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Imke Rhoden, Daniel Weller, and Ann-Katrin Voit!

Spatio-temporal Dynamics of European
Innovation - An Exploratory Approach
via Multivariate Functional Data Cluster
Analysis

Abstract

We apply a functional data approach for mixture model-based multivariate innovation clustering to
identify different regional innovation portfolios in Europe. Innovation concentration is considered as
pattern of specialization among innovation types. We examine patent registration data and combine them
with other innovation and economic data across 225 regions, 13 years and 8 patent classes. This allows us
to identify innovation clusters that are supported by several innovation- and economy-related variables.
We are able to form several regional clusters according to their specific innovation types. The regional
innovation cluster solutions for IPC classes for ‘fixed constructions’ and ‘mechanical engineering’ are
verycomparable, and relatively less comparablefor ‘chemistryand metallurgy’. The clustersforinnovations
in ‘physics’ and ‘chemistry and metallurgy’ are similar; innovations in ‘electricity’ and ‘physics’ show
similar temporal dynamics. For all other innovation types, the regional clustering is different and
innovation concentrations in the respective regions are unique within clusters. By taking regional profiles,
strengths and developments into account, options for improved efficiency of location-based regional
innovation policyinorderto promotetailored and efficientinnovation-promoting programs can be derived.
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1 Introduction

Innovation is a key driver of Europe’s sustainable economic success. There are various national and
supranational approaches for delineating innovation profiles and analyzing the European innovation
landscape on several levels, the most renowned being the European Innovation Scoreboard (EIS) and
its regional equivalent (RIS). Ranking regions according to their innovation strength is important for
identifying and analyzing the characteristics ofinnovation leaders, so conditions in lagging regions con-
ditions can be improved, e.g. via regional or innovation policy (European Commission, 2021b, 2021c).

As innovation is a highly complex matter, it is crucial to focus on regional innovation profiles and align
policy programs with regional characteristics, as there are several and significant difficulties in target-
ing anincreasein innovation activity and possibly resulting economic growth. Furthermore, there is a
need to look below national levels and investigate regional strengths and weaknesses for a more effi-
cient adaptation of policy mixes better, as policies are often not able to address regional needs (Izsak
et al., 2013). Insights into specific branches of innovation via patent analysis, supported by the inclu-
sion of further knowledge indicators and regional characteristics, can provide levers to improving pol-
icies, thus harnessing not only innovation potentials but alsoregional potentials from a European co-
hesion policy (European Commission, 2021a). Thorough investigations and a precise understanding of
the different types of innovation, their place of inception and their evolution over time are crucial for
aiding Europe's path to a sustainable economic future.

In this paper, we apply a mixture model-based clustering analysis for multivariate functional data pro-
posed by Schmutz et al. (2021) to explore the spatio-temporal dynamics of European regional innova-
tion activities and uncover groups of regions with homogeneous innovation profiles. To achieve this,
the analysis is based on the functional data analysis paradigm (FDA), which allows us to analyze latent
functional forms, inherent dynamics and other features intime series of multiple innovation indicators
too subtle to be captured by classicaltime series or clustering approaches. As innovation is a hetero-
genous phenomenon itself, we use several time series for main patent classes as proxies for innovation
activity as well as other closely related indicators to generate individual innovation profiles for Eu-
rope’s regions.

The paperis structured as follows: Inthe second section, a theoretical overview of relevant innovation
literature with respect to general principles and related approaches for identifying innovation clusters
is given. The third section provides a description of the time series data used for the statistical analysis,
the general principles of the functional data paradigm and the mixture model-based multivariate func-
tional clustering algorithm applied. A presentation of the clustering results is given in the fourth sec-
tion, before the paper concludes with a discussion in the fifth section.

2 Theory

2.1 Generalinnovation theory

In economics, the spatial dimension has played an increasingly important role since the beginning of
the 1990s and the publication of ‘Geographyand Trade’ (Krugman, 1991) widened the economic view
for a better understanding of the global economy through its spatial dimension.

