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Abstract

We consider the recently developedK-depth tests for testing simul-

taneously independence and other model assumptions for univariate

time series with a potentially related d-dimensional process of explana-

tory variables. Since these tests are based only on signs of residuals,

they are easy to comprehend. They can be used in a full version and

in a simpli�ed version. While former investigations already showed

that the full version is appropriate for testing model assumptions, we

concentrate here on either testing the independence assumption on its

own or on simultaneously testing independence- and model assump-

tions with both types of tests. In an extensive simulation study, we

compare these tests with several known independence test such as

the runs test, the Durbin-Watson test, and the Von-Neumann-Rank-

Ratio test. Finally, we demonstrate how the K-depth tests can be

used for improved modelling of crack width time series depending on

temperature measurements in a bridge monitoring.

1 Introduction

We consider here univariate time series (Yt)t=−p+1,−p+2,...,0,1,2,...,T given by

Yt = g(θ∗, Yt−p, . . . , Yt−2, Yt−1, Xt−q+1, . . . , Xt−1, Xt) +Wt (1)

1



for t = 1, . . . , T where (Xt)t=−q+2,−q+3,...,0,1,2,...,T is a d-dimensional related
process, θ∗ ∈ Rs is the model parameter, g : Rs+p+q∗d → R the model func-
tion, and (Wt)t=1,2,...,T is a white noise process. We assume only that the
error variables W1, . . . ,WT are independent and have a continuous distribu-
tion with median equal to zero. In particular, we do not assume variance
homogeneity. The classical AR(p)-models are a special cases of these models.

In such time series, we can regard residuals given by

Rt(θ) := Yt − g(θ∗, Yt−p, . . . , Yt−2, Yt−1, Xt−q+1, . . . , Xt−1, Xt).

If θ is the true model parameter θ∗ then Rt(θ∗) = Wt and R1(θ∗), . . . , RT (θ∗)
satisfy the following properties:

1. R1(θ∗), . . . , RT (θ∗) are independent,

2. P (Rt(θ∗) > 0) =
1

2
= P (Rt(θ∗) < 0) for t = 1, . . . , T.

(2)

A very simple test for such models is the classical sign tests which uses
the fact that under the true model with true model parameter the signs of
the residuals are Bernoulli distributed with a probability of 1

2
for a posi-

tive sign. Hence, e.g., the number of positive signs can be used as a test
statistic, yielding a symmetric binomial distribution under the true model.
If this test statistic is too small or too large for realizations r1(θ), . . . , rT (θ) of
R1(θ), . . . , RT (θ) then the postulated parameter θ cannot be the true param-
eter or the model at all is not correct. However for most models, this simple
test has the drawback that deviations θ 6= θ∗ from of the true parameter θ∗
exist where the power of the test at θ is very bad since the expected value
for a positive residual RT (θ) > 0 remains close to 1

2
. The only exception

is the univariate location problem where the sign test is a quite powerful
nonparametric test [1]. An additional problem for the application of the
classical sign test for time series models is that the �rst condition in (2) of
independent residuals is not checked with this test.

A similarly simple test for independence in time series is the runs test
of Wald and Wolfowitz [2], see e.g. [3], pp. 78-86. It can be applied to
the signs of the residuals R1(θ∗), . . . , RT (θ∗) and counts the number of runs.
A run is a sequence of equal signs. Note that if NR is the number of runs
and NS is the number sign changes then NR = NS + 1. A low number of
runs indicates positive correlation and a high number negative correlation.
However, the runs test is not constructed for testing the second condition
in (2) of a residual distribution with median equal to zero.

For testing model parameters, Leckey et al. [4] proposed the so-called
K-sign depth tests or shortly K-depth tests. Since these tests are only based
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on signs of residuals, they are nearly as simple as the sign test and the
runs test. These tests are based on the K-sign depth. The full K-sign
depth is the relative number ofK-subsets {t1, . . . , tK} ⊂ {1, . . . , T} for which
the corresponding residuals Rt1(θ), . . . , RtK (θ) have alternating signs. In a
simpli�ed version of the K-sign depth, only subsets of consecutive indices
t1, t1 + 1, . . . , t1 + K − 1 are used. Leckey et al. showed in particular that
the full K-depth test based on the full version of K-sign depth is equivalent
to the classical sign test for K = 2 and demonstrate theoretically and by
simulations that the full K-depth tests are much more powerful than the
classical sign test for K > 2. They also mentioned that the simpli�ed 2-
depth test based on the simpli�ed version of 2-sign depth is similar to the
runs test but did not study this case any further.

