as described above is performed. In addition, it is assumed that the custom
value is in the format key:value. GeoJSON elements can contain a property map of key-value
pairs10. The filter tests that the provided key and value are contained in at least one of the
property maps of the tuples. For example, with the custom value name:road66 the name of
the road is restricted to road66. By specifying bridge:yes the road has to be a bridge, and
by specifying lanes:4 the road has to have four lanes. Only tuples with a matching property
and intersecting geometries can pass the filter.

In addition to the UserDefinedGeoJsonSpatialFilter, BBoxDB contains a more strict version
of the filter called UserDefinedGeoJsonSpatialStrictFilter. This UDF performs only the real
intersection test of both geometries; no distance check is performed. This filter can be used when
it is required to test that a point is really inside of another geometry, like the position of a car (a
point) in a forest (a region).

It is a common pattern in spatial join algorithms to evaluate the bounding box of an object
in the first step and evaluate the full geometry only if required. For example, the calculation of a
spatial join is often divided into a filter step and a refinement step [63]. The filter step is cheap to

10In the examples of this paper, we work on data fetched from the OpenStreetMap project. Details of the properties
of these objects can be found in the wiki of the project [61].

15

calculate and detects all possible join candidates by intersecting bounding boxes. The refinement
step is more expensive to calculate, works on the real geometries, and eliminates all join candidates
that do not really intersect.

4 BBoxDB Streams

The introduction lists several challenges in the handling of multi-dimensional data streams (see
Section 1.3). To solve these problems, we have developed a new data stream processing solution
called BBoxDB Streams. The system is an extension of the key-bounding-box-value store BBoxDB.
BBoxDB is used for data distribution and storage. Features such as the decoding of stream elements
or the support for continuous queries are part of our BBoxDB Streams implementation.

Stream

Capturing

Query

Processing

Data stream
(File, Pipe, Network Socket)

Stream capturing tool

BBoxDB-Client

Node a Node b Node c

BBoxDB-Client

Continuous Query Consumer

Stream elements

put()Tuples

continuousQuery()Tuples

BBoxDB-Cluster

Figure 9: Handling a data stream with BBoxDB Streams. The data stream is captured, converted
into tuples, and written to the nodes of the BBoxDB cluster. Afterward, the continuous queries are
executed and the results are delivered to the clients.

The handling of data streams consists of two major tasks: (1) the data stream needs to be
captured and handled, and (2) continuous queries need to be evaluated. Both tasks are fulfilled
by our implementation and described in the next sections. The upper part of Figure 9 depicts the
capturing of data streams (which will be described in Section 4.1). The middle part depicts the
handling of multi-dimensional data in BBoxDB, which was already described in Section 3. The
lower part in the image contains the execution of queries (see Section 4.2) and the visualization of
results (see Section 4.8). The types of queries that can be executed is covered in Sections 4.3, 4.4,
4.5 and 4.7. Section 4.6 discusses strategies to distribute the stream elements to the nodes of the
cluster.

4.1 Capturing Data Streams

To capture a data stream, the stream has to be: (1) read from an input source, (2) decoded and
converted into a data format that can be handled by BBoxDB Streams, and (3) partitioned and
distributed to the nodes that are responsible for the tuples.

4.1.1 Decoding and Processing Streams

BBoxDB Streams contains a stream capturing tool. The stream capturing tool allows the user to read
data streams from input sources like network sockets, named pipes, or files. The goal of the stream
capturing tool is (1) to read data from an input source (input source→ string), and (2) to decode
the content and generate a stream of BBoxDB compatible tuples (string → tuple). To decode
the data of the input sources, BBoxDB Streams contains decoder for GeoJSON, ADS-B, or GTFS

16

real-time. Therefore, many streams can be handled out of the box. Support for additional data
formats or stream inputs can be easily implemented by creating a new Java class and implementing
the interface TupleBuilder.

The stream capturing tool uses the BBoxDB client library for the communication with the
BBoxDB cluster. The client library is written in the programming language Java. This library
honors the global index and redirects operations in a proper way when changes in the global index
occur (see [56, pp. 30 ff.]). After the capturing tool is started, the following steps are executed:

• Read Data: The data stream is read continuously from the input source.

• Parse Data: The read data are parsed, and the stream elements are decoded and converted
into tuples, consisting of a key, a bounding box, a value, and a version (see Section 3.1).

• Ordering: A version for the tuple is determined. When the stream elements contain a version
field, this value is used. Otherwise, the current timestamp is used as a version. Taking the
original version honors the order of the tuple at the creation time. By generating a new version,
the receiving order of the tuples is taken.

• Distribution: The tuple is distributed to the nodes of the BBoxDB cluster. To perform this
action, the capturing tool executes the put() operation together with a table name. Afterward,
the tuple is sent to the nodes which are responsible for storing data for the region in space
which is described by the bounding box of the tuple. Due to the fact that a table name is
associated to the stream elements in this step, continuous queries can be registered on these
stream elements by specifying the table name.

• Continuous Queries: When a node receives a new tuple, the tuple is processed and the
execution of the registered continuous queries is performed (see Figure 9 for an illustration).

• Store: After the tuple is processed, the tuple can be stored on disk or discarded. The desired
action for the tuples can be configured by the user of the system in the stream capturing tool
11.

4.1.2 Data Storage and Index Updates

The capabilities of BBoxDB are used to store the elements of the data stream. How the storage
structures work and the two-level index structure (see Section 3.4) is affected by new data is described
in this section.

Local Index: Memtables and String Sorted Tables (SSTables) [18] are employed as data struc-
tures to store data; both data structures are optimized for writes. Memtables are located in memory,
and SSTables are located on disk. Tuples are stored in a Memtable first. When a threshold is reached,
the tuples are sorted by key and written to disk as an SSTable. Tuples are never updated; instead,
new versions of a tuple are stored. Old versions of the tuples are removed periodically in a cleanup
task called compactification.

SSTables are optimized for key-based retrieval operations. For efficient hyperrectangle-based
retrieval operations (e.g., range queries), an R-Tree is created for each Memtable and SSTable (the
local index).

Global Index: The global index determines which node is responsible for which distribution
region (a partition of the space). Updating the global index is an expensive operation because the
data between the nodes need to be re-distributed and transferred between the nodes. Therefore,
the global index is only updated when a partition becomes unbalanced. Two threshold values (the
upper and the lower limit) are defined when a partition is considered as unbalanced. These values

11As in a KVS, tuples are overwritten when a new tuple with the same key is stored. In addition, BBoxDB supports
the automatic deletion of tuples after a particular time (time to live-based tuple removal). This feature can be used to
ensure that the persistent data of the stream elements is automatically removed after some time when the element is
no longer contained in the stream.

17

are configured when the distribution group is created. In addition, it can be configured if tuples or
the amount of the stored data is used as the size of the region. The global index also determines how
the data stream is partitioned and distributed in the BBoxDB cluster. Therefore, when the global
index is changed, the stream is distributed in a different manner. The global index is split in a way
that the data is evenly distributed across the cluster. Therefore, the data stream is also distributed
in a way that reflects the distribution of the stream elements in the n-dimensional space.

The data re-distribution was already implemented in BBoxDB. Also, the handling of read- and
write-operations during the data re-distribution was implemented. These implementations are re-
used by BBoxDB Streams. More about the storage management and the data re-distribution of
BBoxDB can be found in [56].

4.2 Performing Continuous Queries

BBoxDB Streams enhances BBoxDB by two operations for the handling of continuous queries: (1)
continuousQuery(queryPlan) and (2) cancelQuery(id) (see Table 3). The first operation registers
a new query while the second operation cancels a previously registered continuous query.

Operations of BBoxDB Streams

continuousQuery queryPlan → id × stream(tuple)

cancelQuery id → bool

Table 3: The operations implemented for BBoxDB Streams.

The operation continuousQuery takes a query plan as parameter. This query plan describes
how the tuples of the stream are processed and which result tuples are returned by the continuous
query. How the execution of the query plan is done is described in Section 4.4. How a continuous
query plan can be constructed (e.g., which transformations are performed and the specification of
the area where the query is registered) is described in Section 5. The operation returns an id of the
continuous query together with a stream of result tuples. The query id can be used as a parameter
for the operation cancelQuery to stop the execution of the continuous query. Listing 5 of Section 5.1
demonstrates the usage of these operations.

These operations are fully integrated in the BBoxDB client and also track the state of the global
index (the data distribution). When a continuous query is registered and the data distribution is
changed (e.g., a distribution region is split or merged), the query is automatically re-registered on
the new distribution regions.

4.3 Tuple Transformations

Tuple transformations are an important part of the evaluation of continuous queries. BBoxDB
Streams supports two types of transformations: (1) Modifying Transformations and (2) Filter Trans-
formations.

4.3.1 Modifying Transformations

Modifying transformations allow the user to change the tuples of the stream (see Section 4.4); they
are applied on the bounding box b of a tuple and return a modified bounding box b′. Depending on
the transformation, addition parameter can be passed to the transformation: f(b[r1, . . . , r2n], . . .) =
b′[r′1, . . . , r

′
2n]. f is the modifying transformation, b is the original bounding box, b′ is the transformed

bounding box, [r1, . . . , r2n] and [r′1, . . . , r
′
2n] are the values of the n-dimensional bounding boxes (see

Section 3.3).
The following modifying transformations are supported in BBoxDB:

Enlarge Bounding Box by Factor: This transformation enlarges the bounding box by a constant
factor c. In each dimension the extension is calculated and multiplied by c. Half of the

18

enlargement is subtracted from the start coordinate of the bounding box and the other half
is added to the end coordinate. So, the bounding box is enlarged and location of the center
remains unchanged: f(b[r1, r2, . . . , r2n], c) = b′[r1− c(r2−r1)

2 , r2+ c(r2−r1)
2 , . . . , r2n+ c(r2n−r2n−1)

2].

Enlarge Bounding Box by Value: The bounding box b is enlarged by a constant value v in each
dimension. As in the factor transformation, half of the value is subtracted from the start coor-
dinate and half the value is added to the end value in each dimension: f(b[r1, r2, . . . , r2n], v) =
b′[r1 − v

2 , r2 + v
2 , . . . , r2n + v

2].

Enlarge WGS84 Bounding Box by Meter: Enlarge the two-dimensional bounding box b that
uses WGS84 coordinates by a certain value v in meters. The extension on the latitude axis is
specified as elat; the longitudinal extension is specified as elon. These meter based values are
converted into the proper changes of the WGS84 coordinates e′lat and e′lon. The bounding box

is changed as follows: f(b[r1, r2, r3, r4], v) = b′[r1 −
e′lat
2 , r2 +

e′lat
2 , r3 −

e′lon
2 , r4 +

e′lon
2].

4.3.2 Filter Transformations

Filter transformations decide whether a tuple t can pass the filter or not: f(t, . . .)→ {true, false}.
Depending on the filter, additional parameters (e.g., name of a key to filter) can be passed to the
filter function. Filter transformations can be applied on the stream and on the previously stored
tuples.

When the filter returns true, the tuple can pass the filter; otherwise, the query processing
for this tuple is stopped and the tuple will not be part of the query result. The following filter
transformations are supported in BBoxDB:

Filter by Key: If the key of a tuple is equal to a certain value v, true is returned; false otherwise:
f(t, v) ∈ {true, false}.

Filter by Bounding Box: If the bounding box of the tuple does intersect with a constant
bounding box b, the filter function returns true; false otherwise: f(t, b) ∈ {true, false}.

Filter by User-Defined Filter: This is a generic filter operation which delegates the real filter
operation to the user-defined filter u with the user-defined value v (see Section 3.6) and returns
the result of the UDF: f(t, u, v) ∈ {true, false}.

4.4 Continuous Queries

BBoxDB Streams supports two types of queries: (1) continuous range queries and (2) continuous
spatial join queries. These queries are discussed in the following subsections.

4.4.1 Continuous Range Queries

The continuous range query qcr is used to filter stream elements that intersect with a given query
rectangle. The stream elements can also be transformed and filtered (see Section 4.3). The query
performs a selection on the n-dimensional data stream Sn and returns all stream elements that
intersect with the range α where the query is registered and matches the selection function σcr:

qcr(Sn, α, σcr) = {s | s ∈ Sn ∧ s ∩ α 6= ∅
∧ σcr(s, τ, θ, β)}

Table 4 describes the notations of the equation. Section 5 discusses the elements of the query in
greater detail and gives some examples.

After a tuple s of a data stream is received by a BBoxDB node, the continuous queries are
executed. When the bounding box of the tuple intersects with the area in space α where the
continuous query is registered, the following steps are executed:

19

Symbol Description

Sn The n-dimensional data stream.
s A tuple of the data stream Sn.
α The hyperrectangle in space in which the query is

registered.
τ The query hyperrectangle.
θ A set of transformations that are applied to the

stream tuples.
β Is a boolean value which determines whether the

query reports positive or negative matches.