While some countries may experience lower growth or investment rates, other countries may suffer
from higher unemployment rates. Krugman linked it globally and explained that global competition
leads to more challenges that need to be considered. In order to have a sufficient number of qualified
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jobs for their population, countries have to consider their advantages or disadvantages due tolocation
and innovation. In modern economies, more companies are forced to export their products and are
therefore subject toa higher level of international competitiveness. To manage this successfully, com-
panies likely settle into industry clusters and may consider relocating to gainfrom location advantages.

Krugman also shows the crucial role of innovation in economies by saying ‘[t]he more you know, the
more you can learn’ (Krugman, 1979, p. 259). He pointed out that countries have the obligation to find
regional strengths and weaknesses to ensure their success, which depends to a large extend on the
development of innovation-promoting structures.

Accordingly, spatial factors and innovation activities are closely connected as e.g. seen in the Silicon
Valley area in California, USA (Sturgeon, 2003). This leads to the following assumptions (Koschatzky,
2001):

e Regionalfactors influence the operationalinnovation process

e |nnovation processes have a regional origin

e |nnovation processes are spatially differentiated

e Spatial proximity promotes innovation-relevant interactions

e Regionalinnovation and technology policy support measures are effective

Following Christaller (1933), Losch (1940) and their theory of central places for industrial activity, the
clustering of companies is based on their spatial interdependencies. Additionally, Thiinen (1966) de-
scribed the minimization of transportation costs as an advantage of central locations and regional vi-
cinity.

With regardto the innovation-related spatial factors, Krugman also considers transport costs to have
an effect on regional growth rates (Koschatzky, 2001) as producers and consumers make spatial deci-
sions based on prices and revenues to optimize their profits. Consequently, producers will try to in-
crease profits by minimizing the costs of transportation, which can lead to a relocation of business.
This logic applies to the end users as well, as they will relocate their demand to the regions with the
lowest transport costs. As companies are more likely produce most efficiently where their required
production factors are sufficiently available, they have a latent incentive to locate in their customer’s
geographical vicinity. This will result in low transport costs for both parties, the supply side and the
demand side. However, it has to be considered that transport costs have been significantly reduced by
transportation technology and have consequently become less important in many industries in recent
years (Fernau, 1997).

In terms of spatial clustering, agglomeration effects are of crucial relevance as several advantages as
well as disadvantages canarise from localized concentrations of companies. Toreach optimal levels of
competitiveness within clusters, both internal and external agglomeration effects have to be differen-
tiated and considered. Internal agglomeration effects are also known as economies of scaleand pro-
vide advantages reducing fixed costs by the production of larger quantities of goods, while external
agglomeration effects refer to the proximity of companies in the same value chain. As clearly shown
by (Marshall, 1920), companies with similar activities can profit from sharing access to skilled labor-
by-labor pooling, sharing inputs from common suppliers, and benefiting from knowledge spillovers.
Thus, companies can maximize their profits by shared use of workers, infrastructure, services as well
as information. If a company has access toall their key resources in the vicinity, they can experience a
competitive advantage (Sraffa & Dobb, 1951). Potential disadvantages of agglomeration effects can
arise in form of higher environmental pollution (Breuste & Keidel, 2008), increasing property prices,
higher competition in the local area, or overstrainedinfrastructure.
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Further effects of agglomeration are localization and urbanization (Blume, 2004), where localization
effects can be described as advantages arising from a company’s proximity to other companies of its
industry. Those advantages can be e.g. an industry-relevant job market in the area, research and de-
velopment facilities and therefore patenting activity or the emergence of a specialized supply industry
(Alcacer & Chung, 2014). Urbanization effects develop over time as different industries lead to more
infrastructure as well as urbanization of affected areas and therefore to an increase in economic activ-
ity in general (Blume, 2004).

As some regions in Europe are highly successful and others are lacking behind, theories of innovation
can provide means to identify and understand the disparities in terms of employment, infrastructure,
availability of services and economic success in general. Often disparities arise due to the unequal dis-
tribution of natural resources, decisions of the public sector or other locational reasons. Within met-
ropolitan areas, disparities can be seen between central and peripheral areas with peripheral areas
increasing fasterin value than the centers. Therefore, migration and relocations from centers to sub-
urbanareas can be seen, which can potentiallylead to devaluation of certain areas and neighborhoods,
thus creating social inequalities (Pfliger, 2019).

