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Abstract
We consider the simulation of a system of decoupled forward-backward stochastic differential

equations (FBSDEs) driven by a pure jump Lévy process L and an independent Brownian motion
B. We allow the Lévy process L to have an infinite jump activity. Therefore, it is necessary for the
simulation to employ a finite approximation of its Lévy measure. We use the generalized shot noise
series representation method by Rosiński (2001) to approximate the driving Lévy process L. We
compute the Lp error, p ≥ 2, between the true and the approximated FBSDEs which arises from
the finite truncation of the shot noise series (given sufficient conditions for existence and uniqueness
of the FBSDE). We also derive the Lp error between the true solution and the discretization of the
approximated FBSDE using an appropriate backward Euler scheme.

Keywords: Decoupled forward-backward SDEs with jumps; Lévy processes; Shot noise series
representation; Discrete-time approximation; Euler Scheme
2010 Mathematics Subject Classification: 60H10; 60H35; 65C05

1 Introduction
We consider a system of decoupled forward-backward stochastic differential equations (FBSDE) with
jumps of the type

Xt = X0 +
� t

0
b(s,Xs)ds+

� t

0
a(s,Xs)dBs +

� t

0
h(s,Xs−)dLs (1)

Yt = g(XT ) +
� T

t

f(s,Xs, Ys, Zs,Γs)ds−
� T

t

ZsdBs −
� T

t

UsdLs, (2)

for t ∈ [0, T ], where B is a Brownian motion and L is an independent pure jump Lévy process and
Γs =

�
R ρ(e)Useν(de). We discuss the case where L has an infinite jump activity, i.e., ν(R) =∞, where ν

denotes its corresponding Lévy measure. (Assumptions on the functions a, b, f, g, h are discussed below.)
For path simulation it is therefore necessary to employ a finite approximation of the Lévy measure first.
Afterwards we have to discretize the FBSDE. We are interested in path simulation and the associated
error between the true solution and the approximate solution of (1)-(2).

Backward SDEs are a vibrant research topic since the seminal paper of Pardoux & Peng (1990). They
proved existence and uniqueness in the L2 sense of a solution of a BSDE (without jumps) under the
assumptions of square integrability of the terminal condition and Lipschitz continuity of the generator f .
Since then BSDEs and/or FBSDEs have been analyzed in many directions.

One strand of the literature treats extensions of the existence and uniqueness result of Pardoux & Peng
(1990) by relaxing the underlying assumptions or extending the BSDE under consideration. For example,
Tang & Li (1994) and Barles et al. (1997) included jumps into the BSDE. Briand et al. (2003) discussed
the existence and uniqueness in an Lp sense given a Brownian filtration. Buckdahn & Pardoux (1994)
did the same including jumps. Since then several papers have shown Lp existence and uniqueness with a
generalized filtration under weak assumptions, e.g., Kruse & Popier (2016), Yao (2017), and Eddahbi et al.
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(2017). FBSDEs are the Markovian special case of BSDEs where the terminal condition is determined by
the forward SDE.

Another strand of the literature covers possible areas of applications of FBSDEs. For example, FBSDEs
turned out to be useful in mathematical finance, see Karoui et al. (1997) and Delong (2013), in optimal
control, see Tang & Li (1994), or for partial differential equations, see Pardoux (1999) or also the book
Pardoux & Răşcanu (2014).

A third strand is about the discrete-time approximation of FBSDEs, which this paper aims to contribute
to. A popular approach is a backward Euler scheme, see Zhang (2004) and Bouchard & Touzi (2004) who
derived the L2 approximation error of the scheme. Gobet & Labart (2007) generalized this by computing
the Lp error. Bouchard & Elie (2008) derived the L2 error for FBSDEs containing a finite number of
jumps. In the case of an infinite jump activity, Aazizi (2013) proposed a two-step approximation by first
approximating the small jumps by a Brownian motion to have only finitely many big jumps, and second
by discretizing according to Bouchard & Elie (2008). Aazizi (2013) then derived the L2 approximation-
discretization error. The approach follows Kohatsu-Higa & Tankov (2010) who approximated forward
SDEs with infinitely many jumps by finitely many jumps.

This paper contributes to literature in the following way. First, we extend the results of Aazizi (2013)
for the L2 approximation-discretization error to a more general Lp, p ≥ 2 version. Second, instead of
partitioning the Lévy measure into jumps larger or smaller than a certain level we allow for various
truncation functions using the approach of shot noise series representations by Rosiński (2001), which
may be the more efficient way for a certain Lévy process. Third, we enlarge the class of pure jump Lévy
processes to these which do not fulfill the Asmussen & Rosiński (2001) assumption for the approximation
of small jumps. All in all, we obtain a statement for the Lp error for general Lévy processes. We find that
the error depends on N−1/2, where N is the number of time steps, and on the pth and second moments
of the Lévy measure of the discarded jumps.

The remainder of this paper is organized as follows. In Section 2 we discuss the settings in more detail.
In Section 3 we derive an upper bound for the error of the approximation with a finite jump measure. In
Section 4 we present the discrete Euler scheme and prove an upper bound for the discretization error.

2 Settings
This section introduces the setting and notation needed throughout this paper. Let (Ω,F , (Ft)0≤t≤T ,P)
be a filtered probability space such that F0 contains the P-null sets, FT = F , and (Ft) satisfies the
usual assumptions. We assume that (Ft) is generated by a one-dimensional Brownian motion B and
an independent Poisson measure µ on [0, T ] × R with intensity ν(de)dt, where ν is a Lévy measure
on R and R is equipped with the Borel set B := B(R). We assume that the Lévy measure ν satisfies�
R(1∧ |e|2)ν(de) ≤ K <∞, for a constant K > 0 (the Lipschitz constant from below) and that ν(R) =∞.
Furthermore, we assume that �

R
|e|pν(de) <∞,

for p ≥ 2. This implies that the pth moment of Lt for each t ∈ [0, T ] is finite. We denote by µ̃(de,ds) =
µ(de, ds)− ν(de)ds the compensated Poisson measure corresponding to µ.

For p ≥ 2 we define the normed spaces on [r, t], r ≤ t,
• Sp[r,t] is the set of real-valued adapted càdlàg processes Y such that

||Y ||Sp[r,t] := E

[
sup
r≤s≤t

|Ys|p
]1/p

<∞.

• Hp[r,t] is the set of progressively measurable R-valued processes Z such that

||Z||Hp[r,t] := E

(� t

r

|Zs|2ds
)p/21/p

<∞.

• Lpµ,[r,t] is the set of (P ⊗ B)-measurable maps U : Ω× [0, T ]× R→ R such that

||U ||Lp
µ,[r,t]

:= E

(� t

r

�
R
|Us(e)e|2ν(de)ds

)p/21/p

<∞,
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where P is the σ-algebra of (Ft)-predictable subsets of Ω× [0, T ].

• Lpν is the set of measurable maps U : R→ R such that

||U ||Lpν :=
(�

R
|U(e)e|pν(de)

)1/p
<∞.

• The space Ep[r,t] := Sp[r,t] ×Hp[r,t] × Lpµ,[r,t] is endowed with the norm

||(Y, Z, U)||Ep[r,t] :=
(
||Y ||pSp[r,t] + ||Z||pHp[r,t] + ||U ||pLp

µ,[r,t]

)1/p
.

In the remainder we omit the subscripts if [r, t] = [0, T ], e.g., Ep := Ep[0,T ].
We introduce the set of assumptions needed throughout the proofs. Note that these assumptions are

not the minimal ones needed for existence and uniqueness. However they are not overly restrictive and
used frequently throughout the literature, e.g., Bouchard & Elie (2008) and Aazizi (2013).
Assumption 1. (i) Let a : R×R→ R, b : R×R→ R, h : R×R→ R be Lipschitz continuous functions

w.r.t. x and 1
2 -Hölder continuous w.r.t. t, i.e., for a constant K > 0

|b(t, x)− b(t′, x′)|+ |a(t, x)− a(t′, x′)|+ |h(t, x)− h(t′, x′)| ≤ K
(
|t− t′|1/2 + |x− x′|

)
(3)

is satisfied for all (t, x), (t′, x′) ∈ [0, T ]× R.

(ii) Let f : [0, T ]×R×R×R×R→ R such that it is Lipschitz continuous w.r.t. (x, y, z, q) and 1
2 -Hölder

continuous w.r.t. t, i.e., for a constant K > 0

|f(t, x, y, z, q)− f(t, x′, y′, z′, q′)| ≤ K(|t− t′|1/2 + |x− x′|+ |y − y′|+ |z − z′|+ |q − q′|) (4)

is satisfied for all (t, x, y, z, q), (t′, x′, y′, z′, q′) ∈ [0, T ]× R× R× R× R.

(iii) Let ρ : R→ R be a measurable function such that for a constant K > 0

sup
e∈R
|ρ(e)| ≤ K(1 ∧ |e|),

for all e ∈ R.

(iv) For p ≥ 2 the integrability condition

E

[
|g(XT )|p +

� T

0
|f(t, 0, 0, 0, 0)|pdt

]
<∞.

is satisfied.

To prove Theorem 2 we need the following additional assumption. A discussion about it can be found
in Remark 6.
Assumption 2. For each e ∈ R, the function h(x) is differentiable with derivative h′(x) such that the
function

(x, ξ) ∈ R× R 7→ `(x, ξ; e) := ξ2(h′(x)e+ 1)

satisfies one of the following conditions uniformly in (x, ξ) ∈ R× R

`(x, ξ; e) ≥ ξ2K−1 or `(x, ξ; e) ≤ −ξ2K−1.

We next mention some important facts on Lévy processes which we need to approximate the infinite Lévy
measure. We opt for the approximation using series representations which goes back to Rosiński (2001),
see Yuan & Kawai (2021) for a recent overview. Let L be a pure jump Lévy process on (Ω,F , (Ft)0≤t≤T ,P)
with Lévy measure ν as discussed above. One version of the famous Lévy-Itô decomposition states that L
can be written as

Lt =
� t

0

�
R
eµ̃(de, ds) + ξt (5)
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for t ∈ [0, T ], where µ̃ is the associated compensated Poisson measure and ξ ∈ R. Without loss of generality
we assume ξ = 0, otherwise we would include it in the functions b and f in (1)-(2).

