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Generalized method of moments and continuous updating estimators based on second- to fourth-

order moment conditions can be used to solve the identification problem and estimate non-

Gaussian structural vectorautoregressions. However, estimating the asymptotically optimal

weighting matrix and the asymptotic variance of the estimators is challenging in small sam-

ples. I show that this can lead to a severe bias, large variance, and inaccurate inference in

small samples. I propose to use the assumption of independent structural shocks not only to de-

rive moment conditions but also to derive alternative estimators for the asymptotically optimal

weighting matrix and the asymptotic variance of the estimator. I demonstrate that these esti-

mators greatly improve the performance of the generalized method of moments and continuous

updating estimators in terms of bias, variance, and inference.
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1 Introduction

In a non-Gaussian structural vectorautoregression (SVAR) independent structural shocks imply

higher-order moment conditions which identify the simultaneous relationship without any re-

strictions on the simultaneous interaction. These higher-order moment conditions can be used

to estimate the SVAR with a generalized of moments (GMM) or continuous updating estima-

tor (CUE), see, e.g., Lanne and Luoto (2021), Keweloh (2021), or Guay (2021). However, with

higher-order moment conditions the long-run covariance matrix of the sample average of the mo-

ment conditions is difficult to estimate in small samples. Nevertheless, an accurate estimation

of the covariance matrix is crucial for the estimation of the asymptotically optimal weighting

matrix, the estimation of the asymptotic variance, and inference.

This study analyzes the small sample behavior of CUE and GMM estimators with higher-order

moment conditions in SVAR models. I find that standard approaches to estimate the long-run

covariance matrix lead to volatile and biased CUE and GMM estimators with distorted J and

Wald test statistics. Moreover, the performance of the estimators decreases with the model size,

to the point of limiting the usefulness of the approach for specifications usually considered in

macroeconometrics. I propose to use the assumption of mutually independent structural shocks

not only to derive moment conditions but also to estimate the asymptotically efficient weighting

matrix and the asymptotic variance. I demonstrate that this simple modification substantially

increases the small sample performance of the estimators.

The small sample behavior of CUE and GMM estimators in general has been studied extensively.

GMM estimators are known to exhibit a small sample bias and the CUE is associated with a

smaller bias, see, e.g., Hansen et al. (1996), Donald and Newey (2000), Han and Phillips (2006),

or Newey and Windmeijer (2009). Moreover, the inability to precisely estimate the asymptotic

variance leads to oversized Wald test statistics, see Burnside and Eichenbaum (1996). Therefore,

Burnside and Eichenbaum (1996) propose to use restrictions implied by the underlying model to

calculate test statistics. In the context of SVAR models, Bonhomme and Robin (2009), Keweloh
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(2021), and Guay (2021) recognize that due to higher-order moment conditions, the long-run

covariance matrix of the sample average of the moment conditions is particularly difficult to

estimate. For example, the covariance of cokurtosis moment conditions is of order eight and

therefore, difficult to estimate in samples with a few hundred observations. I show that exploiting

the assumption of mutually independent structural shocks simplifies the problem of estimating

the covariance of higher-order moment conditions. In particular, with independent structural

shocks, higher-order moments of the covariance matrix can be calculated as products of lower-

order moments. Therefore, I propose the SVAR CUE-MI and SVAR GMM-MI estimators, which

are GMM and CUE estimators exploiting the assumption of mutually independent structural

shocks to estimate the asymptotically optimal weighting matrix and the asymptotic variance. A

Monte Carlo simulation demonstrates that the SVAR CUE-MI and SVAR GMM-MI outperform

SVAR CUE and SVAR GMM estimators, which are not exploiting the assumption of mutually

independent shocks to estimate the optimal weighting and asymptotic variance.

It is well known that the number coskewness and cokurtosis conditions implied by independent

structural shocks increases quickly with the dimension of the SVAR. For example, with n = 2

variables, independent structural shocks imply two variance, one covariance, two coskewness and

three cokurtosis conditions, and with n = 4 variables independent structural shocks imply four

variance, six covariance, 16 coskewness and 31 cokurtosis conditions, see Keweloh (2021).1 While

the possible number of moment conditions increases quickly with the dimension of the SVAR, the

number of moments contained in the covariance matrix of the moment conditions increases even

more rapidly. In particular, for n = 2 variables the covariance matrix of all second- to fourth-order

moment conditions implied by mutually independent shocks is a 8×8 matrix with five co-moments

of order four, six co-moments of order five, seven co-moments of order six, eight co-moments of

order seven, and nine co-moments of order eight. However, for n = 4 variables the covariance

matrix of all second- to fourth-order moment conditions implied by mutually independent shocks

1Lanne and Luoto (2021) and Keweloh (2021) propose GMM estimators which minimize the second- and higher-
order dependencies of the unmixed innovations. In contrast to that, the GMM estimator proposed by Guay (2021)
minimizes the distance of the second- and higher-order co-moments of the reduced form shocks to the second- and
higher-order co-moments implied by a mixture of independent structural shocks. The GMM estimator proposed
by Guay (2021) has even more higher-order moment conditions.
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is a 57×57 matrix with 35 co-moments of order four, 56 co-moments of order five, 84 co-moments

of order six, 120 co-moments of order seven, and 165 co-moments of order eight. Exploiting the

assumption of mutually independent shocks allows to estimate the covariance matrix of all second-

to fourth-order moment conditions implied by mutually independent shocks as a product of n

moments of order one, n moments of order two, n moments of order three, n moments of order

four, n moments of order five, and n moments of order six. Therefore, with mutually independent

shocks the researcher only needs to estimate moments up to order six instead of order eight and

the number of these moments increases linearly in the dimension of the SVAR.

Mutually independent structural shocks simplify the estimation of the asymptotically optimal

weighting matrix and the asymptotic variance. In many cases, mutually independent structural

shocks are no additional assumption but assumed anyway to derive the identifying higher-order

moment conditions, see, e.g., Keweloh (2021) and Guay (2021).2 However, some authors argue

that the assumption of mutually independent shocks is too strong, see, e.g., Kilian and Lütke-

pohl (2017, Chapter 14), Lewis (2021), or Lanne and Luoto (2021). In particular, independence

implies that the volatility processes of the shocks are independent. Lanne and Luoto (2021)

show that a suitable subset of n(n− 1)/2 asymmetric cokurtosis conditions is sufficient to ensure

local identification in a non-Gaussian SVAR.3 These asymmetric cokurtosis conditions can be

motivated by mutually mean independent shocks, which allows a dependence of the volatility

processes. Therefore, I derive analogous results for the estimation of the weighting matrix and

variance depending on mutually mean independent shocks. More generally, the approach pro-

posed in this study does not rely on a specific set of moment conditions. Instead, I argue that

the same statistical properties used to derive the moment conditions should be used to estimate

the asymptotically optimal weighting matrix and the asymptotic variance of the estimator.

The remainder of this article is organized as follows. Section 2 summarizes the SVAR model and

2Note that also the (pseudo) maximum-likelihood estimators proposed by Lanne et al. (2017) and Gouriéroux
et al. (2017) or the Bayesian approaches proposed by Lanne and Luoto (2020) and Anttonen et al. (2021) assume
independent shocks to ensure identification.

3Additionally, Lanne et al. (2021) show that the second-order moment conditions together with n(n − 1)/2
symmetric cokurtosis conditions can be sufficient to ensure global identification. However, the result only holds if
the structural shocks satisfy all cokurtosis moment conditions implied by independent shocks.
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the main assumptions. Section 3 defines the GMM estimator for SVAR models based on higher-

order moment conditions. Section 4 proposes novel estimators for the long-run covariance matrix

and the asymptotic variance by exploiting mutually independent shocks. Section 5 demonstrates

the advantages of the proposed estimators over traditional estimators in a Monte Carlo simulation.

Section 6 concludes.