Inthe European Union, regional development is a key factor for equal living conditions in and between
the member states. Therefore, the EU targets economic development via spatial planning, state plan-
ning and regional planning. Particularly the European Regional Development Fund (ERDF) and the
Trans-European Networks (TEN) are means to detect national and regional disparities and to support
the realization of equal living conditions. The newest European funding programs and a key focus of
the European Commission is the European Green Deal, which aims to fight environmental degradation
and climate change, while simultaneously searching for new and sustainable growth strategies to be
competitive in the future. The European Green Deal concentrates on (European Commission, 2019):

e Investing in environmentally friendly technologies

e Supporting industries to innovate

e Introducing cleaner, cheaper and healthier forms of private and public transport
e Decarbonizing energy production

e Ensuring higher energy efficiency of buildings

e Improving global environmental standards via international cooperation

To achieve these goals, the EU must ensure a high level of labor skills as well as high levels of invest-
ment in researchand development. Given this focus, it is vital to gain a precise understanding of the
spatio-temporal dynamics within the European innovation system. The potential of innovation for mit-
igating climate change through new, efficient technologies that promote sustainable growth can help
to avoid a lock-in and make innovation “greeninnovation” (Aghion et al., 2009). This applies not only
to identifying the types and drivers of Member States’ innovation strengths, but also to investigating
locational differences in innovation. More knowledge about the structure of innovation and its place
of inception can be used to understand innovation emergence as well as its inherent geographical
nature, provide insights to the success of policy programs and furthermore help structure future policy
programs for a sustainable innovation climate in the EU.

2.2 State of the Art

The topics of innovation, geography, clustering as wellas their interdependencies can be investigated
by a variety of approaches. If innovation is considered in the context with geography and economic
growth, there is no single theoretical framework, as there are too many interlinkages between these
topics find a universal approach (Acs & Varga, 2002). Thus, there are multiple schools of thought
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regarding the temporal and spatial evolution of innovative activity (Rhoden, 2019). In this paper, we
focus on approaches related to investigating innovation clustering like Fornahl and Brenner (2009),
who find that differing types of innovation cluster differently, which points tothe relevance of consid-
ering innovation as a differentiated subject.

Knowledge spillovers are another link between innovation and geography to consider, as knowledge
(tacit or understanding)is often only transferred locally or regionally. Innovation is thus prone to spill-
over, as researchshows (e.g. McCann and Simonen (2005), Constantini et al. (2013) and Aldieri et al.
(2019)). This is confirmed by Bottazziand Peri(2003), who correlate data on R&D and patents and find
that R&D spending can increase innovation output, but only limited to a local scale. Giannitsis and
Kager (2009) analyze links between technology and specialization as can determine market positions
and competitive success. Thus, it is vital to know how static and dynamic conditions interact and how
they contribute to emergence of innovation. They note that it is important for policy to adapt effec-
tively and timely to changing circumstances, as technology specification can drive industry and thus
competitive advantages. Here, policy can promote progress through innovation.

Capello and Lenzi (2013) search for patterns of knowledge, attitudes, and innovation behaviors in in-
novative European regions by means of a cluster analysis. They cluster the degree of knowledge and
innovation that the selectedregions produce, taking into account their different stages of the innova-
tion process. Above all, the results indicate that policy measures at a regional level are useful and
necessary, as innovation trajectories diverge due to regional characteristics. Innovation, the authors
propose, is much more complex than just the divide between agglomerated and peripheral regions.
Moreover, they suggest policies that are closely oriented towards the respective clusters and their
specific innovation patterns, leading toa “smart” Europe.

Spielkamp and Vopel (1999) explicitly combine innovation systems and cluster theory to find innova-
tion clusters in Germany. They assume the existence of agents intechnological environment networks
to create, use, and diffuse technology and apply this view together with further innovation variables
so that a system of innovation and firms emerges that leads to certain patterns. Furthermore, they
emphasize that due the extremely high complexity of innovation systems, a multitude of approaches
are possible. Several variables are used in their clustering approach, the most important of which are
innovation, knowledge, information, and industry characteristics.