Rosiński (2001) proved the useful result that it is possible to express jump-type Lévy processes as an
infinite series. We now summarize his theory of generalized shot noise series representations. We only
present the one-dimensional case (it is of course also available in d dimensions). Suppose that the Lévy
measure ν can be decomposed as

ν(B) =
� ∞

0
P[H(r, V ) ∈ B]dr, B ∈ B,

where V is a random variable in some space V and H : (0,∞) × V → R is a measurable function such
that for every v ∈ V, r 7→ |H(r, v)| is nonincreasing. Then, it holds that

Lt
L=
∞∑
i=1

H

(
Gi
T
, Vi

)
1[0,t](Ti)− tci, (6)

for t ∈ [0, T ], where {Gi}i∈N are the arrival times of a standard Poisson process, {Vi}i∈N are i.i.d. copies
of the random variable V independent of {Gi}i∈N, {Ti}i∈N are i.i.d. uniforms on [0, T ] independent of
{Gi}i∈N and {Vi}i∈N, and {ck}k∈N are centering constants such that

ci =
� i

i−1

�
|x|≤1

xP[H(r, V ) ∈ dx]dr.

Rosiński’s theorem offers several choices for different series representations. The most convenient represen-
tation is case-dependent given the specific Lévy measure. Well-known special cases include the inverse
Lévy measure method, the rejection method or the thinning method, see Yuan & Kawai (2021) for details.

To obtain a feasible numerical algorithm one has to truncate the infinite series in (6). Instead of
truncating the series deterministically, i.e., after n summands, we choose a random truncation

Lnt :=
∑

{i:Gi≤nT}

H

(
Gi
T
, Vi

)
1[0,t](Ti)− tci,

where we cut off all summands if Gi > nT , which depends on the random Poisson arrival times {Gi}. The
reason is that with the random truncation Ln itself is a compound Poisson process and hence a proper
Lévy process with Lévy measure

νn(B) =
� n

0
P[H(r, U) ∈ B]dr, B ∈ B(Rd).

Note that the truncated Lévy measure only describes finitely many jumps, i.e., νn(R) = n <∞. In the
following we use the notation ν̄n(de) := ν(de)− νn(de), which is the Lévy measure of the infinitely many
small jumps that are discarded. The important quantity which determines the approximation error of
FBSDEs will be in terms of the second and pth moments of the Lévy measure ν̄n, which are defined as

σp(n) :=
�
R
|e|pν̄n(de),

for p ≥ 2. For example, σ2(n) is the variance of the discarded jumps if n is the level of truncation. By
µn we denote the Poisson measure with intensity measure νn(de)dt and by µ̄n the Poisson measure with
intensity measure ν̄n(de)dt. Let µ̃n and ˜̄νn be the corresponding compensated Poisson measures. Clearly,
ν = νn + ν̄n, µ = µn + µ̄n and µ̃ = µ̃n + ˜̄µn.
Remark 1. The Lévy measures ν and ν̄n are assumed to be infinite, i.e., ν(R) = ν̄n(R) =∞ and thus we
cannot apply Jensen’s inequality to integrals of the type

�
ν(de). Assumption 1.(iii) provides a necessary

bound. Indeed, by Hölder’s inequality(�
R
ρ(e)Us(e)eν(de)

)2
≤

�
R
Us(e)2e2ν(de)

�
R
ρ(e)2ν(de) ≤ K3

�
R
Us(e)2e2ν(de)

for Us ∈ L2
µ, because

�
(1 + |e|2)ν(de) ≤ K <∞ is bounded by a finite constant.
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We return to the discussion of FBSDEs. We rephrase (1)-(2) given the Lévy-Itô decomposition (5).
We call (X,Y, Z, U) the solution of the original FBSDE

Xt = X0 +
� t

0
b(s,Xs)ds+

� t

0
a(s,Xs)dBs +

� t

0

�
R
h(s,Xs−)eµ̃(de, ds) (7)

Yt = g(XT ) +
� T

t

f(s,Xs, Ys, Zs,Γs)ds−
� T

t

ZsdBs −
� T

t

�
R
Us(e)eµ̃(de, ds), (8)

where Γs =
�
R ρ(e)Us(e)eν(de). A minor generalization is that the process U now may also depend on

e ∈ R. (We could also let h depend on e. The generalization is straightforward which we omit in this
paper.) Note that the last integrand of (8) is written in the product form Us(e)e because this turns out
to be useful in the proofs.

Given the approximation of Lévy processes using truncated series representations we use µ̃n to
approximate the Poisson measure µ̃. We call (Xn, Y n, Zn, Un) the solution of the approximate FBSDE

Xn
t = X0 +

� t

0
b(s,Xn

s )ds+
� t

0
a(s,Xn

s )dBs +
� t

0

�
R
h(s,Xn

s−)eµ̃n(de, ds) (9)

Y nt = g(Xn
T ) +

� T

t

f(s,Xn
s , Y

n
s , Z

n
s ,Γns )ds−

� T

t

Zns dBs −
� T

t

�
R
Uns (e)eµ̃n(de,ds), (10)

where Γns =
�
R ρ(e)U

n
s (e)eνn(de). The aim of the next section is to compute the approximation error

between the original FBSDE (7)-(8) and the approximate FBSDE (9)-(10).
Remark 2. In this paper we restrict ourselves to one-dimensional FBSDEs. The extension to multidimen-
sional FBSDEs (the comparison principle, see Barles et al. (1997), only holds for one-dimensional BSDEs)
is straightforward. We can replace Itô’s formula by its multidimensional counterpart in the proofs and use
the same arguments and bounds to obtain the multidimensional results. We omit these details in the
proofs in favor of a simpler notation.

We end this section with a notational remark. Let Cp denote a generic constant depending only on p
and further constants including K, T , a(0), b(0), f(0), g(0), h(0) and the starting value X0, which may
vary from step to step.

3 Error of the approximation of the pure jump process
In this section we compute the Lp approximation error between the original backward SDE (8) and the
approximate backward SDE (10), defined as

Errn(Y,Z, U) := E

 sup
0≤t≤T

|Yt − Y nt |p +
(� T

0
|Zs − Zns |2ds

)p/2

+
(� T

0

�
R
|Us(e)− Uns (e)|2e2νn(de)ds

)p/2
+
(� T

0

�
R
Us(e)2e2ν̄n(de)ds

)p/21/p

.

Furthermore, we derive an upper bound for the approximation error of the forward SDE defined as

E

[
sup

0≤t≤T
|Xt −Xn

t |p
]
.

In the following proofs, the standard estimate for the solution of the FBSDEs is useful:

||(X,Y, Z, U)||pSp×Ep ≤ Cp(1 + |X0|p), (11)

for p ≥ 2, see Bouchard & Elie (2008). In particular, the forward SDE has the estimate

E

[
sup

0≤t≤T
|Xt|p

]
< Cp(1 + |X0|p). (12)

Because the FBSDEs are decoupled we can analyze the forward and backward components separately.
We begin with an error bound for the forward SDE.
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Proposition 1. Let p ≥ 2. Under Assumption 1 on (Ω,F , (Ft),P)

• there exists a unique solution X of (7) on [0, T ] with X0 = 0,

• for any n ∈ N, there exists a unique solution Xn of (9) on [0, T ] with Xn
0 = 0,

Moreover, there exists a constant Cp such that

E

[
sup

0≤t≤T
|Xt −Xn

t |p
]
≤ Cp

(
σp(n) + σ2(n)p/2

)
. (13)

Proof. The existence and uniqueness is a standard result, see Applebaum (2009). We thus only prove the
bound (13) which is an easy extension of Aazizi (2013).

Let t ≤ T . We plug in the SDEs and use the Burkholder-Davis-Gundy inequality to obtain

E

[
sup

0≤r≤t
|Xr −Xn

r |p
]
≤ Cp

E

(� t

0
|b(s,Xs)− b(s,Xn

s )|ds
)p

+ E

(� t

0
|a(s,Xs)− a(s,Xn

s )|2ds
)p/2

+ E

(� t

0

�
R
|h(s,Xs)− h(s,Xn

s )|2|e|2νn(de)ds
)p/2

+ E

[� t

0

�
R
|h(s,Xs)− h(s,Xn

s )|p|e|pνn(de)ds
]

+ E

(� t

0

�
R
|h(s,Xs)|2|e|2ν̄n(de)ds

)p/2
+E

[� t

0

�
R
|h(s,Xs)|p|e|pν̄n(de)ds

] . (14)

By Jensen’s inequality, the Lipschitz assumption (3) and (11)

E

[
sup

0≤r≤t
|Xr −Xn

r |p
]
≤ Cp

E

[� t

0
|Xs −Xn

s |pds
]

+ E

(� t

0

�
R

(1 + |Xs|2)|e|2ν̄n(de)ds
)p/2

+E

[� t

0

�
R

(1 + |Xs|p)|e|pν̄n(de)ds
]

≤ Cp

� t

0
E

[
sup

0≤r≤t
|Xs −Xn

s |p
]

ds+ σ2(n)p/2 + σp(n)

 ,

Now the result follows from Gronwall’s lemma.

We now turn to the approximation error of the backward SDE. We start with a remark which gives
some insights into the error and next we state and prove our first main result.
Remark 3. Observe that, by the Burkholder-Davis-Gundy inequality,

E

 sup
0≤t≤T

∣∣∣∣∣
� T

t

�
R
Us(e)eµ̃(de,ds)−

� T

t

�
R
Uns (e)eµ̃n(de, ds)

∣∣∣∣∣
p


≤ CpE

 sup
0≤t≤T

∣∣∣∣∣
� T

t

�
R

(Us(e)− Uns (e))eµ̃n(de, ds)
∣∣∣∣∣
p

+ sup
0≤t≤T

∣∣∣∣∣
� T

t

�
R
Us(e)e˜̄µn(de,ds)

∣∣∣∣∣
p

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≤ CpE

(� T

0

�
R
|Us(e)− Uns (e)|2e2νn(de)ds

)p/2
+
(� T

0

�
R
Us(e)2e2ν̄n(de)ds

)p/2
Theorem 1. Let p ≥ 2. Under Assumption (1) on (Ω,F , (Ft),P)

• there exists a unique solution (Y,Z, U) of (8) in Ep,

• for any n ∈ N, there exists a unique solution (Y n, Zn, Un) of (10) in Ep.

