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frequently applied estimator based on the Cholesky decomposition is inefficient. Even though

incorporating information in valid higher-order moments is asymptotically efficient, including

many redundant and potentially even invalid moment conditions renders standard SVAR GMM

estimators unreliable in finite samples. We apply a LASSO-type GMM estimator to select the

relevant and valid higher-order moment conditions, increasing finite sample precision. A Monte

Carlo experiment and an application to quarterly U.S. data illustrate the improved performance
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1 Introduction

Identification of structural vector autoregressions (SVARs) requires to assume an a priori struc-

ture of the model. Traditionally, identification is based on imposing structure on the interaction

of the variables, ideally derived from macroeconomic theory (e.g., short-run restrictions Sims

(1980) or long-run restrictions Blanchard and Quah (1993)). However, theoretical restrictions

are rare and oftentimes debatable. More recently, data-driven approaches allow to identify the

SVAR without imposing any restrictions on the interaction. Instead, identification is achieved

by imposing structure on the stochastic properties of the shocks (e.g., time-varying volatility as

discussed in Rigobon (2003), Lanne et al. (2010), Lütkepohl and Netšunajev (2017), and Lewis

(2021) or non-Gaussian and independent shocks as discussed in Gouriéroux et al. (2017), Lanne

et al. (2017), Lanne and Luoto (2021) Keweloh (2021b), and Guay (2021)).

Guay (2021) and Keweloh et al. (2021) combine the restriction and non-Gaussian identification

approaches. Guay (2021) proposes a test to determine which part of the SVAR is identified

based on non-Gaussianity and solely uses restrictions to identify the remaining part of the SVAR.

Therefore, the identification approach relies as heavily on non-Gaussianity as possible and as little

on restrictions as necessary. In contrast to that, Keweloh et al. (2021) put forward an approach

which relies as heavily on restrictions as possible and as little on non-Gaussianity as necessary. In

particular, their approach imposes a block-recursive order, meaning shocks in a given block only

influence variables in the same block or blocks ordered below. Identification of the shocks within a

certain block is based on higher-order moment conditions derived from mean independent shocks

in the given block. However, the impact of the shocks in one block on variables in another block

is identified based only on second-order moments and only requires uncorrelated shocks between

the blocks. If each block contains exactly one shock such that the SVAR is recursive, the proposed

estimator is equal to the recursive estimator obtained by applying the Cholesky decomposition.

If there is only one block containing all shocks, the proposed estimator is equal to the unrestricted

SVAR GMM estimators based on higher-order moment conditions proposed by Lanne and Luoto

(2021) or Keweloh (2021b).
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If identification is the only concern, relying on restrictions appears unnecessarily restrictive in a

non-Gaussian SVAR with independent shocks. That said, Keweloh et al. (2021) demonstrate that

purely data-driven estimators perform poorly in small samples and that restrictions are required

to achieve decent small sample performance.

We extend the setting of Keweloh et al. (2021) who derive a conservative set of assumptions

on the dependence and Gaussianity of the shocks, ensuring identification for a block-recursive

structure. However, imposing more structure on the dependence of the shocks than required for

identification also yields overidentifying moment conditions.

Our first contribution is to show that these overidentifying conditions can contain relevant condi-

tions which increase the efficiency of the estimator. More precisely, we prove that in the recursive

SVAR some higher-order moment conditions derived from mean independent structural shocks

decrease the asymptotic variance if at least one shock has non-zero skewness or non-zero excess

kurtosis.1 Therefore, in the recursive SVAR with non-Gaussian and mean independent shocks

the frequently used estimator obtained by applying the Cholesky decomposition is inefficient.

Moreover, we show that some higher-order moment conditions are redundant, meaning they do

not decrease the asymptotic variance of the estimator. Redundant moment conditions have no

impact on the asymptotic variance of the estimator, however, including many of them can distort

finite sample performance.

Our second contribution is to use the LASSO-type GMM estimator proposed by Cheng and Liao

(2015a), referred to as the penalized GMM estimator (pGMM), to distinguish between redundant

and relevant as well as valid and invalid overidentifying conditions in a data-driven way. That is,

we apply the pGMM to select only the relevant and valid moment conditions. The pGMM estima-

tor is asymptotically normal and as efficient as the asymptotically efficent block-recursive SVAR

GMM estimator, including all higher-order moment conditions. Our Monte Carlo simulation

illustrates the pGMM estimator’s ability to successfully ignore redundant moments. The finite

1Note that this is not trivial. For example, in a linear regression model yt = β1xt +εt the GMM estimator with
the moment condition E[xtεt] = 0 is identified and efficient under (conditional) homoscedastic errors. Therefore,
including additional higher-order moment conditions like E[x2t εt] = 0 does not decrease the asymptotic variance
of the GMM estimator even if the shocks or variables are non-Gaussian.
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sample performance of the pGMM estimator is good in terms of bias and finite sample variance

in small and large samples, which is not the case for the considered alternatives. For instance, the

Cholesky estimator, which relies only on second-order moment conditions, performs well in small

but not in large samples. The asymptotically efficent recursive SVAR GMM estimator including

all higher-order moment conditions performs well in large but not in small samples. Thus, the

pGMM solves finite sample problems induced by many (potentially redundant) moments.

The remainder of the paper is organized as follows: Section 2 reviews the SVAR and different

identification schemes. Section 3 introduces the block-recursive SVAR, derives identifying and

overidentifying moment conditions, analyzes which of the overidentifying moment are redundant

or relevant in a recursive SVAR, and describes the pGMM estimator. In Section 4, we present

a Monte Carlo experiment that investigates the performance of the pGMM estimator. Section 5

applies the pGMM estimator to analyze the impact of supply, demand, cost-push, stock market

and monetary policy shocks on the U.S. economy. Section 6 concludes.

2 Overview SVAR

This section briefly explains the identification problem and common identification approaches of

SVAR models. A detailed overview can be found in Kilian and Lütkepohl (2017). Consider the

SVAR

yt = A1yt−1 + ...+Apyt−p +B0εt, (1)

with parameter matrices A1, ..., Ap ∈ Rn×n, an invertible matrix B0, an n-dimensional vector

of time series yt = [y1,t, ..., yn,t]
′ and an n-dimensional vector of i.i.d. structural shocks εt =

[ε1,t, ..., εn,t]
′ with mean zero and unit variance.

W.l.o.g., we simplify and omit the lag terms in Equation (1). That is, we focus on the simultaneous
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interaction of the SVAR given by

ut = B0εt, (2)

with the reduced form shocks ut = yt−A1yt−1− ...−Apyt−p, which can be estimated consistently

by OLS. The reduced form shocks are equal to an unknown mixture B0 of the unknown structural

shocks εt. So far, neither the mixing matrix B0 nor the structural shocks εt are identified. To see

this, define the unmixed innovations e(B) as the innovations obtained by unmixing the reduced

form shocks with some matrix B

et(B) := B−1ut. (3)

Note that for B = B0, the unmixed innovations are equal to the structural shocks εt, i.e.,

et(B0) = εt. However, the structural shocks εt and the mixing matrix B0 are unknown and

without imposing further structure, there is no criterion to verify, whether our mixing matrix B

and our unmixed innovations et(B) are equal to the true mixing matrix B0 and the structural

shocks εt.

To identify B0 and the shocks εt, the researcher has to impose structure on the SVAR. The

structure can be specified in two dimensions: We may

(i) impose more structure on the interaction of the shocks (see, Sims (1980) for short-run

restrictions or Blanchard (1989) for long-run restrictions), or

(ii) impose more structure on the stochastic properties of the structural shock (see, Lanne et al.

(2010) for time-varying volatility or Gouriéroux et al. (2017), Lanne et al. (2017), Lanne

and Luoto (2021) Keweloh (2021b), or Guay (2021) for non-Gaussian shocks).

Imposing structure on the stochastic properties of the shocks can be used to derive conditions

for the unmixed innovations, while imposing structure on the interaction narrows the space of

possible mixing matrices used to unmix the reduced form shocks.
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In applied work, the probably most frequently imposed structure are uncorrelated structural

shocks (meaning εi,t is restricted to be uncorrelated with εj,t for i 6= j) and a recursive interaction

(meaning restricting on B0 such that bij = 0 for i < j where bij denotes the element at row i

and column j of B0). Uncorrelated shocks with unit variance can be used to derive (n + 1)n/2

moment conditions from

I = E [εtε
′
t]

!
= E [et(B)et(B)′] , (4)

while a recursive order implies that n(n− 1)/2 parameters of B0 are known a priori, leaving only

(n+ 1)n/2 unknown parameters in the mixing matrix B. It is then straightforward to show that,

if the remaining (n+ 1)n/2 parameters of the restricted B matrix generate unmixed innovations

e(B), which satisfy the (n + 1)n/2 moment conditions in Equation (4), the matrix B has to be

equal to B0 and hence, the unmixed innovations are equal to the structural shocks, meaning the

SVAR is identified.2

However, economic theory rarely allows to derive the required n(n− 1)/2 parameter restrictions

to ensure identification. More recently, identification methods based on non-Gaussian and in-

dependent shocks have been put forward in the literature (see, Gouriéroux et al. (2017), Lanne

et al. (2017), Lanne and Luoto (2021) Keweloh (2021b), or Guay (2021)). These identification

schemes do not require to impose any restrictions on the impact of the shocks, in particular on

the matrix B0. Instead, the researcher has to impose structure on the stochastic properties of the

shocks. If the structural shocks are not only uncorrelated but independent, this property can be

used to derive additional moment conditions. For example, consider the coskewness matrices of

the structural shocks Si = E [εtε
′
tεi,t] for i = 1, . . . , n. Then, independent and mean zero shocks

imply that all entries of Si are zero except for the ith diagonal element, which contains the

(unknown) skewness of the shock εi,t. Hence, the unmixing matrix B has to generate unmixed

2Note that this GMM approach is equivalent to the frequently used estimator based on the Cholesky decom-
position.
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innovations, which satisfy the third-order moment conditions derived from

Si = E [εtε
′
tεi,t]

!
= E [et(B)et(B)′ei,t(B)] , (5)

for i = 1, . . . , n and similarly, B has to generate unmixed innovations, which satisfy the fourth-

order moment conditions derived from

Kij = E [εtε
′
tεi,tεj,t]

!
= E [et(B)et(B)′ei,t(B)ej,t(B)] , (6)

for i, j = 1, . . . , n. If at most one component of εt is unskewed (has an excess kurtosis), second-

and third-order moment conditions (second- and fourth-order moment conditions) identify the

SVAR without any further restrictions up to labeling of the shocks, see, e.g., Keweloh (2021b).

3 Block-recursive SVAR

In this section, we propose a generalization between identification based on recursiveness restric-

tions and identification based on non-Gaussian shocks. The proposed GMM estimator allows

the researcher to impose an arbitrary block-recursive structure and for a given block-recursive

structure we derive a conservative set of assumptions on the independence and non-Gaussianity of

the shocks to ensure identification. In particular, we prove that it is sufficient to assume (mean)

independence of the structural shocks in a given block, while shocks of different blocks only need

to be uncorrelated.