Common among these approaches is the fact that innovation should not be considered without a spa-
tial component, nor without a temporal component. Turkina and Van Assche (2018) examine innova-
tion performance in clusters and find that linkages along the horizontal and vertical supply chain are
key to increasing knowledge intensity and thus innovation. Petka (2018) analyzes innovation clusters
using symbolic density-based ensemble clustering, taking into account innovation policy. They investi-
gate European countries and use the Regional Innovation Scoreboard as well as multiple innovation
and other indicators. They calculate clusters with standard methodology (e.g. k-means) and investigate
the heterogeneity of the clusters. The resultis a ranking of innovation leadership.

lonela-Andreea and Marian (2020) use data from the European Patent Office and calculate the
Malmquist index for total factor productivity in knowledge performance (Caves et al., 1982). They also
identify differences and similarities in the development of innovation capacities between the resulting
clusters. Zabala-lturriagagoitia et al. (2021) investigate the increasing territorial disparities in Europe
using production theory and also apply the Malmquist index. They note that advances in innovation
are not necessarily synonymous with technological progress and that there is no innovation conver-
gence where lagging regions can catch up with leading regions.



Pelau and Chinie (2018) conduct a cluster analysis of European regions in relation to innovation and
sustainable development, linking innovation and sustainability for an improved economic growth pro-
cess. They use a static multivariate analysis to characterize regional clusters and find three major in-
novation-sustainability clusters ranked by degree of achievement. They also relate their approach to
the literature on innovation systems, emphasizing the importance of the regional context of innova-
tion. Kim and Bae (2017) apply clustering as a step in forecasting potentially promising technology.
Based on the information contained in classified patents, which can give an indication of the technol-
ogies in development, they find technology-specific clusters. Their aim is then to derive potential
trends for developing technologies based on the clusters.

A functional data analysis for multivariate innovation clusters taking into account different innovation
types, multiple measures as well as temporal and spatial dimensions, which can furthermore explore
innovation profiles, has not been conducted previously. We will illustrate the procedure in the follow-
ing chapters.

2.3 Data origin and derivation of approach

In practice, severalindicators can be used for approximating innovation, but we choose to mainly use
patent data toindicate the type of innovation, withthe patent classification scheme allowing a distinc-
tion between different types of inventions. The classificationis based on the type of innovation group
to which a patent belongs to and must be indicated when filing application. The patent classes we use
are the eight major classes (A: ‘human necessities’; B: ‘performing operations and transporting’; C:
‘chemistry and metallurgy’; D: ‘textiles and paper’; E: ‘fixed constructions’; F: ‘mechanical engineering,
lighting, heating, weapons, and blasting’; G: ‘physics’; H: ‘electricity’ (WIPO, 2021)). As suggested by
Griliches (1990) and noted by several other researchers, the inclusion of patents as an indicator of
innovation is justified by the intentions pursued by filing a patent, i.e. an intended commercial use.
Other innovation indicators are R&D personnel and researchers as well as internal R&D expenditures
as percentage of the gross domestic product. In addition, we use a human capital indicator approxi-
mated by human resources in science and technology. These variables are suitable to support patents
as indicator of innovation, as they are directly related to the emergence of innovation and canlead to
patents or other forms of innovation.

Inthe model, variants of these variables are used. First, we compute Innovation Gini indicators accord-
ing toRhoden (2020) for each IPC class, which provide a measure of the degree of innovation variation
in regions. Then, we calculate the labor density and relate it to the regional GDP, the share of R&D
labor, the human capital density and the R&D expenditure per R&D labor. These measures are used to
indicate labor productivity, human capitalaccumulation per worker and the R&D expenditure produc-
tivity. This step results in a set of five covariates that are included in the clustering process of the
Innovation Ginis (see Table 1). In this way, multivariate spatio-temporal innovation dynamics of Euro-
pean regions can be aggregatedintoeight sets of clusters showing similarities and differences of the
regional structures for each of the eight patent classes.