In particular, a low K-sign depth indicates a bad �t of the model and/or
positive correlation while a high K-sign depth may indicate negative corre-
lation. Since Leckey et al. [4] used the full K-depth tests only for testing
model parameters, they used the full K-depth tests in a one-sided version
where a null hypothesis is rejected if the K-sign depths is too small. Here
we study the K-depth tests in a two-sided version and compare the full K-
depth tests with the simpli�ed K-depth tests. Especially, we are interested
in the e�ciency of these tests to detect deviations from the independence
assumption.

Section 2.1 provides a detailed discussion ofK-depth tests and further ref-
erences which showed the e�ciency ofK-depth tests for testing model param-
eters. Since this e�ciency was already studied in several other publications
[4, 5, 6, 7, 8], we concentrate on either testing the independence assumption
on its own or on simultaneously testing independence- and model assump-
tions in the subsequent sections. To this end, we compare the K-depth tests
with known tests for independence such as the runs test, the turning point
test [9], the Durbin-Watson test [10], the Ljung-Box test [11], Von-Neumann-
Rank-Ratio test [12], and the Brook-Dechert-Schreinkamp test [13]. More
details for these known independence tests are given in Section 2.2.

In Section 3, the simulated power of the various tests are given for testing
the null hypothesis H0 : ρ = 0 where ρ is the autocorrelation coe�cient of an
AR(1) model so that ρ = 0 is equivalent with the independence assumption.
Section 3.1 deals with the robustness of the tests with respect to innovation
outliers and contaminations of the measurements. The behaviour for higher
lags is investigated in Section 3.2 by considering second order autoregressive
time series and seasonal autoregressive time series. Finally, Section 4 studies
the behaviour of the tests in situations where the time series are corrupted
by jumps and trends so that model deviations appear.

Moreover, we present in Section 5 an application to crack data in a bridge
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monitoring. In this monitoring, the width of a crack and the temperature
below and above the bridge are observed over one year. Since the crack width
varies with the temperature, it is di�cult to �nd an adequate model for these
crack data. Section 5 shows how the full 3-depth test leads to a reasonable
model.

The conclusion of the simulation studies and the application is that the
simpli�ed K-depth tests and the full K-depth test with K = T/3 can com-
pete with the classical independence tests in terms of power when only testing
the independence assumption. All K-depth tests are very outlier robust and
are able to detect model deviations. Hence they can also be used for model
selection. However, the Ljung-Box test is the best test for detecting model
deviation but, similar to the Durbin-Watson test, struggles when outliers oc-
cur since both tests base on the outlier sensitive autocorrelation coe�cient.
The runs test behaves often similarly to the simpli�ed K-depth tests and
the full K-depth tests with K = T/3 but the K-depth tests are superior in
the case of seasonal autoregressive time series. A more detailed discussion is
given in Section 6.

2 Statistical tests for independence

2.1 K-depth tests

A K-depth test is based on the K-sign depth which is a measure of �t of a
given model. Let (yt)t=−p+1,−p+2,...,0,1,2,...,T be the realization of the time series
(Yt)t=−p+1,−p+2,...,0,1,2,...,T satisfying (1) and r1(θ), . . . , rT (θ) the realizations
of the residuals R1(θ), . . . , RT (θ) for a given model parameter θ. The only
assumptions are the properties given by (2) if θ∗ is the true model parameter.
In particular, the second assumption in (2) is satis�ed if the residuals Rn(θ∗)
have a continuous distribution with median equal to zero.

Then the full K-sign depth of a model with model parameter θ in the
realized time series (yt)t=−p+1,−p+2,...,0,1,2,...,T is the relative number of all sub-
sets with K residuals so that the residuals have alternating signs, i.e. it is
the relative number of subsets {t1, . . . , tK} ⊂ {1, . . . , T} with sign(rti(θ)) =
− sign(rti+1

(θ)) for i = 1, . . . , K − 1. Here sign denotes the sign-function, i.e.
sign(z) = 1 if z > 0, sign(z) = −1 for z < 0, and sign(0) = 0. The second
assumption of (2) means that we can assume without loss of generality that
all signs are nonzero. Hence, the full K-sign depth can be given formally
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as

dK(r1(θ), . . . , rT (θ)) :=
1(
T
K

) ∑
1≤t1<...<tK≤T

(
K∏
k=1

1{rtk(θ)(−1)k > 0}

+
K∏
k=1

1{rtk(θ)(−1)k < 0}

)
.