3.1 Imposing structure on the interaction of shocks

Traditionally, identification of the SVAR is based on a structure imposed on the interaction of

the shocks, e.g. short-run or long-run restrictions. These restriction based approaches require a

fixed number of restrictions on the interaction of the shocks to ensure identification. A frequently
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imposed structure on the interaction is a recursive structure, meaning that each structural shock

is restricted to have no simultaneous impact on variables ordered above the shock. The rea-

soning behind a recursive structure is oftentimes the prejudice that some variables, e.g., some

macroeconomic variables like inflation, tend to move slowly, while other variables, e.g. financial

variables like stock prices, react faster. However, in practice this intuitive reasoning oftentimes

allow to order only some, but not all variables recursively. This motivates us to consider the

block-recursive SVAR, meaning that the structural shocks are ordered in blocks of consecutive

shocks and each structural shock can simultaneously affect all variables in the same block and

in blocks ordered below but explicitly not variables in blocks ordered above.3 Figure 1 shows

different block-recursive structures in a SVAR with four variables. The examples show that a

Figure 1: Examples of Different Block-Recursive SVAR Models.

Note: The figure illustrate how the the block structure can be defined by the structural shocks and our definition
of ε̃pi and ũpi , i = 1, . . . ,m.

block-recursive structure generalizes the non-recursive SVAR and the fully-recursive SVAR and

includes both as extreme cases.

3Zha (1999) derives identifying restrictions for the block-recursive SVAR. The author restricts not only the
simultaneous interaction, but also the lagged interaction. Our proposed block-recursive structure affects only the
simultaneous interaction, while the lagged interaction remains unrestricted.
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We now introduce the notation for the block-recursive SVAR. Suppose that the structural shocks

can be ordered into m ≤ n blocks of consecutive shocks. Let the indices p1 = 1 < p2 < . . . <

pm ≤ n denote the beginning of a new block and for pi let ε̃pi,t denote the vector of all structural

form shocks in the ith block. Furthermore, ũpi,t denotes reduced form shocks in block i such that

ε̃pi,t :=
[
εpi,t, εpi+1,t, . . . , εpi+1−1,t

]′
, (7)

ũpi,t :=
[
upi,t, upi+1,t, . . . , upi+1−1,t

]′
, (8)

for i = 1, . . . ,m and pm+1 := n + 1 for ease of notation. Moreover, let li denote the num-

ber of shocks in block i for i = 1, ...,m. The vector of all structural shocks εt can then be

decomposed into the m blocks εt = [ε̃′p1,t, . . . , ε̃
′
pm,t]

′ and the reduced form shocks can be decom-

posed analogously ut = [ũ′p1,t, . . . , ũ
′
pm,t]

′. The SVAR is block-recursive with m ≤ n blocks with

p1 = 1 < p2 < . . . < pm ≤ n, if shocks in the ith block have no simultaneous impact on reduced

form shocks in blocks j with j < i such that for i = 1, . . . ,m

bql = 0, for l ≥ pi and q < pi. (9)

More generally, any block-recursive structure can be described by the following assumption.

Assumption 1. Block-recursive interaction:

For m ≤ n blocks with p1 = 1 < p2 < . . . < pm ≤ n and q, l = 1, ..., n let

B0 ∈ Bbrec := {B ∈ B| bql = 0 if ∃pi ∈ {p1, ..., pm} with l ≥ pi and q < pi}.

3.2 Imposing structure on the stochastic properties of shocks

Imposing structure according to Assumption 1 on the interaction is not sufficient to ensure

identification and further assumptions on the dependence and potential non-Gaussianity of the

shocks are required. Almost all identification approaches at least assume mutually uncorrelated
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structural shocks such that E [εi,tεj,t] = E [εi,t]E [εj,t] for i 6= j.4 Mutually uncorrelated shocks

are justified by the idea that different structural shocks are orthogonal, e.g., a structural monetary

policy shock should not depend on other structural shocks. In general, imposing uncorrelated

structural shocks does not rule out that the structural shocks are dependent. In this case, the

interpretation of the estimated SVAR via impulse response functions can be misleading. For

example consider the two random variables ε1 ∼ N (0, 1) and ε2 = ε2
1 − 1 such that both random

variables are uncorrelated, but dependent. Policy analysis based on impulse response functions

typically uses the ceteris paribus assumption that only a single shock varies, while the other shocks

remain unchanged. In the example above, both shocks are uncorrelated, but nevertheless always

move simultaneously. Therefore, uncorrelated structural shocks are not sufficient to guarantee

that the ceteris paribus assumption holds.

A more rigorous implementation of the idea of orthogonal shocks is to assume mutually indepen-

dent shocks such that E [h(εi,t)g(εj,t)] = E [h(εi,t)]E [g(εj,t)] for i 6= j with bounded, measurable

functions g(·) and h(·). If shocks are independent, a structural shock cannot contain any informa-

tion on any other structural shock. Therefore, independent structural shocks justify the ceteris

paribus interpretation used in policy analysis based on impulse response functions. However,

several authors argue that the assumption of independent structural shocks is too strong (cf.

Kilian and Lütkepohl (2017, Chapter 14), Lanne and Luoto (2021), or Lanne et al. (2021)). In

particular, independence implies that also the volatility processes of the shocks are independent,

which may be too restrictive for some macroeconomic applications. For example suppose that

ε̃1,t and ε̃2,t are drawn independently of each other and represent unscaled structural shocks.

Additionally, in each period an additional volatility shock vt is drawn independently of the other

shocks and the structural shocks are given by ε1,t = ε̃1,tvt and ε2,t = ε̃2,tvt. These structural

shocks are uncorrelated but dependent since the variance of one shock contains information on

the variance of the other shock.

A compromise between the two extreme cases of mutually uncorrelated and mutually indepen-

4Proxy-variable identification approaches are different and instead assume that structural shocks are uncorre-
lated with an external proxy variable.
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dent shocks is the assumption of mutually mean independent shocks, such that E [εi,tg(εj,t)] =

E [εi,t]E [g(εj,t)] for i 6= j with a bounded, measurable function g(·). If shocks are mutually

mean independent, a structural shock cannot contain any information about the mean of other

structural shock. Mutually mean independent shocks can justify the ceteris paribus assumption

used in impulse response analysis and at the same time allow for depended volatility processes.

In particular, the two shocks ε1,t = ε̃1,tvt and ε2,t = ε̃2,tvt defined above are mean independent

since a given shock contains no information on the mean of the other shock.

Imposing structure on the dependence of the structural shocks allows to derive moment con-

ditions, see, e.g. Lanne and Luoto (2021), Keweloh (2021b), or Guay (2021). In particular,

uncorrelated structural shocks with mean zero and unit variance imply n variance and n(n− 1)

covariance conditions

E[e(B)2
i,t] = 1 and E[e(B)i,te(B)j,t] = 0, for i, j = 1, ..., n and i 6= j. (10)

Additionally, mean independent structural shocks implies asymmetric cokurtosis conditions

E[e(B)3
i,te(B)j,t] = 0, for i, j = 1, ..., n and i 6= j. (11)

Moreover, mean independent structural shocks imply additional cokurtosis conditions

E[e(B)2
i,te(B)j,te(B)k,t] = 0, for i, j, k = 1, ..., n and i 6= j 6= k, (12)

E[e(B)i,te(B)j,te(B)k,te(B)l,t] = 0, for i, j, k, l = 1, ..., n and i 6= j 6= k 6= l. (13)

Independent structural shocks would imply further symmetric cokurtosis conditions

E[e(B)2
i,te(B)2

j,t] = 1, for i, j = 1, ..., n and i 6= j. (14)
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Furthermore, all coskewness conditions

E[e(B)2
i,te(B)j,t] = 0, for i, j = 1, ..., n and i 6= j, (15)

E[e(B)i,te(B)j,te(B)k,t] = 0, for i, j, k = 1, ..., n and i 6= j 6= k, (16)

can be derived from mutually mean independent structural shocks.

3.3 Identification and estimation

In this section, we show that identification in a block-recursive SVAR can be achieved by including

all variance-covariance conditions and the asymmetric cokurtosis conditions E[e(B)3
i,te(B)j,t] = 0

of innovations e(B)i,t and e(B)j,t in the same block. Higher-order moment conditions of shocks

in different blocks are not necessary for identification and can be left out of the estimation.

Thereby, identification of the block-recursive SVAR model can be achieved by relying as little on

higher-order moment conditions as possible, avoiding a many moment problem in finite samples.

Let E[f2(B, ut)] = 0 contain all variance-covariance conditions from Equation (10) and let

E[f4pi
(B, ut)] = 0 contains all asymmetric cokurtosis conditions from Equation (11) correspond-

ing to shocks in block k, e.g., E[e(B)3
i,te(B)j,t] = 0 for i, j = pk, ..., pk+1− 1 and i 6= j. We define

the conservative set of moment conditions as

E[fN(B, ut)] := E



f2(B, ut)

f4p1
(B, ut)

...

f4pm
(B, ut)


. (17)

Note that the set E[fN(B, ut)] does not contain asymmetric cokurtosis conditions of shocks in

different blocks, e.g., the condition E[e(B)3
i,te(B)j,t] = 0 for shocks e(B)i,t and e(B)j,t in different

blocks is not contained in E[fN(B, ut)]. Let kN denote the number of conditions in fN(B, ut).

The conditions E[fN(B, ut)] can be justified by the following assumption.
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Assumption 2. Block-recursive mean independence:

For m ≤ n blocks with p1 = 1 < p2 < . . . < pm ≤ n,

(i) all shocks are mutually uncorrelated, i.e., E [εi,tεj,t] = 0 for i 6= j.

(ii) all shocks within the same block are mutually mean independent, i.e., E [εi,t|ε−i,t] = 0 for

i ∈ {pk, pk + 1, ..., pk+1 − 1} and −i = {pk, pk + 1, ..., pk+1 − 1}\i for k = 1, . . . ,m.

The conservative set of moment conditions contains n variance conditions, n(n− 1)/2 covariance

conditions and
∑m
k=1 lk(lk−1)/2 asymmetric cokurtosis conditions, where lk := pk+1−pk denotes

the number of shocks in block k. Therefore, each additional specified block refines the conservative

set fN(B, ut) such that it contains less higher-order moment conditions. In the extreme case,

when the SVAR is specified recursively, meaning each block contains only one variable, the

conservative set of moment conditions contains no higher-order moment conditions. In the other

extreme case of a single block containing all variables, the conservative set of moment conditions

contains all n(n−1) asymmetric cokurtosis conditions and it is similar to the conditions proposed

in Lanne and Luoto (2021).5 Under Assumption 1 and Assumption 2, Keweloh et al. (2021) show

that the conservative set of moment conditions is sufficient to locally identify the block-recursive

SVAR, i.e., E[fN(X,ut)] = 0 is locally identified at X = B0 with X ∈ Bbrec.