Moreover, there exists a constant Cp such that

Errn(Y,Z, U)p ≤ Cp
(
σp(n) + σ2(n)p/2

)
.

Proof. We omit the proof of existence and uniqueness because it can be found in the vast literature. The
standard way is to first show existence and uniqueness in the space E2 and second show that the solution
also belongs to Ep. We refer to Barles et al. (1997), Briand et al. (2003), Buckdahn & Pardoux (1994),
Kruse & Popier (2016) and Eddahbi et al. (2017). Some of their techniques also provide to be useful for
the derivation of the error.

Define

δYt := Yt − Y nt

= g(XT )− g(Xn
T ) +

� T

t

f(Θs)ds−
� T

t

f(Θn
s )ds−

(� T

t

ZsdBs −
� T

t

Zns dBs

)

−

(� T

t

�
R
Us(e)eµ̃(de,ds)−

� T

t

�
R
Uns (e)eµ̃n(de,ds)

)

= δg(XT ) +
� T

t

δf(Θs)ds−
� T

t

δZsdBs

−

(� T

t

�
R
Us(e)e˜̄µn(deds) +

� T

t

�
R
δUs(e)eµ̃n(de, ds)

)
,

where we use the notations δg(XT ) := g(XT )− g(Xn
T ), δUs(e) := Us(e)−Uns (e), δf(Θs) := f(Θs)− f(Θn

s )
and δΘs := (s, δXs, δYs, δZs, δΓs) := (s,Xs −Xn

s , Ys − Y ns , Zs − Zns ,Γs − Γns ).
Step 1: We apply the Itô formula with the C2-function η(y) = |y|p to the process δYt. We use that

∂η

∂y
(y) = py|y|p−2,

∂2η

∂y2 (y) = p|y|p−2 + p(p− 2)|y|p−2 = p(p− 1)|y|p−2.

Hence

|δYt|p = |δg(XT )|p +
� T

t

pδYs|δYs|p−2δf(Θs)ds

− p
� T

t

δYs−|δYs−|p−2δZsdBs −
1
2

� T

t

p(p− 1)|δYs|p−2δZ2
sds

−
� T

t

�
R

(
|δYs− + Us(e)e|p − |δYs−|p − pδYs−|δYs−|p−2Us(e)e

)
µ̄n(de, ds)

−
� T

t

�
R

(
|δYs− + δUs(e)e|p − |δYs−|p − pδYs−|δYs−|p−2δUs(e)e

)
µn(de,ds)

− p
� T

t

�
R
δYs−|δYs−|p−2Us(e)e˜̄µn(de,ds)− p

� T

t

�
R
δYs−|δYs−|p−2δUs(e)eµ̃n(de,ds) (15)

= |δg(XT )|p +
� T

t

pδYs|δYs|p−2δf(Θs)ds

− p
� T

t

δYs−|δYs−|p−2δZsdBs −
1
2

� T

t

p(p− 1)|δYs|p−2δZ2
sds

−
� T

t

�
R

(
|δYs− + Us(e)e|p − |δYs−|p − pδYs−|δYs−|p−2Us(e)e

)
ν̄n(de)ds
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−
� T

t

�
R

(
|δYs− + δUs(e)e|p − |δYs−|p − pδYs−|δYs−|p−2δUs(e)e

)
νn(de)ds

−
� T

t

�
R

(
|δYs− + Us(e)e|p − |δYs−|p

) ˜̄µn(de, ds)−
� T

t

�
R

(
|δYs− + δUs(e)e|p − |δYs−|p

)
µ̃n(de, ds)

We use a Taylor expansion of η(x+ y) around x.

η(x+ y)− η(x)− ∂η

∂x
(x)y = p(p− 1)

� 1

0
(1− r)|x+ ry|p−2|y|2dr

≥ p(p− 1)31−p|y|2|x|p−2.

The inequality follows by Lemma A.4 of Yao (2010), an earlier version of Yao (2017). This implies

−
� T

t

�
R

(
|δYs− + Us(e)e|p − |δYs−|p − pδYs−|δYs−|p−2Us(e)e

)
ν̄n(de)ds

−
� T

t

�
R

(
|δYs− + δUs(e)e|p − |δYs−|p − pδYs−|δYs−|p−2δUs(e)e

)
νn(de)ds

≤− p(p− 1)31−p
� T

t

�
R
|δYs−|p−2|Us(e)|2e2ν̄n(de)ds

− p(p− 1)31−p
� T

t

�
R
|δYs−|p−2|δUs(e)|2e2νn(de)ds

=− p(p− 1)31−p
� T

t

|δYs|p−2||Us||2L2
ν̄n

ds− p(p− 1)31−p
� T

t

|δYs|p−2||δUs||2L2
νn

ds.

Denote κp := p(p− 1)31−p and by κp ≤ p(p−1)
2 we get that (15) becomes

|δYt|p + κp

� T

t

|δYs−|p−2δZ2
sds+ κp

� T

t

|δYs|p−2||Us||2L2
ν̄n

ds+ κp

� T

t

|δYs|p−2||δUs||2L2
νn

ds

≤ |δg(XT )|p +
� T

t

pδYs|δYs|p−2δf(Θs)ds− p
� T

t

δYs−|δYs−|p−2δZsdBs

−
� T

t

�
R

(
|δYs− + Us(e)e|p − |δYs−|p

) ˜̄µn(de, ds)−
� T

t

�
R

(
|δYs− + δUs(e)e|p − |δYs−|p

)
µ̃n(de, ds).

Now we apply the Lipschitz condition (4) of f to obtain

|δYt|p + κp

� T

t

|δYs|p−2δZ2
sds+ κp

� T

t

|δYs|p−2||Us||2L2
ν̄n

ds+ κp

� T

t

|δYs|p−2||δUs||2L2
νn

ds

≤ |δg(XT )|p +Kp

� T

t

δYs|δYs|p−2|δXs|ds+Kp

� T

t

δYs|δYs|p−1ds+Kp

� T

t

δYs|δYs|p−2|δZs|ds

+Kp

� T

t

δYs|δYs|p−2
�
R
ρ(e)|Us(e)|eν̄n(de)ds+Kp

� T

t

δYs|δYs|p−2
�
R
ρ(e)|δUs(e)|eνn(de)ds

− p
� T

t

δYs−|δYs−|p−2δZsdBs

−
� T

t

�
R

(
|δYs− + Us(e)e|p − |δYs−|p

) ˜̄µn(de, ds)−
� T

t

�
R

(
|δYs− + δUs(e)e|p − |δYs−|p

)
µ̃n(de, ds).

Next we use the inequality xy ≤ αx2 + y2/α for α > 0, x, y ≥ 0, the bound of ρ (recall Remark 1), and
that δYs ≤ |δYs| to derive

|δYt|p + κp

� T

t

|δYs|p−2δZ2
sds+ κp

� T

t

|δYs|p−2||Us||2L2
ν̄n

ds+ κp

� T

t

|δYs|p−2||δUs||2L2
νn

ds

≤ |δg(XT )|p +Kp(1 + α+ β + γ + ε)
� T

t

|δYs|pds+ Kp

α

� T

t

|δYs|p−2|δXs|2ds+ Kp

β

� T

t

|δYs|p−2|δZs|2ds

8



+ K4p

γ

� T

t

|δYs|p−2||Us||2L2
ν̄n

ds+ K4p

ε

� T

t

|δYs|p−2||δUs||2L2
νn

ds− p
� T

t

δYs−|δYs−|p−2δZsdBs

−
� T

t

�
R

(
|δYs− + Us(e)e|p − |δYs−|p

) ˜̄µn(de, ds)−
� T

t

�
R

(
|δYs− + δUs(e)e|p − |δYs−|p

)
µ̃n(de, ds).

We make use of the Lipschitz condition (3) on g and Young’s inequality for |δYs|p−2|δXs|2 to get

|δYt|p + κp

� T

t

|δYs|p−2δZ2
sds+ κp

� T

t

|δYs|p−2||Us||2L2
ν̄n

ds+ κp

� T

t

|δYs|p−2||δUs||2L2
νn

ds

≤ Kp|δXT |p +Kp(1 + α+ β + γ + ε+ p− 2
αp

+ p− 2
γp

)
� T

t

|δYs|pds

+ 2K
α

� T

t

|δXs|pds+ Kp

β

� T

t

|δYs|p−2|δZs|2ds+ K4p

γ

� T

t

|δYs|p−2||Us||2L2
ν̄n

ds

+ K4p

ε

� T

t

|δYs|p−2||δUs||2L2
νn

ds− p
� T

t

δYs−|δYs−|p−2δZsdBs

−
� T

t

�
R

(
|δYs− + Us(e)e|p − |δYs−|p

) ˜̄µn(de, ds)

−
� T

t

�
R

(
|δYs− + δUs(e)e|p − |δYs−|p

)
µ̃n(de,ds), (16)

where we choose the constants α, β, γ, ε > 0 arbitrarily such that Kp
β < κp, K

4p
γ < κp and K4p

ε < κp.
We take expectations of (16) to obtain

E

[
|δYt|p + κp

� T

t

|δYs|p−2δZ2
sds+ κp

� T

t

|δYs|p−2||Us||2L2
ν̄n

ds+ κp

� T

t

|δYs|p−2||δUs||2L2
νn

ds
]

≤Cp

σp(n) + σ2(n)p/2 + CpE

[� T

t

|δYs|pds
] . (17)

Then Gronwall’s lemma implies

E
[
|δYt|p

]
≤ Cp

(
σp(n) + σ2(n)p/2

)
. (18)

We substitute (18) into (17) to get

E

[� T

0
|δYs|p−2δZ2

sds+
� T

0
|δYs|p−2||Us||2L2

ν̄n
ds+

� T

0
|δYs|p−2||δUs||2L2

νn
ds
]
≤ Cp

(
σp(n) + σ2(n)p/2

)
,

which implies that

E

[� T

0
|δYs|pds+

� T

0
|δYs|p−2δZ2

sds+
� T

0
|δYs|p−2||Us||2L2

ν̄n
ds+

� T

0
|δYs|p−2||δUs||2L2

νn
ds
]

≤ Cp

(
σp(n) + σ2(n)p/2

)
,

Now we apply the Burkholder-Davis-Gundy inequality and Young’s inequality to the martingales in
(15). First,