The simpli�ed K-sign depth is de�ned as

dSK(r1(θ), . . . , rT (θ)) :=
1

T −K + 1

T−K+1∑
t=1

(
K∏
k=1

1{rt+k−1(θ)(−1)k > 0}

+
K∏
k=1

1{rt+k−1(θ)(−1)k < 0}

)
.

Originally, the K-sign depth appeared in special situations of the simpli-
cial regression depth introduced by Rousseeuw and Hubert [14] who proposed
regression depth and simplicial regression depth as a measure of �t of a re-
gression model. The name simplicial regression depth originated from the
fact that it is derived from the regression depth in the same way Liu's sim-
plicial depth [15, 16] based on simplexes for multivariate location data can
be derived from Tukey's halfspace depth [17].

While location depth measures the depth of a location parameter in the
data set, regression depth measures the depth of the regression function in
the data set. However, the notion of regression depth and simplicial regres-
sion depth is quite complicated. In particular simplicial regression depth
becomes more manageable when it is equivalent to K-sign depth where suf-
�cient conditions for this equivalence are given in [5].

If the model with model parameter θ∗ is the correct model then theK-sign
depth should be high. A small K-sign depth indicates either a wrong model
parameter or that the model is not correct at all. This works as a model check
quite well as long as the independence of the residuals is ensured which is
the case for regression models with independent observations. However, in
time series, too many alternating signs of residuals may indicate a negative
correlation between the residuals and thus a violation of the independence
assumption.

For calculating critical values for testing the null hypothesis of the form

H0 : θ∗ satis�es (2),
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a normalized version of the K-sign depth should be used, namely

TK(r1(θ), . . . , rT (θ)) = T

(
dK(r1(θ), . . . , rT (θ))−

1

2K−1

)
,

T SK(r1(θ), . . . , rT (θ)) =
√
T −K + 1

dSK(r1(θ), . . . , rT (θ))− 1
2K−1√

1
2K−1

(
3− K

2K−2 − 3
2K−1

) , (3)

for the full K-sign depth dK and for the simpli�ed K-sign depth dSK , respec-
tively.

Let qα be the α-quantile of the distribution of the normalized version of
the K-sign depth given in (3). Then the full K-depth test rejects H0 if

TK(r1(θ∗), . . . , rT (θ∗)) < qα/2 or TK(r1(θ∗), . . . , rT (θ∗)) > q1−α/2 (4)

and the simpli�ed K-depth test rejects H0 if TK in (4) is replaced by T SK .
For small sample sizes T , the quantiles can be determined exactly by

calculating the normalized depth in (3) for all 2T combinations of positive
and negative signs. However, if T is too large, one can use the fact that the
normalized depth in (3) converges to an asymptotic distribution.

The advantage of the simpli�ed K-sign depth is that its asymptotic dis-
tribution can be easily derived under the assumptions (2) as shown in [5].
The asymptotic distribution is the normal distribution so that the symmetric
quantiles qα/2 and q1−α/2 are the best choice of quantiles. The asymptotic
distribution of the full K-sign depth is more complicated. For K = 2 and
K = 3 the asymptotic distribution was derived in [18] and [6], respectively. In
these papers, the asymptotic distribution was derived for simplicial regression
depth in special autoregressive models but the proofs base only on the signs of
the residuals so that they hold for 2-sign depth and 3-sign depth. For general
K ≥ 2, the asymptotic distribution of the K-sign depth is derived in [19]. It
is an asymmetric distribution given by an integrated transformed Brownian
motion. Hence, the symmetric quantiles qα/2 and q1−α/2 could be replaced by
quantiles which minimized qα2 − qα1 with α2 − α1 = 1− α. However, since
asymmetric quantiles did not provide relevant visible improvements in the
simulation studies, we use here only the symmetric quantiles qα/2 and q1−α/2.

Another advantage of the simpli�ed K-sign depth is that it can be cal-
culated in linear time with growing sample size T while a naive algorithm
for the full K-sign depth has complexity of

(
T
K

)
. However, Leckey et al.