Table 4: The notations of the continuous range query.

1. The transformations θ for the bounding box of the tuple s are executed.

2. After the transformations are applied and no filter has stopped the execution of the query (see
Section 4.3.2), the bounding box of the tuple is compared with the query hyperrectangle τ .

3. If the bounding box of the tuple and the query hyperrectangle do intersect and positive matches
should be reported β, the tuple is sent to the query client. The same is performed if the
bounding boxes do not intersect, and negative matches should be reported.

Example. With this type of query, the ships of a static region of the ocean can be observed. The
position data of the ships is written to a table; on this table, the continuous range query is registered.
The region where the query is registered α and the query rectangle τ are identical. β is set to true
so that all ships that are intersecting with the query rectangle are reported. So, all ships that enter
the region are detected by the query. Transformations on the stream elements θ are not performed
in this example.

Using the continuous range query also more complex queries can be executed. This is shown in
the following example.

Example. Again, all ships that are heading to an island should be reported. But in addition, ships
that are in the direct neighborhood of the island should be ignored by the query. For instance, these
are ships waiting for a free port in the harbor, or these are ships that are maneuvering in the harbor
area. The situation is depicted in Figure 10. The continuous query should report all ships that are
in the light grey area; Ship1 should be detected and Ship 2 should be ignored.

Again the data stream containing the position of the ships is written to a table. On this table,
the query is registered in the area α. This is the part of the ocean that is observed, the area around
the island is τ , β is set to false. Therefore, only ships are reported by the query that are inside of α
but not intersecting with τ . The query reports the ships that are inside of the region α \ τ .

4.4.2 Continuous Spatial Join Queries

The continuous spatial join query qcj is used to compare stream elements with previously stored
multi-dimensional data. Like the continuous range query, the continuous spatial join query can
filter and transform the elements of the stream. The query performs a spatial join between the
n-dimensional data stream Sn and the table Rn of the same dimensionality in the area α using the
selection function σcj :

qcj(Sn, Rn, α, σcj) = {(r, s) | r ∈ Rn ∧ s ∈ Sn
∧ s ∩ α 6= ∅
∧ σcj(r, s, θ, λ)}

Table 5 describes the notations of the equation. Section 5 discusses the elements of the query in
greater detail and gives some examples.

20

Ship 1

Ship 2

Area where the query is registered (α)

Query rectangle (τ)

Figure 10: A continuous range query that determines all ships that are heading to an island. Ships
in the direct neighborhood of the island are ignored.

Symbol Description

Sn The n-dimensional data stream.
Rn The n-dimensional table of stored tuples.
s A tuple of the data stream Sn.
r A tuple of the table Rn.
α The hyperrectangle in space in which the query is

registered.
θ A set of transformations that are applied to the

stream tuples.
λ A set of transformations that are applied to the pre-

viously stored tuples. Only filter transformations are
supported.

Table 5: The notations of the continuous spatial join query.

For the previously stored tuples, only filter transformations are supported; applying modifying
transformations is not supported. Otherwise, the stored tuples would need to be accessed to calculate
the enlargement of the resulting bounding boxes (e.g., multiply the length the bounding box by a
value of 2). Since it is not known in advance how the transformation will change the bounding box
and whether the resulting bounding box is relevant for the query afterward, the transformation has
to be applied to all stored tuples. The calculation would be very inefficient because all already-stored
tuples have to be loaded. Therefore, modifying transformations on previously stored tuples are not
implemented in BBoxDB Streams; modifying transformations can only be applied to the stream
elements.

Like the continuous range query, the continuous spatial join query is executed every time a stream
tuple s is received by a BBoxDB node. If the bounding box of the tuple and the range where the
query is registered α do intersect, the query is executed. The following steps are executed:

1. The transformations θ on the bounding box of the stream tuple are applied.

2. Afterward, the transformed bounding box is used for a range query on the table Rn. Details
of this operation are discussed in Section 4.6.

3. For each result tuple t of the range query, the persistent tuple filter transformations λ are
applied.

4. If the tuple t is not eliminated by a filter operation the intersection between the bounding box
of t and the bounding box of the stream tuple s is calculated.

21

5. If the bounding boxes do intersect, both tuples are sent to the query client (see Section 5.1 for
a detailed example). Due to the transformations λ, the bounding boxes might no longer be
intersecting.

Example. With this type of query, the problem that is depicted in Figure 2 on Page 3 can be
solved. In the figure, collisions between ships and the reefs of the ocean should be detected before
they occur. The stream Sn contains the position of the ships and the table Rn contains the spatial
data of the reefs. The observed region of the ocean is α. The transformation of the stream elements
θ is used to enlarge the bounding box of the ships to detect a possible collision before it occurs.
Transformations on the persistently stored data λ are not used in this example.

4.5 Distributing Stream Elements

A challenge in the scalable handling of data streams is the efficient distribution of the stream elements
to the nodes of the cluster (see the stream capturing part in Figure 9 on Page 16). To execute efficient
continuous spatial join queries, the stream elements need to be spread to the nodes that store the
join partners. Listing 2 shows in pseudocode how the stream elements are distributed in BBoxDB
Streams.

Listing 2: Spreading stream elements to the nodes.

1 for(e ∈ stream) {

2 b = bounding box of e
3 r = distribution regions that are intersecting with b
4 n = nodes that are storing r
5 forward e to the nodes n
6 }

According to the global index, the stream elements are distributed to all nodes responsible for
the area of the bounding box of the tuple. This means that the stream elements are partitioned in
the same way as the tables of the distribution group. This leads to the same partitioning of the
stream elements and the stored data of this distribution group; the tables and the stream elements
are co-partitioned.

Technically, the distribution is implemented as follows:

1. The stream is converted into tuples and stored in a table in BBoxDB by calling the put()

operation.

2. The BBoxDB client queries the global index of the distribution group with the bounding box
of the tuple. The tuple needs to be sent to all distribution groups, which intersect with the
bounding box of the tuple (Line 2 and 3 in Listing 2).

3. The nodes that are responsible for these distribution regions are determined. The BBoxDB
client contains a robust implementation that handles changes in the global index (i.e., splits
or merges of distribution regions, or failed and new started nodes) automatically (Line 4).

4. The tuple is sent to all of these nodes that process the tuple (Line 5).

5. After the tuple is sent to the required nodes, the registered continuous queries are executed
(see Section 4.4).

The architecture of BBoxDB Streams is highly scalable. The basic algorithms for the scalability
are already implemented in BBoxDB. BBoxDB re-partitions the space automatically in the back-
ground if the data are unevenly distributed. This is performed without interrupting read or write
access to the data (see [56] for a more detailed discussion of this functionality). BBoxDB Streams
re-use these algorithms for the distribution of the stream elements. BBoxDB Streams automatically

22

adapts changes of the global index and registers already started continuous queries on newly created
(split or merged) distribution regions.

When the stream contains an area in space in which many stream elements are located, the
nodes that are responsible for this area have to do more work than other nodes. The nodes have
to process a large number of stream elements in the continuous queries, and they have to store the
stream elements on disk. Storing the stream elements on disk leads to growing distribution regions.
BBoxDB recognizes these regions and they are split automatically after some time (see Section 3.4).
The split of a distribution region leads to a changed distribution of the stream. The dense area is
now distributed and handled by more nodes.

4.6 Data in Different Distribution Regions

To perform continuous spatial joins between a data stream and previously stored data, the stream
elements and the previously stored data need to be co-partitioned. This means that the stream
elements are spread to the nodes that store the possible join partners (see Sections 3 and 4.5).
Transformations (e.g., enlargements of the bounding box) can be applied to the bounding boxes of
the stream elements (see Section 4.3). Enlargement transformations are executed on the BBoxDB
node that executes the continuous query. The transformation of the bounding box can lead to the
situation where the enlarged bounding box intersects with another distribution region. In this case,
the stream element and the join partner are located on different nodes. This behavior is shown in
Figure 11.

Reef a

Reef b

Distribution
region 0

Distribution region 1

Distribution region 2

Node c

Node b

Node a

Complete Space
Query Rectangle
Bounding Box
Enlarged Bounding Box

Figure 11: A stream of position data of ships is joined with the reefs of the ocean. The position
data of the ship belongs to Distribution region 1 and is distributed to Node a. The spatial data of
the Reef b belongs to Distribution region 0 and Distribution region 2 and is stored on Node b and
Node c.

In the figure, the spatial data of the ocean are stored in a cluster of BBoxDB nodes. A continuous
spatial join covering almost the entire space is used to find all ships that are about to hit a reef.
To get notified about this before the ship has actually hit the reef, the bounding box of the ship is
enlarged by a constant value.

As described in Section 4.1, the stream elements are distributed to the nodes that are responsible
for the region in space. In the figure, the position of the ship belongs to the Distribution region 1
which is stored on Node a. The continuous query for the stream element is performed on this node,
and the bounding box of the ship is enlarged. With the enlarged bounding box, a spatial join is
performed. However, the enlarged bounding box also belongs to the Distribution region 2. In this

23

region, the join partner Reef b is located. If the stream element is only joined with the local data
on Node a, the intersection between the bounding boxes of the ship and Reef b will not be detected.

In general, when a transformation enlarges a bounding box of a stream element, the enlarged
bounding box can intersect with additional distribution regions. The join partners of these regions
need to be included in the join to calculate the correct result. The strategies of the following
subsections are implemented in BBoxDB to solve the problem.

4.6.1 Fetch Data From Nodes – FETCH

This strategy fetches the missing join partners from other nodes via the network. When the bounding
box of a stream element intersects with another distribution region, all data stored in this area are
fetched from the nodes. Listing 3 shows the algorithm of this strategy. The advantage of this
strategy is that no special distribution of the stream elements is required. The drawback is that
data have to be transferred through the network when the continuous spatial join query is evaluated.
Transferring data through a network has high latency, and the network bandwidth can become a
bottleneck.

Listing 3: Fetching the missing join partners via the network.

1 localRegion = the region of the space that is stored locally

2
3 for(e ∈ stream) {

4 for(q ∈ queries) {

5 bbox = apply q.θ to the bbox of e

6 nonLocalData = bbox \ localRegion

7 joinPartners = fetchDataOfRegion(nonLocalData)

8 }

9 }

Example. Figure 12 depicts the situation, the light grey area is fetched via the network by Node
a from Node c. Therefore, the spatial data of Reef b is transferred to Node a and the intersection
between the reef and the enlarged bounding box is detected.

Reef a

Reef b

Distribution
region 0

Distribution region 1

Distribution region 2

Node c

Node b

Node a

Figure 12: By using the FETCH strategy, the data of the light grey area is fetched via the network
during the spatial join.

24

4.6.2 Enlarge By Static Padding – STATIC

In the moment, when a stream element is processed by the stream capturing tool (see Figure 9),
the bounding box that is used for the distribution is enlarged by a static padding. The enlargement
of the bounding box ensures that the tuple is distributed to all required nodes. On these nodes,
the execution of the continuous query is also performed and the join with the locally stored data
is executed. The static padding has to be calculated and specified by the user. The drawback of
this strategy is that continuous queries that perform tuple transformations that are larger than this
enlargement still lead to incorrect results.

Example. When the stream element of the ship is distributed in Figure 11, the bounding box of
the ship is enlarged by the same padding as used by the transformation in the continuous query.
Therefore, the ship is distributed to Node a and Node c and the possible collision is detected by the
continuous join.

4.6.3 Enlarge By Dynamic Padding – DYNAMIC

The strategy is similar to the STATIC strategy. The main difference is that the enlargement of
the bounding boxes is automatically determined. The enlargement is determined by calculating the
largest enlargement of all currently registered continuous queries. When a user registers a continuous
query that uses a bigger enlargement than the already registered queries, the stream capturing tool
automatically uses the biggest enlargement. The strategy is illustrated in Figure 13.

Stream

Capturing Tool

Stream

ZooKeeper

Query

enlargement
Global

index

Node c

Node b

Node a

Tu
pl
e

Tuple

Tuple

Client

Query

Query

Qu
er
y

Query 1
Query 2
Query 3

Maximum enlargement

per table and type

Bounding Box

Enlargement

Figure 13: To distribute the stream elements to the proper nodes, the bounding boxes are enlarged in
the stream capturing tool, and the distribution is performed based on the enlarged bounding boxes.
To determine the needed enlargement, each BBoxDB client registers the maximum enlargement of
all of his queries per table and enlargement type in ZooKeeper. The maximum enlargement is used
by the stream capturing tool to enlarge the bounding box.