Define the block-recursive SVAR GMM estimator which minimizes the variance, covariance and

the asymmetric cokurtosis conditions over the set of block-recursive matrices as

B̂N := arg min
B∈Bbrec

gN(B)′WNgN(B), (18)

with a suitable weighting matrix WN and gN(B) := 1/T
∑T
t=1 fN(B, ut). Consistency, asymp-

5Lanne and Luoto (2021) propose to select n(n − 1)/2 asymmetric cokurtosis conditions, which is sufficient
for local identification if none of the asymmetric conditions does include the third power of a Gaussian shock.
They advocate to rely on a moment selection criterion to avoid including redundant conditions or conditions of
Gaussian shocks. Additionally, Lanne and Luoto (2021) note that including all n(n − 1) asymmetric cokurtosis
conditions ensures local identification even if conditions related to Gaussian shocks are included. We argue that
the degree of overidentification remains reasonably small even if we include all asymmetric cokurtosis conditions
and therefore, including redundant conditions can be expected to be rather harmless. For example, in a SVAR
with four variables and no restrictions the conservative set has 22 conditions to identify 16 parameters. Thus, we
suggest to use all asymmetric cokurtosis conditions in order to avoid the cumbersome process of selecting a subset
of the conditions.
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totic normality and asymptotically optimal weighting of the block-recursive SVAR GMM estima-

tor follow from the identification result of Keweloh et al. (2021) and standard assumptions, see

Hall (2005). That is,

B̂N
p→ B0 (19)

√
T
(

(vec
(
B̂N

)
− vec (B0)

)
d→ N (0, VN) (20)

where the formula of the asymptotic variance, VN, is standard but lengthy and, therefore, deferred

to Appendix A.1. Using the weighting matrix W ∗N := S−1
N with SN := limT→∞E[gN(B)gN(B)′]

leads to the estimator B̂∗N with lowest possible asymptotic variance.

3.4 Efficiency gains and moment selection

In the previous section, we showed that identification of a block-recursive SVAR can be achieved

by the conservative set of moment conditions E[fN(B, ut)], which contains no higher-order mo-

ment conditions except for the asymmetric cokurtosis conditions of shocks in the same block. In

this section, we show that some of the remaining coskewness and cokurtosis conditions implied

by mean independent shocks can contain additional information and decrease the asymptotic

variance of the GMM estimator. Recognizing that the number of coskewness and cokurtosis con-

ditions implied by mean independent shocks increases quickly with the dimension of the SVAR,

which leads to many moment problems, we propose to included these additional higher-order mo-

ment conditions via a LASSO estimator. In particular, we use the pGMM estimator proposed by

Cheng and Liao (2015a) which is able to detect and select only the valid and relevant higher-order

moment conditions in a data-driven way.
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3.4.1 Overidentified block-recursive SVAR GMM estimator

For a given block-recursive SVAR, define the overidentifying higher-order moment conditions as

fD(B, ut) =

 f3(B, ut)

f4\N(B, ut)

 , (21)

where E[f4\N(B, ut)] = 0 denotes the asymmetric cokurtosis conditions from Equation (11) – (12)

not contained in N and E[f3(B, ut)] = 0 all coskweness conditions, i.e., E[e(B)i,te(B)j,te(B)k,t] =

0 for i, j, k = 1, ..., n and j 6= k. Let kD denote the number of conditions in fD(B, ut) and

D̃ := {1, . . . , kD} the indices for all overidentifying moment conditions. Moreover, fDj
(B, ut) for

j ∈ D̃ corresponds to one specific moment of fD(B, ut).

The overidentified block-recursive SVAR GMM estimator is defined as

B̂N+D := arg min
B∈Bbrec

gN(B)

gD(B)


′

WN+D

gN(B)

gD(B)

 , (22)

with a suitable weighting matrix WN+D and gD(B) := 1/T
∑T
t=1 fD(B, ut). In contrast to the

block-recursive SVAR GMM estimator in Equation (18), consistency and asymptotic normality

of the overidentified block-recursive SVAR GMM estimator requires not only the conservative

set of moment conditions E[fD(B, ut)] but also the set of overidentfying moment conditions

E[fD(B, ut)] to be valid, which holds under Assumption 1 and Assumption 2. That is, analogously

to Equation (19) and Equation (19), B̂N+D is a consistent estimator of B0 and asymptotically

normal with asymptotic variance VN+D, which depends on both the set of conservative and

overidentfying moment conditions (details are given in Appendix A.1). Using the weighting

matrix W ∗N+D := S−1
N+D with SN+D := limT→∞E[gN+D(B0)gN+D(B0)′], where gN+D(B0) :=

[gN(B0)′, gD(B0)′]′, leads to the estimator B̂∗N+D with lowest possible asymptotic variance.

It is well known that adding additional valid moment conditions can never increase the asymptotic

variance of the GMM estimator, see, e.g., Breusch et al. (1999). Therefore, if the structural shocks
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are mean independent such that the overidentifying conditions hold, the asymptotic variance of

B̂∗N+D is equal to or smaller than the asymptotic variance of B̂∗N. If including an additional

moment condition decreases the asymptotic variance of the estimator, the moment condition is

called relevant, otherwise the moment condition is called redundant, see Breusch et al. (1999).

A moment condition is called partially relevant for a subset of parameters if it decreases the

asymptotic variance of a subset of parameters. If this is not the case, the moment conditions is

called partially redundant, see Breusch et al. (1999).

In the following proposition, we show that overidentifying moment conditions higher-order mo-

ment conditions in fD(B, ut) can decrease the asymptotic variance of the estimator. To this

end, we consider the special case of a recursive SVAR which is identified solely by second-order

moment conditions and all coskewness and cokurtosis moment conditions are overidentifying.

Proposition 1. Efficiency gains in the recursive SVAR.

In a recursive SVAR with mean independent structural shocks, it holds that:

1. If at least one structural shock has non-zero skewness, the set f3(B, ut) which contains all

coskewness conditions implied by mean independent shocks is relevant w.r.t. f2(B, ut).

2. If at least one structural shock has non-zero excess kurtosis or zero skewness, the set

f4(B, ut) which contains all cokurtosis conditions implied by mean independent shocks is

relevant w.r.t. f2(B, ut).

Proof. The proof is based on the redundancy conditions from Breusch et al. (1999) and available

on request.

The Proposition implies that the recursive SVAR GMM estimator based solely on second-order

moments in Equation (18) has a higher asymptotic variance than the overidentified recursive

SVAR GMM estimator based on second- and higher-order moments in Equation (22) if at least

one structural shock has a non-zero skewness or excess kurtosis. Hence, in a recursive SVAR

with mean independent structural shocks the frequently used estimator obtained by applying the

15



Cholesky decomposition is inefficient if at least one structural shock has non-zero skewness or

excess kurtosis.6

The proof of Proposition 1 involves more detailed statements on the relevance or redundancy

of specific coskewness and cokurtosis conditions in a recursive SVAR. In particular, we proof

that certain coskewness and cokurtosis conditions are always redundant, while the (partial) re-

dundancy of other conditions depends on conditions on the true B0 matrix and skewness and

kurtosis of the structural shocks. In practice, these conditions cannot be verified since the B0

matrix and the skewness or kurtosis of the structural shocks is unknown a priori. Furthermore,

Proposition 1 only covers recursive SVARs, i.e., for more general block-recursive SVARs it is

unclear, which moment conditions are relevant and which are not.

3.4.2 Data-driven moment selection

We apply the pGMM estimator of Cheng and Liao (2015a) to detect and include only the rele-

vant and valid overidentifying moment conditions, without relying on a priori knowledge of the

skewness and excess kurtosis. The overidentified SVAR GMM estimator in Equation (22) is

asymptotically efficient but the number of overidentifying moment conditions increases quickly

with the dimension of the SVAR, which leads to a many moments problem. This distorts the

finite sample performance of the estimator (see, e.g., Cheng and Liao (2015b), Hall (2005), and

Hall (2015)).

By including valid and relevant moment conditions in the estimation, we exploit the asymptotic

efficiency gains of relevant moments in finite samples. By leaving out the remaining moment

conditions, which do not lower the asymptotic variance but increase finite sample variance of

the estimation, we address the many moments problem arising in large SVARs. In general,

the overidentifying higher-order moment conditions fD(B, ut) can be separated into three sets:

fA(B, ut) contains valid and relevant moment conditions, fR(B, ut) contains valid but redundant

6The proposition also holds if we replaced the assumption of mean independence of the structural shocks by
independence.
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conditions, and fI(B, ut) contains invalid moment conditions. The goal is to select the moments

fA(B, ut) and to leave out the moments fR(B, ut) and fI(B, ut). However, in practice the

researcher does not know whether a given moment condition is invalid, redundant, or valid and

relevant. Therefore, we propose to detect and select the relevant and valid overidentifying moment

conditions in a data-driven way. Based on Cheng and Liao (2015a), define the LASSO-type SVAR

GMM estimator

{B̂pGMM
N+D , β̂} := arg min

{B,β}∈Λ

 gN(B)

gD(B)− β


′

WN+D

 gN(B)

gD(B)− β

+ λ
∑
j∈D̃

ωj |βj |, (23)

where λ ≥ 0 is a tuning parameter specified by the researcher, β ∈ RkD is the vector of slackness

parameters, Λ := {Bbrec,R1×kD} is the parameter space of {B, β}, and ω ∈ RkD is a vector of

weights used in the penalty term. The vector of slackness parameters β allows the moment condi-

tions generated by D to deviate from zero without increasing the first part of the loss function and

therefore, to decrease their impact on the estimation. However, each element of β gets penalized

in the second part of the loss function and consequently, giving slack to overidentifying moments

adds a cost, i.e., increases the loss function. The vector of weights ω and the tuning parameter λ

govern the cost of giving slack to moment conditions. In particular, a smaller λ makes it cheaper

to give slack to all overidentifying moments and a smaller ωj makes it less costly to give slack to

a specific overidentifying moment j.

The pGMM estimator in Equation (23) has two special cases. First, if λ = 0, adding slack to

the overidentifying moments is not penalized. Therefore, the solution of the pGMM estimator

is B̂pGMM
N+D = B̂N and β̂ = gD

(
B̂N

)
, where B̂N is the solution of the the conservative block-

recursive SVAR GMM estimator in Equation (18) using only the moments generated by N and the

weighting matrix WN, corresponding to the leading kN×kN-block of the weighting matrix WN+D.

Second, if λ =∞, deviations of β from zero become infinitely costly for overidentifying moments

with ωj > 0. Assuming ω > 0, the pGMM estimator cannot give slack to any overidentifying

moment condition. Thus, B̂pGMM
N+D = B̂N+D and β̂ = 0 minimize the loss function of the pGMM
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estimator, where B̂N+D is the solution of the the overidentified block-recursive SVAR GMM

estimator in Equation (22)) using the weighting matrix WN+D. Other choices of λ than λ = 0

or λ = ∞ lead to solutions which lie between these extreme cases. In practice, we recommend

using cross-validation to find the optimal value of λ.

The penalty term uses weights ωj ≥ 0, ∀j ∈ D̃, to shrink the elements of β differently. That

is, a higher ωj , leads to more shrinkage for βj and consequently, makes it more likely that βj

becomes zero, meaning that the corresponding moment fDj (B, ut) gets selected. Furthermore,

ωj = 0 implies that even if the tuning parameter λ is large, there is no cost for giving slack to

the moment condition fDj
(B, ut), implying that those moments do not influence the estimated

B̂pGMM
N+D . Since we aim to select only the relevant and valid moment conditions fA(B, ut), and not

the invalid or redundant moment conditions fR(B, ut) and fI(B, ut), we would specify ωj > 0 for

all valid and relevant conditions, and ωj = 0 for all invalid or redundant conditions. To achieve

this without prior knowledge on fA(B, ut), fR(B, ut), and fI(B, ut), Cheng and Liao (2015a)

construct ωj allowing information-based adaptive adjustment for each moment in fD(B, ut).