2 SVAR models

This section briefly explains the identification problem and common identification approaches

of SVAR models. A detailed overview can be found in Kilian and Lütkepohl (2017). Consider

the SVAR yt =
∑P

p=1Apyt−p + ut with an n-dimensional vector of observable variables yt =

[y1,t, ..., yn,t]
′, the reduced form shocks ut = [u1,t, ..., un,t]

′, and

ut = B0εt (1)

describing the impact of an n-dimensional vector of unknown structural shocks εt = [ε1,t, ..., εn,t]
′.

The matrix B0 ∈ Rn×n governs the simultaneous interaction and is assumed to be invertible.

Assumption 1. B0 ∈ B := {B ∈ Rn×n|det(B) 6= 0}.

The reduced form shocks can be estimated consistently, and for the sake of simplicity, I focus

on the simultaneous interaction in Equation (1) and treat the reduced form shocks as observable

random variables. The identically distributed structural shocks satisfy the following assumptions.

Assumption 2. εt is serially independent (εt is independent of εt̃ for t 6= t̃)

Assumption 3. εt has mutually uncorrelated components (εi,t is uncorrelated with εj,t for i 6= j).

Assumption 4. Each component of εt has zero mean, unit variance, and finite third- and fourth-

order moments.
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Based on the assumptions used so far, neither the matrix B0 nor the structural shocks εt are iden-

tified. Several identifying assumptions have been proposed in the literature ranging from short-

or long-run restrictions on the interaction of the variables (see, e.g., Sims (1980), or Blanchard

(1989)), over Proxy-SVAR models (see, e.g., Mertens and Ravn (2014)) up to sign restrictions

(see, e.g., Uhlig (2005) or Peersman (2005)). A novel branch of the SVAR identification literature

uses non-Gaussian and independent shocks to identify the SVAR, see, e.g., Lanne et al. (2017),

Gouriéroux et al. (2017), Herwartz (2018), Lanne and Luoto (2021), Keweloh (2021), or Guay

(2021)). These data driven identification schemes do not require to impose any short- or long-run

restrictions on the interaction of the variables, instead, identification is based on statistical prop-

erties of the shocks. The most commonly used statistical property is the assumption of mutually

independent structural shocks.

Assumption 5. εt has mutually independent components (εi,t is independent of εj,t for i 6= j).

The independence assumption can be used to derive moment conditions, see, e.g., Keweloh (2021)

or Guay (2021). However, the assumption of mutually independent shocks has been criticized by

several authors for being too restrictive, see, e.g., Kilian and Lütkepohl (2017, Chapter 14), Lewis

(2021), or Lanne and Luoto (2021). In particular, it appears plausible that multiple macroeco-

nomic shocks are driven by the same volatility process, which is not possible with mutually

independent shocks. The independence assumption can be relaxed to the weaker assumption of

mutually mean independent shocks.

Assumption 6. εt has mutually mean independent components (E [εi,t|ε−i,t] = 0 for i = 1, ..., n).

If the shocks are mutually mean independent, no shock contains any information on the mean of

another shock, however, shocks can contain information on the variance of other shocks and thus,

the assumption may be more plausible in some applications. Note that mutually mean indepen-

dent structural shocks are sufficient to derive the identifying coskewness conditions proposed in

Keweloh (2021) and the identifying asymmetric cokurtosis conditions used in Lanne and Luoto

(2021). For the sake of simplicity, this study focuses on mutually independent shocks. Results
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under the weaker assumption of mutually mean independent shocks can be obtained analogously

and are briefly sketched.

The assumption of mutually (mean) independent shocks can be used to generate higher-order

moment condition, however, these conditions are only informative if the structural shocks are

non-Gaussian. Therefore, identification requires non-Gaussian shocks embedded in the following

assumption.

Assumption 7. At most one component of εt is Gaussian.

Note that depending on the particular identification approach a slight modification of Assumption

7 is required. For example, the GMM estimators proposed by Lanne and Luoto (2021), Keweloh

(2021) or Guay (2021) require that the third- and/or fourth-order moments of at most one

structural shock is equal to the corresponding moment of a Gaussian shock.

3 SVAR GMM with higher-order moment conditions

This section briefly summarizes the SVAR estimators based on higher-order moment conditions

derived from mutually independent structural shocks. A detailed description can be found in

Lanne and Luoto (2021), Keweloh (2021), or Guay (2021).

The reduced form shocks are equal to an unknown mixture of the unknown structural shocks,

ut = Bεt. Reversing this relationship yields the unmixed innovations e(B)t, defined as the

innovations obtained by unmixing the reduced form shocks with some invertible matrix B

e(B)t := B−1ut. (2)

If B is equal to the true mixing matrix B0, the unmixed innovations are equal to the struc-

tural shocks. Assumption 5 and 4 can be used to derive moment conditions. In particular,

the structural shocks are uncorrelated with unit variance and therefore, the unmixing matrix B

should yield uncorrelated unmixed innovations with unit variance, see Table 1. Moreover, inde-
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pendent structural shocks yield coskewness or third-order moment conditions and cokurtosis or

fourth-order moment conditions, see Table 1.

Table 1: Illustration of moment conditions

covariance / second-order conditions coskewness / third-order conditions

E[ε21,t] = 1 =⇒ E[e(B)21,t]
!
= 1

...

E[ε2n,t] = 1 =⇒ E[e(B)2n,t]
!
= 1

E[ε1,tε2,t] = 0 =⇒ E[e(B)1,te(B)2,t]
!
= 0

...

E[ε21,tε2,t] = 0 =⇒ E[e(B)21,te(B)2,t]
!
= 0

E[ε1,tε
2
2,t] = 0 =⇒ E[e(B)1,te(B)22,t]

!
= 0

E[ε1,tε2,tε3,t] = 0 =⇒ E[e(B)1,te(B)2,te(B)3,t]
!
= 0

...

cokurtosis / fourth-order conditions

E[ε31,tε2,t] = 0 =⇒ E[e(B)31,te(B)2,t]
!
= 0

E[ε21,tε
2
2,t] = 1 =⇒ E[e(B)21,te(B)22,t]

!
= 1

E[ε1,tε
3
2,t] = 0 =⇒ E[e(B)1,te(B)32,t]

!
= 0

E[ε21,tε2,tε3,t] = 0 =⇒ E[e(B)21,te(B)2,te(B)3,t]
!
= 0

E[ε1,tε2,tε3,tε4,t] = 0 =⇒ E[e(B)21,te(B)2,te(B)3,te(B)4,t]
!
= 0

...

In general, all variance, covariance, coskewness, and cokurtosis moment conditions derived from

independent structural shocks embedded in Assumption 5 can be written as

E[fm(B, ut)] = 0 with fm(B, ut) :=

n∏
i=1

e(B)mi
i,t −m0, (3)

where fm(B, ut) contains all variance and covariance conditions for m ∈ 2, all coskewness condi-
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tions for m ∈ 3, and all cokurtosis conditions for m ∈ 4 with

2 := {[m0,m1, ....mn] ∈ {{0, 1}, {0, 1, 2}n}|
n∑

i=1

mi = 2 and (4)

m0 =


0, if ∃mi = 1 for mi ∈ m1, ....mn

1, otherwise

},

3 := {[m0,m1, ....mn] ∈ {{0, 1}, {0, 1, 2}n}|
n∑

i=1

mi = 3 and m0 = 0}, (5)

4 := {[m0,m1, ....mn] ∈ {{0, 1}, {0, 1, 2, 3}n}|
n∑

i=1

mi = 4 and (6)

m0 =


0, if ∃mi = 1 for mi ∈ m1, ....mn

1, otherwise

}.

Note that all moment conditions except the symmetric cokurtosis conditions E[ε2i,tε
2
j,t] = 1 for

i 6= j can be derived from Assumption 6 and therefore, only require mutually mean independent

shocks.