Each BBoxDB client tracks its continuous queries. When a new continuous query is executed,
the BBoxDB client determines the maximum enlargement of all of his continuous queries per table
and per modifying transformation type (see Section 4.3.1). These enlargement values are stored in
ZooKeeper for every running BBoxDB client (see Section 3).

As soon as the continuous query is canceled, the maximum enlargement of all remaining queries
is recalculated and updated properly in ZooKeeper. In ZooKeeper, the enlargements are stored
as ephemeral nodes [40, p. 3]. This means that this node is automatically deleted as soon as the
BBoxDB client disconnects or crashes. Therefore, outdated enlargements are automatically removed.

25

The stream capturing tool takes the maximum of all stored enlargement values per transformation
type from ZooKeeper and uses these values to enlarge the bounding boxes of the stream elements.
Due to the watcher functionality of ZooKeeper [40, p. 3], the stream capturing tool gets notified
about changes automatically and adapts the maximum enlargement.

Listing 4 contains the algorithm of the dynamic padding in pseudocode. The maximum en-
largement of the supported modifying transformations is applied, and the bounding box of these
bounding boxes is determined12. The resulting bounding box is the maximum enlargement of the
bounding box of the tuple, after all transformations of the currently registered continuous queries
are applied. The tuple is distributed according to this bounding box.

Listing 4: Spreading stream elements to the nodes using dynamic padding.

1 for(e ∈ stream) {

2 b = BBox.of(e)

3
4 eb1 = enlargeByMaxFactorPadding(b)

5 eb2 = enlargeByMaxValuePadding(b)

6 eb3 = enlargeByMaxMeterPadding(b)

7
8 enlargedBBox = BBox.of(eb1, eb2, eb3)
9

10 r = distribution regions that are intersecting with enlargedBBox

11 n = nodes that are storing r
12 forward e to the nodes n
13 }

The advantage of this strategy is that the stream elements are always distributed with the cor-
rect padding. The drawback is a more complex implementation and the necessity to determine the
maximum enlargement of all registered continuous queries.

The advantages and the drawbacks of these strategies are discussed in the evaluation in Section 6.9.

4.7 Performing Queries in Multiple Regions

A bounding box of a stream element can intersect with multiple distribution regions. In this case, the
element is replicated and sent to multiple BBoxDB nodes (see Section 4.6). Also, a query rectangle
can intersect with multiple distribution regions. In this case the continuous query is registered on
several nodes (see Figure 16).

The duplication of the stream elements and the execution of the query on multiple nodes in
parallel could lead to the situation that a tuple is contained multiple times in a query result, which
is incorrect. To prevent this, a hash map in the BBoxDB client is used to detect and filter duplicates
(see the lower part of Figure 9). The hash map is built over the keys and version timestamps of the
query result tuples. When the client detects an already known tuple, the tuple is discarded before
it is reported to the user.

4.8 The GUI

The GUI of BBoxDB provides information about the cluster, the data distribution, and allows one
to perform queries. BBoxDB Streams enhances the GUI in a way such that continuous queries are
supported.

The GUI is optimized to handle two-dimensional GeoJSON encoded data. On the GUI, a user
can define a query rectangle and execute queries. BBoxDB Streams integrates the support for

12The distribution of the stream elements is performed based on a axis parallel n-dimensional hyperrectangle in
BBoxDB. The union of the individual bounding boxes can create a more complex polygon. Therefore, the bounding
box of these bounding boxes is calculated, which is the smallest rectangle which encloses all individual bounding boxes.

26

continuous queries into the GUI. With the enhancement, continuous range queries and continuous
spatial join queries can be executed. The GUI executes the specified continuous query and processes
the received result tuples. The geometries of the tuples are shown as an overlay over the map. In
addition to the location, the stream elements contain further information. Placing the mouse cursor
over an element opens a tooltip, containing all the additional information that is contained in the
GeoJSON object (e.g., the altitude of an aircraft or the trip id of a bus). The area of the GUI under
the map shows details about the used cluster (i.e., IP, software version, available disks, disk space,
CPUs).

Real-world queries can be performed and observed using the GUI. The stream capturing tool of
BBoxDB is capable to decode some real-world streams, such as ADS-B encoded data (i.e., aircraft
position data) or GTFS real-time encoded data (e.g., public transport vehicles). Queries such as
Which aircraft is currently in the airspace over Berlin? (Figure 14) or Which public transport vehicle
drives currently through a forest? (see Figure 15 and Listing 11 on Page 33) can be performed.

Figure 14: Visualizing aircraft traffic over Berlin, Germany in the BBoxDB GUI.

In addition queries, such as Which buses are located on the Elizabeth Street in Sydney? (see
Listing 12 on Page 33) can be performed. More details about these data streams can be found in
Section 6.1. Additional real-world use-cases of the GUI of BBoxDB Streams are described in the
demo paper [57].

5 Continuous Queries

This section describes how continuous queries can be expressed and executed. Besides, some example
queries are discussed. Before a continuous query can be executed, a query plan needs to be created.
In BBoxDB Streams, the query plan can be specified directly in the programming language Java. A
query plan builder ensures that the created query is syntactically correct.

After the query plan is built, it is serialized into JSON (see Figure 16) and submitted to the
required BBoxDB nodes. As an alternative to the query plan builder, the query plan can be directly
written in JSON (see Section 5.6). However, the query builder performs some basic checks, and we
recommend using this class to create the query plans.

5.1 Execute Continuous Queries

To support continuous queries, the BBoxDB Java client was enhanced by two methods for the
handling of continuous queries (see Section 4.2). These methods are used in Listing 5. In the listing,

27

Figure 15: A continuous spatial join between the forests and public transport vehicles in Sydney,
Australia.

QueryBuilder BBoxDB Client
JSON

BBoxDB Node

BBoxDB Node

BBoxDB Node

Qu
er
y

Query

Query

Figure 16: The query plan is built by the QueryBuilder, serialized into JSON, and registered on the
required BBoxDB nodes.

the creation, registration, execution, and the cancellation of a continuous query is shown.
In Line 2, the query plan is created and serialized into JSON. To keep this example clear, the

actual specification of the query plan is omitted; in the following listings, the calls to build a query
are shown. In Section 5.4 the methods of the QueryPlanBuilder are described in detail.

The QueryPlanBuilder allows the creation of continuous queries by using the builder pattern
[29, pp. 97ff.]13. In Line 5, the created query plan is passed to the BBoxDB client and registered
on all required nodes. A future14 is returned that can be used to fetch the results of the query. In
Line 8, the result tuples are fetched. When no unprocessed tuple is available, the iterator blocks and
waits until the next tuple is available. When a result tuple is available, the tuple is assigned to the
variable tuple. In Line 9, the tuple can be accessed and processed by the actual application code.
In Line 13, the query id of the continuous query is determined, and in Line 14, the query id is used
to cancel the running query.

The result type of a continuous query is a MultiTuple (see Line 8). A MultiTuple contains an
ordered set of tuples. Depending on the query type, each MultiTuple consists of one or more tuples.

13The builder pattern is often used in complex object oriented software systems to provide a convenient way for
creating objects that have complex constructors.

14BBoxDB uses the future pattern [11]; complex operations return a future instead of a concrete value. The calling
application code can wait until the concrete result is computed or can process other tasks during that time. This
creates a high degree of parallelism in the client code and helps to utilize the resources as much as possible.

28

Listing 5: Create and register a continuous query.

1 // Build query

2 ContinuousQueryPlan queryPlan = QueryPlanBuilder .[...]. build();

3
4 // Register query

5 TupleListFuture queryFuture = bboxDBClient.continuousQuery(queryPlan);

6
7 // Handle query results

8 for(MultiTuple tuple : queryFuture) {

9 [...]

10 }

11
12 // Cancel query

13 UUID queryId = queryPlan.getQueryId ();

14 bboxDBClient.cancelContinuousQuery(queryId);

For range queries, the MultiTuple contains only one tuple; this is the stream tuple that matches the
query hyperrectangle. For spatial join queries, the MultiTuple contains two tuples: (1) the tuple of
the stream and (2) the tuple from the static dataset. The MultiTuple abstraction can also be used
by further operations to return more than two result tuples.

5.2 Building Continuous Range Queries

To build a continuous range query with the QueryPlanBuilder, the method createQueryOnTable

has to be called with the table name on which the continuous query has to be registered (see Line 2
of Listing 6).

Listing 6: Building a continuous range query.

1 ContinuousQueryPlan qp = QueryPlanBuilder

2 .createQueryOnTable("dgroup_table")

3 .forAllNewTuplesInSpace (2.0, 3.0)

4 .enlargeStreamTupleBoundingBoxByFactor (2.0)

5 .compareWithStaticSpace (1.0, 4.0)

6 .build();

The area in space where the query is registered (symbol α in Table 4 on Page 20) is passed to
the forAllNewTuplesInSpace method (Line 3). In this example, this is a one-dimensional hyper-
rectangle. Transformations of the stream elements θ are specified by methods like enlargeStream

TupleBoundingBoxByFactor (Line 4). The method compareWithStaticSpace takes the query hy-
perrectangle τ as a parameter (Line 6). The query building is finished by calling the build method
(Line 7) which returns the query plan serialized to JSON.

A continuous range query can report positive or negative matches β. A positive match is
an intersection between the stream element and the query rectangle; otherwise, it is a negative
match. The behavior of the query can be specified with the methods reportNegativeMatches and
reportPositiveMatches. If none of these methods are called, positive matches are reported.

The QueryPlanBuilder implements the fluid interface pattern [26, pp. 343ff.]. All methods can
be written fluently in a chain. The next method is called directly on the result of the last method
(e.g., in Listing 6 the method enlargeStreamTupleBoundingBoxByFactor is directly called on the
result of the method forAllNewTuplesInSpace).

5.3 Building Continuous Spatial Join Queries

Continuous spatial join queries can also be built with the QueryPlanBuilder. Building such queries
is similar to the building of continuous range queries. Listing 7 contains an example of a continuous

29

spatial join query.

Listing 7: Building a continuous spatial join query.

1 ContinuousQueryPlan qp = QueryPlanBuilder

2 .createQueryOnTable("dgroup_table1")

3 .forAllNewTuplesInSpace (3.0, 4.0)

4 .spatialJoinWithTable("dgroup_table2")

5 .enlargeStoredTupleBoundingBoxByFactor (2.0)

6 .build();

The methods called in Lines 1–3 are equal to the last example. In contrast to the range query, the
method spatialJoinWithTable is called (Line 4), which takes a table name as parameter. This is
the table of the join partners (symbol Rn in Table 5 on Page 21). Every stream element is compared
with the tuples of the table. In spatial join queries, transformations on the stored tuples λ can also
be applied. This can be done by methods like enlargeStoredTupleBoundingBoxByFactor (Line 5).
The building of the query is finished by calling the method build (Line 6).

5.4 The Query Plan Builder

This section describes all methods of the QueryPlanBuilder. This class is used to construct con-
tinuous query plans in BBoxDB Streams. The available methods are listed in Table 6 with a
description. Calling a method multiple times overrides the older value. An exception are the meth-
ods addStreamFilter(..) and addJoinFilter(..) which can be called multiple times to add
additional filters.

5.5 Query Examples

This section shows some query examples and the wide range of practical problems that can be solved
with BBoxDB Streams.

5.5.1 Is the price of the stock “Apple” above € 100?

This is a query in the one-dimensional space. The price of a stock is treated as a point in space and
the stream is written into the table dgroup stock (see Listing 8). The query is registered on this
table (Line 2). The query observes a price of the stock of the company Apple (Line 3) and produces
query results as soon as the stock is traded for more than € 100 and less than € 9999 15 (Lines 4
and 5).

Listing 8: Does a stock raise above a certain price?

1 ContinuousQueryPlan qp = QueryPlanBuilder

2 .createQueryOnTable("dgroup_stock")

3 .filterStreamTupleByKey("Apple")

4 .forAllNewTuplesInSpace (100.0 , 9999.99)

5 .compareWithStaticSpace (100.0 , 9999.99)

6 .build();

5.5.2 Do two vehicles drive side by side?

In this scenario, two cars are equipped with GPS receivers. They send their positions every few
seconds to a BBoxDB cluster. The query in Listing 9 is used to test if the vehicles with the ids
vehicle1 and vehicle2 are closer to each other for more than 10 meters.

15The upper limit of € 9999 is used because the bounding box needs to have an upper end, any large number can
be used here (e.g., Integer.MAX INT).

30

Method Parameter Description

createQueryOnTable-

(..)

String This method specifies on which data stream the
query is created (see Sn in Table 5 on Page 21).

forAllNewTuplesIn-

Space(..)

Hyperrectangle The region in space where the query is registered (α).

enlargeStreamTuple-

BoundingBoxByValue-

(..)

Double Enlarge bounding box of the stream tuple by a cer-
tain value (θ).

enlargeStreamTuple-

BoundingBoxByFactor-

(..)