E

 sup
0≤t≤T

∣∣∣∣∣
� T

t

δYs−|δYs−|p−2δZsdBs

∣∣∣∣∣
 ≤ CpE

(� T

0
|δYs|2p−2|δZs|2ds

)1/2


≤ 1
4pE

[
sup

0≤t≤T
|δYt|p

]
+ pC2

pE

[� T

0
|δYs|p−2|δZs|2ds

]
. (19)
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Second,

E

 sup
0≤t≤T

∣∣∣∣∣
� T

t

�
R
δYs−|δYs−|p−2Us(e)e˜̄µn(de,ds)

∣∣∣∣∣
 ≤ CpE

(� T

0

�
R
|δYs−|2p−2Us(e)2e2µ̄n(de, ds)

)1/2


≤ 1
4pE

[
sup

0≤t≤T
|δYt|p

]
+ pC2

pE

[� T

0
|δYs|p−2||Us||2L2

ν̄n
ds
]
. (20)

Third,

E

 sup
0≤t≤T

∣∣∣∣∣
� T

t

�
R
δYs−|δYs−|p−2δUs(e)eµ̃n(de,ds)

∣∣∣∣∣
 ≤ CpE

(� T

0

�
R
|δYs−|2p−2δUs(e)2e2µn(de,ds)

)1/2


≤ 1
4pE

[
sup

0≤t≤T
|δYt|p

]
+ pC2

pE

[� T

0
|δYs|p−2||δUs||2L2

νn
ds
]
. (21)

We return to (15) and use the convexity of η to get

|δYt|p ≤ |δg(XT )|p +
� T

t

pδYs|δYs|p−2δf(Θs)ds− p
� T

t

δYs−|δYs−|p−2δZsdBs

− p
� T

t

�
R
δYs−|δYs−|p−2Us(e)e˜̄µn(de,ds)− p

� T

t

�
R
δYs−|δYs−|p−2δUs(e)eµ̃n(de,ds)

+ κp

� T

t

|δYs|p−2δZ2
sds+ κp

� T

t

|δYs|p−2||Us||2L2
ν̄n

ds+ κp

� T

t

|δYs|p−2||δUs||2L2
νn

ds.

When we now follow the previous lines in the proof to bound the δf(Θs) integral and use the bounds
(19), (20) and (21) by the Burkholder-Davis-Gundy inequality we finally derive

E

[
sup

0≤t≤T
|Yt|p

]
≤ Cp

(
σp(n) + σ2(n)p/2

)
.

Step 2: In the second step we prove that

E

(� T

0
|δZs|2ds

)p/2
+
(� T

0

�
R
|Us(e)e|2ν̄n(de)ds

)p/2
+
(� T

0

�
R
|δUs(e)e|2νn(de)ds

)p/2
≤ Cp

(
σp(n) + σ2(n)p/2

)
.

Again we apply Itô’s formula, this time to |δYt|2:

|δY0|2 +
� T

0
|δZs|2ds+

� T

0

�
R
|Us(e)e|2µ̄n(de, ds) +

� T

0

�
R
|δUs(e)e|2µn(de,ds)

= |δYT |2 + 2
� T

0
δYsδf(Θs)ds− 2

� T

0
δYsδZsdBs

− 2
� T

0

�
R
δYs−Us(e)e˜̄µn(de, ds)− 2

� T

0

�
R
δYs−δUs(e)eµ̃n(de, ds).

Next we use the Lipschitz condition (4)
� T

0
|δZs|2ds+

� T

0

�
R
|Us(e)e|2µ̄n(de, ds) +

� T

0

�
R
|δUs(e)e|2µn(de, ds)

≤ |δY∗|2 + 2K
� T

0
|δYs|2ds+ 2K

� T

0
δYs|δXs|ds+ 2K

� T

0
δYs|δZs|ds
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+ 2K
� T

0
δYs

�
R
ρ(e)|Us(e)|eν̄n(de)ds+ 2K

� T

0
δYs

�
R
ρ(e)|δUs(e)|eνn(de)ds

− 2
� T

0
δYsδZsdBs − 2

� T

0

�
R
δYs−Us(e)e˜̄µn(de, ds)− 2

� T

0

�
R
δYs−δUs(e)eµ̃n(de,ds),

where δY∗ := sup0≤t≤T |δYt|.
We again use the inequality xy ≤ αx2 + y2/α for α > 0, x, y ≥ 0 to get the bound

� T

0
|δZs|2ds+

� T

0

�
R
|Us(e)e|2µ̄n(de, ds) +

� T

0

�
R
|δUs(e)e|2µn(de, ds)

≤ |δY∗|2 + 2K(1 + α+ β + γ + ε)
� T

0
|δYs|2ds+ 2K

α

� T

0
|δXs|2ds+ 2K

β

� T

0
|δZs|2ds

+ 2K4

γ

� T

0
||Us||2L2

ν̄n
ds+ 2K4

ε

� T

0
||δUs||2L2

νn
ds− 2

� T

0
δYsδZsdBs

− 2
� T

0

�
R
δYs−Us(e)e˜̄µn(de,ds)− 2

� T

0

�
R
δYs−δUs(e)eµ̃n(de, ds). (22)

Next we take powers of (22) (and use Jensen’s inequality)(� T

0
|δZs|2ds

)p/2
+
(� T

0

�
R
|Us(e)e|2µ̄n(de, ds)

)p/2
+
(� T

0

�
R
|δUs(e)e|2µn(de, ds)

)p/2

≤ Cp|δY∗|p + Cp
(
2K(1 + α+ β + γ + ε)

)p/2 � T

0
|δYs|pds

+ Cp

(
2K
α

)p/2 � T

0
|δXs|pds+ Cp

(
2K
β

)p/2(� T

0
|δZs|2ds

)p/2

+ Cp

(
2K4

γ

)p/2(� T

0
||Us||2L2

ν̄n
ds
)p/2

+ Cp

(
2K4

ε

)p/2(� T

0
||δUs||2L2

νn
ds
)p/2

+ Cp

∣∣∣∣∣
� T

0
δYsδZsdBs

∣∣∣∣∣
p/2

+
∣∣∣∣∣
� T

0

�
R
δYs−Us(e)e˜̄µn(de, ds)

∣∣∣∣∣
p/2

+
∣∣∣∣∣
� T

0

�
R
δYs−δUs(e)eµ̃n(de,ds)

∣∣∣∣∣
p/2
 .

(23)

Because p/2 ≥ 1, we can apply the Burkholder-Davis-Gundy inequality and Young’s inequality to get

CpE

∣∣∣∣∣
� T

0
δYsδZsdBs

∣∣∣∣∣
p/2
 ≤ cpE

(� T

0
|δYs|2|δZs|2ds

)p/4 ≤ c2p
4 E

[
|δY∗|p

]
+ 1

2E

(� T

0
|δZs|2ds

)p/2 ,

CpE

∣∣∣∣∣
� T

0

�
R
δYs−Us(e)e˜̄µn(de, ds)

∣∣∣∣∣
p/2
 ≤ cpE

(� T

0

�
R
|δYs−|2|Us(e)|2e2µ̄n(de, ds)

)p/4
≤
c2p
4 E

[
|δY∗|p

]
+ 1

2E

(� T

0
||Us||2L2

ν̄n
µ̄n(de, ds)

)p/2 ,
CpE

∣∣∣∣∣
� T

0

�
R
δYs−δUs(e)eµ̃n(de, ds)

∣∣∣∣∣
p/2
 ≤ cpE

(� T

0

�
R
|δYs−|2|δUs(e)|2e2µn(de, ds)

)p/4
≤
c2p
4 E

[
|δY∗|p

]
+ 1

2E

(� T

0
||δUs||2L2

νn
µn(de, ds)

)p/2 ,
for some constant cp. Using this for the expectation of (23), we see

1
2E

(� T

0
|δZs|2ds

)p/2+ 1
2E

(� T

0

�
R
|Us(e)e|2µ̄n(de,ds)

)p/2
11



+ 1
2E

(� T

0

�
R
|δUs(e)e|2µn(de,ds)

)p/2
≤ Cp,K,T,α,β,γ,εE

[
|δY∗|p

]
+ Cp,K,T,αE

[
sup

0≤t≤T
|δXt|p

]
+ Cp

(
2K
β

)p/2
E

(� T

0
|δZs|2ds

)p/2
+ Cp

(
2K4

γ

)p/2
E

(� T

0
||Us||2L2

ν̄n
ds
)p/2+ Cp

(
2K4

ε

)p/2
E

(� T

0
||δUs||2L2

νn
ds
)p/2 .

As in Kruse & Popier (2016) (see also Dzhaparidze & Valkeila 1990) we use the bounds

E

(� T

0
||Us||2L2

ν̄n
ds
)p/2 ≤ dpE

(� T

0

�
R
|Us(e)e|2µ̄n(de,ds)

)p/2 ,
E

(� T

0
||δUs||2L2

νn
ds
)p/2 ≤ dpE

(� T

0

�
R
|δUs(e)e|2µn(de,ds)

)p/2 ,
for some constant dp > 0.
All in all we can choose the constants α, β, γ and ε (only depending on p) such that

E

(� T

0
|δZs|2ds

)p/2+ E

(� T

0
||Us||2L2

ν̄n
ds
)p/2+ E

(� T

0
||δUs||2L2

νn
ds
)p/2

≤ CpE
[
|δY∗|p

]
+ CpE

[
sup

0≤t≤T
|δXt|p

]
≤ Cp

(
σp(n) + σ2(n)p/2

)
,

by Step 1 and Proposition 1.

Remark 4. So far we have approximated the Lévy process by discarding small jumps. We now discuss
an alternative where we approximate the small jumps by a scaled Brownian motion and discuss the
approximation error. The idea of approximating small jumps goes back to Asmussen & Rosiński (2001),
for a gentle introduction see Yuan & Kawai (2021). Note that this approach is not generally valid for
every Lévy process and requires additional assumptions given below. Consider an appropriate method
H(r, V ) of the series representation of the Lévy process L (e.g., the inverse Lévy measure method). In
this case we set the truncation parameter n sufficiently large such that only jumps of magnitude less than
ε are discarded. Then, the variance of the discarded jumps is given by

σ2(ε) :=
�
|e|<ε

|e|2ν(de).