Based on all or a subset of the moment conditions presented above, Lanne and Luoto (2021) and

Keweloh (2021) provide different local and global identification results for the following SVAR

GMM estimator

B̂T := arg min
B∈B

gT (B)′WgT (B), (7)

where gT (B) = 1
T

∑T
t=1 f(B, ut), and W is a positive semi-definite weighting matrix. Suppose

that f(B, ut) contains all or a subset of the moment conditions fm(B, ut) with m ∈ 2 ∪ 3 ∪ 4

sucht that the GMM estimator (7) is identified. Consistency and asymptotic normality of the
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estimator follow from standard assumptions

B̂T
p→ B0

√
T (B̂T −B0)

d→ N (0,MSM ′)
with

M :=
(
G′S−1G

)−1
G′W

G := E
[
∂f(B0,ut)
∂vec(B)′

]
S := lim

T→∞
E [TgT (B0)gT (B0)′] ,

(8)

see Hall et al. (2005). In particular, asymptotic normality requires that the matrix S exists and

is finite. For the SVAR GMM estimator based on second- to fourth-order moment conditions

this holds if εt has finite moments up to order eight. The weighting matrix W ∗ := S−1 leads to

the estimator B̂∗T with the asymptotic variance
√
T (B̂∗T −B0)

d→ N (0, (G′S−1G)−1), which is the

lowest possible asymptotic variance, see Hall et al. (2005). Han and Phillips (2006) proposed the

continuous updating estimator estimator (CUE)

B̂T := arg min
B∈B

gT (B)′Ŵ (B)gT (B), (9)

where Ŵ (B) is a consistent estimator for the asymptotically optimal weighting matrix W ∗.

Han and Phillips (2006) and Newey and Windmeijer (2009) show that for i.i.d. observations and

a nonrandom weighting matrix W the expected value of a GMM objective function is equal to

E [gT (B)′WgT (B)] =E

∑
t 6=t̃

f(B, ut)
′Wf(B, ut̃)

+ E

[∑
t

f(B, ut)
′Wf(B, ut)

]
(10)

=(1− T−1)E[f(B, ut)]
′WE[f(B, ut)] + trace(WS(B))/T, (11)

where the second equality uses the nonrandom weighting matrix W and S(B) :=

E[f(B, ut)f(B, ut)
′]. The first term in Equation (11) is called signal term and is minimized

at B0 since E [f(B0, ut)] = 0. The second term in Equation (11) is called noise term and is

not minimized at B0. The impact of the noise term vanishes with T → ∞. Nevertheless, in a

finite sample the noise term can dominate the signal term and lead to a bias, especially in large

SVAR models with many moment conditions. If the weighting matrix W (B) is equal to S(B)−1,
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the noise term in Equation (11) collapses to m/T , where m is equal to the number of moment

conditions. Therefore, the noise term no longer depends on B and hence leads to no bias. The

CUE is a feasible version of this approach and replaces W (B) = S(B)−1 with some estimator

Ŵ (B) = Ŝ(B)−1.

4 Estimating S and G

In practice, S and G are unknown and need to be estimated for inference and asymptotically

optimal weighting. These matrices can be difficult to estimate in small samples. In a GMM setup

not related to SVAR models Burnside and Eichenbaum (1996) propose to impose restrictions

of the underlying economic model on the estimator for S and G. They show that exploiting

additional information on S and G can largely improve the rejection rates of Wald tests in

small samples. This section shows how the structure of the SVAR can be used to improve the

estimation of S and G. In particular, I propose to exploit the assumption of serially and mutually

independent structural shocks. In the SVAR with second- to fourth-order moment conditions,

estimation of the long-run covariance matrix S is particularly difficult, since it requires to estimate

moments up to order eight. Bonhomme and Robin (2009), Keweloh (2021), and Guay (2021)

recognize that the presence of these higher-order moments makes it difficult to estimate the

asymptotically optimal weighting matrix and the asymptotic variance of the estimator. I show

that exploiting the assumption of serially and mutually independent shocks largely simplifies

the estimation of the long-run covariance matrix S and yields more precise estimates of the

asymptotically optimal weighting matrix and the asymptotic variance. Additionally, for the first

step GMM estimator, I propose an approximation of the asymptotically optimal weighting matrix

based on the assumption of mutually independent shocks not requiring any prior estimates of B0.

In the SVAR, the long-run covariance matrix of two arbitrary moment conditions fm(B, ut) =∏n
i=1 e(B)mi

i,t −m0 and fm̃(B, ut) =
∏n

i=1 e(B)m̃i
i,t − m̃0 with m, m̃ ∈ 2∪3∪4 at B = B0 is equal
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to

Sm,m̃ := lim
T→∞

E

[
T

(
1

T

T∑
t=1

fm(B0, ut)

)(
1

T

T∑
t=1

fm̃(B0, ut)

)]
(12)

= lim
T→∞

E

[
T

(
1

T

T∑
t=1

n∏
i=1

e(B0)mi
i,t −m0

)(
1

T

T∑
t=1

n∏
i=1

e(B0)m̃i
i,t − m̃0

)]
(13)

=E

[
n∏

i=1

εmi+m̃i
i,t

]
−m0E

[
n∏

i=1

εm̃i
i,t

]
− m̃0E

[
n∏

i=1

εmi
i,t

]
+m0m̃0 (14)

+

∞∑
j=1

E

[
n∏

i=1

εmi
i,t ε

m̃i
i,t−j

]
−m0E

[
n∏

i=1

εm̃i
i,t−j

]
− m̃0E

[
n∏

i=1

εmi
i,t

]
+m0m̃0

+

∞∑
j=1

E

[
n∏

i=1

εmi
i,t−jε

m̃i
i,t

]
−m0E

[
n∏

i=1

εm̃i
i,t

]
− m̃0E

[
n∏

i=1

εmi
i,t−j

]
+m0m̃0,

where the last equality follows from identically distributed shocks and e(B0)t = εt. Therefore,

with fourth order moments m, m̃ ∈ 4 such that
∑n

i=1mi =
∑n

i=1 m̃i = 4, the long-run covariance

matrix Sm,m̃ contains co-moments of the structural shocks up to order eight. In practice, Sm,m̃

in Equation (14) can be estimated by replacing εt with e(B)t and some initial estimate or guess

B of B0 and a heteroscedasticity and autocorrelation consistent covariance (HAC) estimator, see

Newey and West (1994).

However, with serially independent structural shocks implied by Assumption 2 the expression of

Sm,m̃ simplifies to4

SSI
m,m̃ = E

[
n∏

i=1

εmi+m̃i
i,t

]
−m0E

[
n∏

i=1

εm̃i
i,t

]
− m̃0E

[
n∏

i=1

εmi
i,t

]
+m0m̃0, (18)

4To see this note that for j > 1

E

[
n∏
i=1

ε
mi
i,t ε

m̃i
i,t−j

]
−m0E

[
n∏
i=1

ε
m̃i
i,t−j

]
− m̃0E

[
n∏
i=1

ε
mi
i,t−j

]
+m0m̃0 (15)

= E

[
n∏
i=1

ε
mi
i,t

]
E

[
n∏
i=1

ε
m̃i
i,t−j

]
−m0E

[
n∏
i=1

ε
m̃i
i,t−j

]
− m̃0E

[
n∏
i=1

ε
mi
i,t−j

]
+m0m̃0 (16)

= E

[
n∏
i=1

ε
mi
i,t −m0

]
E

[
n∏
i=1

ε
m̃i
i,t−j − m̃0

]
= 0, (17)

where the first equality follows from serially independent shocks.

11



where the superscript SI indicates that the equality Sm,m̃ = SSI
m,m̃ only holds for serially inde-

pendent shocks. Let SSI denote S under the assumption of serially independent shocks. Based

on Equation (18), the long-run covariance under serially independent shocks can be estimated by

ŜSI
m,m̃(B) :=

1

T

T∑
t=1

[
n∏

i=1

e(B)mi+m̃i
i,t

]
−m0

1

T

T∑
t=1

[
n∏

i=1

e(B)m̃i
i,t

]
− m̃0

1

T

T∑
t=1

[
n∏

i=1

e(B)mi
i,t

]
+m0m̃0,

(19)

where B is an initial guess or a consistent estimator for B0. Let ŜSI(B) denote the esti-

mator where each element of the long-run covariance matrix is estimated by Equation (18).