Double Enlarge bounding box of the stream tuple by a cer-
tain factor (θ).

enlargeStreamTuple-

BoundingBoxByWGS84-

Meters(..)

Double × Double Enlarge the bounding box of the stream tuple by a
certain amount of meter. The bounding box of the
stream tuple has to be two-dimensional and WGS84
coordinates have to be used in the bounding box (θ).

filterStreamTuple-

ByKey(..)

String Filters the stream tuple by the given key (θ).

filterStreamTuple-

ByBoundingBox(..)

Hyperrectangle The stream tuple and the provided hyperrectangle
have to intersect (θ).

addStreamFilter(..) UDF × UDF-Value The stream tuple has to pass the provided UDF (θ).

build(..) - This methods finishes the construction of the query
plan and returns the constructed plan.

Continuous range query specific methods

compareWithStatic-

Space(..)

Hyperrectangle The query rectangle (τ).

reportPositive-

Matches(..)

- Stream tuples that do intersect with the query rect-
angle should be reported (β).

reportNegative-

Matches(..)

- Stream tuples that do not intersect with the query
rectangle should be reported (β).

Continuous spatial join query specific methods

spatialJoinWith-

Table(..)

String The name of the table of the join partners (Rn).

filterStored-

TupleByKey(..)

String Filters the join partner of the table by the given key
(λ).

filterStoredTuple-

ByBoundingBox(..)

Hyperrectangle The join partner of the table and the provided hy-
perrectangle have to intersect (λ).

addJoinFilter(..) UDF × UDF-Value The stream tuple and the join partner have to pass
the provided UDF (λ).

Table 6: The methods and parameters of the QueryPlanBuilder that can be used to create a query
plan.

31

Listing 9: Do two vehicles drive side by side?

1 ContinuousQueryPlan qp = QueryPlanBuilder

2 .createQueryOnTable("dgroup_car")

3 .filterStreamTupleByKey("vehicle1")

4 .enlargeStreamBoundingBoxByWGS84Meter (10.0 , 10.0)

5 .spatialJoinWithTable("dgroup_car")

6 .filterStoredTupleByKey("vehicle2")

7 .build();

For each stream element, it is tested that it contains a position update for vehicle1 (Line 3). The
two-dimensional bounding box of the vehicle is extended by 10 meters in both dimensions (Line 4).
Then a spatial join is executed in this area (Line 5). The join partners are filtered by the key; only
tuples with the key vehicle2 (Line 6) are valid join partners. The query returns results as long as
vehicle1 and vehicle2 are closer than 10 meters.

The spatial join is performed between the stream elements of dgroup car and the elements of
the table dgroup car (Lines 2 and 5). This is a self-join between the current position of a car and
the historical positions.

In the query, the current position of vehicle1 is joined with the last known position of vehicle2.
The query also works when the roles of vehicle1 and vehicle2 are swapped. In this case, the current
position of vehicle2 would be joined with the last known position of vehicle1.

5.5.3 Which ships are heading to an island?

This example is the same as shown in Figure 10 on Page 21. The ships heading to an island should
be reported while the ships that are already near the island should be ignored by the query. The
query is registered on a larger bounding box and negative matches for a given query rectangle are
calculated. Listing 10 contains the calls required to construct such a query.

Listing 10: Which ships are heading to an island?

1 ContinuousQueryPlan qp = QueryPlanBuilder

2 .createQueryOnTable("dgroup_ships")

3 .forAllNewTuplesInSpace (1.0, 2.0, 1.0, 2.0)

4 .compareWithStaticSpace (1.2, 1.8, 1.2, 1.8)

5 .reportNegativeMatches ()

6 .build();

In this example, the query is registered on the table ships (Line 2). In Line 3, the space
where the query is registered is defined. The query rectangle is specified by calling the method
compareWithStaticSpace in Line 4; this is the bounding box τ of the island. A slightly larger space
α is passed to the method forAllNewTuplesStoredInSpace. All ships that are inside of this space
but are not inside the bounding box of the island are reported by the query. These are the ships
that are heading toward the island.

5.5.4 Which buses are driving through a forest in Sydney?

This example performs a spatial join between (1) a data stream, which contains the positions of
several buses, and (2) an already stored dataset, which contains the spatial data of the forests of
Australia. The spatial join is used to join the position of the bus with the forests. The result of the
query are all buses that are currently inside of a forest. To ensure that the bus is really inside the
polygon of the forest and not only inside the bounding box, a UDF is used to refine the query (see
Figure 7 on Page 14). The refinement is done by the UDF, which is discussed in Section 3.6.2.

Listing 11 shows the building of the query plan. This query will also be used in the experiments
on recorded bus trajectories and the spatial data of the roads of Sydney in Section 6.1.

32

Listing 11: Which buses are driving through a forest?

1 UserDefinedFilterDefinition udf

2 = new UserDefinedFilterDefinition(

3 "UserDefinedGeoJsonSpatialStrictFilter", "");

4
5 ContinuousQueryPlan qp = QueryPlanBuilder

6 .createQueryOnTable("dgroup_bus")

7 .forAllNewTuplesInSpace(

8 150.56 , 151.34 , -34.09, -33.60)

9 .spatialJoinWithTable("dgroup_forest")

10 .addJoinFilter(udf)

11 .build();

In Lines 1–3, a transformation with a user user-defined filter is created. The query is evaluated
when new data are stored in the table dgroup bus (Line 7). For every new tuple in the region of
Sydney (Line 8) a spatial join with the table dgroup forest is performed (Line 9). In Line 10, the
UDF is referenced to refine the spatial join result.

5.5.5 Which buses are driving currently on the “Elizabeth Street” in Sydney?

This query is identical in many aspects to Listing 11. Again the positions of buses are joined with
static data. This time, the spatial data of the roads in Australia are used. In contrast to the last
query, it is not just a spatial join that is performed. In this query, one of the join partners has
to contain a certain property value. As described in Section 3.6.1, the customData value of the
UserDefinedGeoJsonSpatialFilter is used to check the property map for a certain value.

Listing 12: Which buses are driving on the Elizabeth Street?

1 UserDefinedFilterDefinition udf

2 = new UserDefinedFilterDefinition(

3 "UserDefinedGeoJsonSpatialFilter",

4 "name:Elizabeth Street");

5
6 ContinuousQueryPlan qp = QueryPlanBuilder

7 .createQueryOnTable("dgroup_bus")

8 .forAllNewTuplesInSpace(

9 150.56 , 151.34 , -34.09, -33.60)

10 .spatialJoinWithTable("dgroup_road")

11 .addJoinFilter(udf)

12 .build();

In Lines 1–4, the UDF is created and initialized. The name of the street and the associated
key of the property map (name:Elizabeth Street) is passed as custom data to the UDF (see
Section 3.6.2). In this example, the properties of both join candidates are tested to determine whether
or not the key and the value are contained in the property map of one of the GeoJSON objects. If
one of the join candidates matches, the intersection test on the real geometries is executed16.

5.6 Serializing Queries to JSON

After a query plan has been built by the QueryPlanBuilder, it is serialized into JSON, and sent to
the required BBoxDB nodes. The serialization is done to transform the query plan into a structure
that can be sent through a network. To understand the structure of a JSON encoded query plan,
two examples are discussed in this section.

16The position of the bus is a point in space, the geographical data of the road a line. As discussed in Section 3.6.2,
a distance test is performed for these data types to refine the query. Join candidates that are closer than 5 meters are
treated as intersecting.

33

5.6.1 Is the price of the stock “Apple” above € 100?

Listing 13 shows the JSON that is generated from the continuous range query of Listing 8 of Sec-
tion 5.5.1.

Listing 13: Does a stock raise above a certain price?

1 {

2 "type":"bboxdb -query -plan"

3 "query -type":"range -query",

4 "query -range":"[[100.0 ,9999.99]]",

5 "stream -table":"dgroup_stock",

6 "compare -rectangle":"[[100.0 ,9999.99]]",

7 "report -positive":true ,

8 "stream -transformations":[

9 {

10 "name":"key -filter",

11 "value":"Apple"

12 }

13],

14 }

In Line 2, the key type is set to the value bboxdb-query-plan. That value indicates that the
JSON contains a BBoxDB query plan. Without this line, the BBoxDB nodes do not try to de-
serialize the query plan. In Line 3, the query type is defined; in this example, a continuous range
query is executed. Line 4 defines a one-dimensional query rectangle (€100 – €9999); this is the area
in space where the query is registered. Line 5 determines the table on which the query is registered.
Line 6 defines the query rectangle, which is used to test whether or not a new tuple of the table
qualifies for the continuous range query. Line 7 determines that the tuples are returned by the query,
which do intersect with the query rectangle. Lines 8–11 contain the transformations of the stream
elements. In this example, a filter on the key of the tuple is applied, which ensures that all result
tuples must have a key that is identical to Apple.

5.6.2 Which buses are driving currently on the “Elizabeth Street” in Sydney?

Listing 14 shows the query plan JSON that is generated from the continuous spatial join with a
user-defined filter of Listing 12 of Section 5.5.5.

In Line 3, it is defined that a continuous join query should be performed. Line 4 defines the range
in space where the query is registered, and Line 5 defines on which table the query is registered. Line 6
defines the name of the data stream. Line 7 defines that the tuples of the table are not transformed.
Lines 8–14 contain the definition of the UDF, while Line 15 determines that no transformations are
applied to the stream tuple.

6 Evaluation

The evaluation of BBoxDB Streams is performed on a cluster of five nodes. These nodes contain an
Intel Xeon E5-2630 CPU with eight cores, 32 GB of memory, and four 1-TB hard disks. All nodes are
connected via a 1 Gbit/s switched Ethernet network and running Java 8 on a 64 bit Ubuntu Linux.
Unless stated otherwise, before the experiments are performed, the space is pre-partitioned (see
Section 3.4) into 40 distribution regions to utilize all nodes of the cluster. Since not all distribution
regions might be equally utilized, more distribution regions than nodes are created. In the used
environment, each of the five nodes is responsible for eight regions, which leads to an almost equal
utilization of the nodes (see Section 6.10 for a detailed discussion).

The pre-partitioning is performed with samples from the stored datasets to generate a good data
distribution. Taking random samples is not possible when a data stream is processed sequentially.

34

Listing 14: Which buses are driving on the Elizabeth Street?

1 {

2 "type":"bboxdb -query -plan"

3 "query -type":"continuous -join",

4 "query -range": "[[150.56 ,151.34]:[-34.09 , -33.6]]",

5 "join -table":"dgroup_forest",

6 "stream -table":"dgroup_bus",

7 "table -transformations":[],

8 "join -filter":[

9 {

10 "filter -class":

11 "UserDefinedGeoJsonSpatialFilter",

12 "filter -value":"name:Elizabeth Street"

13 }

14],

15 "stream -transformations":[],

16 }

How a data stream can be used to pre-partiton the space is discussed and evaluated in Section 6.10.
The data streams are imported (unless stated otherwise in the experiment) by one instance of the
stream capturing tool. This is done in the same way a real-world data stream would be read from
a network socket, with the exception that the data is read from a disk.

In most of the experiments, the time to process a stored data stream is measured. These exper-
iments show how a variation of some parameters (e.g., number of nodes, number of queries) affect
the time to process the data stream entirely.

In a real-world scenario, stream elements have to be processed at the speed at which they are
delivered. So, the design of the experiments differs from the real-world scenario. However, we have
chosen to process a stored data stream and measure the processing time because: (1) the same stream
elements are processed in all experiments, which makes it possible to compare the experiments. (2)
The processing time is more meaningful than just saying that a certain amount of resources is not
enough to fully process the stream.

Usually, BBoxDB Streams skips stream elements when not enough resources are available to
process the stream at the required speed. For the following experiments, this behavior of the software
was changed. All stream elements have to be processed. When not enough resources are available,
the stream capturing tool has to wait for the processing of further stream elements. The change in
the stream processing makes it possible to measure the processing time of the complete data stream.

6.1 Used Datasets

For the evaluation of BBoxDB Streams, three two- and three-dimensional stream datasets are used.
Two stream datasets are captured from real-world data sources, and one stream dataset is synthet-
ically generated. These datasets are described in detail in the following subsections. Besides, one
static dataset is used for the evaluation of the spatial join between a data stream and previously
stored data.

6.1.1 BerlinMOD Dataset

BerlinMOD [21] is a benchmark for spatio-temporal database management systems. The benchmark
contains a data generator that generates trips of moving vehicles within the Berlin (Germany)
metropolitan area. For the evaluation, the dataset was calculated with a scale factor of 5.0. The
trips are stored as CSV data on disk, and WGS84 coordinates are used. The moving object id of
the vehicle (Moid) is used as the key when the data is written to BBoxDB, and the two-dimensional
position of the vehicle is used to calculate the bounding box of the elements.