[4] provide a more e�cient algorithm for the full K-sign depth called block

implementation. This algorithm manages to compute the full K-sign depth
with a linear time complexity in T for any �xed K ≥ 2 by rearranging the
sum over K-tuples as well as precomputing the resulting cummulative sums.
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Leckey et al. also show that the full 2-depth test is equivalent to the
classical sign test. They also mention that the simpli�ed 2-depth test is
closely related to the runs test. The only major di�erence is that test statistic
of the runs test considers the number of runs conditioned on the number
of positive signs while the simpli�ed 2-depth test considers the number of
runs/sign changes without conditioning.

Since the K-depth tests are only based on signs of residuals, they are
robust against outliers, heavy tailed distribution and heteroscedasticity. The
simulations in [4, 5, 6, 7, 8] additionally indicate a high power of the one-
sided K-depth tests for K ≥ 3 in the case of testing hypotheses on the
model parameter θ in linear, nonlinear and multiple regression as well as in
linear and nonlinear autoregressive models and thus are much better than the
classical sign test. In particular the power of the full K-depth tests reaches
the power of classical parametric tests as t- and F-tests while the simpli�ed
K-depth tests are a little bit less powerful [6, 7].

Here the behaviour of the two-sided K-depth tests for testing simultane-
ously the independence of the residuals and the model is of interest. The
K-Depth tests were carried out by using the GSignTest package [20].

2.2 Other reference tests

As a benchmark in terms of testing independence for stationary time series,
several other tests are considered in this paper. The Durbin-Watson test
(DW test) [10] and the Ljung-Box test (LB test) [11] are used as represen-
tatives of parametric tests. The LB test utilizes the �rst H=15 empirical
autocorrelation coe�cients ρ̂h with h ∈ {1, ..., H} and assumes that they
are normally distributed. Under some general assumptions [?, ]pp. 234 �
235]Gujarati.2009, the statistic of the DW test bases on the �rst autocorre-
lation coe�cient ρ̂1 and its normality. While the LB test can be carried out
by using the function box.test which is part of the basic stats package in
R, the DW test is included in the lmtest package [22].

Furthermore, as non-parametric procedures, the runs test [3], the turning
point test (TP test) [9], and the Broock-Dechert-Scheinkman test (BDS test)
[13] are considered. Those procedures are mainly based on the sequential
scheme of observations in a time series. The BDS test is an exception here,
because its statistic utilizes concrete distances between observations. The
BDS test and the runs test are included in the tseries package, the TP test
is implemented in the spgs package [23].

Moreover, a rank based test of independence, the Von-Neumann-Rank-
Ratio test (VNRR-Test) [12], is discussed in this paper. This test can be
performed with the randtests package [24].
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3 Testing for independence

As a �rst step, the di�erent independence tests were applied to stationary
�rst order autoregressive time series. More precisely, the following model is
used to generate data:

Yt = ρ1Yt−1 +Wt, |ρ1| < 1, Wt ∼ N(0, 1) (5)

for t ∈ {2, . . . , T} where T is the sample size, (Wt)t∈N is a sequence of
i.i.d. standard normally distributed random variables, Y1 is the starting value
and ρ1 the �rst order autocorrelation coe�cient. The simulation of these time
series was carried out by the function arima.sim of the stats package. Also
note that additionally a burn-in period of T/2 observations was simulated at
the beginning of the time series and eliminated afterwards in order to remove
the e�ect of a starting value.

In this context, the independence of the regarded time series is given when
ρ1 is equal to 0. For the purpose of judging the powers of the di�erent tests,
alternatives with values of ρ1 on a grid from -0.99 � 0.99 with a �neness of 0.01
were tested at an α-level of 0.05. For each of the grid points, 100 repetitions
of testing were carried out and the powers of the tests was determined by
their relative rejection rates. These estimated powers were then displayed
graphically by utilising the packages lattice [25], viridis [26], magicaxis
[27] and latex2exp [28]. Note that a rejection rate of < 0.05 is associated
with the colour black in order to assess whether the α-levels of the tests are
met. Due to the relatively small number of repetitions it is necessary to,
keep in mind that minor transgressions of this value are no clear indication
for tests not reaching the signi�cance level under the null hypothesis.