Denote by Lεt the large jumps that are simulated and by Lε,t the small jumps that are discarded. Clearly,
Lt = Lεt + Lε,t. We now aim to replace Lε,t by a normal random variable with the proper variance. In
order to do so, let W be a Brownian motion which is independent of L and the Brownian motion B.
Asmussen & Rosiński (2001) showed that Lε,t

σ(ε)
d→ Wt as ε→ 0 for each t ∈ [0, T ] if and only if for each

c > 0
σ(cσ(ε) ∧ ε) ∼ σ(ε), (24)

as ε→ 0. If (24) holds, we replace the small jumps by the random variable σ(ε)Wt at time t. Asmussen
& Rosiński (2001) also showed that σ(ε)

ε → +∞ as ε→ 0 implies (24). Moreover, if the Lévy measure ν
does not have atoms in the neighborhoods around the origin then both conditions are equivalent.

We turn back to the approximation of the FBSDEs. We slightly change the notation of the approximate
SDEs now given in dependence of ε instead of n to highlight the dependence on the extra assumptions
and to distinguish between the version without Gaussian approximation of small jumps. More precisely,
we approximate (7) and (8) by

Xε
t = X0 +

� t

0
b(s,Xε

s )ds+
� t

0
a(s,Xε

s )dBs +
� t

0

�
|e|>ε

h(s,Xε
s−)eµ̃(de,ds) + σ(ε)

� t

0
h(s,Xε

s )dWs,
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Y εt = g(Xε
T ) +

� T

t

f(s,Xε
s , Y

ε
s , Z

ε
s ,Γεs)ds−

� T

t

ZεsdBs −
� T

t

�
|e|>ε

Uεs (e)eµ̃(de,ds)−
� T

t

Ψε
sdWs,(25)

with Λεs :=
�
|e|>ε ρ(e)Uεs (e)eν(de). We again want to control the approximation error for the forward and

the backward SDEs. For the forward SDE we observe that in (14) we have to add the term

E

(� t

0
σ2(ε)h(s,Xε

s )2ds
)p/2 , (26)

and change the remainder of the terms in (14) correspondingly. Then the same Lipschitz argument as
above implies that (26) is bounded by

CpE

(� t

0
σ2(ε)(1 + |Xε

s |2)ds
)p/2 . (27)

We recall the important bound (12) for X and note that it is possible to prove that the same bound (with
a different constant) also holds for Xε, i.e.,

E

[
sup

0≤t≤T
|Xε

t |p
]
< Cp(1 + |X0|p),

where Cp is independent of ε. This implies that (27) is bounded by Cpσ2(ε)p/2 and hence

E

[
sup

0≤t≤T
|Xt −Xε

t |p
]
≤ Cp

(
σp(ε) + σ2(ε)p/2

)
.

For the approximation error of the backward SDE we have to re-define the notion of the error to
include the new term in (25). More precisely, we set

Errε(Y, Z, U)p := E

 sup
0≤t≤T

|Yt − Y εt |p +
(� T

0
|Zs − Zεs |2ds

)p/2
+
(� T

0

�
|e|>ε

|Us(e)− Uεs (e)|2e2ν(de)ds
)p/2

+ sup
0≤t≤T

∣∣∣∣∣
� T

t

�
|e|≤ε

Us(ε)2e2ν(de)ds−
� T

t

Ψε
sdWs

∣∣∣∣∣
p
 .

The modification of the proof of Theorem 1 is straightforward: we only have to add the terms

p

� T

t

(Yt − Y εt )|Yt − Y εt |p−2Ψε
sdWs + p(p− 1)

2

� T

t

|Yt − Y εt |p−2(Ψε
s)2ds

into Itô’s formula and proceed analogously to the proof of Theorem 1. It turns out that the approximation
error is bounded as above by

Errε(Y, Z, U)p ≤ Cp
(
σp(n) + σ2(n)p/2

)
.

To conclude this remark, the error bounds qualitatively do not change with the additional Gaussian
approximation of small jumps as the asymptotic behavior coincides. Of course, the error with Gaussian
approximation is smaller than without (but only the constant Cp is smaller).

4 Error of the discretization of the FBSDE
In this section we discretize the approximated FBSDE (Xn, Y n, Zn, Un) and derive error bounds.
We use a forward-backward Euler scheme for simulation. First we define the regular grid π :=

13



{
tk := kT

N , k = 0, . . . , N
}

on [0, T ]. We do not discuss the discretization of the original FBSDE be-
cause in practice they cannot be simulated and the proofs of this section rely on νn(R) <∞. Starting
with the forward Euler scheme for Xn, we define{

Xn,π
0 := X0

Xn,π
tk+1

:= Xn,π
tk

+ T
N b(tk, X

n,π
tk

) + a(tk, Xn,π
tk

)∆Bk+1 +
�
R h(tk, Xn,π

tk
)eµ̃n(de, (tk, tk+1]),

(28)

where ∆Bk+1 := Btk+1 −Btk are normal random variables.
It is well-known that under Assumption 1.(i) the Euler scheme (28) of the forward SDE has the

discretization error

max
k<N

E

[
sup

t∈[tk,tk+1]
|Xn

t −X
n,π
t |p

]
≤ Cpn−p/2, (29)

for all p ≥ 1, see, e.g., Aazizi (2013).
Next we introduce the backward implicit scheme to approximate (Y n, Zn,Γn). We follow Bouchard &

Elie (2008) and Elie (2006) and define
Z̄n,πt := N

T E
[
Ȳ n,πtk+1

∆Bk+1|Ftk
]

Γ̄n,πt := N
T E

[
Ȳ n,πtk+1

�
R ρ(e)eµ̃n(de, (tk, tk+1])|Ftk

]
Ȳ n,πt := E

[
Ȳ n,πtk+1

|Ftk
]

+ T
N f

(
tk, X

n,π
tk

, Ȳ n,πtk
, Z̄n,πtk

, Γ̄n,πtk
)
,

(30)

on each interval [tk, tk+1), where Y n,πtN
:= g(Xn,π

tN ). If f depends on Y n, the last step of (30) requires a
fixed point procedure. However, since f is Hölder continuous in t and Lipschitz continuous in the other
variables and because f is multiplied by 1/N the approximation error can be neglected for large values of
N .

Given the backward scheme (30), we will analyze the discretization error

Errπ(Y n, Zn, Un) :=
(

sup
0≤t≤T

E
[
|Y nt − Ȳ

n,π
t |p

]
+ ||Zn − Z̄n,π||pHp + ||Γn − Γ̄n,π||pHp

)1/p

and we will show that it converges to zero with order N−1/2.
In the following we discuss some related processes which will be needed throughout the proofs. By the

representation theorem, see Tang & Li (1994), there exist two processes Zn,π ∈ Hp and Un,π ∈ Lpµn such
that

Ȳ n,πtk+1
− E

[
Ȳ n,πtk+1

|Ftk
]

=
� tk+1

tk

Zn,πs dBs +
� tk+1

tk

�
R
Un,πs (e)eµ̄n(de,ds).

Observe that Z̄n,πt and Γ̄n,πt in (30) satisfy

Z̄n,πtk
= N

T
E

� tk+1

tk

Zn,πs ds
∣∣∣∣∣Ftk

 , (31)

Γ̄n,πtk = N

T
E

� tk+1

tk

Γn,πs ds
∣∣∣∣∣Ftk

 ,
and thus coincide with the best H2

[tk,tk+1]-approximations of the processes (Zn,πt ) and (Γn,πt ) :=(�
R ρ(e)Un,πt (e)eνn(de)

)
on [tk, tk+1) by Ftk -measurable random variables (viewed as constant processes

on [tk, tk+1)), i.e.,

E

[� tk+1

tk

|Zn,πs − Z̄n,πtk
|2ds

]
= inf
Zk∈L2(Ω,Ftk )

E

[� tk+1

tk

|Zn,πs − Zk|2ds
]
,

E

[� tk+1

tk

|Γn,πs − Γ̄n,πtk |
2ds
]

= inf
Γk∈L2(Ω,Ftk )

E

[� tk+1

tk

|Γn,πs − Γk|2ds
]
.
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Thus, it holds that

Ȳ n,πtk
= Ȳ n,πtk+1

+ T

N
f(tk, Xn,π

tk
, Ȳ n,πtk

, Z̄n,πtk
, Γ̄n,πtk )−

� tk+1

tk

Zn,πs dBs −
� tk+1

tk

�
R
Un,πs (e)eµ̄n(de, ds).

We define the process Y n,π

Y n,πt := Ȳ n,πtk
− (t− tk)f(tk, Xn,π

tk
, Ȳ n,πtk

, Z̄n,πtk
, Γ̄n,πtk ) +

� t

tk

Zn,πs dBs +
� t

tk

�
R
Un,πs (e)eµ̄n(de, ds)

on [tk, tk+1) and obtain that

N

T
E

[� tk+1

tk

Y n,πs ds|Ftk

]
= E

[
Ȳ n,πtk+1

|Ftk
]

+ T

N
f(tk, Xn,π

tk
, Ȳ n,πtk

, Z̄n,πtk
, Γ̄n,πtk ) = Y n,πtk

= Ȳ n,πtk
. (32)

Thus Ȳ n,πtk
is the best approximation of Y n,π on [tk, tk+1) by Ftk -measurable random variables (viewed as

constant processes on [tk, tk+1)), which explains the notation Ȳ n,π, consistent with the definition of Z̄n,π
and Γ̄n,π.

Furthermore, we need to define the processes (Z̄n, Γ̄n) on each interval [tk, tk+1) by

Z̄nt := T

N
E

� tk+1

tk

Zns ds
∣∣∣∣∣Ftk

 , (33)

Γ̄nt := T

N
E

� tk+1

tk

Γns ds
∣∣∣∣∣Ftk

 .
Remark 5. Z̄ntk and Γ̄ntk are the counterparts Z̄n,πtk

and Γ̄n,πtk for the original backward SDE. They can be
interpreted as the best H2

[tk,tk+1]-approximations of (Znt )tk≤t<tk+1 and (Γnt )tk≤t<tk+1 by an Ftk -measurable
random variables (viewed as constant processes on [tk, tk+1)), i.e.,

E

[� tk+1

tk

|Zns − Z̄ntk |
2ds
]

= inf
Zk∈L2(Ω,Ftk )

E

[� tk+1

tk

|Zns − Zk|2ds
]
,

E

[� tk+1

tk

|Γns − Γ̄ntk |
2ds
]

= inf
Γk∈L2(Ω,Ftk )

E

[� tk+1

tk

|Γns − Γk|2ds
]
.