More precisely, they use

ωj =
µr1j
|β∗j

r2 |
, j ∈ D̃, (24)

where µj is a measure for the empirical relevance of the moment condition fDj
(B, ut), relative to

the moment conditions of conservative set fN(B, ut), and β∗j is a preliminary consistent estimator

of E[fDj (B0, ut)] and r1 ≥ r2 ≥ 0 are constants specified by the researcher. The use of 1/|β∗j
r2 |

resembles an adpative LASSO penalty (cf. Zou (2006)) and implies that moments with small β∗j

are subject to more shrinkage. Since β∗j is a consistent estimator and the true value of β∗j for a

valid moment is zero, the adaptive penalty ensures that valid moments get selected. However,

using only the adpative penalty, we would unintendedly incentivize the estimator to select also

redundant moments since, by definition, these are also valid. To avoid selecting redundant
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moments, Cheng and Liao (2015a) suggest to multiply the adaptive penalty with

µj = ρmax

(
V̂N − V̂N+Dj

)
, j ∈ D̃, (25)

where ρmax(A) is the maximum eigenvalue of an arbitrary square matrix A and V̂N and V̂N+Dj

are consistent estimators of the efficient asymptotic variance-covariance matrices V ∗N and V ∗N+Dj
,

defined in Appendix A.1. If the maximum eigenvalue of V ∗N − V ∗N+Dj
is positive, then adding

moment condition fDj (B, ut) to the conditions fN(B, ut) decreases the asymptotic variance of

the estimator and hence, moment condition fDj
(B, ut) is relevant. Therefore, µj estimates the

empirical relevance of the moment generated by Dj .
7

Cheng and Liao (2015a) show that, under conditions, the pGMM estimator consistently selects

the valid and relevant moments, i.e., limT→∞ P (β̂j = 0) = 1 if the moment condition fDj
(B, ut)

is in fA(B, ut), and does not select the invalid or redundant moments, i.e., limT→∞ P (β̂j = 0) = 0

if the moment condition fDj
(B, ut) is in fR(B, ut) or fI(B, ut). They also derive that, under

conditions, the pGMM estimator is a consistent estimator of B0 and asymptotically normal with

asymptotic variance VN+A.8 Even though the pGMM estimator uses the moment conditions

fN(B, ut) and fD(B, ut) for the estimation, its asymptotic variance does only depend on the

moments conditions fD(B, ut) and fA(B, ut). That is, the pGMM estimator successfully ignores

the redundant and invalid moments and decreases the asymptotic variance by incorporating the

information contained in the relevant and valid moments. The weighting matrix W ∗N+D := S−1
N+D

leads to the estimator with the lowest possible asymptotic variance (Hall, 2005), corresponding

to the asymptotic variance of the oracle estimator. The oracle estimator uses only moment

7Cheng and Liao (2015a) show that V ∗N − V ∗N+Dj
is positive semidefinite for every j ∈ D̃, implying that

the maximum eigenvalue of V ∗N − V ∗N+Dj
is nonnegative. Furthermore, note that both V̂N ≡ V̂N

(
B̂N

)
and

V̂N+Dj
≡ V̂N+Dj

(
B̂N

)
are evaluated at B̂N, which is obtained from Equation (18). Thereby, we do not rely on

B̂N+Dj
to estimate V ∗N+Dj

since the moment associated with Dj may be invalid and hence, V̂N+Dj

(
B̂N+Dj

)
inconsistent for V ∗N+Dj

.
8This result is not explicitly stated in Cheng and Liao (2015a) but follows from their Remark 3.5 using the

Cramér-Wold device, an arbitrary weighting matrix W and replacing the variance of the sample GMM estimator
with the asymptotic variance. We proof the result in Appendix A.3, assuming that Assumption 1 and Assumption
2 hold.
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conditions fN(B, ut) and fA(B, ut) and is infeasible in practice without prior knowledge on the

index sets D and A. However, the pGMM estimator is as efficient as the oracle estimator

asymptotically.

4 Finite sample performance

In this section, we conduct a Monte Carlo study to illustrate that the pGMM estimator selects

relevant moments in a data-driven way and thereby, improves the finite sample performance

compared to the SVAR GMM estimator based on all third and fourth moments. Asymptotically,

the pGMM estimator is as efficient as the SVAR GMM estimator based on second, third and

fourth moments and both are more efficient than the SVAR GMM estimator based only on second

moments, which is equivalent to a Cholesky decomposition.

We simulate a recursive SVAR using n = 4 variables and

B0 =



1.00 0 0 0

0.50 1.00 0 0

0.50 0.50 1.00 0

0.50 0.50 0.50 1.00


. (26)

For the estimation of B0, we impose a recursive order for all considered estimators, i.e., we

use zero restrictions for all elements where B0 is zero. We consider five different sample sizes

T = {100, 200, 500, 1 000, 5 000} to analyze the influence of the sample size on the performance of

the estimators. We independently and identically draw each structural shock εti, t = 1, . . . , T, i =

1, . . . n, from the two-component mixture

εti ∼ 0.79 N (−0.2, 0.72) + 0.21 N (0.75, 1.52),

implying that the shocks have skewness 0.90 and kurtosis 5.41.
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With the imposed recursive order, the set fN(B, ut) contains 10 and the set fD(B, ut) moment

47 conditions. All moment conditions in fD(B, ut) are valid. More precisely, 17 of its moment

conditions are in fR(B, ut), i.e., redundant, and 30 are in fA(B, ut), i.e., valid and relevant. We

compare the finite sample performance9 of the following recursive estimators:

� Cholesky estimator: We apply the conservative estimator in Equation (18), which uses only

the set of conservative moment conditions fN(B, ut). The estimator is just identified and

equal to the frequently used estimator obtained by applying the Cholesky decomposition.

� CUE estimator: We apply the overidentified estimator given in Equation (22), which uses

all moments generated by N and D. We use the continuously updating estimator instead

of the GMM estimator in Equation (22).

� CUE-Oracle estimator: We apply the overidentified estimator given in Equation (22), using

only the identifying moment conditions fN(B, ut) and the relevant overidentifying moment

conditions fA(B, ut). We use the continuously updating estimator instead of the SVAR

GMM estimator in Equation (22).

� CUE-LASSO estimator: We apply the LASSO estimator in Equation (23). We use a

continuously updating version of the LASSO estimator instead of the pGMM estimator in

Equation (23).

We use continuously updating estimators proposed by Hansen et al. (1996) instead of GMM

estimators since these are known to reduce finite sample bias compared to two-step GMM esti-

mators. Additionally, we specify W in a parametric way as proposed in Keweloh (2021a), which

also increases finite sample performance since it exploits the assumed structure on the shocks

when estimating W .

The construction of the weights for the pGMM estimator as in Equation (24) requires an initial

consistent estimate B̂ to estimate β∗ and the asymptotic variance in Equation (25). To this

9The estimators are implemented in python Van Rossum and Drake (2009), e.g., the pGMM estimation the
solvers of Defferrard et al. (2017).
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end, we apply the conservative estimator, which is Cholesky estimator in this case. Moreover,

we again use mutually independent shocks to estimate the asymptotic variance, as proposed by

Keweloh (2021a). Additionally, we use r1 = 2 and r2 = 1 in Equation (24).10

We choose the optimal λ for the pGMM estimator with 5-fold cross-validation from a sequence

of 10 potential values. The maximum value of the sequence of λ’s depends on the sample size,

ensuring that it is large enough to selects all momtents j for which ωj/
∑
k∈D̃ ωk > 10−4.11

We also include λ = 0 in the range of possible values to allow our estimator to simplify to the

recursive SVAR. The selection of the optimal tuning parameter is based on the median of the

GMM loss of each left-out fold.

Table 1 summarizes the results of M = 1000 Monte Carlo simulations for T = {100, 200, 5 000}.

The table shows the average of each estimated element b̄ij = 1/M
∑M
m=1 b̂

m
ij and the

estimated population variance (scaled by the square root of the sample size), σ̂2
i,j =

1/M
∑M
m=1 T

(
b̂mij − bij

)2

, where bij denotes the element of B0 in row i and column j and b̂mij its

estimated value in Monte Carlo run m. Moreover, we calculate the sum over the empirical biases,

Bias :=
∑n
i=1

∑i
j=1

(
b̄ij − bij

)
and the sum over the scaled variances, V ar :=

∑n
i=1

∑i
j=1 σ̂

2
i,j .

Additionally, we report the number of moments used by the recursive SVAR GMM estimator,

the CUE estimator, and the CUE-oracle estimator and the average number of moments selected

by the pGMM estimator across Monte Carlo runs. Furthermore, Table 1 shows the median of the

chosen λ’s for the pGMM estimator across Monte Carlo runs. In Appendix B, we display results

including all sample sizes and the Post-pGMM estimator which uses the moments selected by

pGMM in a second stage estimation.

The Cholesky estimator already performs good in the smallest sample size in terms of bias and

scaled variance. However, its scaled variance does not decrease further as T increases. In fact, for

the largest sample size the Cholesky estimator has the largest scaled variance among all consid-

10Cheng and Liao (2015a) use r1 = 3 and r2 = 2 in their simulation study, which performs qualitatively similar
in our setting.

11We specify the maximum value of the sequence of λ’s in a data-driven way using the subgradient of Equation
(23) with respect to β. We give more details on how to construct the maximum value of the sequence of λ’s in
the cross-validation in Appendix A.2
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Table 1: Summary Statistics of 1000 Monte Carlo Runs

Cholesky CUE CUE-Oracle CUE-LASSO

T
=

1
0
0 B̂


1.00
(1.16)

. . .

0.50
(1.26)

0.99
(1.13)

. .

0.50
(1.51)

0.49
(1.28)

0.99
(1.08)

.

0.50
(1.72)

0.50
(1.47)

0.49
(1.26)

0.98
(1.09)




0.98
(1.08)

. . .

0.48
(1.46)

0.97
(1.13)

. .

0.49
(1.66)

0.48
(1.52)

0.97
(1.12)

.

0.49
(2.01)

0.48
(1.87)

0.49
(1.44)

0.97
(1.12)




0.98
(1.07)

. . .

0.49
(1.28)

0.97
(1.13)

. .

0.49
(1.51)

0.48
(1.35)

0.97
(1.12)

.

0.49
(1.75)

0.49
(1.56)

0.49
(1.25)

0.97
(1.13)




1.00
(1.16)

. . .

0.50
(1.20)

0.99
(1.10)

. .

0.51
(1.44)

0.49
(1.27)

0.99
(1.12)

.

0.50
(1.68)

0.50
(1.49)

0.50
(1.26)

0.99
(1.10)


#Mo 10.00 57.00 40.00 23.99
Bias −0.0526 −0.1998 −0.2005 −0.0331
Var 12.97 14.42 13.15 12.83
λ . . . 103.91

Cholesky CUE CUE-Oracle CUE-LASSO

T
=

2
0
0 B̂


1.00
(1.10)

. . .

0.50
(1.22)

1.00
(1.15)

. .

0.50
(1.42)

0.50
(1.22)

1.00
(1.13)

.

0.50
(1.76)

0.50
(1.54)

0.50
(1.22)

1.00
(1.15)




0.99
(1.02)

. . .

0.49
(1.19)

0.99
(1.08)

. .

0.49
(1.47)

0.49
(1.26)

0.99
(1.04)

.