The results of a simulation for samples of T = 50 and T = 500 observa-
tions are displayed in Figures 1 and 2. It can be seen that the full K-depth
test with K = T/3 and the simpli�ed K-depth tests with K = 2, 3 behave
similarly to the runs test, the Von-Neumann-Rank-Ratio test, the Ljung-
Box test and the Durbin-Watson test for small (T = 50) and large time series
(T = 500). The bad power of the simpli�ed K-depth tests with K = 4, 5
for positive ρ1 and T = 50 is caused by the fact that the probability of the
simpli�ed depth dSK attaining the smallest possible value of zero is greater
than α/2 for T = 50. This e�ect disappears for T = 500 so that then these
tests are also quite powerful for larger sample sizes. The Broock-Dechert-
Scheinkman test does not keep the level for the small sample size of T = 50.
Moreover, the power of the full K-depth test with K = 3, 4, 5 is not much
worse than the power of the other tests for T = 50 but does not improve
signi�cantly with the larger sample size of T = 500. The reason is that
all subsets {t1, . . . , tK} ⊂ {2, . . . , T} are considered and that subsets where
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Figure 1: Simulated power of the di�erent tests for stationary �rst order
autoregressive time series with 50 observations.

{t1, . . . , tK} are spread over the whole time series do not contribute to the
detection of the dependence structure. This e�ect becomes less important
with growing K and disappears if K is chosen depending on the sample size,
for example as K = T/3.

3.1 Robustness

In this section, the robustness of the di�erent tests with respect to outliers
is analysed.

3.1.1 Innovation outliers

First, situations are regarded in which the simulated time series contain
obvious outliers that in�uence subsequent values of the time series. These
kinds of outliers are referred to as innovation outliers or random shocks
[29]. In practice they often result from rare events that occur during the
underlying process. Such a behaviour can be simulated as follows:

Yt = ρ1Yt−1 + 1{t ∈ I} · Vt +Wt, |ρ1| < 1, Wt ∼ N(0, 1),

where I denotes a set chosen uniformly at random among all subset of
{1, . . . , T} with size dT · 0.05e and (Vt)t∈N is a sequence of i.i.d. random
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Figure 2: Simulated power of the di�erent tests for stationary �rst order
autoregressive time series with 500 observations.

variables drawn uniformly at random from the set {−50, 50}. All random
variables I, (Vt)t∈N and (Wt)t∈N are chosen independently of each other.

The power values of the di�erent tests are evaluated in the same fashion
as in Section 3 and the results for T = 50 observations are displayed in
Figure 3. Here we see that the Von-Neumann-Rank-Ratio test provides
the best power followed by the runs tests, simpli�ed K-depth tests with
K = 2, 3, full K-depth test with K = T/3, turning point test, and the
Broock-Dechert-Scheinkman test. The power of the full K-depth tests, in
particular for K = 5, are only slightly worse. The simpli�ed K-depth tests
with K = 4, 5, the Ljung-Box test, and the Durbin-Watson test are worse.
However, the power of simpli�ed K-depth tests with K = 4, 5 becomes much
better for larger samples sizes while again the power of the full K-depth tests
does not improve with growing sample size. See the supplementary material
for T = 500.

3.1.2 Contaminations with additive outliers

Another type of outlier in the context of time series are so called additive out-
liers or contaminations, which have no impact on subsequent observations.
They typically arise from measurement errors and are no part of the under-
lying process. Here, the contaminated time series are simulated by using the
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Figure 3: Simulated power of the di�erent tests for stationary �rst order
autoregressive time series with 50 observations and 3 innovation outliers.
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Figure 4: Simulated power of the di�erent tests for stationary �rst order
autoregressive time series with 500 observations and 25 additive outliers.
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uncontaminated process (Yt)t=1,...,T given in (5) to de�ne a new process

Ỹt = Yt + 1{t ∈ I} · Vt, t = 1, . . . , T,

where, as before, I denotes a set chosen uniformly at random among all sub-
set of {1, ..., T} with size dT · 0.05e and (Vt)t∈N is a sequence of i.i.d. random
variables drawn uniformly at random from the set {−50, 50}. Moreover, the
random variables I and (Vt)t∈N are chosen independently of each other and
independently of (Yt)t=1,...,T .