Note that serially independent shocks imply that SSI = E [f(B0, ut)f(B0, ut)
′] and ŜSI(B) =

1
T

∑T
t=1 f(B, ut)f(B, ut)

′, which corresponds to the estimator for S under the frequently used

assumption of serially uncorrelated moment conditions.

With serially independent structural shocks the expression of the long-run covariance matrix

S simplifies to the covariance matrix SSI . Nevertheless, the covariance matrix SSI
m,m̃ of two

fourth-order moments m, m̃ ∈ 4 is still of order eight and remains difficult to estimate in small

samples. Analogously, one can now exploit that the shocks are mutually independent to further

simplify the estimation of S. Note that many non-Gaussian identification approaches rely on the

assumption of mutual independent shocks to ensure identification, see, e.g., Lanne et al. (2017),

Gouriéroux et al. (2017), or Keweloh (2021). In this case, the researcher already relies on the

assumption of mutual independent shocks and may thus as well use it to simplify the estimation

of S.

With serially and mutually independent shocks implied by Assumption 2 and 5 the expression of

Sm,m̃ simplifies to

SSMI
m,m̃ =

n∏
i=1

E
[
εmi+m̃i
i,t

]
−m0

n∏
i=1

E
[
εm̃i
i,t

]
− m̃0

n∏
i=1

E
[
εmi
i,t

]
+m0m̃0, (20)

where the superscript SMI indicates that the equality Sm,m̃ = SSMI
m,m̃ only holds for serially and

12



mutually independent shocks. Let SSMI denote S under the assumption of serially and mutually

independent shocks. Based on Equation (20), the long-run covariance under serially and mutually

independent shocks can be estimated by

ŜSMI
m,m̃ (B) :=

n∏
i=1

1

T

T∑
t=1

[
e(B)mi+m̃i

i,t

]
−m0

n∏
i=1

1

T

T∑
t=1

[
e(B)m̃i

i,t

]
− m̃0

n∏
i=1

1

T

T∑
t=1

[
e(B)mi

i,t

]
+m0m̃0,

(21)

where B is an initial guess or a consistent estimator for B0. 5 Let ŜSMI(B) denote the estimator

where each element of the long-run covariance matrix is estimated by Equation (21).

Exploiting mutually independent shocks allows to transform higher-order co-moments into a prod-

uct of lower-order moments. For example, consider the two moment conditions E[ε31,tε2,t] = 0 and

E[ε33,tε4,t] = 0, such that the covariance of both moment conditions is equal to E[ε31,tε2,tε
3
3,tε4,t],

a co-moment of order eight. However, with mutually independent shocks the covariance is equal

to E[ε31,t]E[ε2,t]E[ε33,t]E[ε4,t], a product of moments of order one and three. In general, the co-

variance matrix under serially independent shocks SSI requires to calculate co-moments of εt of

order four to eight and the covariance matrix under serially and mutually independent shocks

SSMI requires to estimate moments of εt of order one to six. Table 2 shows the number of

co-moments of εt contained in SSI and SSMI of a SVAR GMM estimator using all second- to

5Consistency of ŜSMI
m,m̃ (B̂T )

p→ SSMI
m,m̃ for B̂T

p→ B0 follow as usual from continuity of e(B)i,t, consistency of

B̂T which implies

P
(
|E
[
e(B̂T )si,t

]
− E

[
εsi,t
]
| > γ/2

)
→ 0 (22)

and uniform convergence of 1
T

∑T
t=1 e(B)si,t, such that SIp

B∈
| 1
T

∑T
t=1 e(B)si,t − E

[
e(B)si,t

]
| p→ 0 which implies

P

(
|
1

T

T∑
t=1

e(B̂T )si,t − E
[
e(B̂T )si,t

]
| > γ/2

)
→ 0 (23)

and therefore

P

(
|
1

T

T∑
t=1

e(B̂T )si,t − E
[
εsi,t
]
| > γ

)
→ 0. (24)

Therefore, if the structural shocks are serially and mutually independent, it holds that SSMI
m,m̃ = Sm,m̃ and hence

ŜSMI
m,m̃ (B̂T ) is also a consistent estimator for Sm,m̃.

13



fourth- order moment conditions. The number of higher-order co-moments increases quickly with

the dimension of εt. For example, in an SVAR with n = 2 variables SSI requires to estimate nine

co-moments of order eight, however, in an SVAR with n = 4 this number grows to 156, and with

n = 6 variables SSI require to estimate 1287 co-moments of order eight. In contrast to that,

the number of higher-order moments in SSMI grows linearly in n. Therefore, using mutually

independent shocks to estimate S appears particularly beneficial in larger SVARs.

Table 2: Number of moments

n = 2 n = 3 n = 4 n = 5 n = 6

Number of
GMM moment
conditions:

second-order 3 6 10 10 15
third-order 2 7 16 30 50
fourth-order 3 12 31 65 120
S dimension 8× 8 25× 25 57× 57 105× 105 185× 185

Number of
co-moments in
SSI :

fourth-order 5 15 35 70 126
fifth-order 6 21 56 126 252
sixth-order 7 28 84 210 462

seventh-order 8 36 120 330 792
eighth-order 9 45 156 495 1287

Number of
moments in
SSMI :

first-order 2 3 4 5 6
second-order 2 3 4 5 6
third-order 2 3 4 5 6
fourth-order 2 3 4 5 6
fifths-order 2 3 4 5 6
sixth-order 2 3 4 5 6

The table shows the number of GMM moment conditions implied by mutually independent shocks and the number
of co-moments of εt contained in SSI and SSMI in a SVAR with two, three, and four variables.

In this study, I simultaneously use the assumption of serially and mutually independent shocks

to estimate S. However, one could also directly exploit mutually independent shocks to simplify

Sm,m̃ in Equation (14) without assuming serially independent shocks. Moreover, the weaker

assumption of mutually mean independent shocks can also be used to simplify the estimation of

S. In particular, with serially independent and mutually mean independent shocks implied by

14



Assumption 2 and 6 the expression of Sm,m̃ simplifies to

SSMMI
m,m̃ = E

 n∏
i=1

mi+m̃i 6=1

εmi+m̃i
i,t

 n∏
i=1

mi+m̃i=1

E
[
εmi+m̃i
i,t

]
−m0E

 n∏
i=1
m̃i 6=1

εm̃i
i,t

 n∏
i=1
m̃i=1

E
[
εm̃i
i,t

]
(25)

−m̃0E

 n∏
i=1
mi 6=1

εmi
i,t

 n∏
i=1
mi=1

E
[
εmi
i,t

]
+m0m̃0,

where the superscript SMMI indicates that the equality Sm,m̃ = SSMMI
m,m̃ only holds for serially

independent and mutually mean independent shocks. For the sake of simplicity, the remainder

of the paper focuses on the assumption of mutually independent shocks.

The assumption of mutually independent structural shocks can also be used to estimate G re-

quired to estimate the asymptotic variance of the CUE or GMM estimator. For an arbitrary

moment condition fm(B, ut) =
∏n

i=1 e(B)mi
i,t −m0 with m ∈ 2∪3∪4 the derivative with respect

to bpq the element at row p and column q of B evaluated at B = B0 corresponds to an element

of G and is equal to

Gm,bql := E

[
∂fm(B0, ut)

∂bpq

]
(26)

=

n∑
j=1,j 6=q

−mjajpE

εmj−1
j,t ε

mq+1
q,t

n∏
i=1,i6=j,q

εmi
i,t

−mqaqpE

[
n∏

i=1

εmi
i,t

]
, (27)

with A = B−10 and ajp are the elements of A. The equality follows from e(B0)t = εt, the product

rule, and
∂e(B0)i,t

∂bpq
= −aipεq,t. Again, for mutually independent structural shocks implied by

Assumption 5 if follows

GMI
m,bql

=

n∑
j=1,j 6=q

−mjajpE
[
ε
mj−1
j,t

]
E
[
ε
mq+1
q,t

] n∏
i=1,i6=j,q

E
[
εmi
i,t

]
−mqaqp

n∏
i=1

E
[
εmi
i,t

]
, (28)

where the superscript MI indicates that the equality Gm,bql = GMI
m,bql

only holds for mutually

independent shocks. Let GMI denote G under the assumption of mutually independent shocks

15



and let Ĝ and ĜMI denote the corresponding estimators. Again, mutual independence allows to

calculate higher-order co-moments as a product of lower-order moments. For example, in a SVAR

with n = 4 variables and a GMM estimator including all 4 variance, 6 covariance, 16 coskewness,

and 31 cokurtosis conditions implied by independent shocks with unit variance, the covariance

matrix G is a 57×16 dimensional matrix containing 10 co-moments of order two, 16 co-moments

of order three, and 31 co-moments of order four. In contrast to that, GMI contains four moments

of order one, four moments of order two, four moments of order three, four moments of order

four.