0.49
(1.82)

0.49
(1.58)

0.49
(1.21)

0.99
(1.08)




0.99
(1.02)

. . .

0.50
(1.10)

0.99
(1.09)

. .

0.49
(1.34)

0.49
(1.11)

0.99
(1.05)

.

0.49
(1.60)

0.49
(1.39)

0.49
(1.05)

0.99
(1.09)




1.01
(1.09)

. . .

0.50
(1.08)

1.00
(1.12)

. .

0.50
(1.34)

0.50
(1.13)

1.00
(1.07)

.

0.50
(1.59)

0.50
(1.40)

0.50
(1.08)

1.00
(1.09)


#Mo 10.00 57.00 40.00 26.37
Bias −0.0222 −0.0846 −0.0848 0.0030
Var 12.93 12.77 11.84 11.99
λ . . . 114.89

Cholesky CUE CUE-Oracle CUE-LASSO

T
=

5
0
0
0 B̂


1.00
(1.21)

. . .

0.50
(1.34)

1.00
(1.25)

. .

0.50
(1.62)

0.50
(1.37)

1.00
(1.22)

.

0.50
(1.95)

0.50
(1.63)

0.50
(1.24)

1.00
(1.22)




1.00
(1.10)

. . .

0.50
(1.09)

1.00
(1.15)

. .

0.50
(1.29)

0.50
(1.11)

1.00
(1.11)

.

0.50
(1.57)

0.50
(1.33)

0.50
(1.08)

1.00
(1.08)




1.00
(1.10)

. . .

0.50
(1.08)

1.00
(1.15)

. .

0.50
(1.27)

0.50
(1.10)

1.00
(1.11)

.

0.50
(1.55)

0.50
(1.32)

0.50
(1.06)

1.00
(1.08)




1.01
(1.14)

. . .

0.50
(1.09)

1.00
(1.19)

. .

0.50
(1.30)

0.50
(1.12)

1.01
(1.15)

.

0.50
(1.58)

0.50
(1.35)

0.50
(1.08)

1.00
(1.13)


#Mo 10.00 57.00 40.00 28.95
Bias 0.0297 0.0284 0.0285 0.0319
Var 14.05 11.91 11.83 12.12
λ . . . 22.23

The table reports the average summary statistics over all Monte Carlo replicates for the recursive SVAR estimator
(Cholesky), the continuously updating estimator (CUE), the continuously updating oracle estimator (CUE-oracle),
and the continuously updating pGMM estimator (CUE-LASSO).

ered estimators. Due to many moments, the CUE estimator performs worst in terms of bias and

scaled variance among the considered estimators in small samples. Yet, its performance increases

with the sample size and it eventually outperforms the Cholesky estimator. The scaled variance

of the CUE-Oracle estimator is already comparable to the Cholesky estimator in small samples.

Unlike the Cholesky estimator, its performance further increases with the sample size and it

performs similar to the CUE estimator in the largest sample size. In general, the CUE-Oracle
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estimator is infeasible since the redundant moments are unknown a priori.12 In contrast to that,

the CUE-LASSO estimator is feasible and uses a data-driven approach to select the relevant and

valid moments. The CUE-LASSO estimator performs good across all sample sizes in terms of

bias and scaled variance. For T = 100, its scaled variance is notably smaller than the one of

the CUE and the CUE-Oracle estimator and comparable to the one of the Cholesky estimator.

Already for T = 200, its scaled variance is below the one of the Cholesky estimator. In the

largest sample, the CUE-LASSO estimator performs as good as the CUE and CUE-Oracle esti-

mator.13 The simulation shows that the CUE-LASSO estimator can, without prior specification,

distinguish informative from non-informative overidentifying moments, which solves the many

moments problem of the CUE estimator and allows to exploit information in overidentifying

higher-order moments already in small samples.

Table 1 indicates that the average number of selected moments increases only slightly as T

increases. Even for T = 5000, the CUE-LASSO estimator only selects 29 out of 40 valid and

relevant moments. That said, the remaining 11 moments would only decrease the scaled variance

from 11.40 to 11.22, indicating that the moments being not selected would not lower the scaled

variance much. Figure 2 illustrates that CUE-LASSO estimator only selects relevant moments

and manages to leave redundant moments out, especially as T increases. Moreover, the share of

selections of each moment across all Monte Carlo runs rises with the sample size for the majority

of relevant moments.14

12Even if we knew the non-Gaussianity of the shocks, we would not be able to derive the oracle estimator if
the block-recursive structure was not just purely recursive. In this case, we still lack the information on which
moments are redundant and which are relevant.

13The Post-pGMM estimator reported in Appendix B performs similar to the CUE-LASSO estimator.
14In Figure B.6, we plot the average weight of each moment across Monte Carlo runs. By comparing Figure 2

and Figure B.6, we argue that there is a clear correlation between the average weight and the number of selections
of each moment. More precisely, all redundant moments have an average weight which is very close to zero and
hence, they are not selected by the CUE-LASSO estimator.
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Figure 2: Share of Selections of Moments across Monte Carlo Runs

(a) T = 100

(b) T = 200

(c) T = 5000

Note: The figure shows how often each moment gets selected across M = 1000 Monte Carlos simulations. Redun-
dant moments (orange) and relevant moments (blue) are displayed on the x-axis.
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Figure 3 highlights the influence of λ on β and hence, on the number of selected moments in D̃

for one Monte Carlo run15 For instance, for log(λ) = −6 no moments in D̃ are selected and the

solution of the pGMM estimator corresponds to the one of the Cholesky estimator. Further, the

number of selected moments increases as λ increases, i.e., the penalty shrinks the elements of β

to zero. Furthermore, the relevant moments get selected first when λ increases and we do not

select any redundant moment until λ becomes very large.

Figure 3: Illustration of Influence of λ on β.

(a) Trace Plot (b) Selected Moments

Note: Panel (a) of the figure shows the values of β in dependence on log(λ) for one Monte Carlo run for T = 100

and the corresponding number of selected moments in D̃. Panel (b) of the figure splits the number of selected
moments into the number of selected redundant and the number of selected relevant moments for each log(λ).

As a robustness-check, we conduct a Monte Carlo study where we draw each structural shock

independently and identically from a t-distribution with ν = 9 degrees of freedom16. The results

are reported in Appendix B and qualitatively similar to the ones presented in this section.

15For the purpose of illustration, we use a wider range of of λ values for this plot.
16We normalize the structural shocks to unit variance by multiplying each shock with 1/

√
ν)/(ν − 2).
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5 Empirical illustration

To illustrate the block-recursive estimation, we consider the following SVAR in five variables with

quarterly U.S. Data from 1983Q1 to 2019Q1 of the form



yt

tfpt

πt

st

it


= α+ γt+

p∑
i=1

Ai



yt−i

tfpt−i

πt−i

st−i

it−i


+



uyt

utfpt

uπt

ust

uit


, (27)

with p = 2 lags as suggested by the AIC and BIC criteria. The variable y denotes the log of real

GDP, tfp the utilization-adjusted total factor productivity from Fernald (2009), π the inflation

rate, i the federal funds rate, and s the real stock returns17.

We assume the following block-recursive structure with two blocks



uyt

utfpt

uπt

ust

uit


=



b11 b12 b13 0 0

b21 b22 b23 0 0

b31 b32 b33 0 0

b41 b42 b43 b44 b54

b51 b52 b53 b54 b55





ε1,t

ε2,t

ε3,t

ε4,t

ε5,t


, (28)

such that the macroeconomic variables GDP, tfp, and inflation can simultaneously only react to

the first three structural shocks while the federal funds rate and stock returns can simultaneously

respond to two additional structural shocks.

The simultaneous relationship is estimated with the CUE-LASSO estimator with the parametric

17The inflation rate is defined as the quarter to quarterly growth rate in the quarterly chain-type GDP price
index retrieved from the FRED. Real GDP is retrieved from the FRED. The nominal interest rate is defined as
the Federal Funds Rate (FFR), where the effective FFR (retrieved from FRED) is replaced by the shadow FFR
provided by Wu and Xia (2016) for the Zero Lower Bound observations during the Great Recession. Stock returns
are defined as the quarterly log-difference in real stock prices, where real stock prices are given by the S&P 500
index (retrieved from macrotrends.net) divided by the chain-type GDP price index.
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weighting matrix as proposed in Keweloh (2021a). With the imposed block-recursive structure, we

can divide the third- and fourth-order moment conditions into 39 identifying conditions fN(B, ut)

and 71 overidentifying conditions fD(B, ut). We use the same specifications to construct the

weights as in the Monte Carlo simulation, i.e., we use r1 = 2 and r2 = 1 in Equation (24). The

weights are displayed in Figure B.8. For the cross-validation, we consider a range of 28 values

for λ, including λ = 0 to allow our estimator to simplify to a recursive SVAR. The maximum

value of λ is chosen such that all moments generated by D for which ωj/
∑
k∈D̃ ωk > 10−7 get

selected.18 With the chosen λ = 2112, which is the 17th value of the considered sequence, 26

out of the 71 overidentifying conditions fD(B, ut) are selected. Figure B.8 illustrates that there

is a correlation between the selected moments and their corresponding weights which we already

observed in our Monte Carlo simulation.

To ensure identification, at most one structural shock in a given block may be Gaussian. Based

on the Jarque-Bera test for normality, we reject the null hypothesis of Gaussian reduced form

shocks for one out of three shocks in the first block and for two out of two shocks in the second

block. For our estimated structural shocks, we reject the null hypothesis of Gaussian structural

shocks for two out of three shocks in the first block and two out of two shocks in the second

block.

Table 2: Non-Gaussianity of shocks

uy utfp uπ us ui ε1 ε2 ε3 ε4 ε5

Skewness −0.59 0.15 −0.03 −0.7 −1.16 −0.51 0.48 −0.25 −0.61 −0.51
Kurtosis 4.72 3.5 2.72 4.65 11.23 5.17 4.07 2.71 4.15 15.12
JB-Test 0 0.36 0.79 0 0 0 0 0.38 0 0

Note: Skewness, kurtosis and the p-value of the Jarque-Bera test for normality.

Figure 4 shows the corresponding impulse response functions (IRFs) to one standard deviation

shocks.

18As a robustness-check, we repeated the cross-validation with a maximum value of λ for which all moments
generated by D for which ωj/

∑
k∈D̃ ωk > 10−4 get selected. However, in this case we choose the maximum value

of the sequence of λ’s and therefore, we extend the range of maximum values for the main results. That being
said, with the extended λ sequence the number of selected moments only rises from 25 to 26 moments.
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Figure 4: Impulse Responses.

Note: Impulse responses to normalized shocks for the block-recursive SVAR. The rows tfpt and st show cumulative
responses. Confidence bands are 68% bands based on standard errors and 1000 replications.

The shocks in the first block are labeled as follows. The first shock leads to an increase of GDP

and inflation and is labeled as a demand shock, εd. The second shock increases GDP, tfp, and

decreases inflation and is, therefore, labeled as a supply shock, εs. The third shock increases

inflation and decreases GDP in the long-run and is labeled as a cost-push shock, επ. We find that

stock returns increase in response to the demand and supply shock and decrease in response to

the cost-push shock. Moreover, interest rates increase in response to the demand shock. However,

we find no significant response of interest rates to the supply and demand shock. In the second

block, one shock leads to an increase of interest rates and decrease of GDP and inflation in the
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long-run and, therefore, is labeled as the monetary policy shock, εmp. The remaining shock is

labeled as a stock market shock, εsm. We find that stock returns decrease after the monetary

policy shock, while interest rates increase in response to the stock market shock.