35

6.1.2 NSW Transport Dataset

The government of the state of New South Wales in Australia operates the NSW open data portal [74].
On this portal, real-time data about buses, ferries, metros, and trains of the Sydney (Australia)
metropolitan area are published. A GTFS encoded real-time feed of the data can be subscribed.
The elements of the feed contain, among other things, an id, a position, the speed, and a tour number
(see the tooltip in Figure 15). In this paper, we use the position data of the buses since they provide
the majority of the elements in the stream. The stream content was captured for a whole week (21
January 2020 - 28 January 2020) and stored as GeoJSON. The id of the trip (TripID) is used as
the key when the data is written to BBoxDB, and the two-dimensional position of the bus is used
to determine the bounding box.

6.1.3 ADS-B Dataset

An aircraft continuously determines its position. The position is broadcasted periodically via radio
as automatic dependent surveillance – broadcast (ADS-B) transmissions. In addition to the position,
the transmissions contain the altitude, the callsign, the heading, and some more information. These
ADS-B transmissions can be captured with an antenna on the ground. However, an ADS-B receiver
captures only the transmissions in a radius of a few miles around the antenna. Websites such as
adsbhub.org [73] provide a service to aggregate the feeds of several individual stations into a global
feed.

For creating the ADS-B dataset, the global ADS-B data feed of the website adsbhub.org was
captured for a whole day (16 February 2020) and the data are stored as CSV on disk.

ADS-B messages are typed. Depending on the message type, different information is contained in
the message. Three messages of different types need to be read to construct one stream element. The
callsign of the aircraft is used as the key when the data is written to BBoxDB. The two-dimensional
position of the aircraft and the altitude are used to calculate the three-dimensional bounding boxes
of the aircraft that are contained in this dataset.

6.1.4 Open Streetmap Dataset

This dataset is a copy of the planet dataset of the Open Streetmap Project (OSM) [60]. The dataset
contains the spatial data of the whole world. In contrast to the last three datasets, this dataset
consists of static data. The spatial data of the roads (denoted as OSM roads) and forests (denoted
as OSM forests) are used for the evaluation of BBoxDB Streams.

For the experiments, the dataset was converted into GeoJSON17. The GeoJSON elements contain
properties (key-value pairs) with additional information about the objects. For example, roads are
annotated with the maximum speed, the name, and the coating. The id of each element is used as
the key of the tuple when the data is written to BBoxDB. The two-dimensional bounding box of the
geometry is used as bounding box of the tuple.

6.1.5 Summary

The described datasets are used in the evaluation of BBoxDB Streams. Table 7 summarizes the
properties of these datasets.

The stream datasets are stored in different formats. The NSW transport dataset is stored as
GeoJSON values, while the ADS-B dataset and the BerlinMod datasets are stored as CSV values.
Different parsers are used to read the data. In addition, each dataset contains a different amount of
additional information, which leads to different sizes per tuple. Table 8 contains an overview about
the different element sizes.

17BBoxDB includes a converter which converts OpenStreetMap Protocolbuffer Binary Format (.osm.pbf) encoded
data into GeoJSON (see [13] for more details about the converter).

36

Dataset Type Dim. Covered Total Different Size Real Time
Area Elements Elements [Seconds]

BerlinMod Stream 2d Berlin 259 841 059 4 473 23 GB 5 184 000
NSW transport Stream 2d Sydney 49 538 352 44 406 21 GB 604 800
ADS-B Stream 3d Planet 56 299 586 81 047 16 GB 86 400
OSM roads Static 2d Planet 146 060 493 146 060 493 67 GB -
OSM forests Static 2d Planet 5 187 592 5 187 592 5.4 GB -

Table 7: The datasets that are used in the experiments. The column total elements denotes the
absolute number of elements in the dataset; the number of different elements denotes how many
different elements (e.g., cars or aircraft) are contained.

Dataset Average Size (Byte)

BerlinMod 92
NSW transport 446
ADS-B (per message) 96
ADS-B (per tuple) 289

Table 8: The average size per element and stream dataset.

6.2 Processing Data Streams

In the first experiment, the data streams are imported into the cluster of BBoxDB nodes, and the
time to perform the data import is measured. In addition, the number of BBoxDB nodes is varied
between the experiments, and the data is imported: (1) one time with writing the data to disk and (2)
one time without writing the data to disk. In the experiment, only the data stream is imported and
processed by BBoxDB Streams. No continuous queries are registered during the stream processing.
The evaluation of the continuous query will be part of the following experiments. The result of this
experiment can be seen in Figure 17.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 1 2 3 4 5

T
im

e
 [

S
e
c
]

Nodes

Processing datastreams and writing the data to disk

ADS-B dataset
NSW transport dataset

BerlinMod dataset

(a) Writing the data streams to disk.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 1 2 3 4 5

T
im

e
 [

S
e
c
]

Nodes

Processing datastreams without writing the data to disk

ADS-B dataset
NSW transport dataset

BerlinMod dataset

(b) Without writing the data streams to disk.

Figure 17: Importing the data streams into a cluster of BBoxDB nodes. The number of nodes was
varied during the experiments.

It can be seen in the figure that decreasing the number of nodes increases the needed time to
import the data stream. The reason is that with fewer nodes, fewer resources for processing the
stream are available. It can also be seen that writing the data to disk takes some time, and only
processing the stream elements without writing the data to disk can speed up the processing.

37

The system utilization of the cluster was observed during the experiment. At any time, all nodes
have some free disk, CPU, and memory resources. Therefore, only a small speed-up factor can be
achieved in the experiment. The limiting resource is the parsing and distributing of the input stream.
However, in this experiment, no continuous queries are registered. Therefore, the nodes do not have
to evaluate such queries. This will be covered in the following experiments (see Section 6.8), and
the data of this experiment shows the basic system behavior. Processing multiple data streams is
discussed in the experiment of Section 6.3.

6.3 Importing Multiple Data Streams in Parallel

In the last experiments, only one data stream was imported. The workload to parse the data and to
write the data to the BBoxDB cluster was only performed by one node. BBoxDB Streams is able
to process multiple data streams in parallel. For the preparation of this experiment, the stored data
streams are split into two to five pieces. The stream capturing tool is executed on different nodes,
and the partial streams are imported in parallel. Therefore, the work to parse the data streams and
to write the data to the network is parallelized. In the experiment, the data is written to the disks of
the cluster, and no continuous queries are registered. As in the last experiment, the time to process
the complete dataset is measured. The result of the experiment is shown in Figure 18.

 0

 5000

 10000

 15000

 20000

 1 2 3 4 5

T
im

e
 [

S
e
c
]

Parallel streams

Processing data streams in parallel

ADS-B dataset
NSW transport dataset

BerlinMod dataset

Figure 18: Importing data streams in parallel using multiple instances of the stream capturing tool.

It can be seen in the figure that the time to import the complete data streams decreases when
more instances of the stream capturing tool are executed. Using more instances, the workload to
parse the data and communicate with the BBoxDB cluster (e.g., determine to which nodes a tuple
needs to be sent and serialize the tuple into a byte stream) is distributed between multiple nodes.

In addition, each BBoxDB node handles each connection (i.e., the connections from the stream
capturing tool) in a separate thread. This thread reads the bytes from the network connection,
parses the data, performs the requested operations (e.g., inserting a tuple), and writes the answers
(e.g., acknowledging a successful operation) back to the client. Executing multiple instances of the
stream capturing tool leads to more connections and a higher degree of parallelism on the BBoxDB
nodes.

However, expensive tasks (e.g., the evaluation of the continuous queries or writing the data to
disk) are performed in separate threads, and executing multiple instances of the stream capturing
tool can not speed up these operations.

Processing the BerlinMod data stream benefits mostly from parallelization. The elements of the
data stream have the smallest tuple size (see Table 8 on Page 37). Due to the small tuple size, more

38

network operations are required to process this data stream than the other data streams.

6.4 Continuous Range Queries on Data Streams

In this experiment, continuous range queries on data streams are performed, and the execution time
to process the datasets is measured. During the experiment, the amount of queries and the size of
the query range are varied.

In the first step of the experiment, the bounding box of the stream dataset is determined. The
query range in the experiment covers a certain percentage (0.1% – 2.0%) of this bounding box.
To make the measured execution times comparable, only one bounding box is created per size and
reused in all experiments. Afterward, the bounding box is used to register a certain amount (10 –
100) of continuous range queries. The result of the experiment is shown in Figure 19.

 0

 10000

 20000

 30000

 40000

 50000

 10 20 30 40 50 60 70 80 90 100

T
im

e
 [

s
e
c
]

Registered queries

Continuous range queries (ADS−B)

Query range 0.1%
Query range 0.2%
Query range 1.0%
Query range 2.0%

(a) ADS-B dataset.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 10 20 30 40 50 60 70 80 90 100

T
im

e
 [

s
e
c
]

Registered queries

Continuous range queries (BerlinMod)

Query range 0.1%
Query range 0.2%
Query range 1.0%
Query range 2.0%

(b) BerlinMod dataset.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 10 20 30 40 50 60 70 80 90 100

T
im

e
 [

s
e
c
]

Registered queries

Continuous range queries (NSW transport)

Query range 0.1%
Query range 0.2%
Query range 1.0%
Query range 2.0%

(c) NSW transport dataset.

Figure 19: Performing continuous range queries on the datasets with a varying query range and
number of registered queries.

It can be seen in the result of the experiment, that with an increasing number of queries and
increasing query range the needed time to import the data stream also increases. The reason for
this behavior is that with more registered queries, more query predicates need to be evaluated.
With an increasing query range, the registered queries are called more often and they produce more

39

results that have to be created and sent back to the query client. For example, with 100 registered
continuous range queries and a query range of 2% per query, ≈ 2n result tuples are produced by
processing a stream of n elements. For example, 1 332 861 131 tuples are returned in total by 100
range queries with a query range of 2% per query on the NSW transport dataset consisting of
49 538 352 elements.

6.5 Continuous Range Queries and User-Defined Filters

By using a User-Defined Filter (UDF), the query processor of BBoxDB can be extended (see Sec-
tion 3.6). UDFs can decode the value of the tuple and filter the tuples based on this value.

In this experiment, the UDF from Section 3.6.2 is used to filter the GeoJSON values based on
a property value. Therefore, the values of the stream elements are to be parsed into JSON objects.
Afterward, the stream of the ADS-B dataset is filtered for the call sign QTR3WM, the BerlinMod
dataset is filtered for the vehicle id 4093, and the NSW transport dataset is filtered for the route id
2436 N60. The result of the experiment can be seen in Figure 20.

 0

 2000

 4000

 6000

 8000

 10000

 10 20 30 40 50 60 70 80 90 100

T
im

e
 [

s
e
c
]

Registered queries

Continuous range queries with a UDF (ADS−B)

Query range 0.1%
Query range 0.2%
Query range 1.0%
Query range 2.0%

(a) ADS-B dataset.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 20 30 40 50 60 70 80 90 100

T
im

e
 [

s
e
c
]

Registered queries

Continuous range queries with a UDF (BerlinMod)

Query range 0.1%
Query range 0.2%
Query range 1.0%
Query range 2.0%

(b) BerlinMod dataset.

 0

 2000

 4000

 6000

 8000

 10000

 10 20 30 40 50 60 70 80 90 100

T
im

e
 [

s
e
c
]

Registered queries

Continuous range queries with a UDF (NSW transport)

Query range 0.1%
Query range 0.2%
Query range 1.0%
Query range 2.0%

(c) NSW transport dataset.

Figure 20: Performing continuous range queries with a filter UDF on the datasets with a varying
query range and number of registered queries.

Like in the last experiment, a varying amount of queries is registered with varying query ranges

40

and the time to process the stream datasets is measured. In this experiment, evaluating the UDF
causes some additional work because the values of the stream need to be parsed. However, the
additional filter set reduces the number of result tuples significantly.

In the ADS-B dataset, only 2 013 tuples can pass the UDF, in the BerlinMod dataset 24 608
tuples can pass the UDF, and in the NSW transport dataset 76 129 tuples can pass the UDF.

It can be seen in the result of the experiment that the needed time to process the data stream
is lower than in the last experiment without using the UDF. Besides, the execution time does not
rise as much with an increasing amount of queries as in the last experiment. This is caused by the
filtering step of the UDF and, therefore, the reduced amount of results of the continuous queries.
This leads to fewer result tuples that need to be produced, transferred through the network, and
consumed by the continuous query client. This saves more resources than the additional effort to
parse and evaluate the JSON values in the UDF.