The results of this simulation for T = 500 observations are displayed
in Figure 4. Here, the power of the Ljung-Box test, the Broock-Dechert-
Scheinkman test and the Durbin-Watson test is much worse than the power
of the other tests. A similar result was obtained for the smaller sample size
of T = 50, see the supplementary material.

3.2 Dependencies to higher lags

Hereinafter, the powers of the di�erent independence tests were applied to
time series that have dependencies to higher lags. As a �rst step, the test
behaviours in stationary, second order autoregressive time series have been
investigated. Samples of this time series are simulated according to the for-
mula

Yt = ρ1Yt−1 + ρ2Yt−2 +Wt, Wt ∼ N(0, 1),

where ρ2 is the second order autocorrelation coe�cient and (Wt)t∈N is a
sequence of independent standard normally distributed random variables as
in the previous models. Such processes are independent if ρ1 = ρ2 = 0 holds
and they are stationary if and only if the following equations are satis�ed:

ρ1 + ρ2 < 1, ρ1 − ρ2 < 1, −1 < ρ2 < 1.

When the values of the two autoregressive coe�cients are shown as a surface,
the three equations de�ne the so called stationarity triangle, which is also
visible in the upcoming �gures.

The power of the tests was evaluated as in the previous sections on a
grid with a �neness of 0.1 for both parameters and the results for time series
with T = 500 observations are displayed in Figure 5. The colour scale of
the rejection rates is not displayed but can be found in the previous �gures.
Here, the Ljung-Box test is clearly the best test while all other tests show
power problems in some subsets of the considered (ρ1, ρ2). The largest subset
with these power problems appear for the fullK-depth tests withK = 3, 4, 5.

Furthermore, the powers of the independence tests in the context of sea-
sonal autoregressive time series were analysed. The most simple versions of
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Figure 5: Simulated power of the di�erent tests for stationary second order
autoregressive time series with 500 observations.

these processes are stationary, seasonal �rst order autoregressive time series
to the parameter S ∈ N. In this kind of processes, the value of an observa-
tion depends on the observation which lies S time units in the past. This
relationship can be simulated according to the formula

Yt = ρSYt−S +Wt, |ρS| < 1, Wt ∼ N(0, 1),

for t ∈ {S+1, . . . , T} and where ρS is the autocorrelation coe�cient of order
S.

The powers of the tests for S ∈ {1, ..., 6} is displayed in Figure 6 for
time series with T = 500 observations. In this scenario, the Ljung-Box
test is again the best. The Durbin-Watson test, Von-Neumann-Rank-Ratio
test, Broock-Dechert-Scheinkman test, and the runs test struggle with lags
S ≥ 2 and the turning point test with lags S ≥ 3. The simpli�ed K-depth
test and the full K-depth test with K = T/3 can deal with higher lags while
the performance of the full K-depth tests with K ∈ {3, 5} is nearly equally
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bad for all lags S. However, the power increases with increasing K for all
K-depth tests.
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Figure 6: Simulated power of the di�erent tests for stationary seasonal au-
toregressive time series with 500 observations.

4 Detection of model deviations

While the previous section was solely focused on detecting independence, we
will now consider testing independence in situations where deviations from
the model assumptions might also be present.

As a �rst example, we consider �rst order autoregressive models which
might have a visible jump in their average behaviour. To this end, we consider
the AR(1) process (Yt)t=1,...,T given in (5) and shift the �rst and second half
of the observations by −h/2 and h/2, respectively. Thus, the new process is
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formally de�ned as

Ỹt = Yt − 1{t ≤ T/2} · h
2
+ 1{t > T/2} · h

2
, t = 1, . . . , T,

in which the autoregression coe�cient ρ1 from (Yt)t=1,...,T is the model pa-
rameter and the jump height h can be considered as a nuisance parameter.
In this model, the jump does not in�uence subsequent observations just like
in the case of contaminated time series (see 3.1.2).

The power of the tests was then evaluated for parameters h from −5 to
5 with a �neness of 0.1 in combination with values of ρ1 from −0.95 to 0.95
with a �neness of 0.05. The corresponding results are displayed in Figure
7. Again, the Ljung-Box test shows the best power. However all other tests
except the turning point test are able to detect the existence of a jump. This
holds also for all full K-depth tests.
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Figure 7: Simulated power of the di�erent tests for stationary �rst order
autoregressive time series with 500 observations and a jump after the 250th
observation.