6 Conclusion

Imposing a block-recursive structure on the interactions of the shocks in the SVAR allows to derive

identfying and overidentfying moment conditions. We exploit that including these overidentfying

moment conditions can increase the efficiency of the block-recursive SVAR GMM estimator. For

the special case of a recursive SVAR, we prove the Cholesky estimator, which relies only on

second-order moment conditions, to be inefficient if the shocks are mean independent and at

least one shock has non-zero skewness or non-zero excess kurtosis.

The asymptotically efficient block-recursive SVAR GMM estimator includes all valid higher-

order moment conditions. However, some of the valid higher-order moment conditions may be

redundant. While redundant moment conditions do neither increase nor decrease the asymptotic

variance of the estimator, they inflate the finite sample variance of the estimator. Therefore, we

apply the pGMM estimator of Cheng and Liao (2015b) to discriminate between relevant and the

remaining moment conditions. A Monte Carlo experiment illustrates that the pGMM estimator

only selects relevant moment conditions and improves the finite sample performance compared

to the Cholesky estimator and the overidentified block-recursive SVAR GMM estimator. In the

empirical illustration, we employ a block-recursive structure with two blocks and analyze the

impact of various shocks on the U.S. economy. Our results suggest that the pGMM estimator,

selecting only 26 out of the 71 overidentifying conditions, increases finite sample precision.
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Appendix

A Supplementary Proofs

A.1 Asymptotic variance of the (overidentified) block-recursive SVAR GMM estimator

For completeness, we state the formulas of the asymptotic variances of the estimators in Section 3 here. The asymptotic

variance of the block-recursive SVAR GMM estimator defined in Equation (18) is given by

VN := MNSNM
′
N (A.1)

where

MN := (G′NWNGN)
−1
G′NWN, SN := lim

T→∞
E [TgN(B0)gN(B0)] ,

GN := E

[
∂fN(B0, ut)

∂vec(B)′

]
.

Consequently, using the weighting matrix W ∗N := S−1
N leads to the estimator B̂∗ with the asymptotic variance

V ∗N := (G′NS
−1
N GN)−1, (A.2)

which is the lowest possible asymptotic variance, see Hall (2005).

Similarly, the asymptotic variance of the overidentified block-recursive SVAR GMM estimator defined in Equation (22) is

given by

VN+D := MN+DSN+DM
′
N+D, (A.3)

where

MN+D :=
(
G′N+DWN+DG

)−1
G′N+DWN+D, SN+D := lim

T→∞
E [gN+D(B0)gN+D(B0)′] ,

GN+D :=

[
GN

GD

]
, gN+D(B0) :=

[
gN(B0)

gD(B0)

]
,

GD := E

[
∂fD(B0, ut)

∂vec(B)′

]
.

Using the weighting matrix W ∗N+D := S−1
N+D leads to the estimator B̂∗N+D with the asymptotic variance

V ∗N+D := (G′N+DS
−1
N+DGN+D)−1, (A.4)

which is the lowest possible asymptotic variance, see Hall (2005). To construct VN+Dj
and V ∗N+Dj

, j ∈ D̃, we replace the

moment conditions fDj
(B, ut) by moment condition fDj

(B, ut), j ∈ D̃, in Equation (A.3) and (A.4).
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A.2 Choice of maximum λ in the cross-validation

In the following, we illustrate how to choose the maximum value of λ in the cross-validation. Define the loss function of

the pGMM estimator as

L∗(B, β) := L(B, β) + λ
∑
i∈D̃

ωi |βi|, (A.5)

where L(B, β) :=

[
gN(B)

gD(B, β)

]′
W

[
gN(B)

gD(B, β)

]
.

Further, let z ∈ ∂||β||1, where z ∈ RkT−k0 , denote the subgradient for the `1-norm evaluated at β, i.e.,

zi = sign(βi), ifβi 6= 0,

zi ∈ [−1, 1], ifβi = 0, (A.6)

for i = 1, . . . , kT − k0 (Wainwright (2006)). Then, the first order condition of the pGMM estimator with respect to

βi, i = 1, . . . , kT − k0, evaluated at β and B is

∂L∗(B, β)

∂βi
=
∂L(B, β)

∂βi
+ λωi zi = 0 (A.7)

Note that ωi ≥ 0. However, if ωi = 0, βi is not penalized and therefore, we only consider i ∈ P̃ := {j ∈ D̃| ωj > 0}
for which, by definition, ωi > 0 when choosing the maximum value of λ in the cross-validation. By (A.6) and (A.7),

β = 0 = (0, . . . , 0)′ and B = B0 minimize the loss function in (A.5) only if

1

ωi

∂L(B0,0)

∂βi
∈ λ[−1, 1],

for i ∈ P̃ . Thus,

max
i∈P̃

∣∣∣∣ 1

ωi

∂L(B0,0)

∂βi

∣∣∣∣ ≤ λ.
This motivates us to use

λmax = max
i∈P̃

∣∣∣∣ 1

ωi

∂L(B0,0)

∂βi

∣∣∣∣ .
as the largest value in the cross-validation. Note that any λ > λmax would not have an effect on β as λmax already shrinks

all elements of β to zero. In practice, we replace B0 and ωi by consistent estimators to obtain λmax. Furthermore, we

consider a weight ωj to be positive and hence, j ∈ P̃ , if ωj/
∑
k∈D̃ ωk > 10−4.

A.3 Proof of Asymptotic Variance of pGMM Estimator

We show how to derive the asymptotic variance of the pGMM estimator, VN+A, based on Remark 3.5 of Cheng and Liao

(2015a). We first show Lemma 1 and then apply the result in Remark 3.5 of Cheng and Liao (2015a). Denote U := I ∪R

as the moments in either I or R and the number of moments in U by kU . Further, define the number of elements in

vec(B) as dB . In the proof of Lemma 1, we use the index sets 1 ≡ N + A, 2 ≡ (N + A,U), 3 ≡ (U,N + A), and 4 ≡ U

to keep notation uncluttered. Let ι∗ = (ι′,0′dU )′ where ι = (1, . . . , 1)′ is a dB × 1 vector, i.e., ι∗′Aι∗′ gives the leading

dB × dB-upper west block of an arbitrary (dB + dU )× (dB + dU ) matrix A.
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Lemma 1.

ι∗′ (Γ′WΓ)
−1

(Γ′WSN+DWΓ) (Γ′WΓ)
−1
ι∗ = VN+A,

where

Γ :=

[
GN+A 0(kT−kU )×kU

GU −IkU

]
, VN+A := MN+ASN+AM

′
N+A

with

MN+A :=
(
G′N+AW

pi
N+AGN+A

)−1

G′N+AW
pi
N+A, SN+A := lim

T→∞
E [gN+A(B0)gN+A(B0)′] ,

GN+A :=

[
GN

GA

]
, W pi

N+A :=
(
WN+A −WN+A,I∪RW

−1
I∪RWI∪R,N+A

)
,

GA := E

[
∂fA(B0, ut)

∂vec(B)′

]
, WN+D :=

[
WN+A WN+A,I∪R,

WI∪R,N+A WI∪R

]
,

WN+A ∈ R(kN+kA)×(kN+kA), WN+A,I∪R ∈ R(kN+kA)×(kD−kA),

WI∪R,N+A = W ′N+A,I∪R, WI∪R ∈ R(kD−kA)×(kD−kA).

Proof. Recall that GN+A and GU have dimension (kT − kU )× dB and kU × dB , respectively. We define

L :=

[
L1 L2

L3 L4

]
:= (Γ′WΓ)

−1
.

Additionally, let

N :=

[
N1 N2

N3 N4

]
:= (Γ′WSN+DWΓ) ,

and denote the inverse of W by

W ipi :=

[
W ipi

1 W ipi
2

W ipi
3 W ipi

4

]
:= W−1 =

[
W1 W2

W3 W4

]−1

.

Let W pi
1 :=

(
W1 −W2W

−1
4 W3

)
. Then, by the partitioned inverse, W ipi

1 :=
(
W pi

1

)−1

. By similar arguments as leading to

(2.18) in the Online Appendix of Cheng and Liao (2015b), we get that

L1 =
(
G′1
(
W1 −W2W

−1
4 W3

)
G1

)−1
=
(
G′1W

pi
1 G1

)−1

and, by using the partitioned inverse formula again, and similar arguments as leading to (2.10), (2.11) and (2.18) in the

Online Appendix of Cheng and Liao (2015b), that

L3 = −W−1
4 (−G′1W2 −G′4W4)

′
(
G′1W

pi
1 G1

)−1

=
(
W−1

4 W3G1 +G4

)
L1

= XL1, (A.8)
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where we used that W ′4 = W4, W3 = W ′2 and X :=
(
W−1

4 W3G1 +G4

)
. Further, let

H :=

[
H1 H2

H3 H4

]
:= WSN+DW,

where

H1 := W1S1W1 +W2S3W1 +W1S2W3 +W2S4W3

H2 := W1S1W2 +W2S3W2 +W1S2W4 +W2S4W4

H3 := W3S1W1 +W4S3W1 +W3S2W3 +W4S4W3

H4 := W3S1W2 +W4S3W2 +W3S2W4 +W4S4W4.

Note that H3 = H ′2 since W3 = W ′2, W1 = W ′1, W4 = W ′4, S3 = S′2, S1 = S′1 and S4 = S′4. Hence, similar to (2.11) in the

Online Appendix of Cheng and Liao (2015b),

N1 = G′1H1G1 +G′4H3G1 +G′1H2G4 +G′4H4G4

= G′1H1G1 +G′4H
′
2G1 +G′1H2G4 +G′4H4G4

N2 = −G′1H2 −G′4H4

N3 = N ′2

N4 = H4.

Then,

ι∗′ (Γ′WΓ)
−1

(Γ′WSN+DWΓ) (Γ′WΓ)
−1
ι∗ = ι∗′LNLι∗

= L1N1L1 + L2N3L1 + L1N2L3 + L2N4L3

= L1N1L1 + L′3N3L1 + L1N2L3 + L′3N4L3

(A.8)
= L1N1L1 + L′1X

′N ′2L1 + L1N2XL1 + L′1X
′N4XL1

= L1 (N1 +X ′N ′2 +N2X +X ′N4X)L1, (A.9)

where we used that L′1 = L1, L′3 = L2, and N ′3 = N2.