Variable

Description

Eurostat datasets used

Innovation Gini

Innovation Gini for the relevant IPC class of patents
(patent applications to the EPO by priority year);
Normalization Factor: Economically active popula-
tion in 1000

PAT_EP_RIPC
LFST_R_LFP2ACT

Labor Density

Economically active population per square kilome-
terin 1000

LFST_R_LFP2ACT
DEMO_R_D3AREA

Share of R&D La-
bor

R&D personnel and researchers directly engaged in
R&D per economically active population in 1000

RD_P_PERSREG
LFST_R_LFP2ACT

GDP per Labor

Gross Domestic Product at current market prices in
Billion Euro per economically active population in
1000

NAMA_10R_3GDP
LFST_R_LFP2ACT

Human Capital
Density

Human resources in science and technology (Per-
sons with education in science and technology) per
economically active population in 1000

HRST_ST_RCAT
LFST_R_LFP2ACT

R&D Investment
per R&D Labor

Internal R&D investment in Billion Euro per R&D
personnel and researchers directly engagedin R&D

RD_E_GERDREG
RD_P_PERSREG

in 1000
Table 1: Variable Declaration, source: Own calculations (Eurostat, 2021; OECD, 2021; Office for
National Statistics, 2021).

As our analysis focuses on European regions, our dataset consists mainly of data from Eurostat (2021)
for the period of 2000 to 2012, with supplements from other statistical offices and organizations (i.e.
(OECD, 2021; Office for National Statistics, 2021) used for filling missing values in the main datasets
after checking for plausibility. However, there are still larger numbers of remaining missing values,
which we choose to impute via natural spline interpolation using the annual cross-sections of our da-
tasets as knots (Eubank, 1999; Simonoff, 2012). This imputation is applied when less than 30 percent
of values for a region is missing and the pattern of missingness can be reasonably handled by spline
interpolation, i.e. when there are enough values next to the missing values. Although this may seem
like anarbitrary choice, sensitivity analyses have shown that this procedure strikes a more robust bal-
ance betweenthe highest number of regions to cluster and the least amount of imputation bias com-
pared to other approaches (e.g. Honaker and King (2010)).

Spatially, we focus on the European regions at NUTS-2 level, which necessitatesthe creation of a cus-
tom reference, as severalrevisions of the NUTS classification were made over the periods covered by
our data. This reference is based on NUTS 2016, which corresponds to most of our data but adopts
NUTS 2010 regions where later revisions differ from the regions in our dataset. We alsocreate a cus-
tom shapefile to correctly represent the statistical geographical level, which we then apply throughout
our calculations. In total, we use 225 distinct regions in our mixture model-based multivariate func-
tional cluster analysis. All computations are realized in the software R (R Core Team, 2021)using the
packages fda (Ramsayetal., 2021)and funHDDC (Schmutz et al., 2021).

3 Functional data paradigm

Although the concept of functional data dates back to Grenander (1950) and Rao (1958), the actual
term functional data for objects that can naturally be viewed as smooth curves rather than a set of
discrete observations was coined by Ramsay (1982), Ramsay and Dalzell (1991) and Rice and Silverman



(1991). In statistical terms, functional data are random variables usually observed at multiple discrete
points on an infinite dimensional or functional continuum such as time, space or other variables de-
scribing continua (Ferraty & Vieu, 2006). Accordingly, a set of functional variables for multiple obser-
vations is called functional dataset. In line with Kokoszka and Reimherr (2017), we refer to functional
dataas

Xn(tnp) ERP; tr € [Tiny Trax s m=1,..,N; p=1,..., P.

Inthis notation, functional data are given by a set of N independent curves X, observedin discrete sets
of values {t;,,, ¥ p} along an interval [Tmin, Tmax] over potentially infinite dimensions P. Functional
data analysis can thus be performed not only with random curves, but also p-dimensional random
surfaces. Inmost fields of research, however, the focus is still on the analysis of curves, which is why
the term curve data (Gasser & Kneip, 1995; Gasser et al., 1984; Rice & Silverman, 1991) is often used
for analysis of the special case of a one-dimensional continuum. A comprehensive review of the history
of functional data analysis, its methods and applications in different fields of researchis given by Wang
et al. (2015).