Another deviation from the model assumptions that was considered in
this paper concerns the presence of a trend or drift in the examined time
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series. For this purpose, stationary �rst order autoregressive time series were
simulated just like in the case of a jump and a drift of the intensity δ was
included post hoc. In order to ensure a theoretical median of 0 in the time
series, they were simulated according to the formula

Ỹt = Yt + δ · (t− T/2)/T, t = 1, . . . , T,

where (Yt)t=1,...,T is the process given in (5), the autoregression coe�cient
ρ1 from (Yt)t=1,...,T is the model parameter, and the drift parameter δ is the
nuisance parameter. By varying the parameter δ from −0.01 to 0.01, very
similar results were obtained as for the model deviation with a jump. See
the supplementary material.

5 Application to bridge monitoring

In a bridge monitoring running from June 2016 to October 2018, the width
of eight cracks and the temperature above and below a bridge in Bochum
(Germany) were monitored every 2 second. For more details see [30]. The
attempt to derive a reasonable model for these crack data with classical
model selection methods was not successful. In particular, the crack width
depends strongly on the temperature and on the tra�c. Moreover there
are anomalous crack sequences. The attempt to �lter out these anomalous
sequences as described in [30] did not help in modelling the crack width.
Hence the idea was to smooth the time series by calculating the median in
time intervals of 15 minutes and considering the 96 time intervals of a day
separately. This leads to 96 time series where each time series consists of the
median crack width and median temperature of a speci�c time interval, say
7:00 to 7:15 a.m., for the days of one year, namely from June 2016 to May
2017. Considering the 96 time intervals of a day separately should reduce
the in�uence of the tra�c. The smoothing with the median over 15 minutes
should reduce the in�uence of the anomalous sequences. However, this does
not work completely so that some outliers remain as contamination. This is
probably the reason that even in this reduced setup, classical model selection
methods still fail.

Therefore, for modelling the crack width called WN2, the following eight
explanatory variables are considered: 1. Time, the day, 2. TBr, the cur-
rent temperature below the bridge, 3. TSun, the current temperature above
the bridge, 4. TBr4h, the temperature 4 hours ago below the bridge, 5.
TSun4h, the temperature 4 hours ago above the bridge, 6. TBrM, the mean
temperature of the previous 7 days below the bridge, 7. TSunM, the mean
temperature of the previous 7 days above the bridge, 8. WN2(-1), the crack

16



Table 1: Table of the selected variables by the di�erent model selection
criteria (1=̂ selected, 0=̂ not selected).

Model Time TBr TSun TBr4 TSun4 TBrM TSunM WN2(-1)

AIC 1 1 1 1 1 1 1 1

trim. AIC 1 0 1 1 0 0 0 1

3-Depth 1 0 0 0 0 0 0 1

3-Depth 0 0 0 0 0 1 1 1
p-value

width of the day before (AR(1) component). Let p denote the number of
selected explanatory variables, i.e. p ∈ {0, . . . , 8} here, rit(θ) be the t'th
residual at θ of the i'th time interval, t = 1, . . . , 364, i = 1, . . . , 96. For all 28

possible selections of the eight variables the following model selection criteria
are used:

1) AIC:
∑96

i=1

(
ln
(

1
364−p

∑364
t=1(r

i
t(θ̂i)

2
)
+ 2p

)
where θ̂i is the least squares

estimator in the i'th time series,

2) trim. AIC: sum of the AICs of 10% trimmed sum of squared residuals

for i'th time series where θ̂i is the 10% least trimmed squares estimator
calculated with lqs of the R package MASS,

3) 3-Depth: mean of the full 3-sign depths d3(r1(θ̂i), . . . , rT (θ̂i)) where

θ̂i is the MM-estimator of θ calculated with lmRob of the R package
robustbase.

4) 3-Depth p-values: mean of the p-values of the one-sided full 3-depth

tests for H0 : θ̂i satis�es (2) at the i'th time series where θ̂i is the MM-
estimator of θ calculated with lmRob of the R package robustbase.

In Table 1, values of 1 indicate those variables which are selected by
maximizing the four model selection criteria. We see that maximizing the
classical AIC criterion leads to no reduction of the variables while the criteria
based on the full 3-depth lead to the smallest models, namely a model with
variables Time and WN2(-1) for the criterion based directly on the 3-sign
depth and a model with the variables TBrM, TSunM, and WN2(-1) for the
criterion based on the p-values of the one-sided 3-depth test.