We now state our second main theorem, which gives a bound for the discretization error.
Theorem 2. Under Assumptions 1 and 2, the discretization error for the backward SDE is bounded by

Errπ(Y n, Zn, Un) ≤ CpN−1/2. (34)

Proof. The proof is an Lp extension of the proofs of Bouchard & Elie (2008), Elie (2006) and Bouchard
& Touzi (2004). For the sake of brevity we set δnYt := Y nt − Y

n,π
t , δnZt := Znt − Z

n,π
t , δnUt(e) :=

Unt (e)− Un,πt (e), δnΓt := Γnt − Γn,πt and δnf(Θt) := f(t,Xn
t , Y

n
t , Z

n
t ,Γnt )− f(tk, Xn,π

tk
, Ȳ n,πtk

, Z̄n,πtk
, Γ̄n,πtk ).

Note that Ȳ n,πtk
= Y n,πtk

by (32) which we will use repeatedly.
The proof is divided in four steps. Before turning to the first step, we discuss some bounds which we

will need throughout:
E
[
|Xn

s −X
n,π
tk
|
]
≤ CpN−p/2, (35)

by (29). Moreover,

E
[
|Y ns − Ȳ

n,π
tk
|p
]
≤ p

(
E
[
|Y ns − Y ntk |

p
]

+ E
[
|δnYtk |p

])
and

E
[
|Zns − Z̄

n,π
tk
|p
]
≤ p

(
E
[
|Zns − Z̄ntk |

p
]

+ E
[
|Z̄ntk − Z̄

n,π
tk
|p
])
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= p

E
[
|Zns − Z̄ntk |

p
]

+ E


∣∣∣∣∣∣NT E

� tk+1

tk

δnZsds
∣∣∣∣∣Ftk

∣∣∣∣∣∣
p



≤ Cp

E
[
|Zns − Z̄ntk |

p
]

+ E

E
N
T

� tk+1

tk

|δnZs|2ds
∣∣∣∣∣Ftk

p/2



≤ Cp

E
[
|Zns − Z̄ntk |

p
]

+Np/2E

(� tk+1

tk

|δnZs|2ds
)p/2


= Cp

(
E
[
|Zns − Z̄ntk |

p
]

+Np/2||δnZ||pHp[tk,tk+1]

)
. (36)

The second equality follows by (31) and (33) and the third and fourth inequalities by Jensen’s inequality.
Analogously, using the bound on ρ, we can prove

E
[
|Γns − Γ̄n,πtk |

p
]
≤ Cp

(
E
[
|Γns − Γ̄ntk |

p
]

+Np/2||δnU ||pLp
µn,[tk,tk+1]

)
. (37)

Step 1: We apply Itô’s formula to |δnYt|p for t ∈ [tk, tk+1),

E
[
|δnYt|p

]
= E

[
|δnYtk+1 |p

]
+ pE

[� tk+1

t

δnYs |δnYs|p−2δnf(Θs)ds
]

− p(p− 1)
2 E

[� tk+1

t

|δnYs|p−2|δnZs|2ds
]

− E

[� tk+1

t

�
R

(
|δnYs− + δnUs(e)e|p − |δnYs−|p − pδnYs− |δnYs−|p−2δnUs(e)e

)
νn(de)ds

]
.

As in the proof of Theorem 1 we use

− E

[� tk+1

t

�
R

(
|δnYs− + δnUs(e)e|p − |δnYs−|p − pδnYs− |δnYs−|p−2δnUs(e)e

)
νn(de)ds

]

≤ − κpE

[� tk+1

t

�
R
|δnYs|p−2|δnUs(e)e|2νn(de)ds

]
,

with κp = p(p− 1)31−p, to derive

E
[
|δnYt|p

]
+ κpE

[� tk+1

t

|δnYs|p−2|δnZs|2ds
]

+ κpE

[� tk+1

t

�
R
|δnYs|p−2|δnUs(e)e|2νn(de)ds

]

≤ E
[
|δnYtk+1 |p

]
+ pE

[� tk+1

t

δnYs |δnYs|p−2δnf(Θs)ds
]
.

We use the Lipschitz condition (4) to get

E
[
|δnYt|p

]
+ κpE

[� tk+1

t

|δnYs|p−2|δnZs|2ds
]

+ κpE

[� tk+1

t

�
R
|δnYs|p−2|δnUs(e)e|2νn(de)ds

]
≤ E

[
|δnYtk+1 |p

]
+ E

[� tk+1

t

δnYs |δnYs|p−2
(
N−1/2 + |Xn

s −X
n,π
tk
|+ |Y ns − Ȳ

n,π
tk
|+ |Zns − Z̄

n,π
tk
|+ |Γns − Γ̄n,πtk |

)
ds
]
.
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We rewrite this inequality to have

E
[
|δnYt|p

]
+ κpE

[� tk+1

t

|δnYs|p−2|δnZs|2ds
]

+ κpE

[� tk+1

t

�
R
|δnYs|p−2|δnUs(e)e|2νn(de)ds

]
≤ E

[
|δnYtk+1 |p

]
+ E

[� tk+1

t

δnYs |δnYs|p−2
(
N−1/2 + |Xn

s −X
n,π
tk
|+ |δnYtk |+ |Y ns − Y ntk |+ |Z

n
s − Z̄ns |+ |Γns − Γ̄ns |

)
ds
]

+ E

[� tk+1

t

δnYs |δnYs|p−2|Z̄ntk − Z̄
n,π
tk
|ds
]

+ E

[� tk+1

t

δnYs |δnYs|p−2|Γ̄ntk − Γ̄n,πtk |ds
]
.

We repeatedly use the inequality ab ≤ αa2 + b2/α to get

E
[
|δnYt|p

]
+ κpE

[� tk+1

t

|δnYs|p−2|δnZs|2ds
]

+ κpE

[� tk+1

t

�
R
|δnYs|p−2|δnUs(e)e|2νn(de)ds

]

≤ E
[
|δnYtk+1 |p

]
+ (α+ β + γ)E

[� tk+1

t

|δnYs|pds
]

+ Cp
α

E

[� tk+1

t

|δnYs|p−2
(
N−1 + |Xn

s −X
n,π
tk
|2 + |δnYtk |2 + |Y ns − Y ntk |

2 + |Zns − Z̄ns |2 + |Γns − Γ̄ns |2
)

ds
]

+ 1
β
E

[� tk+1

t

|δnYs|p−2|Z̄ntk − Z̄
n,π
tk
|2ds

]
+ 1
γ
E

[� tk+1

t

|δnYs|p−2|Γ̄ntk − Γ̄n,πtk |
2ds
]
.

Next we apply Young’s inequality

E
[
|δnYt|p

]
+ κpE

[� tk+1

t

|δnYs|p−2|δnZs|2ds
]

+ κpE

[� tk+1

t

�
R
|δnYs|p−2|δnUs(e)e|2νn(de)ds

]

≤ E
[
|δnYtk+1 |p

]
+ Cp

(
α+ β + γ + 1

α

)
E

[� tk+1

t

|δnYs|pds
]

+ Cp
α

E

[� tk+1

t

(
N−p/2 + |Xn

s −X
n,π
tk
|p + |δnYtk |p + |Y ns − Y ntk |

p + |Zns − Z̄ns |p + |Γns − Γ̄ns |p
)

ds
]

+ 1
β
E

[� tk+1

t

|δnYs|p−2|Z̄ntk − Z̄
n,π
tk
|2ds

]
+ 1
γ
E

[� tk+1

t

|δnYs|p−2|Γ̄ntk − Γ̄n,πtk |
2ds
]
.

Because we know from above that

E

[� tk+1

t

|Z̄ntk − Z̄
n,π
tk
|2ds

]
≤ C2E

[� tk+1

tk

|δnZs|2ds
]

and

E

[� tk+1

t

|Γ̄ntk − Γ̄n,πtk |
2ds
]
≤ C2E

[� tk+1

tk

|δnUs|2ds
]
,

for a constant C2 > 0, we can choose β, γ > 0 independent of N such that

κpE

[� tk+1

t

|δnYs|p−2|δnZs|2ds
]
≥ 1
β
E

[� tk+1

t

|δnYs|p−2|Z̄ntk − Z̄
n,π
tk
|2ds

]

and

κpE

[� tk+1

t

�
R
|δnYs|p−2|δnUs(e)e|2νn(de)ds

]
≥ 1
γ
E

[� tk+1

t

|δnYs|p−2|Γ̄ntk − Γ̄n,πtk |
2ds
]
.
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This and (35) imply that

E
[
|δnYt|p

]
≤ E

[
|δnYtk+1 |p

]
+ Cp

(
α+ 1

α

)
E

[� tk+1

t

|δnYs|pds
]

+ Cp
α

� tk+1

t

E
[
N−p/2 + |δnYtk |p + |Y ns − Y ntk |

p + |Zns − Z̄ns |p + |Γns − Γ̄ns |p
]

ds,

for t ∈ [tk, tk+1) and thus

E
[
|δnYt|p

]
≤ E

[
|δnYtk+1 |p

]
+ Cp

(
α+ 1

α

)
E

[� tk+1

t

|δnYs|pds
]

+ Cp
α

(
N−p/2−1 +N−1E

[
|δnYtk |p

]
+ B̄k

)
,

where
B̄k :=

� tk+1

tk

(
E
[
|Y ns − Y ntk |

p
]

+ E
[
|Zns − Z̄ns |p

]
+ E

[
|Γns − Γ̄ns |p

])
ds.

Using Gronwall’s Lemma, we can choose α independent of N such that

E
[
|δnYt|p

]
≤ E

[
|δnYtk+1 |p

]
+ Cp

(
N−p/2−1 +N−1E

[
|δnYtk |p

]
+ B̄k

)
. (38)

If we take t = tk in (38) we get

E
[
|δnYtk |p

]
≤ E

[
|δnYtk+1 |p

]
+ Cp

(
N−p/2−1 +N−1E

[
|δnYtk |p

]
+ B̄k

)
. (39)

Plugging (39) into (38) iteratively, combined with the Lipschitz condition for the terminal value g(Xn
T )−

g(Xn,π
t ) and the bound (29) we obtain

E
[
|δnYt|p

]
≤ Cp

(
N−p/2 + B̄

)
,

for t ∈ [0, T ], where

B̄ :=
N−1∑
k=0

B̄k.