Next, define Y := N1 +X ′N ′2 +N2X +X ′N4X. Then, multiplying out gives

Y =G′1H1G1 +G′4H3G1 +G′1H2G4 +G′4H4G4 +
(
G′1W2W

−1
4 +G′4

)
(−H ′2G1 −H ′4G4)

+ (−G′1H2 −G′4H4)
(
W−1

4 W ′2G1 +G4

)
+
(
G′1W2W

−1
4 +G′4

)
H4

(
W−1

4 W ′2G1 +G4

)
=G′1W2W

−1
4 H4W

−1
4 W ′2G1 +G′1H1G1 −G′1W2W

−1
4 H ′2G1 −G′1H2W

−1
4 W ′2G1

=G′1
(
W2W

−1
4 H4W

−1
4 W ′2 +H1 −W2W

−1
4 H ′2 −H2W

−1
4 W ′2

)
G1

=G′1
(
W2W

−1
4 W3S1W2W

−1
4 W3 +W1S1W1 −W2W

−1
4 W3S1W1 −W1S1W2W

−1
4 W3

)
G1

=G′1
(
W1 −W2W

−1
4 W3

)
S1

(
W1 −W2W

−1
4 W3

)
G1

=G′1W
pi
1 S1W

pi
1 G1 (A.10)
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Plugging (A.10) into (A.9), we obtain

ι∗′ (Γ′WΓ)
−1

(Γ′WSN+DWΓ) (Γ′WΓ)
−1
ι∗

= L1

(
G′1W

pi
1 S1W

pi
1

)
G1L1

=
(
G′1W

pi
1 G1

)−1 (
G′1W

pi
1 S1W

pi
1 G1

)(
G′1W

pi
1 G1

)−1

=
(
G′N+AW

pi
N+AGN+A

)−1 (
G′N+AW

pi
N+ASN+AW

pi
N+AGN+A

)(
G′N+AW

pi
N+AGN+A

)−1

which was to show.

Note that in the following proposition, we treat kT as a fixed constant to keep our asymptotic results for the pGMM

estimator in line with the asymptotic results for the block-recursive SVAR GMM estimator in Equation (22). Cheng and

Liao (2015b) allow kT to increase with the sample size. However, their results also hold when the number of moment

conditions is fixed.

Proposition 2. Assume that the Assumptions in Theorem 3.3 of Cheng and Liao (2015b) hold. Further, assume that

E
[
∂fA(B0,ut)
∂vec(B)′

]
= ∂E[fA(B0,ut)]

∂vec(B)′ and that the assumptions needed to derive the asymptotic distribution used to derive the

asymptotic distribution of the block-recursive SVAR GMM estimator in Equation (22) hold. Then,

√
T
(
vec(B̂N+D)− vec(B0)

)
d→ N (0, VN+A)

Proof. Define ΣCL := (Γ′WΓ)
−1

(Γ′WSN+DWΓ) (Γ′WΓ)
−1

and γ =
(
ν′,0′dU

)′
where ν ∈ RdB is an arbitrary vector.

Then, by Remark 3.5 of Cheng and Liao (2015b) (and fixing a typo in this remark),

∣∣∣∣∣∣Σ1/2
CL γ

∣∣∣∣∣∣−1/2√
Tν′

(
vec(B̂N+D)− vec(B0)

)
d→ N (0, 1),

where ||a|| := a′a is the squared `2-norm of an arbitrary vector a.

Note that Lemma 1 immediately implies
∣∣∣∣∣∣Σ1/2

CLγ
∣∣∣∣∣∣ = γ′ΣCLγ = ν′VN+A(W )ν. Hence,

∣∣∣∣∣∣VN+A(W )1/2ν
∣∣∣∣∣∣−1/2√

Tν′
(
vec(B̂N+D)− vec(B0)

)
d→ N (0, 1),

where VN+A(W ) is the asymptotic variance of vec(B̂N+D) since it holds that

ν∗′VN+A(W )ν∗ =
∣∣∣∣∣∣VN+A(W )1/2ν

∣∣∣∣∣∣−1

ν′VN+A(W )ν = 1

where ν∗ :=
∣∣∣∣VN+A(W )1/2ν

∣∣∣∣−1/2
ν.

Consequently, using the Cramér-Wold device, we get

√
T
(
vec(B̂N+D)− vec(B0)

)
d→ N (0, VN+A).

B Supplementary Tables
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Table B.1: Finite sample performance including Post-LASSO

Cholesky CUE CUE-Oracle CUE-LASSO CUE-LASSO-Post

T
=

1
0
0 B̂


1.00
(1.16)

. . .

0.50
(1.26)

0.99
(1.13)

. .

0.50
(1.51)

0.49
(1.28)

0.99
(1.08)

.

0.50
(1.72)

0.50
(1.47)

0.49
(1.26)

0.98
(1.09)




0.98
(1.08)

. . .

0.48
(1.46)

0.97
(1.13)

. .

0.49
(1.66)

0.48
(1.52)

0.97
(1.12)

.

0.49
(2.01)

0.48
(1.87)

0.49
(1.44)

0.97
(1.12)




0.98
(1.07)

. . .

0.49
(1.28)

0.97
(1.13)

. .

0.49
(1.51)

0.48
(1.35)

0.97
(1.12)

.

0.49
(1.75)

0.49
(1.56)

0.49
(1.25)

0.97
(1.13)




1.00
(1.16)

. . .

0.50
(1.20)

0.99
(1.10)

. .

0.51
(1.44)

0.49
(1.27)

0.99
(1.12)

.

0.50
(1.68)

0.50
(1.49)

0.50
(1.26)

0.99
(1.10)




0.99
(1.10)

. . .

0.50
(1.16)

0.98
(1.11)

. .

0.50
(1.39)

0.49
(1.23)

0.98
(1.10)

.

0.50
(1.59)

0.49
(1.40)

0.49
(1.20)

0.98
(1.08)


#Mo 10.00 57.00 40.00 23.99 23.99
Bias −0.0526 −0.1998 −0.2005 −0.0331 −0.1114
Var 12.97 14.42 13.15 12.83 12.36
λ . . . 103.91 .

Cholesky CUE CUE-Oracle CUE-LASSO CUE-LASSO-Post

T
=

2
0
0 B̂


1.00
(1.10)

. . .

0.50
(1.22)

1.00
(1.15)

. .

0.50
(1.42)

0.50
(1.22)

1.00
(1.13)

.

0.50
(1.76)

0.50
(1.54)

0.50
(1.22)

1.00
(1.15)




0.99
(1.02)

. . .

0.49
(1.19)

0.99
(1.08)

. .

0.49
(1.47)

0.49
(1.26)

0.99
(1.04)

.

0.49
(1.82)

0.49
(1.58)

0.49
(1.21)

0.99
(1.08)




0.99
(1.02)

. . .

0.50
(1.10)

0.99
(1.09)

. .

0.49
(1.34)

0.49
(1.11)

0.99
(1.05)

.

0.49
(1.60)

0.49
(1.39)

0.49
(1.05)

0.99
(1.09)




1.01
(1.09)

. . .

0.50
(1.08)

1.00
(1.12)

. .

0.50
(1.34)

0.50
(1.13)

1.00
(1.07)

.

0.50
(1.59)

0.50
(1.40)

0.50
(1.08)

1.00
(1.09)




1.00
(1.04)

. . .

0.50
(1.04)

0.99
(1.11)

. .

0.50
(1.28)

0.50
(1.10)

0.99
(1.07)

.

0.50
(1.55)

0.50
(1.36)

0.49
(1.07)

0.99
(1.10)


#Mo 10.00 57.00 40.00 26.37 26.37
Bias −0.0222 −0.0846 −0.0848 0.0030 −0.0508
Var 12.93 12.77 11.84 11.99 11.72
λ . . . 114.89 .

Cholesky CUE CUE-Oracle CUE-LASSO CUE-LASSO-Post

T
=

5
0
0 B̂


1.00
(1.06)

. . .

0.50
(1.25)

1.00
(1.05)

. .

0.50
(1.54)

0.50
(1.23)

1.00
(1.10)

.

0.50
(1.89)

0.50
(1.47)

0.50
(1.24)

1.00
(1.17)




1.00
(0.99)

. . .

0.50
(1.23)

1.00
(0.98)

. .

0.50
(1.42)

0.50
(1.15)

1.00
(1.01)

.

0.50
(1.73)

0.50
(1.34)

0.50
(1.14)

1.00
(1.03)




1.00
(1.00)

. . .

0.50
(1.10)

1.00
(0.98)

. .

0.50
(1.29)

0.50
(1.06)

1.00
(1.01)

.

0.50
(1.55)

0.50
(1.27)

0.50
(1.06)

1.00
(1.03)




1.00
(1.04)

. . .

0.50
(1.10)

1.00
(1.00)

. .

0.50
(1.33)

0.50
(1.06)

1.00
(1.03)

.

0.50
(1.61)

0.50
(1.27)

0.50
(1.07)

1.00
(1.07)




1.00
(1.03)

. . .

0.50
(1.10)

1.00
(1.01)

. .

0.50
(1.32)

0.50
(1.07)

1.00
(1.04)

.

0.50
(1.59)

0.50
(1.26)

0.50
(1.07)

1.00
(1.09)


#Mo 10.00 57.00 40.00 28.35 28.35
Bias −0.0010 −0.0267 −0.0278 0.0083 −0.0153
Var 13.00 12.02 11.34 11.60 11.59
λ . . . 90.16 .

Cholesky CUE CUE-Oracle CUE-LASSO CUE-LASSO-Post

T
=

1
0
0
0 B̂


1.00
(1.13)

. . .

0.50
(1.32)

1.00
(1.09)

. .

0.50
(1.53)

0.50
(1.20)

1.00
(1.19)

.

0.50
(1.85)

0.50
(1.69)

0.50
(1.29)

1.00
(1.21)




1.00
(1.00)

. . .

0.50
(1.12)

1.00
(0.99)

. .

0.50
(1.29)

0.50
(1.04)

1.00
(1.05)

.

0.50
(1.61)

0.50
(1.38)

0.50
(1.10)

1.00
(1.08)




1.00
(1.00)

. . .

0.50
(1.08)

1.00
(0.99)

. .

0.50
(1.23)

0.50
(0.99)

1.00
(1.04)

.

0.50
(1.49)

0.50
(1.30)

0.50
(1.04)

1.00
(1.08)




1.01
(1.06)

. . .

0.50
(1.07)

1.00
(1.02)

. .

0.50
(1.24)

0.50
(1.01)

1.00
(1.09)

.

0.50
(1.49)

0.50
(1.33)

0.50
(1.05)

1.00
(1.11)




1.00
(1.04)

. . .

0.50
(1.08)

1.00
(1.02)

. .

0.50
(1.26)

0.50
(1.00)

1.00
(1.10)

.

0.50
(1.51)

0.50
(1.34)

0.50
(1.06)

1.00
(1.13)


#Mo 10.00 57.00 40.00 29.10 29.10
Bias 0.0271 0.0155 0.0165 0.0329 0.0212
Var 13.51 11.64 11.24 11.47 11.53
λ . . . 59.32 .

Cholesky CUE CUE-Oracle CUE-LASSO CUE-LASSO-Post

T
=

5
0
0
0 B̂


1.00
(1.21)

. . .

0.50
(1.34)

1.00
(1.25)

. .

0.50
(1.62)

0.50
(1.37)

1.00
(1.22)

.

0.50
(1.95)

0.50
(1.63)

0.50
(1.24)

1.00
(1.22)




1.00
(1.10)

. . .

0.50
(1.09)

1.00
(1.15)

. .

0.50
(1.29)

0.50
(1.11)

1.00
(1.11)

.

0.50
(1.57)

0.50
(1.33)

0.50
(1.08)

1.00
(1.08)




1.00
(1.10)

. . .

0.50
(1.08)

1.00
(1.15)

. .

0.50
(1.27)

0.50
(1.10)

1.00
(1.11)

.

0.50
(1.55)

0.50
(1.32)

0.50
(1.06)

1.00
(1.08)




1.01
(1.14)

. . .

0.50
(1.09)

1.00
(1.19)

. .