The assumption of serially and mutually independent shocks can also be used to derive a guess for

the optimal weighting matrix W ∗ without requiring an initial guess or estimate of the unknown

simultaneous interaction B0. Instead, the researcher can guess the distribution of each structural

shock εi,t for i = 1, ..., n and if the guess is correct Equation (20) directly yields the true covariance

matrix S, which can be used to calculate the optimal weighting matrix. In practice, I recommend

starting with the assumption of t- or normally distributed shocks to approximate S and hence

W ∗. I find that even if the initially assumed distributions are incorrect, the corresponding one-

step GMM estimator performs similarly in terms of bias and interquartile range to the one-step

GMM estimator using the true asymptotically optimal weighting matrix. This might be related

to the fact that due to the normalization to mean zero and unit variance shocks, the guess of

higher-order moments is irrelevant for many moments. For example the two moment conditions

E[ε31,tε2,t] = 0 and E[ε31,tε3,t] = 0 require to estimate E[ε61,tε2,tε3,t]. However, this co-moment of

order eight is equal to zero for all independent shocks with mean zero and finite second to six

moments.

5 Monte Carlo Simulation

This section compares the impact of the estimates ŜSI , ŜSMI , Ĝ, and ĜMI on the finite sample

performance of CUE and GMM estimators. I simulate a SVAR ut = B0εt with n = 2 and n = 4
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variables with

B0 =

 1 0

0.5 1

 and B0 =



1 0 0 0

0.5 1 0 0

0.5 0.5 1 0

0.5 0.5 0.5 1


. (29)

The structural shocks are drawn from a mixture of Gaussian distributions with mean zero, unit

variance, skewness equal to 0.89 and an excess kurtosis of 2.35. In particular, the shocks satisfy

εi = zφ1 + (1− z)φ2 with φ1 ∼ N (−0.2, 0.7), φ2 ∼ N (0.75, 1.5), z ∼ B(0.79), (30)

where B(p) indicates a Bernoulli distribution and N (µ, σ2) indicates a normal distribution. Sim-

ulations based on t-distributed shocks are shown in the appendix.

Before turning to different CUE and GMM estimators, I analyze the impact of the estimated

asymptotically efficient weighting matrix on the GMM loss. Figure 1 compares the average

and quantiles of the GMM objective function gT (B)′WgT (B) at B = B0 with all second- to

fourth-order moment conditions implied by mutually independent shocks for different weighting

matrices. The red loss serves as a benchmark and uses the true but in practice unknown asymp-

totically efficient weighting matrix, W ∗ = S−1. The blue loss uses the traditional estimator for

the asymptotically efficient weighting matrix relying on serially uncorrelated moment conditions

equivalent to serially independent shocks, ŴSI = ŜSI(B0)−1. The green loss corresponds to the

proposed estimator for the asymptotically efficient weighting matrix using serially and mutually

independent shocks, ŴSMI = ŜSMI(B0)−1. The simulation shows that the standard estimator

for the asymptotically efficient weighting matrix ŴSI is ill suited to approximate the asymptot-

ically efficient weighting matrix. In the small SVAR with n = 2 and the smallest sample size

T = 100, the average GMM loss based on ŴSI is approximately seven times larger than the

average GMM loss based on the asymptotically efficient weighting matrix W ∗ and in the large
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Figure 1: GMM loss at B0 for different weighting schemes

Average, 10%, and 90% quantiles of the GMM loss gT (B)′WgT (B) with all second-, third-, and fourth-
order moment conditions implied by mutually independent shocks at B = B0 for W = S−1 in red,
W = ŜSIT (B0)−1 in blue, and W = ŜSMI

T (B0)−1 in green with 5000 simulations and sample sizes T =
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000. The dotted gray line shows the expected value of the GMM ob-
jective function at B0 and W = S−1 which is equal to m/T where m denotes the number of moment conditions,
compare Han and Phillips (2006) and Newey and Windmeijer (2009).
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SVAR with n = 4 the average loss is approximately 132 times larger. In contrast to that, the

weighting scheme proposed in this study, ŴSMI , which exploits the mutual independence of the

structural shocks closely approximates the infeasible asymptotically efficient weighting scheme

with W ∗ = S−1.

In the following, I analyze the impact of the weighting scheme on the following asymptotically

efficient estimators:

• GMM∗: A one-step GMM estimator with the asymptotically efficient weighting matrix

W = S−1.

• GMM: A two-step GMM estimator with W = I in the first step and W = ŜSI(B̂)−1 in the

second step.

• CUE: A continuous updating estimator with W (B) = ŜSI(B)−1.

• GMM-MI: A two-step GMM estimator with W = SSMI−1

Norm in the first step, W = ŜSI(B̂)−1

in the second step and SSMI
Norm denotes the long-run covariance matrix under serially and

mutually independent Gaussian shocks.

• CUE-MI: A continuous updating estimator with W (B) = ŜSMI(B)−1.

The estimator GMM∗ is infeasible since it uses the unknown asymptotically efficient weighting

matrix W = S−1 and it serves as a benchmark. The CUE and GMM estimators only use the

assumption of serially independent shocks or serially uncorrelated moment conditions to estimate

S and therefore, represent the traditional estimation approaches. The CUE-MI and GMM-MI

estimators are the novel estimators proposed in this study and rely on the assumption of serially

and mutually independent shocks to estimate S. All estimators use all second-, third-, and fourth-

order moment conditions implied by mutually independent shocks. In particular, for n = 2 the

estimators use three second-, two third-, and three fourth-order moment conditions and for n = 4

the estimators use 10 second-, 16 third-, and 31 fourth-order moment conditions. Note that all

analyzed estimators have the same asymptotic variance and are asymptotically efficient. The
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appendix contains further results for the one-step GMM estimator using the identity weighting

matrix W = I, the approximation of the asymptotically efficient weighting matrix based on

serially and mutually independent Gaussian shocks W = SSMI−1

Norm , and the white fast weighting

matrix proposed in Keweloh (2021).

Firstly, I analyze the impact of the weighting scheme on the finite sample bias and the interquartile

range. The elements of B are equal on the diagonal, upper- and lower- triangular. Therefore,

I summarizes the results for all elements on the diagonal, upper- and lower- triangular of B.

Figure 2 shows the average of the median absolute bias and Figure 3 shows the average of the

interquartile range (IQR) of the estimated elements on the diagonal, upper- and lower- triangular

matrix B̂. The results for all individual elements of B for T = 100 and T = 1000 are shown in

the appendix. The computation of the average of the median absolute bias and the average of the

interquartile range of the diagonal, upper-, lower-triangular elements is shown in the description

of the corresponding figure.

In small samples, all estimators are biased and the bias increases with the dimension of the SVAR.