We can take the supremum over all t and conclude

sup
0≤t≤T

E
[
|δnYt|p

]
≤ Cp

(
N−p/2 + B̄

)
.

Step 2: We also can show that (38) holds for taking the supremum over [tk, tk+1), i.e.,

E

[
sup

tk≤t<tk+1

|δnYt|p
]
≤ E

[
|δnYtk+1 |p

]
+ Cp

(
N−p/2−1 +N−1E

[
|δnYtk |p

]
+ B̄k

)
. (40)

This follows like in Step 1 by using Itô’s formula (without the expectations)

|δnYt|p + κp

� tk+1

t

|δnYs|p−2|δnZs|2ds+ κp

� tk+1

t

�
R
|δnYs|p−2|δnUs(e)e|2νn(de)ds

≤ |δnYtk+1 |p + Cp

(
α+ β + γ + 1

α

) � tk+1

t

|δnYs|pds

+ Cp
α

� tk+1

t

(
N−p/2 + |Xn

s −X
n,π
tk
|p + |δnYtk |p + |Y ns − Y ntk |

p + |Zns − Z̄ns |p + |Γns − Γ̄ns |p
)

ds

+ 1
β

� tk+1

t

|δnYs|p−2|Z̄ntk − Z̄
n,π
tk
|2ds+ 1

γ

� tk+1

t

|δnYs|p−2|Γ̄ntk − Γ̄n,πtk |
2ds+Mt, (41)

where

Mt =
� tk+1

t

δnYs−|δnYs−|p−2δnZsdBs +
� tk+1

t

�
R
δnYs−|δnYs−|p−2δnUs(e)eµ̃n(de, ds)
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denotes the martingales which can be handled with the Burkholder-Davis-Gundy inequality:

E

 sup
tk≤t<tk+1

∣∣∣∣∣
� tk+1

t

δnYs−|δnYs−|p−2δnZsdBs

∣∣∣∣∣
 ≤ CpE

(� tk+1

tk

|δnYs|2p−2|δnZs|2ds
)1/2


≤ 1

4pE
[

sup
tk≤t<tk+1

|δnYt|p
]

+ pC2
pE

[� tk+1

tk

|δnYs|p−2|δnZs|2ds
]

and

E

 sup
tk≤t<tk+1

∣∣∣∣∣
� tk+1

t

�
R
δnYs−|δnYs−|p−2δnUs(e)eµ̃n(de, ds)

∣∣∣∣∣


≤CpE

(� tk+1

tk

�
R
|δnYs−|2p−2δnUs(e)2e2µn(de,ds)

)1/2


≤ 1
4pE

[
sup

tk≤t<tk+1

|δnYt|p
]

+ pC2
pE

[� tk+1

tk

�
R
|δnYs|p−2|δnUs(e)|2e2νn(de)ds

]
.

Taking the supremum and expectations of (41), using the above two bounds and proceeding as in Step 1
yields (40).
Step 3: The next step controls

E

(� tk+1

tk

|δnZs|2ds
)p/2

+
(� tk+1

tk

�
R
|δnUs(e)|2e2νn(de)ds

)p/2 .
We start by applying Itô’s formula to |δnYt|2 on [tk, tk+1)

|δnYt|2 +
� tk+1

t

δnZ2
sds+

� tk+1

t

�
R
δnUs(e)2e2µn(de,ds)

= |δnYtk+1 |2 + 2
� tk+1

t

δnYs δ
nf(Θs)ds

− 2
� tk+1

t

δnYs− δ
nZsdBs − 2

� tk+1

t

�
R
δnYs− δ

nUs(e)eµ̃n(de,ds).

The Lipschitz and Hölder condition on f then imply

|δnYt|2 +
� tk+1

t

δnZ2
sds+

� tk+1

t

�
R
δnUs(e)2e2µn(de, ds)

≤ |δnYtk+1 |2 + 2
� tk+1

t

δnYs

(
N−1/2 + |Xn

s −Xn,π
s |+ |Y ns − Ȳ

n,π
tk
|+ |Zns − Z̄

n,π
tk
|+ |Γns − Γ̄n,πtk |

)
ds

− 2
� tk+1

t

δnYs− δ
nZsdBs − 2

� tk+1

t

�
R
δnYs− δ

nUs(e)eµ̃n(de, ds).

Again we use the inequality ab ≤ αa2 + b2/α to get

|δnYt|2 +
� tk+1

t

δnZ2
sds+

� tk+1

t

�
R
δnUs(e)2e2µn(de,ds)

≤ |δnYtk+1 |2 + (α+ β + γ)
� tk+1

t

|δnYs|2ds

+ Cp
α

� tk+1

t

(
N−1 + |Xn

s −Xn,π
s |2 + |δnYtk |2 + |Z̄ntk − Z̄

n,π
tk
|2 + |Γ̄ntk − Γ̄n,πtk |

2
)

ds

+ Cp
α

� tk+1

t

|Y ns − Y ntk |
2ds+ Cp

β

� tk+1

t

|Zns − Z̄ns |2ds+ Cp
γ

� tk+1

t

|Γns − Γ̄ns |2ds

− 2
� tk+1

t

δnYs− δ
nZsdBs − 2

� tk+1

t

�
R
δnYs− δ

nUs(e)eµ̃n(de, ds).
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Next we take powers

|δnYt|p +
(� tk+1

t

δnZ2
sds
)p/2

+
(� tk+1

t

�
R
δnUs(e)2e2µn(de, ds)

)p/2

≤ Cp|δnYtk+1 |p + Cp(α+ β + γ)p/2
∣∣∣∣∣
� tk+1

t

|δnYs|2ds
∣∣∣∣∣
p/2

+ Cp
αp/2

N−p + Cp
αp/2

∣∣∣∣∣
� tk+1

t

|Xn
s −Xn,π

s |2ds
∣∣∣∣∣
p/2

+ Cp
αp/2

N−p/2|δnYtk |p + Cp
βp/2

N−p/2|Z̄ntk − Z̄
n,π
tk
|p + Cp

γp/2
N−p/2|Γ̄ntk − Γ̄n,πtk |

p

+ Cp
α

∣∣∣∣∣
� tk+1

t

(
|Y ns − Y ntk |

2 + |Zns − Z̄ns |2 + |Γns − Γ̄ns |2
)

ds
∣∣∣∣∣
p/2

+ Cp

∣∣∣∣∣
� tk+1

t

δnYs− δ
nZsdBs

∣∣∣∣∣
p/2

+ Cp

∣∣∣∣∣
� tk+1

t

�
R
δnYs− δ

nUs(e)eµ̃n(de, ds)
∣∣∣∣∣
p/2

,

and expectations to get

E
[
|δnYt|p

]
+ E

(� tk+1

t

δnZ2
sds
)p/2

+
(� tk+1

t

�
R
δnUs(e)2e2µn(de, ds)

)p/2
≤ CpE

[
|δnYtk+1 |p

]
+ Cp(α+ β + γ)p/2E

∣∣∣∣∣
� tk+1

t

|δnYs|2ds
∣∣∣∣∣
p/2
+ Cp

αp/2
N−p

+ Cp
αp/2

E

∣∣∣∣∣
� tk+1

t

|Xn
s −Xn,π

s |2ds
∣∣∣∣∣
p/2
+ Cp

αp/2
N−p/2E

[
|δnYtk |p

]
+ Cp
βp/2

N−p/2E
[
|Z̄ntk − Z̄

n,π
tk
|p
]

+ Cp
γp/2

N−p/2E
[
|Γ̄ntk − Γ̄n,πtk |

p
]

+ Cp
α

E

∣∣∣∣∣
� tk+1

tk

(
|Y ns − Y ntk |

2 + |Zns − Z̄ns |2 + |Γns − Γ̄ns |2
)

ds
∣∣∣∣∣
p/2


+ CpE

∣∣∣∣∣
� tk+1

t

δnYs− δ
nZsdBs

∣∣∣∣∣
p/2
+ CpE

∣∣∣∣∣
� tk+1

t

�
R
δnYs− δ

nUs(e)eµ̃n(de, ds)
∣∣∣∣∣
p/2
 . (42)

We discuss the terms in (42) separately. First, we recall that by (39) E
[
|δnYtk |p

]
≤ E

[
|δnYtk+1 |p

]
+

Cp

(
N−p/2−1 +N−1E

[
|δnYtk |p

]
+ B̄k

)
and, by (40) and additionally invoking Jensen’s inequality,

E

∣∣∣∣∣
� tk+1

t

|δnYs|2ds
∣∣∣∣∣
p/2
 ≤ CpN−p/2E[ sup

tk≤s<tk+1

|δnYs|p
]

≤ Cp

(
N−p/2E

[
|δnYtk+1 |p

]
+N−p−1 +N−p/2−1E

[
|δnYtk |p

])
.

Second, in a similar manner, the term with the forward SDE X is bounded by CpN−p. Third, recalling
(36) and (37) we note that

N−p/2E
[
|Z̄ntk − Z̄

n,π
tk
|p
]
≤ Cp||δnZ||pHp[tk,tk+1]

and
N−p/2E

[
|Γ̄ntk − Γ̄n,πtk |

p
]
≤ Cp||δnU ||pLp

µn,[tk,tk+1]
.