6.6 Continuous Spatial Joins on Data Streams

In this experiment, the behavior of BBoxDB Streams is evaluated when continuous spatial joins are
performed. The experiment is performed by using the BerlinMod dataset and by using the NSW
transport dataset. The spatial joins are performed between the stream elements and the forests and
roads of the OSM dataset. The ADS-B dataset is not used in the spatial join experiments. The
bounding box of the positions of the aircraft are three-dimensional, and the bounding boxes of the
OSM dataset are two-dimensional. Therefore, the datasets can not be joined directly18.

During the experiment, the number of queries and the size of the region where the spatial join
is performed is varied. The join is performed on the bounding boxes of the elements. A spatial join
that uses a UDF and works on the real geometries of the data will be discussed in Section 6.7. The
result of the join between the BerlinMod stream and the OSM dataset, and the join between the
NSW transport dataset and the OSM dataset is shown in Figure 21.

The results show that an increasing amount of registered continuous queries and an increasing
amount of query range increase the needed time to process the data stream. This is caused by
the increasing amount of elements that are processed by the continuous queries and the increasing
amount of result tuples produced by the queries. In general, a spatial join takes more time to
calculate than a range query. This is caused by the disk access to retrieve the needed join partners.

The join result sizes of the spatial joins will be discussed in more detail in Table 9, which is
contained in the following experiment.

6.7 Continuous Spatial Joins with User-Defined Filters

In this experiment, a spatial join between two stream datasets and the OSM dataset is performed.
In contrast to the last experiment, the spatial join is refined by the UDFs, which are discussed in
Section 3.6.2. These UDFs decode the GeoJSON encoded elements and refine the spatial join by
performing an intersection test on the real geometries.

The spatial join between the stream dataset and the roads is refined by the UserDefinedGeoJson
SpatialFilter UDF, which allows up to a five meter distance between the position of the stream
element and the road. The spatial join between the stream dataset and the forests is refined by the
UserDefinedGeoJsonSpatialStrictFilter which requires that the position of the stream element
is inside of the forest.

The decoding of the GeoJSON elements and calculating the intersection performed by the UDFs
take some additional time, compared with the last experiment. However, the UDFs remove many
join candidates. This reduces the size of the result and the number of tuples that need to be

18However, the bounding box of the aircraft can be reduced to two dimensions by only using the position to calculate
the bounding box. With these two-dimensional bounding boxes, a spatial join between this position and the roads
and the forests could be performed. Even though the spatial join could be calculated, the results of the join are more
constructed than an actual result because the flying aircraft is not really inside of a forest or on particular street.
Therefore, we decided not to use the ADS-B dataset for the evaluation of the spatial joins.

41

 0

 10000

 20000

 30000

 40000

 50000

 1 2 3 4 5

T
im

e
 [

s
e
c
]

Registered queries

Continuous join queries (BerlinMod − OSM roads)

Query range 10%
Query range 30%
Query range 50%

(a) Spatial join of BerlinMod and OSM roads.

 0

 5000

 10000

 15000

 20000

 25000

 1 2 3 4 5

T
im

e
 [

s
e
c
]

Registered queries

Continuous join queries (BerlinMod − OSM forests)

Query range 10%
Query range 30%
Query range 50%

(b) Spatial join of BerlinMod and OSM forests.

 0

 2000

 4000

 6000

 8000

 10000

 1 2 3 4 5

T
im

e
 [

s
e
c
]

Registered queries

Continuous join queries (NSW transport − OSM roads)

Query range 10%
Query range 30%
Query range 50%

(c) Spatial join of NSW transport and OSM
roads.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 2 3 4 5

T
im

e
 [

s
e
c
]

Registered queries

Continuous join queries (NSW transport − OSM forests)

Query range 10%
Query range 30%
Query range 50%

(d) Spatial join of NSW transport and OSM
forests.

Figure 21: Performing continuous spatial join queries with a varying query range and number of
registered queries.

transferred to the query client (see Figure 7 on Page 14). The result of the experiment is shown in
Figure 22.

The needed time to execute the continuous spatial join is higher as in the last experiment. This
is caused by the additional computations performed by the UDFs. For the stream positions and the
forest (a point and a polygon), the UDF has to calculate whether or not the position is inside or
outside of the polygon of the forest. For the roads (a point and a line), the distance is calculated.
Table 9 shows how many result tuples are produced with and without the refinement performed by
the UDFs.

By joining the stream elements with the roads, the cardinality of the result is larger than the
cardinality of the stream dataset. This is caused by multiple join partners with overlapping bounding
boxes. When the UserDefinedGeoJsonSpatialFilter UDF refines the result, the cardinality of the
result decreases. The UDF lets all join candidates pass, with have geometries that are closer than
five meters. Not all stream positions have a road located in this area. Therefore, the cardinality of
the refined join result is smaller than the cardinality of the stream dataset.

42

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 1 2 3 4 5

T
im

e
 [

s
e
c
]

Registered queries

Continuous join queries (BerlinMod − OSM roads) − UDF

Query range 10%
Query range 30%
Query range 50%

(a) Spatial join of BerlinMod and OSM roads.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 1 2 3 4 5

T
im

e
 [

s
e
c
]

Registered queries

Continuous join queries (BerlinMod − OSM forests) − UDF

Query range 10%
Query range 30%
Query range 50%

(b) Spatial join of BerlinMod and OSM forests.

 0

 10000

 20000

 30000

 40000

 50000

 1 2 3 4 5

T
im

e
 [

s
e
c
]

Registered queries

Continuous join queries (NSW transport − OSM roads) − UDF

Query range 10%
Query range 30%
Query range 50%

(c) Spatial join of NSW transport and OSM roads.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 2 3 4 5

T
im

e
 [

s
e
c
]

Registered queries

Continuous join queries (NSW transport − OSM forests) − UDF

Query range 10%
Query range 30%
Query range 50%

(d) Spatial join of NSW transport and OSM forests.

Figure 22: Performing UDF refined continuous spatial join queries with a varying query range and
number of registered queries.

6.8 Scaling-up Continuous Join Queries

In this experiment, the continuous spatial join is performed on a varying number of nodes. It is
evaluated how horizontal scaling can be used in BBoxDB Streams to speed-up a continuous join
operation. The spatial join in the experiment uses a query range of 50% of the space that is covered
by the stream dataset. Three parallel continuous queries are registered; the result is refined by a
UDF that refines the spatial join (as described in the experiment of Section 6.7). In all experiments,
the same query range is used to ensure the same amount of stream elements are processed by the
queries, and the same amount of spatial join results are calculated. The time to process the data
stream is taken during the experiment and shown in Figure 23.

An increasing number of nodes speeds-up the spatial join. This is caused by the additional
resources of the additional systems that can be used to calculate the spatial join. The experiment
shows that a speed-up factor of ≈ 3 is reached by scaling-up the number of nodes from one node to
five nodes.

6.9 Distributing Data

In Section 4.6, different data distribution modes of the stream capturing tool are described. In this
section, these strategies are evaluated. The first subsection focuses on the FETCH strategy, whereas

43

Stream Dataset Static Dataset Resulting tuples Resulting tuples
without refinement with refinement

BerlinMod Road 786 266 377 152 136 430
BerlinMod Forest 5 880 667 1 501 017
NSW transport Road 110 072 568 36 473 212
NSW transport Forest 2 530 673 105 187

Table 9: The result size of the spatial join when the result (1) is performed only on the bounding
boxes, and (2) refined by a UDF on the real geometries.

 0

 20000

 40000

 60000

 80000

 100000

 1 2 3 4 5

T
im

e
 [

s
e
c
]

Nodes

Continuous join query (BerlinMod − OSM roads)

2 queries, query range 50%, UDF

(a) Spatial join of BerlinMod and OSM roads.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 1 2 3 4 5

T
im

e
 [

s
e
c
]

Nodes

Continuous join query (NSW transport − OSM roads)

2 queries, query range 50%, UDF

(b) Spatial join of BerlinMod and OSM forests.

Figure 23: Scaling a UDF refined continuous spatial join queries with a varying number of nodes.

the second subsection focuses on the STATIC and DYNAMIC strategies.

6.9.1 The FETCH Strategy

In this experiment, the behavior of the FETCH strategy is evaluated. When this strategy is used,
the stream capturing tool distributes the tuples unchanged. During the calculation of a spatial join,
missing join partners are requested via the network (see Section 4.6.1). In this experiment, the
strategy is compared with the STATIC and the DYNAMIC strategies. These strategies distribute
the elements to the required nodes and don’t perform a network access during the spatial join.

This experiment compares: (1) the time to perform a spatial join without executing a network
access (denoted a STATIC/DYNAMIC strategy) with (2) the time to perform a spatial join when
join partners need to be fetched via the network (denoted as FETCH strategy). The overhead that
is caused by the STATIC/DYNAMIC strategy in the stream capturing tool is discussed in the next
section.

For the evaluation, the continuous spatial join is performed with a varying enlargement of the
bounding box. Again, the time to import the stream dataset is measured. The continuous spatial
join is performed between the stream datasets and the OSM forest dataset. The OSM forest dataset
is used because it is smaller compared to the OSM road dataset. Therefore, increasing the size of
the bounding box of the stream element increases the space where the spatial join searches for join
partners. Due to the small cardinality of the static dataset, this change does affect the cardinality
of the spatial join result much. However, with an increasing enlargement of the bounding box, the
spatial join has to perform more and more network operations to fetch the missing join partners
from other nodes.

In this experiment, the bounding box of the stream elements is performed by calling the enlarge-
StreamTupleBoundBoxByWGS84Meter(..) method. One continuous query is registered, which covers

44

the complete space. In addition, the spatial join is refined by the UserDefinedGeoJsonSpatial

StrictFilter UDF. The results of the experiment are shown in Figure 24.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 10 20 30 40 50

T
im

e
 [

s
e
c
]

Enlargement of the stream element [meter]

Continuous join queries (BerlinMod − OSM forests)

STATIC/DYNAMIC
FETCH

(a) Spatial join of BerlinMod and OSM forests.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10 20 30 40 50

T
im

e
 [

s
e
c
]

Enlargement of the stream element [meter]

Continuous join queries (NSW transport − OSM forests)

STATIC/DYNAMIC
FETCH

(b) Spatial join of NSW transport and OSM forests.

Figure 24: Performing a continuous spatial join only on local data or by fetching non-local data via
the network.

The figure shows that the FETCH strategy needs more time to process the stream dataset than
the STATIC or DYNAMIC strategy. This is caused by the network access that is required by using
the FETCH strategy. The network access causes: (1) some latency to process the query and (2)
time to transfer the join partners. Performing a range query on another node took around 65.07
ms on average in the experiment. In the worst case, when all stream element tuples require a
network access, this strategy leads to a throughput of 1 000

65.07 = 15.36 elements per second. Without
performing any network access (as done by the STATIC and DYNAMIC strategy), a throughput of
≈ 14 000 elements per second is reached when the operations are performed sequentially. However,
this operation could be parallelized to increase the throughput. Nevertheless, the network access
requires additional resources and increases the latency of the stream processing. Due to these reasons,
the FETCH strategy is not recommended to process a data stream.

6.9.2 The STATIC and DYNAMIC Strategies

In this experiment, it is determined how the padding of the bounding boxes (as performed by the
STATIC or DYNAMIC strategy) affects the throughput of the stream capturing tool.

To measure the throughput of the stream capturing tool, the data was only processed by this
tool; no data are actually written to the BBoxDB nodes. Otherwise, the network or the disks of the
BBoxDB nodes would decrease the throughput. For the evaluation, the datasets are imported using
the different strategies, and the throughput of the stream elements is determined.

The DYNAMIC strategy was performed in three different configurations: (1) with one client and
one registered query (DYNAMIC 1C-1Q), (2) with one client and 100 registered queries (DYNAMIC
1C-100Q), and (3) with 100 clients and each client is running 100 queries (DYNAMIC 100C-100Q).
The UNCHANGED strategy does not modify the bounding boxes. The strategy is used to show the
throughput when no modifications on the bounding boxes are made. The result of the experiment
can be seen in Figure 25.

The experiment shows two important points: (1) the used dataset affects the throughput of the
stream capturing tool significantly, and (2) modifying the bounding box slows down the throughput of
elements only slightly. However, how the padding is determined (by the STATIC or the DYNAMIC
strategy) does not affect the throughput; both strategies modify the bounding box in the same way.
Because only the maximum enlargement of all registered continuous queries is used, the number of

45

 0

 50

 100

 150

 200

 250

 300

 350

BerlinMod NSW transport ADS−B

E
le

m
e
n
ts

 p
e
r

m
s
e
c

Dataset

Throughput of the BBoxDB Streams capturing tool

Unchanged
Static Padding

Dynamic Padding 1C−1Q
Dynamic Padding 1C−100Q

Dynamic Padding 100C−100Q

Figure 25: Throughput of the BBoxDB Streams capturing tool.

registered queries or clients does not affect the throughput of the stream capturing tool. The type
of the dataset determines how fast the stream elements can be processed. The modification of the
bounding box can be performed without decreasing the throughput significantly.