0.50
(1.30)

0.50
(1.12)

1.01
(1.15)

.

0.50
(1.58)

0.50
(1.35)

0.50
(1.08)

1.00
(1.13)




1.00
(1.13)

. . .

0.50
(1.10)

1.00
(1.19)

. .

0.50
(1.33)

0.50
(1.14)

1.00
(1.15)

.

0.50
(1.61)

0.50
(1.38)

0.50
(1.09)

1.00
(1.14)


#Mo 10.00 57.00 40.00 28.95 28.95
Bias 0.0297 0.0284 0.0285 0.0319 0.0296
Var 14.05 11.91 11.83 12.12 12.25
λ . . . 22.23 .

The table reports the average summary statistics over all Monte Carlo replicates for the recursive SVAR estimator (Cholesky), the continuously
updating estimator (CUE), the continuously updating oracle estimator (CUE-oracle), the continuously updating pGMM estimator (CUE-
LASSO), and the Post-continuously updating pGMM estimator (CUE-LASSO-Post).
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Figure B.5: Relationship of chosen λCV and Number of Selected Moments across Monte Carlo runs

(a) T = 100

(b) T = 200

(c) T = 5000
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Figure B.6: Average Weight of Moments across Monte Carlo runs

(a) T = 100

(b) T = 200

(c) T = 5000
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Figure B.7: Relationship of λ and the Loss Function of the CUE-LASSO estimator without β

Note: The figure shows the median of the loss function of the overidentified SVAR GMM estimator in Equation (22) evaluated at the estimates
of the CUE-LASSO estimator in dependence on log(λ) across 1000 Monte Carlo runs for T = 100 (black line, right y-axis) and T = 5000 (blue

line, left y-axis). For the evaluation, we use the efficient weighting matrix W ∗N+D and denote the blocks of W ∗N+D corresponding to Ñ and to

D̃ by W ∗N and W ∗D, respectively. To be clear, Loss N+D :=
[
gN(B̂pGMM

N+D )′, gD(B̂pGMM
N+D )′

]
W ∗N+D

[
gN(B̂pGMM

N+D )′, gD(B̂pGMM
N+D )′

]′
, Loss

N := gN(B̂pGMM
N+D )

′
W ∗N gN(B̂pGMM

N+D ), and Loss D := gD(B̂pGMM
N+D )′W ∗D gD(B̂pGMM

N+D ).

Figure B.8: Weight of each Moment for the block-recursive SVAR in five variables with quarterly U.S. Data.
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Table B.2: Finite sample performance including Post-LASSO using t-distributed Errors with df = 9

Cholesky CUE CUE-Oracle CUE-LASSO CUE-LASSO-Post

T
=

1
0
0 B̂


1.00
(0.74)

. . .

0.50
(1.24)

0.99
(0.75)

. .

0.50
(1.52)

0.50
(1.28)

0.99
(0.71)

.

0.50
(1.76)

0.49
(1.42)

0.49
(1.30)

0.99
(0.86)




0.98
(0.77)

. . .

0.48
(1.68)

0.97
(0.85)

. .

0.48
(1.98)

0.48
(1.70)

0.97
(0.81)

.

0.49
(2.19)

0.48
(1.91)

0.48
(1.60)

0.97
(0.93)




0.98
(0.77)

. . .

0.48
(1.55)

0.97
(0.85)

. .

0.48
(1.75)

0.48
(1.47)

0.97
(0.82)

.

0.49
(2.04)

0.48
(1.68)

0.48
(1.52)

0.97
(0.92)




1.00
(0.80)

. . .

0.50
(1.36)

0.99
(0.81)

. .

0.50
(1.58)

0.49
(1.38)

0.99
(0.76)

.

0.50
(1.87)

0.50
(1.59)

0.49
(1.41)

0.99
(0.89)




0.99
(0.76)

. . .

0.50
(1.28)

0.98
(0.79)

. .

0.50
(1.51)

0.49
(1.35)

0.98
(0.74)

.

0.50
(1.80)

0.49
(1.53)

0.49
(1.34)

0.98
(0.88)


#Mo 10.00 57.00 40.00 21.10 21.10
Bias −0.0517 −0.2015 −0.2128 −0.0547 −0.1003
Var 11.59 14.42 13.36 12.45 11.97
λ . . . 65.86 .

Cholesky CUE CUE-Oracle CUE-LASSO CUE-LASSO-Post

T
=

2
0
0 B̂


1.00
(0.77)

. . .

0.50
(1.20)

1.00
(0.85)

. .

0.51
(1.54)

0.50
(1.24)

0.99
(0.81)

.

0.50
(1.66)

0.50
(1.44)

0.49
(1.23)

0.99
(0.75)




0.99
(0.80)

. . .

0.50
(1.45)

0.99
(0.86)

. .

0.49
(1.69)

0.49
(1.43)

0.98
(0.88)

.

0.49
(1.97)

0.49
(1.78)

0.49
(1.48)

0.98
(0.80)




0.99
(0.79)

. . .

0.50
(1.32)

0.99
(0.86)

. .

0.49
(1.59)

0.50
(1.33)

0.98
(0.88)

.

0.49
(1.85)

0.49
(1.61)

0.49
(1.38)

0.98
(0.80)




1.00
(0.82)

. . .

0.50
(1.27)

1.00
(0.89)

. .

0.50
(1.54)

0.50
(1.29)

0.99
(0.84)

.

0.50
(1.73)

0.50
(1.56)

0.49
(1.26)

0.99
(0.77)




0.99
(0.78)

. . .

0.50
(1.21)

0.99
(0.86)

. .

0.50
(1.49)

0.50
(1.25)

0.99
(0.83)

.

0.50
(1.67)

0.50
(1.51)

0.49
(1.25)

0.99
(0.77)


#Mo 10.00 57.00 40.00 21.85 21.85
Bias −0.0185 −0.1028 −0.1039 −0.0209 −0.0462
Var 11.48 13.15 12.41 11.96 11.61
λ . . . 99.00 .

Cholesky CUE CUE-Oracle CUE-LASSO CUE-LASSO-Post

T
=

5
0
0 B̂


1.00
(0.78)

. . .

0.50
(1.19)

1.00
(0.75)

. .

0.50
(1.47)

0.50
(1.16)

1.00
(0.81)

.

0.49
(1.81)

0.50
(1.46)

0.50
(1.19)

1.00
(0.81)




0.99
(0.79)

. . .

0.49
(1.29)

1.00
(0.77)

. .

0.49
(1.57)

0.50
(1.21)

0.99
(0.84)

.

0.49
(1.95)

0.50
(1.46)

0.50
(1.33)

0.99
(0.83)




0.99
(0.80)

. . .

0.49
(1.21)

1.00
(0.77)

. .

0.49
(1.47)

0.50
(1.14)

0.99
(0.85)

.

0.49
(1.82)

0.50
(1.38)

0.50
(1.21)

0.99
(0.83)




1.00
(0.80)

. . .

0.50
(1.20)

1.00
(0.79)

. .

0.50
(1.44)

0.50
(1.13)

0.99
(0.83)

.

0.49
(1.80)

0.50
(1.37)

0.50
(1.17)

1.00
(0.83)




1.00
(0.78)

. . .

0.50
(1.18)

1.00
(0.76)

. .

0.50
(1.41)

0.50
(1.12)

0.99
(0.83)

.

0.49
(1.77)

0.50
(1.36)

0.50
(1.17)

1.00
(0.82)


#Mo 10.00 57.00 40.00 20.96 20.96
Bias −0.0177 −0.0505 −0.0511 −0.0188 −0.0273
Var 11.42 12.05 11.47 11.36 11.20
λ . . . 102.57 .

Cholesky CUE CUE-Oracle CUE-LASSO CUE-LASSO-Post

T
=

1
0
0
0 B̂


1.00
(0.77)

. . .

0.50
(1.16)

1.00
(0.80)

. .

0.50
(1.43)

0.50
(1.21)

1.00
(0.83)

.

0.50
(1.69)

0.50
(1.51)

0.50
(1.15)

1.00
(0.81)




1.00
(0.77)

. . .

0.50
(1.16)

1.00
(0.80)

. .

0.50
(1.42)

0.50
(1.23)

1.00
(0.83)

.

0.50
(1.70)

0.50
(1.56)

0.50
(1.23)

1.00
(0.83)




1.00
(0.77)

. . .

0.50
(1.14)

1.00
(0.80)

. .

0.50
(1.37)

0.50
(1.17)

1.00
(0.83)

.

0.50
(1.62)

0.50
(1.49)

0.50
(1.15)

1.00
(0.84)




1.00
(0.77)

. . .

0.50
(1.13)

1.00
(0.80)

. .

0.50
(1.38)

0.50
(1.17)

1.00
(0.83)

.

0.50
(1.60)

0.50
(1.48)

0.50
(1.13)

1.00
(0.83)




1.00
(0.77)

. . .

0.50
(1.13)

1.00
(0.80)

. .

0.50
(1.37)

0.50
(1.18)

1.00
(0.83)

.

0.50
(1.59)

0.50
(1.49)

0.50
(1.13)

1.00
(0.82)


#Mo 10.00 57.00 40.00 19.39 19.39
Bias −0.0018 −0.0178 −0.0182 −0.0023 −0.0047
Var 11.35 11.52 11.18 11.12 11.10
λ . . . 63.62 .

Cholesky CUE CUE-Oracle CUE-LASSO CUE-LASSO-Post

T
=

5
0
0
0 B̂


1.00
(0.73)

. . .

0.50
(1.16)

1.00
(0.81)

. .

0.50
(1.35)

0.50
(1.21)

1.00
(0.76)

.

0.50
(1.75)

0.50
(1.51)

0.50
(1.23)

1.00
(0.84)




1.00
(0.73)

. . .

0.50
(1.13)

1.00
(0.81)

. .

0.50
(1.30)

0.50
(1.16)

1.00
(0.76)

.

0.50
(1.69)

0.50
(1.45)

0.50
(1.20)

1.00
(0.85)




1.00
(0.73)

. . .

0.50
(1.12)

1.00
(0.81)

. .

0.50
(1.29)

0.50
(1.15)

1.00
(0.76)

.

0.50
(1.69)

0.50
(1.44)

0.50
(1.18)

1.00
(0.85)




1.00
(0.74)

. . .

0.50
(1.12)

1.00
(0.82)

. .

0.50
(1.30)

0.50
(1.16)

1.00
(0.76)

.

0.50
(1.69)

0.50
(1.45)

0.50
(1.18)

1.00
(0.84)




1.00
(0.73)

. . .

0.50
(1.13)

1.00
(0.81)

. .

0.50
(1.31)

0.50
(1.17)

1.00
(0.76)

.

0.50
(1.70)

0.50
(1.47)

0.50
(1.19)

1.00
(0.84)


#Mo 10.00 57.00 40.00 16.06 16.06
Bias −0.0016 −0.0052 −0.0050 −0.0016 −0.0019
Var 11.37 11.08 11.02 11.05 11.09
λ . . . 1.81 .

The table reports the average summary statistics over all Monte Carlo replicates for the recursive SVAR estimator (Cholesky), the continuously
updating estimator (CUE), the continuously updating oracle estimator (CUE-oracle), the continuously updating pGMM estimator (CUE-
LASSO), and the Post-continuously updating pGMM estimator (CUE-LASSO-Post).
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