The elements on the diagonal show the largest bias and the elements in the upper triangular have

the smallest bias. This pattern can be explained by a bias due to scaling, meaning that for small

T the GMM loss E [gT (B)′WgT (B)] is not minimized at B = B0 but at B = DB0 where

D = diag(d1, ..., dn) is a scaling matrix.6 Moreover, Figure 2 shows that the CUE estimator has

the largest bias. In contrast to that, the CUE-MI estimator performs notably better. In fact, in

6For example with W = I the noise term in Equation 11 is equal to

1

T
E
[
f(B0, ut)

′Wf(B0, ut)
]

=
1

T
E
[
f(B0, ut)

′f(B0, ut)
]
, (31)

which is the sum of the variances of the variance, covariance, and coskewness conditions. The variance of any
moment condition m of the type

∏n
i=1 e(B)

mi
i,t at B0 is equal to

E

[
n∏
i=1

e(B0)
2mi
i,t )

]
= E

[
n∏
i=1

ε
2mi
i,t

]
. (32)

Let S = diag(d1, ..., dn) be a scaling matrix and note that De(B0) = DB0u = e(DB0), such that

E

[
n∏
i=1

e
2mi
i,t (SB0)

]
= E

[
n∏
i=1

ε
2mi
i,t

d
2mi
i

]
=

1

d2m1
1 ...d2mn

n

E

[
n∏
i=1

ε
2mi
i,t

]
. (33)

It is easy to see that at B0 an increase in the scaling parameter di, which corresponds to a decrease of the sample
variance of the i-th estimated structural shock, decreases the noise term and therefore, leads to a bias.
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Figure 2: Average of the median absolute bias of the elements on the diagonal, upper- and lower-
triangular of B̂

Monte Carlo simulation with M = 5000 iterations and sample sizes T =
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000. The figure shows the average of the median absolute bias of
the elements on the diagonal, upper-, lower- triangular of B̂. Let B̂m be the estimator in one simulation m
and 1 ≤ m ≤ M . Let B̄m := abs(B̂m − B0) be the absolute bias in simulation m. The median absolute bias
over all simulations M is then denoted by bias := med(B̄m), which is a n × n matrix containing the median

absolute bias over all simulations for each element B̂ij . The average of the median absolute bias of the elements

on the diagonal, upper-, lower- triangular of B̂ is then the average of all elements on the diagonal, upper-, lower-
triangular of bias.
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the large SVAR it has the lowest bias on the diagonal and lower triangular of all estimators for

sample sizes with more than 100 observations. This behavior can be explained by Figure 1, which

suuggests that in small samples, the estimator ŜSI(B0) poorly approximates S while ŜSMI(B0)

yields a much better approximation. Additionally, the derivation of the signal term in Equation

(11) requires a nonrandom weighting matrix W , which is not satisfied by the CUE estimator.

For a CUE estimator, the signal term can only be written as E
[∑

t6=t̃ f(B, ut)
′Ŝ(B)−1f(B, ut̃)

]
,

which is not necessarily minimized at B0. Therefore, the CUE can be biased since it searches for

solutions which minimize the GMM loss by manipulating the weights W (B) = Ŝ(B)−1.

Figure 3 shows that the average IQR of the estimated elements increases with the dimension of

the SVAR. Again, the GMM-MI and CUE-MI estimators perform better than the GMM and

CUE estimator. In particular, for n = 4 and T = 100 the average IQR of the GMM estimator is

two to three times larger than the average IQR of the CUE-MI estimator.

Secondly, I analyze the impact of the weighting scheme and the estimation of the asymptotic

variance on the rejection frequencies for different tests. Figure 4 shows the rejection frequencies

at the 10% nominal level for a J-Test, the Wald test with H0 : Bi,j = 0 for j > i testing the

null hypothesis of a recursive SVAR, and a Wald test with the null hypothesis H0 : B1,n = 0

for n = 2 and n = 4. The Wald tests require an estimate of the asymptotic variance. The

estimators GMM∗, GMM, and CUE use the standard estimators ŜSI
T (B̂) and Ĝ(B̂) and the esti-

mators GMM∗-MI, GMM-MI, and CUE-MI use the proposed estimators ŜSMI
T (B̂) and ĜMI(B̂)

to estimate the asymptotic variance. The GMM∗-MI estimator is equal to the GMM∗ estimator

using the true asymptotically optimal weighting matrix W = S−1. The tests for GMM∗ and

GMM∗-MI only differ in the way the asymptotic variance is estimated. Figure 4 shows that the

distortion of the tests increases with an increase of the dimension of the SVAR, a decrease of

the sample size, and an increase of the number of hypothesis being jointly tested. The GMM

and CUE estimators have the largest distortions and they decrease only slowly with an increase

of the sample size. For example, even in the largest sample with T = 1000 observations the

CUE and GMM estimator reject the null hypothesis of a recursive SVAR in roughly 80% of
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Figure 3: Average of the interquartile range of the elements on the diagonal, upper- and lower-
triangular of B̂

Monte Carlo simulation with M = 5000 iterations and sample sizes T =
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000. The figure shows the average of the interquartile range
(IQR) of the elements on the diagonal, upper-, lower- triangular of B̂. Let B̂m be the estimator in one
simulation m and 1 ≤ m ≤ M . The interquartile range over all simulations M is then denoted by
iqr := quartile(B̂m, 0.75)− quartile(B̂m, 0.25), which is a n×n matrix containing the interquartile range over all

simulations for each element B̂ij . The average of the interquartile range of the elements on the diagonal, upper-,

lower- triangular of B̂ is then the average of all elements on the diagonal, upper-, lower- triangular of iqr.
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Figure 4: Rejection rate at α = 10% for J-Test, recursive SVAR Wald test, and Wald test with
H0 : B1,n = 0 for n = 2 and n = 4

Monte Carlo simulation with M = 5000 iterations and sample sizes T =
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000.
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all cases. The rejection rates of GMM-MI and CUE-MI estimators are also distorted in small

samples, however, the distortion is much smaller and decreases more quickly with an increase of

the sample size. GMM∗ and GMM∗-MI both use the same estimator, the tests only differ due to

the estimated asymptotic variance. The smaller distortions of the GMM∗-MI tests compared to

the GMM∗ tests can solely be attributed to the impact of exploiting the assumption of mutually

independent shocks to estimate the asymptotic variance.

6 Conclusion

This paper argues that the assumption of mutually independent shocks should be used to estimate

the asymptotically efficient weighting matrix and the asymptotic variance of SVAR CUE and

GMM estimators based on higher-order moment conditions. Without exploiting the assumption

of mutually independent shocks, estimating the covariance of fourth-order moment conditions

requires to estimate co-moments of order eight. This leads to biased and volatile estimates and

oversize Wald test statistics in finite samples. With mutually independent shocks, the covariance

of the higher-order moment conditions can be estimated as the product of moments up to order

six. A Monte Carlo simulation demonstrates that the propose approach improves the finite sample

performance of the CUE and GMM estimators, especially in larger SVAR models.
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A Appendix

A.1 Simulation with mixture of Gaussian distributions

This section supplements the Monte Carlo simulation shown in Section 5. Table 3 and 4 show

the median (med), 0.25 quantile (q25), 0.75 quantile (q75), the 0.25 confidence level (c25), and

the 0.75 confidence level (c75).