6.9.3 Recommended Distribution Strategy

Three data distribution strategies are implemented in BBoxDB Streams. The experiments of the
last subsection have evaluated the behavior of these strategies. The FETCH strategy does not
need additional logic for the distribution of the tuples. However, the continuous spatial join is
slower using this strategy because the join has to perform a network operation. The STATIC and
the DYNAMIC strategies do not introduce a significant overhead in the distribution of the tuples.
These strategies work independently of the registered queries in the system, and spatial joins can
be performed efficiently using locally stored data only. The drawback of the STATIC strategy is
that the enlargement that is used in the continuous queries needs to be determined manually. The
DYNAMIC strategy determines these values automatically and adapts changes when the registered
continuous queries are changed. Therefore, we have chosen the DYNAMIC strategy as the default
data distribution strategy in BBoxDB Streams.

6.10 Pre-partition the Space

A key feature of BBoxDB Streams is the distribution of a data stream to the nodes of a cluster. To
distribute the data stream, the space has to be partitioned. The created partitions determine how
the stream elements are distributed. BBoxDB re-partitions unevenly distributed data automatically
in the background by splitting and merging the space (see Section 3.4). However, re-partitioning is
a slow process because the stored data need to be transferred between the nodes.

When a distribution group is created, only one partition exists, and only the nodes that store
this partition are utilized when data are stored. To utilize all nodes directly after a new distribution
group is created, the space can be pre-partitioned. This is usually done by taking a small number
of random samples from the dataset and creating an initial partitioning. We call this sample-based
pre-partitioning. However, when a stream is processed, no random samples can be taken to create
the pre-partitioning. A stream can only be accessed sequentially and not randomly. Therefore,
another technique is needed to pre-partition the space for a data stream.

To pre-partition the space using a data stream, we propose an element-based pre-partitioning

46

approach. By using the element-based pre-partitioning, the first n-elements are captured from the
stream, and these elements are used to create the partitions. In contrast to the sampling-based
method, all fetched elements are used. The quality of this method is evaluated in this section.

For this experiment, a varying amount of elements are taken from the stream, and a varying
amount of partitions are created and assigned via round-robin to the nodes of the cluster. After-
ward, the remaining stream is processed, and the distribution of the elements is determined. The
distribution of the elements per node for 40 partitions is shown in Figure 26.

 0

 1×10
7

 2×10
7

 3×10
7

 4×10
7

 5×10
7

 6×10
7

 7×10
7

ADS−B BerlinMod NSW transport

P
ro

c
e
s
s
e
d
 e

le
m

e
n
ts

Dataset

Processed elements − 40 partitions − 20000 elements

Node 1
Node 2
Node 3
Node 4
Node 5

(a) 40 partitions, 20000 elements.

 0

 1×10
7

 2×10
7

 3×10
7

 4×10
7

 5×10
7

 6×10
7

 7×10
7

ADS−B BerlinMod NSW transport

P
ro

c
e
s
s
e
d
 e

le
m

e
n
ts

Dataset

Processed elements − 40 partitions − 50000 elements

Node 1
Node 2
Node 3
Node 4
Node 5

(b) 40 partitions, 50000 elements.

Figure 26: Pre-partitioning the space with the datasets using 40 partitions.

How balanced the data are distributed to the nodes can be quantified by calculating the standard
deviation (σ). A high standard deviation means that high differences between the number of elements
per node do exist. In contrast, a low standard deviation means that the nodes process an almost
equal size of elements. Figure 27 shows the standard deviation when the amount of read stream
elements is varied and the number of created partitions is varied. In the experiment, the created
partitions are mapped via round-robin to the five nodes of the cluster, and the resulting standard
deviation between the processed stream elements of the nodes is calculated.

It can be seen in the figures that the stream element distribution becomes more balanced when
more partitions are created (indicated by a lower standard deviation). It can also be seen that the
amount of read stream tuples has only a slight effect on balancing the stream elements. For example,
reading 20 000 or 50 000 stream elements results in the almost identical standard deviation.

The data streams that are used in the experiments contain the position data of several entities.
These entities are contained repeatedly in the data stream with different positions. The entities
move, new entities (e.g., aircraft that have taken off) appear, and other entities disappear (e.g.,
aircraft that have landed) from the data stream. However, the entities are distributed across the
area covered by the data stream at any time. Taking the first n elements from a data stream to
pre-partition the space generates a proper partitioning of the space.

In the last three figures, also the standard deviation of the sampling-based pre-partitioning
approach is depicted for a comparison. The sampling based pre-partitioning takes 0.2% of the
data as samples and creates 40 partitions. It can be seen, that the element-based pre-partitioning
approach generates a pre-partitioning of the same quality. Therefore we recommend this strategy
when a data stream should be used to pre-partition the space. However, this only works when
the stream has a stable data distribution which is equivalent to the data distribution of the first
n elements of the stream. In the data streams that are handled in this paper, this is given for an
accumulation of airplanes in Europe and the USA, cars in densely populated areas of Berlin or buses
in the Sydney metropolitan area.

47

 0

 500000

 1x10
6

 1.5x10
6

 2x10
6

 2.5x10
6

 10000 20000 30000 40000 50000

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 [

σ
]

Read stream elements

Standard deviation of the element distribution (ADS-B)

Element based - 40 partitions
Element based - 80 partitions

Element based - 160 partitions
Sampling based (0.2%) - 40 partitions

(a) ADS-B dataset.

 0

 1x10
6

 2x10
6

 3x10
6

 4x10
6

 5x10
6

 6x10
6

 7x10
6

 8x10
6

 9x10
6

 10000 20000 30000 40000 50000

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 [

σ
]

Read stream elements

Standard deviation of the element distribution (BerlinMod)

Element based - 40 partitions
Element based - 80 partitions

Element based - 160 partitions
Sampling based (0.2%) - 40 partitions

(b) BerlinMod dataset.

 0

 500000

 1x10
6

 1.5x10
6

 2x10
6

 2.5x10
6

 3x10
6

 3.5x10
6

 4x10
6

 10000 20000 30000 40000 50000

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 [

σ
]

Read stream elements

Standard deviation of the element distribution (NSW transport)

Element based pre-partition - 40 partitions
Element based pre-partition - 80 partitions

Element based pre-partition - 160 partitions
Sampling based pre-partition (0.2%) - 40 partitions

(c) NSW transport dataset.

Figure 27: The standard deviation of the stream element distribution of datasets.

7 Conclusion

In this paper, we have presented an extension to the datastore BBoxDB called BBoxDB Streams.
The extension allows the handling of n-dimensional data streams in an efficient and distributed
manner. Data streams of any dimension can be handled. Point and non-point data are supported.
Data streams are imported by a stream capturing tool. The stream capturing tool reads the data
stream, converts it into BBoxDB tuples, and spreads them to a cluster of nodes. Converter for
common data stream formats such as ADS-B or GTFS real-time encoded data are shipped with
BBoxDB Streams. In contrast to existing stream processing systems, the stream is partitioned and
distributed based on the location of the stream elements in space. This allows the efficient handling
of n-dimensional data streams.

Two types of queries are implemented: (1) continuous range queries which allow comparing the
stream with a query rectangle, and (2) continuous spatial joins which allow the comparison of the
stream elements with previously stored big data.

Transformations of the queries can manipulate the bounding boxes of the stream elements. To
the best of our knowledge, we provide with this paper the first stream processing system that is

48

optimized for the handling of n-dimensional data and capable of comparing stream elements with
previously stored data. Additional topics, such as the efficient distribution of stream objects to the
cluster nodes, are discussed. The evaluation of the software has shown that BBoxDB Streams is a
scalable solution for processing multi-dimensional data streams.

BBoxDB Streams enhances the GUI of BBoxDB. Several real-world data streams can be observed,
and queries can be executed on these streams. For instance, aircraft movements can be observed
(ADS-B data) by continuous range queries, or buses in Sydney (NSW transport data) can be observed
and continuously joined with a road network or spatial data like forests. At the moment, queries
are expressed by (1) writing query plans in JSON, (2) by using the QueryPlanBuilder, and (3) by
using the GUI. An enhancement for the next version of the software could be a query language to
allow more interactive queries. Besides, the experiments were performed in a small cluster of five
nodes. There are plans to evaluate the system in a cluster with more hardware nodes.

References

[1] T. Akidau, S. Chernyak, and R. Lax. Streaming Systems: The What, Where, When and how
of Large-scale Data Processing. O’Reilly Media, Incorporated, 2018.

[2] L. Alarabi, M.F. Mokbel, and M. Musleh. ST-Hadoop: A MapReduce Framework for Spatio-
Temporal Data. Geoinformatica, 22(4):785–813, October 2018.

[3] Apache Accumulo project - Website. https://accumulo.apache.org/, 2021. [Online; accessed
20-Jan-2021].

[4] Apache Hadoop project - Website, 2021. https://hadoop.apache.org/ - [Online; accessed
20-Jan-2021].

[5] Apache HBase project - Website. https://hbase.apache.org/, 2021. [Online; accessed 12-
Jan-2021].

[6] Apache Kafka - Datatypes. https://kafka.apache.org/10/documentation/streams/

developer-guide/datatypes, 2021. [Online; accessed 03-Jan-2021].

[7] Apache Kafka - Joining data. https://kafka.apache.org/20/documentation/streams/

developer-guide/dsl-api.html#joining, 2021. [Online; accessed 03-Jan-2021].

[8] Apache Kafka - KTables. https://kafka.apache.org/20/documentation/streams/

developer-guide/dsl-api.html#streams_concepts_ktable, 2021. [Online; accessed 03-Jan-
2021].

[9] Apache Storm project - Website, 2021. https://storm.apache.org/ - [Online; accessed 20-
Jan-2021].

[10] S. Babu and J. Widom. Continuous queries over data streams. SIGMOD Rec., 30(3):109–120,
September 2001.

[11] H.C. Baker and C. Hewitt. The incremental garbage collection of processes. In Proceedings of
the 1977 Symposium on Artificial Intelligence and Programming Languages, pages 55–59, New
York, NY, USA, 1977. ACM.

[12] P. Baumann, P. Furtado, R. Ritsch, and N. Widmann. The rasdaman approach to multi-
dimensional database management. In Proceedings of the 1997 ACM Symposium on Applied
Computing, SAC ’97, pages 166–173, New York, NY, USA, 1997. ACM.

[13] BBoxDB project - OpenStreetMap data to GeoJSON converter. https://jnidzwetzki.

github.io/bboxdb/tools/dataset.html, 2021. [Online; accessed 07-Mar-2021].

49

[14] BBoxDB project - Website. http://bboxdb.org, 2021. [Online; accessed 03-Jan-2021].

[15] R. Bellman. Dynamic Programming. Dover Publications, 1957.

[16] J.L. Bentley. Multidimensional binary search trees used for associative searching. Commun.
ACM, 18(9):509–517, September 1975.

[17] E. Brewer. CAP twelve years later: How the ”rules” have changed. IEEE Computer, 45(2):23–
29, 2012.

[18] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows, T. Chandra, A. Fikes,
and R.E. Gruber. Bigtable: A distributed storage system for structured data. ACM Trans.
Comput. Syst., 26(2):4:1–4:26, June 2008.

[19] A. Colmerauer and P. Roussel. The birth of prolog. In Thomas J. Bergin, Jr. and Richard G.
Gibson, Jr., editors, History of Programming languages—II, pages 331–367. ACM, New York,
NY, USA, 1996.

[20] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. Com-
mun. ACM, 51(1):107–113, January 2008.

[21] C. Düntgen, T. Behr, and R.H. Güting. Berlinmod: a benchmark for moving object databases.
VLDB Journal, 18(6):1335–1368, 2009.

[22] A. Eldawy and M.F. Mokbel. SpatialHadoop: A MapReduce Framework for Spatial Data. In
31st IEEE International Conference on Data Engineering, ICDE 2015, Seoul, South Korea,
April 13-17, 2015, pages 1352–1363, 2015.

[23] R. Escriva, B. Wong, and E.G. Sirer. HyperDex: A Distributed, Searchable Key-value Store.
In Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication, SIGCOMM ’12, pages 25–36, New York,
NY, USA, 2012. ACM.

[24] R.A. Finkel and J.L. Bentley. Quad trees: A data structure for retrieval on composite keys.
Acta Inf., 4(1):1–9, March 1974.

[25] C.L. Forgy. OPS5 user’s manual. Technical report, Department of Computer Science Carnegie,
Mellon University, Pittsburgh, Pennsylvania, 1981.