Figure 8 provides the boxplots of the 96 p-values of some independence
tests at the 96 time series when they are used for the residuals of the full
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Figure 8: Boxplots of the p-values of the independence tests for di�erent
optimal models.

model with least squares estimates (which is also the selected model by max-
imizing the AIC criterion), the full model with the robust MM-estimate of
lmRob, the selected model by maximizing the 10% trimmed AIC, and the
selected model by maximizing the 3-depth and the p-value of the one-sided
3-depth tests, respectively. One can see that almost all tests reject the
independence of the residuals if the model is chosen with the classical AIC
criterion. If the full model is used with the robust MM-estimate or the
model is chosen by maximizing the trimmed AIC-critrion, then there are
some time series where the independence of the residuals is not rejected.
However, much more time series with no independence rejection exist if the
small models are used which were found by using the 3-depth criteria. This
holds for the Von-Neumann-Rank-Ratio test, the runs test, the full 3-depth
test, and the full (T/3)-depth test. Note that the boxplots concern the
p-values of the two-sided K-depth tests while the fourth model selection uses
the one-sided 3-depth test. Furthermore, note that the Ljung-Box test is
the only one that rejects independence in all models. The full (T/3)-depth
test is similarly strict in all cases except for models found by the 3-depth
criteria for which the independence assumption is not rejected in most times
series.

In order to see that the model chosen according to the 3-depth criterion
�ts the data well, Figures 9 and 10 contain the crack widths and their predic-
tions according to this model for two di�erent time series (i.e. two di�erent
times of the day). These two time series correspond to the largest p-value
(Figure 9) and smallest p-value (Figure 10) among all time series according
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to the two-sided full 3-depth test. Note that even the data with the smallest
p-value is still �tted fairly well.
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Figure 9: Predicted and observed values of the time series with the maximal
p-value of the 3-depth test in its optimal model found by maximizing the full
3-sign depth.
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Figure 10: Predicted and observed values of the time series with the minimal
p-value of the 3-depth test in its optimal model found by maximizing the full
3-sign depth.
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Supplementary material

Further simulation results, the data set, and the R-code can be found under
https://www.statistik.tu-dortmund.de/2273.html.

6 Discussion

The K-depth tests can be used to test simultaneously the independence of
residuals of a given model and whether these residuals are distributed with a
median equal to zero. They can be used in a full version where they are based
on the full K-sign depth which is the relative number of all subsets with K
residuals showing alternating signs. In the simpli�ed version they are based
on the simpli�ed K-sign depth which only uses subsets of subsequent residu-
als. The performance of these test when only testing the median property in
models that always yield independent residuals was already investigated in
former studies. We therefore concentrated here on studying the behaviour of
these tests in the context of independence testing and simultaneous testing
of independence and model deviations. We compared them with classical
independence tests in a simulation study. It turned out that in particular
the simpli�ed K-depth tests can compete with these classical tests. The full
K-depth tests show a quite good power for moderate sample sizes but the
power does not increase for larger sample sizes. This is explained by the
fact that when considering the relative number of K-tuples with alternating
signs, the overwhelming majority of these K-tuples concern positions in the
residual vector that are far apart and therefore do not contribute to the detec-
tion of (local) dependence structures. This can be avoided by choosing the
hyperparameter K in dependence of the sample size T , a reason why we also
considered full (T/3)-depth tests. Indeed these tests are a good alternative
to the classical tests. Only the Ljung-Box test is superior in some situations
but has massive problems with outliers while the K-depth tests basing only
on signs of residuals are outlier robust. Often, the simpli�ed K-depth tests
and the full (T/3)-depth tests behave similarly to the runs test but they are
superior to the runs test in the case of seasonal autoregressive time series.

In an application with data from a bridge monitoring, we demonstrated
how the K-depth tests can be used to improve the modelling of time series
which depend on a related d-dimensional co-process. In this context, classical
model selection methods fail while two methods based on the 3-sign depth
provided reasonable models with few variables. However, more investigations
are necessary to con�rm the suitability of the K-sign depth and K-depth
tests for model selection. In particular, we did not treat the situation where
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the model parameter must be estimated and what happens when the model
parameter is estimated in a wrong model.
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