Fourth, by Jensen’s inequality

E

∣∣∣∣∣
� tk+1

tk

(
|Y ns − Y ntk |

2 + |Zns − Z̄ns |2 + |Γns − Γ̄ns |2
)

ds
∣∣∣∣∣
p/2
 ≤ CpN−p/2+1B̄k.
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Finally, we can apply the Burkholder-Davis-Gundy inequality and Young’s inequality to the martingales
in (42):

CpE

∣∣∣∣∣
� tk+1

t

δnYs− δ
nZsdBs

∣∣∣∣∣
p/2


≤ CpE

(� tk+1

tk

|δnYs−|2 |δnZs|2ds
)p/4

≤
C2
p

4 E

[
sup

tk≤s<tk+1

|δnYs|p
]

+ 1
2E

(� tk+1

tk

|δnZs|2ds
)p/2

≤ CpE
[
|δnYtk+1 |p

]
+ Cp

(
N−p/2−1 +N−1E

[
|δnYtk |p

]
+ B̄k

)
+ 1

2E

(� tk+1

tk

|δnZs|2ds
)p/2 ,

where the last inequality follows by (40). Analogously,

CpE

∣∣∣∣∣
� tk+1

t

�
R
δnYs− δ

nUs(e)eµ̃n(de, ds)
∣∣∣∣∣
p/2


≤ CpE

(� tk+1

tk

|δnYs−|2 |δnUs(e)e|2µn(de, ds)
)p/4

≤
C2
p

4 E

[
sup

tk≤s<tk+1

|δnYs|p
]

+ 1
2E

(� tk+1

tk

|δnUs(e)e|2µn(de,ds)
)p/2

≤ CpE
[
|δnYtk+1 |p

]
+ Cp

(
N−p/2−1 +N−1E

[
|δnYtk |p

]
+ B̄k

)
+ 1

2E

(� tk+1

tk

|δnUs(e)e|2µn(de, ds)
)p/2 .

We again use

E

(� tk+1

tk

|δnUs(e)e|2νn(de)ds
)p/2 ≤ dpE

(� tk+1

tk

|δnUs(e)e|2µn(de,ds)
)p/2

and conclude that, for t = tk, we can choose constants α, β and γ independent of N such that (42) can
be simplified to

E
[
|δnYtk |p

]
+ E

(� tk+1

tk

δnZ2
sds
)p/2

+
(� tk+1

tk

�
R
δnUs(e)2e2µn(de,ds)

)p/2
≤ CpE

[
|δnYtk+1 |p

]
+ Cp

(
N−p/2−1 +N−1E

[
|δnYtk |p

]
+ B̄k

)
. (43)

Now we can sum up equation (43). Together with (39) and the Lipschitz condition for the terminal value
we obtain

E

(� T

0
δnZ2

sds
)p/2

+
(� T

0

�
R
δnUs(e)2e2µn(de,ds)

)p/2 ≤ Cp (N−p/2 + B̄
)
.

Joining Step 1 with Step 3 then implies that

Errπ(Y n, Zn, Un)p ≤ Cp
(
N−p/2 + B̄

)
.

Step 4: It remains to show that B̄ ≤ CpN
−p/2. For the first term in B̄, we recall that Y n solves (10)

and hence
E
[
|Y nt − Y ntk |

p
]
≤ Cp

� t

tk

E
[
|f(Ωs)|p + |Zs|p +

�
R
|Us(e)e|pν(de)

]
ds.
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The Lipschitz property of f combined with (11) implies
N−1∑
k=0

� tk+1

tk

E
[
|Yt − Ytk |p

]
dt ≤ CpN−p/2.

For the second and third term of B̄ we exactly follow the proofs of Bouchard & Elie (2008) given
the additional Assumption 2. Bouchard & Elie (2008, Propositions 4.5-4.6 & Theorem 2.1) proved that
the regularities of Zn and Γn are bounded by C2N

−1 for p = 2. Replacing p = 2 with a p ≥ 2 is a
straightforward extension of their proofs. This implies B̄ ≤ CpN−p/2 and finally the statement follows by
joining Steps 1-4.

Remark 6. Following the argument of Bouchard & Elie (2008), if Assumption 2 does not hold the bound
the error bound (34) is not valid anymore because the regularity in Z, i.e., ||Zn − Z̄n||pHp is not bounded
by CpN−p/2 in this case. However, one can show without using Assumption 2 that, for any ε > 0, there
exists a constant Cp,ε such that

||Zn − Z̄n||pHp ≤ Cp,εN
−p/2+ε.

Note that the regularities of Y n and Γn remain unaffected whether Assumption 2 is fulfilled or not, i.e.,
||Y n − Ȳ n||pSp ≤ CpN

−p/2 and ||Γn − Γ̄n||pHp ≤ CpN
−p/2 even without Assumption 2. Furthermore, if

either a ≡ 0, or the generator f is independent of Z Theorem 2 holds without Assumption 2.
Remark 7. It could be tempting to choose the random times when the jumps of the Lévy process
occur given its series representation as the simulation grid for the FBSDE. This is slightly easier to
implement because the jumps H(GiT , Vi) are simply ordered by the size of the Ti’s. However this approach
has the disadvantage that we now deal with a non-regular grid π̃ : 0 = t̃0 < t̃1 < · · · < t̃N = T and
|π̃| := max1≤k≤N |t̃k − t̃k−1| > T

N = |π|. Theorem 2 then reads Errπ̃(Y n, Zn, Un) ≤ Cp|π̃|1/2 which is
larger than for the regular grid. Thus, employing a regular grid is advisable.
Remark 8. Instead of the implicit scheme (30), one could use an explicit scheme where we replace Ȳ n,πtk

by Ȳ n,πtk+1
in the argument of h. The advantage is that we do not need a fixed-point procedure in this

case. One disadvantage is that the conditional expectations are more difficult to estimate. We refer to
Bouchard & Elie (2008) and Elie (2006) for details.
Remark 9. Besides the backward Euler scheme, Aazizi (2013) proposed a second scheme based on
Malliavin calculus techniques. The author showed that the Lp error between a BSDE with finitely many
jumps and the discrete version using Malliavin derivatives is bounded by Cpn1/2(1/ logn−1) for p ≥ 2.
Aazizi (2013) derived the L2 error between the original SDE with infinite jump activity and the discrete
scheme. With Theorem 1 at hand, one could easily derive the Lp error adopting Theorem 4.3 of Aazizi
(2013). We omit the details here but note that although the Malliavin scheme has a larger error than the
Euler scheme it has the advantage that it can be also used when the terminal value is not given by the
forward SDE.

Using Theorems 1 and 2, we deduce a bound for the approximation-discretization error between the
original backward SDE (8) and the scheme (30) which is defined as

Errn,π(Y,Z, U) :=
(

sup
0≤t≤T

E
[
|Yt − Ȳ n,πt |p

]
+ ||Z − Z̄n,π||pHp + ||Γ− Γ̄n,π||pHp

)1/p

.

The approximation-discretization error for the forward SDE

max
k<N

E

[
sup

t∈[tk,tk+1]
|Xt −Xn,π

t |p
]
≤ Cp

(
n−p/2 + σp(n) + σ2(n)p/2

)
,

is straightforward combining (13) with (29).
Corollary 1. Under Assumptions 1 and 2, the approximation-discretization error is bounded by

Errn,π(Y,Z, U) ≤ Cp
(
N−1/2 + σp(n)1/p + σ2(n)1/2

)
.

Proof. This is an easy consequence because

Errn,π(Y, Z, U)p ≤ Cp

(
sup

0≤t≤T
E
[
|Yt − Y nt |p + |Y nt − Ȳ

n,π
t |p

]
+ ||Z − Zn||pHp + ||Zn − Z̄n,π||pHp
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+ ||Γ− Γn||pHp + ||Γn − Γ̄n,π||pHp

)
.

Using Remark 1 we can show(�
R
ρ(e)(Us(e)− Uns (e))eνn(de)

)2
≤ Cp

�
R

(Us(e)− Uns (e))2e2νn(de)

and (�
R
ρ(e)Us(e)eν̄n(de)

)2
≤ Cp

�
R
Us(e)2e2ν̄n(de)

which imply

||Γ− Γn||pHp ≤ CpE

(� T

0

�
R

(Us(e)− Uns (e))2e2νn(de)ds
)p/2

+
(� T

0

�
R
Us(e)2e2ν̄n(de)ds

)p/2 ,
and thus the result follows.

We end this paper with some remarks about implementation of the scheme in practice.
Remark 10. If we aim to approximate the FBSDE (1)-(2) by using the Euler scheme together with
truncated series representations we can do the following. First, we simulate the forward SDE according to{

Xn,π
0 := X0

Xn,π
tk+1

:= Xn,π
tk

+ T
N b(tk, X

n,π
tk

) + a(tk, Xn,π
tk

)∆Bk+1 + h(tk, Xn,π
tk

)∆Lnk+1,

where ∆Bk+1 := Btk+1 −Btk and

∆Lnk+1 := Lntk+1
− Lntk =

∑
{i:Gi≤nT}

H

(
Gi
T
, Vi

)
1[tk,tk+1](Ti)− tci.

Second, we modify the Euler scheme (30) to

Z̄n,πt := N
T E

[
Ȳ n,πtk+1

∆Bk+1|Ftk
]

Ūn,πt := N
T E

[
Ȳ n,πtk+1

∆Lnk+1|Ftk
]

Γ̄n,πt :=
�
R ρ(e)Ūn,πt eνn(de)

Ȳ n,πt := E
[
Ȳ n,πtk+1

|Ftk
]

+ T
N f

(
tk, X

n,π
tk

, Ȳ n,πtk
, Z̄n,πtk

, Γ̄n,πtk
)
.

Remark 11. The proposed scheme is not fully implementable in practice. One key step is the computation
of the conditional expectations in (30) which has to be performed numerically. There are several methods
to estimate these. Among them there are nonparametric kernel regression (Bouchard & Touzi 2004, Lemor
et al. 2006), Malliavin regression (Bouchard & Touzi 2004), quantization (Bally & Pagès 2003) and some
other approaches. We discuss the nonparametric regression approach in some more detail which works by
simulating 1 ≤ m ≤M paths Xn,π,m of Xn,π and initialize Ȳ n,π,mT = g(Xn,π,m

T ). Then we regress Ȳ n,π,mtk+1

and Ȳ n,π,mtk+1
∆Bmk+1 and Ȳ n,π,mtk+1

�
R ρ(e)eµ̃n,m(de, (tk, tk+1]) on Xn,π,m

tk
. Details are presented in Elie (2006).

To compute the Lp error between the original backward SDE and the numerical backward SDE taking
into account approximation of the jump process, discretization and estimation of conditional expectations
we have to sum up the error of Corollary 1, the error of a localization procedure and the statistical error
by the kernel regression. Elie (2006) derived the Lp error of the localization procedure. Furthermore, Elie
(2006) derived the statistical error which is in terms of the Euclidean norm on RM . Since all norms on
RM are equivalent it is not much work to deduce a bound for the error in terms of the p-norm. All in all,
if we choose some other parameters in the algorithm large enough, we can conclude that the total error is
of the order N−1/2 + σp(n)1/p + σ2(n)1/2 under Assumptions 1 and 2.
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