[26] M. Fowler. Domain Specific Languages. Addison-Wesley Professional, 1st edition, 2010.

[27] A. Fox, C. Eichelberger, J. Hughes, and S. Lyon. Spatio-temporal indexing in non-relational
distributed databases. In 2013 IEEE International Conference on Big Data, pages 291–299,
Oct 2013.

[28] E. Friedman and K. Tzoumas. Introduction to Apache Flink: Stream Processing for Real Time
and Beyond. O’Reilly Media, Inc., 1st edition, 2016.

[29] E. Gamma, R. Helm, R. Johnson, and J.M. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional, 1 edition, 1994.

[30] The Wikipedia article about Geohashing. https://en.wikipedia.org/wiki/Geohash, 2021.
[Online; accessed 14-Jan-2021].

[31] GeoMesa project - Website. http://www.geomesa.org, 2021. [Online; accessed 20-Jan-2021].

[32] R.H. Güting. Second-order signature: A tool for specifying data models, query processing, and
optimization. SIGMOD Rec., 22(2):277–286, June 1993.

50

[33] R.H. Güting, T. Behr, and C. Düntgen. Secondo: A platform for moving objects database
research and for publishing and integrating research implementations. IEEE Data Eng. Bull.,
33(2):56–63, 2010.

[34] R.H. Güting and J. Lu. Parallel SECONDO: Scalable Query Processing in the Cloud for Non-
standard Applications. SIGSPATIAL Special, 6(2):3–10, March 2015.

[35] A. Guttman. R-trees: A dynamic index structure for spatial searching. SIGMOD Rec., 14(2):47–
57, June 1984.

[36] D. Han and E. Stroulia. HGrid: A Data Model for Large Geospatial Data Sets in HBase. In
2013 IEEE Sixth International Conference on Cloud Computing, pages 910–917, 06 2013.

[37] C. Hewitt. Planner: A language for proving theorems in robots. In Proceedings of the 1st In-
ternational Joint Conference on Artificial Intelligence, IJCAI’69, page 295–301, San Francisco,
CA, USA, 1969. Morgan Kaufmann Publishers Inc.

[38] E.F. Hill. Jess in Action: Java Rule-Based Systems. Manning Publications Co., Greenwich,
CT, USA, 2003.

[39] J. Hughes, A. Annex, C. Eichelberger, A. Fox, A. Hulbert, and M. Ronquest. Geomesa: a dis-
tributed architecture for spatio-temporal fusion. In Geospatial Informatics, Fusion and Motion
Video Analytics V, 94730F, volume 9473 of Proceedings SPIE, pages 9473 – 9473 – 13, 2015.

[40] P. Hunt, M. Konar, F.P. Junqueira, and B. Reed. Zookeeper: Wait-free coordination for
internet-scale systems. In Proceedings of the 2010 USENIX Conference on USENIX Annual
Technical Conference, USENIXATC’10, pages 11–25, Berkeley, CA, USA, 2010. USENIX As-
sociation.

[41] S. Idreos, E. Liarou, and M. Koubarakis. Continuous multi-way joins over distributed hash
tables. In Proceedings of the 11th International Conference on Extending Database Technology:
Advances in Database Technology, EDBT ’08, pages 594–605, New York, NY, USA, 2008. ACM.

[42] J. Kreps. Questioning the lambda architecture. https://www.oreilly.com/ideas/

questioning-the-lambda-architecture, 2014. [Online; accessed 03-Jan-2021].

[43] A. Lakshman and P. Malik. Cassandra: A decentralized structured storage system. SIGOPS
Oper. Syst. Rev., 44(2):35–40, April 2010.

[44] S. Li, S. Hu, R.K. Ganti, M. Srivatsa, and T.F. Abdelzaher. Pyro: A Spatial-Temporal Big-
Data Storage System. In 2015 USENIX Annual Technical Conference, USENIX ATC ’15, July
8-10, Santa Clara, CA, USA, pages 97–109, 2015.

[45] E.K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A survey and comparison of peer-to-
peer overlay network schemes. IEEE Communications Surveys Tutorials, 7(2):72–93, 2005.

[46] A.R. Mahmood, A.M. Aly, T. Qadah, E.K. Rezig, A. Daghistani, A. Madkour, A.S. Abdelhamid,
M.S. Hassan, W.G. Aref, and S. Basalamah. Tornado: A Distributed Spatio-textual Stream
Processing System. Proc. VLDB Endow., 8(12):2020–2023, August 2015.

[47] N. Marz. How to beat the cap theorem. http://nathanmarz.com/blog/how-to-beat-the-

cap-theorem.html, 2011. [Online; accessed 03-Jan-2021].

[48] M.F. Mokbel, X. Xiong, M.A. Hammad, and W.G. Aref. Continuous Query Processing of
Spatio-Temporal Data Streams in PLACE. GeoInformatica, 9(4):343–365, Dec 2005.

[49] G.M. Morton. A Computer Oriented Geodetic Data Base and a New Technique in File Sequenc-
ing. International Business Machines Company, 1966.

51

[50] MySQL Reference - Features of the User-Defined Function Interface, 2021. https://dev.

mysql.com/doc/refman/8.0/en/udf-features.html [Online; accessed 17-Jan-2021].

[51] Z. Nabi. Pro Spark Streaming: The Zen of Real-Time Analytics Using Apache Spark. Apress,
Berkely, CA, USA, 1st edition, 2016.

[52] N. Narkhede, G. Shapira, and T. Palino. Kafka: The Definitive Guide Real-Time Data and
Stream Processing at Scale. O’Reilly Media, Inc., 1st edition, 2017.

[53] National Imagery and Mapping Agency, Department of Defense. World Geodetic System 1984:
its definition and relationships with local geodetic systems. Technical Report TR8350.2, St.
Louis, MO, USA, January 1984.

[54] J.K. Nidzwetzki and R.H. Güting. Distributed Secondo: An Extensible and Scalable Database
Management System. Distributed and Parallel Databases, 35(3-4):197–248, December 2017.

[55] J.K. Nidzwetzki and R.H. Güting. Demo Paper: Large Scale Spatial Data Processing With
User Defined Filters In BBoxDB. In 2019 IEEE International Conference on Big Data (Big
Data), pages 4125–4128, 2019.

[56] J.K. Nidzwetzki and R.H. Güting. BBoxDB: A Distributed and Highly Available Key-Bounding-
Box-Value Store. Distributed and Parallel Databases, 38:439–493, June 2020.

[57] J.K. Nidzwetzki and R.H. Güting. BBoxDB Streams: Distributed Processing of Real-World
Streams of Position Data (Demo-Paper). In Y. Velegrakis, D. Zeinalipour-Yazti, P.K. Chrysan-
this, and F. Guerra, editors, Proceedings of the 24th International Conference on Extending
Database Technology, EDBT 2021, Nicosia, Cyprus, March 23 - 26, 2021, pages 662–665.
OpenProceedings.org, 2021.

[58] S. Nishimura, S. Das, D. Agrawal, and A.E. Abbadi. Md-hbase: A scalable multi-dimensional
data infrastructure for location aware services. In Proceedings of the 2011 IEEE 12th Interna-
tional Conference on Mobile Data Management - Volume 01, MDM ’11, pages 7–16, Washing-
ton, DC, USA, 2011. IEEE Computer Society.

[59] R. Obe and L. Hsu. PostgreSQL: Up and Running. O’Reilly Media, Inc., 2012.

[60] Open Street Map Project - Website, 2021. http://www.openstreetmap.org - [Online; accessed
15-Jan-2021].

[61] Open Street Map Project - Object Properties, 2021. https://wiki.openstreetmap.org/wiki/
Category:Properties - [Online; accessed 15-Jan-2021].

[62] Oracle. The Documentation of the spatial GeoRaster feature, 2021. https://docs.oracle.

com/cd/B19306_01/appdev.102/b14254/geor_intro.htm - [Online; accessed 22-Jan-2021].

[63] J. Orenstein. A comparison of spatial query processing techniques for native and parameter
spaces. SIGMOD Rec., 19(2):343–352, May 1990.

[64] W. Palma, R. Akbarinia, E. Pacitti, and P. Valduriez. DHTJoin: processing continuous join
queries using DHT networks. Distributed and Parallel Databases, 26(2):291, Aug 2009.

[65] PostGIS. The Documentation of the raster datatype, 2021. https://postgis.net/docs/RT_

reference.html - [Online; accessed 22-Jan-2021].

[66] J. Qi, R. Zhang, C.S. Jensen, K. Ramamohanarao, and J. He. Continuous spatial query pro-
cessing: A survey of safe region based techniques. ACM Comput. Surv., 51(3), May 2018.

[67] M. Stonebraker, P. Brown, J. Becla, and D. Zhang. Scidb: A database management system for
applications with complex analytics. Computing in Science and Engg., 15(3):54–62, May 2013.

52

[68] D. Terry, D. Goldberg, D. Nichols, and B. Oki. Continuous queries over append-only databases.
SIGMOD Rec., 21(2):321–330, June 1992.

[69] The Esri Project. Esri Geometry API for Java, 2021. https://github.com/Esri - [Online;
accessed 03-Mar-2021].

[70] The Tiny MD-HBase project on Github, 2021. https://github.com/shojinishimura/Tiny-
MD-HBase - [Online; accessed 26-Jan-2021].

[71] K. Vibhore, A. Henrique, G. Bugra, and W. Kun-Lung. DEDUCE: at the intersection of
MapReduce and stream processing. In EDBT 2010, 13th International Conference on Extending
Database Technology, Lausanne, Switzerland, Proceedings, pages 657–662, 2010.

[72] W. Vogels. Eventually consistent. Commun. ACM, 52(1):40–44, January 2009.

[73] The Website of the adsbhub.org project, 2021. http://adsbhub.org - [Online; accessed 12-
Jan-2021].

[74] The Website of the Open Data Hub for New South Wales transport data, 2021. https://

opendata.transport.nsw.gov.au - [Online; accessed 20-Jan-2021].

[75] M. Widenius and D. Axmark. MySQL Reference Manual. O’Reilly & Associates, Inc., Se-
bastopol, CA, USA, 1st edition, 2002.

[76] F. Zhang, Y. Zheng, D. Xu, Z. Du, Y. Wang, R. Liu, and X. Ye. Real-time spatial queries for
moving objects using storm topology. ISPRS International Journal of Geo-Information, 5(10),
2016.

[77] R. Zhang, D. Lin, K. Ramamohanarao, and E. Bertino. Continuous intersection joins over
moving objects. In 2008 IEEE 24th International Conference on Data Engineering, pages 863–
872, 2008.

[78] Y. Zhang, M. Kersten, and S. Manegold. SciQL: Array Data Processing Inside an RDBMS.
In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’13, pages 1049–1052, New York, NY, USA, 2013. ACM.

[79] X. Zhou, X. Zhang, Y. Wang, R. Li, and S. Wang. Efficient Distributed Multi-dimensional Index
for Big Data Management. In Proceedings of the 14th International Conference on Web-Age
Information Management, WAIM’13, pages 130–141, Berlin, Heidelberg, 2013. Springer-Verlag.

53

Verzeichnis der zuletzt erschienenen Informatik-Berichte

[372] M. Kulaš

A practical view on substitutions, 7/2016

[373] Valdés, F., Güting, R.H.:

 Index-supported Pattern Matching on Tuples of Time-dependent
Values, 7/2016

[374] Sebastian Reil, Andreas Bortfeldt, Lars Mönch:

 Heuristics for vehicle routing problems with backhauls, time windows,
 and 3D loading constraints, 10/2016

[375] Ralf Hartmut Güting and Thomas Behr:

Distributed Query Processing in Secondo, 12/2016

[376] Marija Kulaš:

A term matching algorithm and substitution generality, 11/2017

[377] Jan Kristof Nidzwetzki, Ralf Hartmut Güting:

BBoxDB - A Distributed and Highly Available Key-Bounding-Box-Value
Store, 5/2018

[378] Marija Kulaš:

On separation, conservation and unification, 06/2019

[379] Fynn Terhar, Christian Icking:

A New Model for Hard Braking Vehicles and Collision Avoiding
Trajectories, 06/2019

[380] Fabio Valdés, Thomas Behr, Ralf Hartmut Güting:
Parallel Trajectory Management in Secondo, 01/2020

[381] Ralf Hartmut Güting, Thomas Behr, Jan Kristof Nidzwetzki:

Distributed Arrays – An Algebra for Generic Distributed Query
Processing, 05/2020

[382] Raphael Herding, Lars Mönch:

 A SHORT-TERM DEMAND SUPPLY MATCHING APPROACH FOR

SEMICONDUCTOR SUPPLY CHAINS, 06/2021

	Deckblatt383
	Grüne Reihe 383
	Verzeichnis383