Table 3: Finite sample performance n = 2

T = 100 T = 1000

GMM∗


1.0

0.93 1.09
0.93 1.07

−0.01
−0.13 0.12
−0.11 0.11

0.52
0.39 0.64
0.39 0.61

1.02
0.92 1.1
0.92 1.08




1.01
0.99 1.03
0.98 1.02

0.0
−0.04 0.04
−0.03 0.03

0.51
0.47 0.54
0.47 0.53

1.01
0.98 1.04
0.97 1.03



GMM


0.97

0.88 1.06
0.93 1.07

0.0
−0.17 0.17
−0.11 0.11

0.48
0.31 0.65
0.39 0.61

0.98
0.86 1.09
0.92 1.08




1.0
0.97 1.02
0.98 1.02

−0.0
−0.04 0.04
−0.03 0.03

0.5
0.46 0.54
0.47 0.53

1.0
0.97 1.03
0.97 1.03



CUE


0.84

0.75 0.94
0.93 1.07

−0.01
−0.2 0.2
−0.11 0.11

0.46
0.26 0.65
0.39 0.61

0.88
0.76 0.97
0.92 1.08




0.99
0.96 1.01
0.98 1.02

0.0
−0.04 0.04
−0.03 0.03

0.49
0.46 0.53
0.47 0.53

0.99
0.96 1.01
0.97 1.03



GMM −MI


1.01

0.93 1.1
0.93 1.07

−0.0
−0.13 0.12
−0.11 0.11

0.52
0.39 0.64
0.39 0.61

1.02
0.93 1.11
0.92 1.08




1.01
0.99 1.03
0.98 1.02

0.0
−0.03 0.04
−0.03 0.03

0.51
0.47 0.54
0.47 0.53

1.01
0.98 1.04
0.97 1.03



CUE −MI


0.97

0.89 1.04
0.93 1.07

−0.0
−0.12 0.11
−0.11 0.11

0.5
0.38 0.61
0.39 0.61

0.98
0.89 1.06
0.92 1.08




1.0
0.98 1.03
0.98 1.02

0.0
−0.03 0.04
−0.03 0.03

0.5
0.47 0.54
0.47 0.53

1.0
0.98 1.03
0.97 1.03


Monte Carlo simulation with 5000 iterations and sample sizes. Median (med), 0.25 quantile (q25), 0.75 quantile
(q75), the 0.25 confidence level (c25), and the 0.75 confidence level (c75), where the confidence levels are calculated
according to Bi,j ± z∗

σi,j√
T

with z∗ = 0.67 and σi,j is the square root of the variance of the element i, j according

to
√
T (B̂T −B0)

d→ N (0,MSM ′). For each element the data is shown as med
q25 q75
c25 c75

.
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Table 4: Finite sample performance n = 4

T = 100 T = 1000

GMM∗



1.04
0.95 1.14
0.93 1.07

0.0
−0.12 0.14
−0.11 0.11

−0.0
−0.13 0.13
−0.11 0.11

−0.02
−0.14 0.13
−0.11 0.11

0.53
0.39 0.66
0.39 0.61

1.05
0.93 1.16
0.92 1.08

−0.01
−0.16 0.15
−0.12 0.12

−0.02
−0.17 0.15
−0.12 0.12

0.54
0.37 0.68
0.38 0.62

0.53
0.37 0.69
0.38 0.62

1.05
0.92 1.18
0.9 1.1

−0.02
−0.19 0.16
−0.14 0.14

0.54
0.35 0.71
0.36 0.64

0.54
0.35 0.72
0.36 0.64

0.54
0.35 0.7
0.36 0.64

1.05
0.89 1.19
0.89 1.11





1.02
1.0 1.05
0.98 1.02

−0.0
−0.04 0.04
−0.03 0.03

−0.0
−0.04 0.04
−0.03 0.03

0.0
−0.04 0.04
−0.03 0.03

0.51
0.48 0.55
0.47 0.53

1.03
1.0 1.05
0.97 1.03

0.0
−0.04 0.04
−0.04 0.04

−0.0
−0.04 0.04
−0.04 0.04

0.51
0.47 0.56
0.46 0.54

0.51
0.47 0.55
0.46 0.54

1.02
0.99 1.06
0.97 1.03

−0.0
−0.05 0.05
−0.04 0.04

0.51
0.46 0.56
0.46 0.54

0.51
0.46 0.56
0.46 0.54

0.51
0.46 0.56
0.46 0.54

1.03
0.99 1.07
0.96 1.04



GMM



1.0
0.85 1.19
0.93 1.07

0.13
−0.16 0.44
−0.11 0.11

0.05
−0.24 0.37
−0.11 0.11

0.01
−0.3 0.34
−0.11 0.11

0.46
0.12 0.81
0.39 0.61

1.0
0.83 1.21
0.92 1.08

0.1
−0.2 0.44
−0.12 0.12

0.02
−0.31 0.37
−0.12 0.12

0.47
0.1 0.84
0.38 0.62

0.51
0.13 0.89
0.38 0.62

0.98
0.77 1.21
0.9 1.1

0.05
−0.26 0.39
−0.14 0.14

0.46
0.06 0.85
0.36 0.64

0.5
0.11 0.91
0.36 0.64

0.5
0.08 0.92
0.36 0.64

0.87
0.58 1.13
0.89 1.11





0.96
0.94 0.99
0.98 1.02

−0.0
−0.04 0.04
−0.03 0.03

−0.0
−0.04 0.04
−0.03 0.03

0.0
−0.04 0.04
−0.03 0.03

0.48
0.44 0.52
0.47 0.53

0.96
0.93 1.0
0.97 1.03

−0.0
−0.05 0.05
−0.04 0.04

−0.0
−0.05 0.05
−0.04 0.04

0.48
0.44 0.53
0.46 0.54

0.48
0.43 0.53
0.46 0.54

0.96
0.92 1.0
0.97 1.03

−0.0
−0.06 0.05
−0.04 0.04

0.48
0.43 0.53
0.46 0.54

0.48
0.43 0.54
0.46 0.54

0.48
0.42 0.53
0.46 0.54

0.96
0.92 1.01
0.96 1.04



CUE



0.57
0.5 0.66
0.93 1.07

0.1
−0.08 0.26
−0.11 0.11

0.05
−0.13 0.22
−0.11 0.11

0.01
−0.19 0.21
−0.11 0.11

0.32
0.13 0.5
0.39 0.61

0.6
0.5 0.7

0.92 1.08

0.09
−0.1 0.28
−0.12 0.12

0.02
−0.19 0.22
−0.12 0.12

0.33
0.11 0.53
0.38 0.62

0.35
0.13 0.57
0.38 0.62

0.59
0.45 0.72
0.9 1.1

0.04
−0.17 0.24
−0.14 0.14

0.33
0.09 0.56
0.36 0.64

0.35
0.1 0.6

0.36 0.64

0.33
0.08 0.58
0.36 0.64

0.53
0.33 0.7
0.89 1.11





0.93
0.9 0.95
0.98 1.02

0.0
−0.04 0.04
−0.03 0.03

0.0
−0.04 0.04
−0.03 0.03

−0.0
−0.04 0.04
−0.03 0.03

0.46
0.42 0.51
0.47 0.53

0.93
0.89 0.96
0.97 1.03

−0.0
−0.05 0.05
−0.04 0.04

−0.0
−0.05 0.05
−0.04 0.04

0.46
0.41 0.51
0.46 0.54

0.46
0.41 0.51
0.46 0.54

0.93
0.89 0.97
0.97 1.03

−0.01
−0.06 0.05
−0.04 0.04

0.46
0.4 0.52
0.46 0.54

0.46
0.41 0.52
0.46 0.54

0.46
0.41 0.52
0.46 0.54

0.93
0.88 0.97
0.96 1.04



GMM −MI



1.1
0.98 1.22
0.93 1.07

0.0
−0.14 0.16
−0.11 0.11

−0.0
−0.15 0.15
−0.11 0.11

−0.01
−0.16 0.14
−0.11 0.11

0.56
0.39 0.71
0.39 0.61

1.1
0.96 1.24
0.92 1.08

−0.0
−0.18 0.18
−0.12 0.12

−0.01
−0.19 0.17
−0.12 0.12

0.56
0.38 0.73
0.38 0.62

0.56
0.38 0.74
0.38 0.62

1.1
0.94 1.25
0.9 1.1

−0.02
−0.2 0.19
−0.14 0.14

0.56
0.34 0.77
0.36 0.64

0.56
0.35 0.77
0.36 0.64

0.55
0.34 0.75
0.36 0.64

1.09
0.91 1.25
0.89 1.11





1.03
1.0 1.05
0.98 1.02

−0.0
−0.04 0.04
−0.03 0.03

−0.0
−0.04 0.04
−0.03 0.03

0.0
−0.04 0.04
−0.03 0.03

0.52
0.48 0.55
0.47 0.53

1.03
1.0 1.06
0.97 1.03

0.0
−0.04 0.04
−0.04 0.04

−0.0
−0.04 0.04
−0.04 0.04

0.51
0.47 0.56
0.46 0.54

0.51
0.47 0.55
0.46 0.54

1.03
0.99 1.06
0.97 1.03

−0.0
−0.05 0.05
−0.04 0.04

0.51
0.46 0.56
0.46 0.54

0.51
0.47 0.56
0.46 0.54

0.51
0.47 0.56
0.46 0.54

1.03
0.99 1.07
0.96 1.04



CUE −MI



0.91
0.83 0.99
0.93 1.07

−0.0
−0.11 0.11
−0.11 0.11

−0.01
−0.12 0.11
−0.11 0.11

−0.01
−0.13 0.1
−0.11 0.11

0.46
0.34 0.57
0.39 0.61

0.91
0.82 1.0
0.92 1.08

−0.01
−0.14 0.13
−0.12 0.12

−0.02
−0.15 0.11
−0.12 0.12

0.47
0.33 0.59
0.38 0.62

0.46
0.32 0.59
0.38 0.62

0.92
0.8 1.02
0.9 1.1

−0.03
−0.17 0.12
−0.14 0.14

0.48
0.33 0.62
0.36 0.64

0.47
0.31 0.6
0.36 0.64

0.45
0.31 0.6
0.36 0.64

0.91
0.78 1.02
0.89 1.11





0.99
0.97 1.01
0.98 1.02

−0.0
−0.04 0.04
−0.03 0.03

−0.0
−0.04 0.03
−0.03 0.03

0.0
−0.03 0.04
−0.03 0.03

0.5
0.46 0.53
0.47 0.53

0.99
0.97 1.02
0.97 1.03

0.0
−0.04 0.04
−0.04 0.04

−0.0
−0.04 0.04
−0.04 0.04

0.5
0.46 0.54
0.46 0.54

0.5
0.45 0.54
0.46 0.54

0.99
0.96 1.03
0.97 1.03

−0.0
−0.05 0.04
−0.04 0.04

0.5
0.45 0.54
0.46 0.54

0.5
0.45 0.54
0.46 0.54

0.5
0.45 0.54
0.46 0.54

0.99
0.96 1.03
0.96 1.04


Monte Carlo simulation with 5000 iterations and sample sizes. Median (med), 0.25 quantile (q25), 0.75 quantile
(q75), the 0.25 confidence level (c25), and the 0.75 confidence level (c75), where the confidence levels are calculated
according to Bi,j ± z∗

σi,j√
T

with z∗ = 0.67 and σi,j is the square root of the variance of the element i, j according

to
√
T (B̂T −B0)

d→ N (0,MSM ′). For each element the data is shown as med
q25 q75
c25 c75

.
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Figure 5, 6, and 7 show the average of the median absolute bias, the average of the interquartile

range (IQR) of the estimated elements, and the rejection frequencies for the hypothesis tests.

The Figures contain results for the following estimators:

• GMM∗: A one-step GMM estimator with the asymptotically efficient weighting matrix

W = S−1.

• GMM-I: A one-step GMM estimator with W = I..

• GMM-N-MI: A one-step GMM estimator with W = SSMI−1

Norm , where SSMI
Norm denotes the

long-run covariance matrix under serially and mutually independent Gaussian shocks.

• GMMWF: A one-step GMM estimator with the fast weighting matrix proposed in Keweloh

(2021).

All estimators use all second- to fourth-order moment conditions implied by independent shocks.

The Wald tests require an estimate of the asymptotic variance. The estimators GMM∗ and

GMM-I use the standard estimators ŜSI
T (B̂) and Ĝ(B̂) and the estimators GMM∗-MI, GMM-N-

MI, and GMMWF use the proposed estimators ŜSMI
T (B̂) and ĜMI(B̂) to estimate the asymptotic

variance. The GMM∗-MI estimator is equal to the GMM∗ estimator using the true asymptotically

optimal weighting matrix W = S−1. The tests for GMM∗ and GMM∗-MI only differ in the way

the asymptotic variance is estimated.

30



Figure 5: Average of the median absolute bias of the elements on the diagonal, upper- and lower-

triangular of B̂ - One-step estimators

Monte Carlo simulation with M = 5000 iterations and sample sizes T =
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000. The figure shows the average of the median absolute bias of
the elements on the diagonal/upper-/lower- triangular of B̂. Let B̂m be the estimator in one simulation m

and 1 ≤ m ≤ M . Let B̄m := abs(B̂m − B0) be the absolute bias in simulation m. The median absolute bias
over all simulations M is then denoted by bias := med(B̄m), which is a n × n matrix containing the median

absolute bias over all simulations for each element B̂ij . The average of the median absolute bias of the elements

on the diagonal/upper-/lower- triangular of B̂ is then the average of all elements on the diagonal/upper-/lower-
triangular of bias.
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Figure 6: Average of the interquartile range of the elements on the diagonal, upper- and lower-

triangular of B̂ - One-step estimators

Monte Carlo simulation with M = 5000 iterations and sample sizes T =
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000. The figure shows the average of the interquartile range
(IQR) of the elements on the diagonal/upper-/lower- triangular of B̂. Let B̂m be the estimator in one
simulation m and 1 ≤ m ≤ M . The interquartile range over all simulations M is then denoted by
iqr := quartile(B̂m, 0.75) − quartile(B̂m, 0.25), which is a n × n matrix containing the interquartile range

over all simulations for each element B̂ij . The average of the interquartile range of the elements on the

diagonal/upper-/lower- triangular of B̂ is then the average of all elements on the diagonal/upper-/lower-
triangular of iqr.
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Figure 7: Rejection rate at α = 10% for J-Test, recursive SVAR Wald test, and Wald test with

H0 : B1,n = 0 for n = 2 and n = 4 - One-step estimators

Monte Carlo simulation with M = 5000 iterations and sample sizes T =
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000.

A.2 Simulation with t-distributed shocks

This section shows analogous results to the Monte Carlo simulation in Section 5. However, the

structural shocks are drawn from a t-distribution with seven degrees of freedom. Additionally,

the shocks have been normalized to unit variance by multiplying each shock with 1/
√

(v/(v − 2))

and v = 7.
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Figure 8: Average of the median absolute bias of the elements on the diagonal, upper- and lower-

triangular of B̂ - t distributed shocks

Monte Carlo simulation with M = 5000 iterations and sample sizes T =
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000. The figure shows the average of the median absolute bias of
the elements on the diagonal/upper-/lower- triangular of B̂. Let B̂m be the estimator in one simulation m

and 1 ≤ m ≤ M . Let B̄m := abs(B̂m − B0) be the absolute bias in simulation m. The median absolute bias
over all simulations M is then denoted by bias := med(B̄m), which is a n × n matrix containing the median

absolute bias over all simulations for each element B̂ij . The average of the median absolute bias of the elements

on the diagonal/upper-/lower- triangular of B̂ is then the average of all elements on the diagonal/upper-/lower-
triangular of bias.
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Figure 9: Average of the interquartile range of the elements on the diagonal, upper- and lower-

triangular of B̂ - t distributed shocks

Monte Carlo simulation with M = 5000 iterations and sample sizes T =
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000. The figure shows the average of the interquartile range
(IQR) of the elements on the diagonal/upper-/lower- triangular of B̂. Let B̂m be the estimator in one
simulation m and 1 ≤ m ≤ M . The interquartile range over all simulations M is then denoted by
iqr := quartile(B̂m, 0.75) − quartile(B̂m, 0.25), which is a n × n matrix containing the interquartile range

over all simulations for each element B̂ij . The average of the interquartile range of the elements on the

diagonal/upper-/lower- triangular of B̂ is then the average of all elements on the diagonal/upper-/lower-
triangular of iqr.
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Figure 10: Rejection rate at α = 10% for J-Test, recursive SVAR Wald test, and Wald test with

H0 : B1,n = 0 for n = 2 and n = 4 - t distributed shocks

Monte Carlo simulation with M = 5000 iterations and sample sizes T =
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000.
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