In general, functional data are considered as independent and identically distributed samples from Lg-
continuous stochastic processes whose mean and covariance estimators are given by ﬁ(tp) =

%Z?ﬂ x;(tnp) and 9(t,) = ﬁ . (xi(sn,p) - ,&(sn,p)) (xi(tn_p) - ﬁ(tn,p)). As Deville (1974) has
shown, both estimators converge to ,u(tp) and v(sp, tp) in Lz-norm, which is consistent with the as-
sumption of a latent functional form in the form of smooth curves rather than mere sequences of
observations as basic principle of functional data analysis (Ramsay & Silverman, 1997).

As crucial smoothness may be for the analysis of functional data, it may not be obvious in raw datasets
as observations are often contaminated or distorted by random noise, measurement errors or other
types of bias (Ramsay & Silverman, 1997). These effects can be viewed as fluctuations in the smooth
curves that we include by extending our earlier notion of functional data:

Sn(tn,p) =Xy (tn,p) + €Enps
where Sn(tn,p) is the realized and observable functional form and €,,,, the representation of noise,
disturbance or error. We would like to refer to Ferratyand Vieu (2006), Ramsay and Silverman (1997)
and Kokoszka and Reimherr (2017) for a complete overview of the theoretical foundations of func-
tional data analysis.

As our imputed data are stillin their raw form, we use basis expansions to reconstruct their functional
forms, which is necessary for any kind of functional data analysis (Aguilera et al., 2010). Ideally, this
basis function is similarin shape and form to the observed functions, as the curves can then be easily
approximated by a linear combination of the chosen basis function (Kokoszka & Reimherr, 2017). As
thereis no clear rule for choosing the most efficient shape and number of basis functions with respect
to multivariate functional clustering (Jacques & Preda, 2014a), we follow the suggestions of Schmutz
etal. (2020) and choose a set of B-spline functions whose size corresponds to the number of years for
every variable, while applying a small roughness parameter to reduce potential biases due to our
earlier spline imputation.

3.1 Multivariate functional clustering

Cluster analyses are used to find homogeneous groups of observations in datasets without prior
knowledge of latent group relationships, which can be achieved with a wide variety of algorithms that
have been proposed for clustering of functional data. However, due to the potentially infinite-dimen-
sional nature of functional data, severalissues arise that are of lesserimportance for classical cluster
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analyses, such as the reduction of functional dimensionality, which needs to be solved. To address
theseissues, several methodological approaches for clustering functional data have recently been pub-
lished, ranging from the simple transfers of classical algorithms to the functional domain to complex
model-based clustering after applying of statistical filtering (see Jacques and Preda (2014a) for a re-
view).

However, most of these approaches focus on clustering univariate functional data (see e.g. Abraham
et al. (2003); Bongiorno and Goia (2016); Bouveyron et al. (2015); Bouveyron and Jacques (2011); Chiou
and Li (2007); Coffey et al. (2014); Jacques and Preda (2013); James and Sugar (2003); Li and Chiou
(2011); Peng and Miiller (2008); Serban and Wasserman (2005)), while there are still only few concepts
dedicatedto multivariate functional clustering. Among those concepts, model-based approaches have
received more attention in recent years, as they have proven to be suitable for complex statistical
structures andrelationships (see e.g.BouveyronandJacques (2011); leva and Paganoni (2016); Jacques
and Preda (2014b); Kayano et al. (2010); Schmutz et al. (2020); Traore et al. (2019)).

Inour cluster analysis, we follow the mixture model-based approach proposed by Schmutz et al. (2020)
to cluster multivariate functional data of regional innovation activities to investigate spatio-temporal
similarities and differences in the European innovation system. This approach builds on previous work
by Bouveyron and Jacques (2011) and Jacques and Preda (2014b) by circumventing the curse of dimen-
sionality (Bellman, 1957) with a multivariate functional principal component analysis (MFPCA) and con-
siders the analytical scores to be random variables with cluster-specific probability distributions. By
reprojecting the previously infinite- onto a finite-dimensional problem, the cluster-specific probability
distributions can then be approximated via expectation maximization (EM) (Dempster et al., 1977),
which makes this approach highly flexible as additional assumptions can easily be imposed on the
model.

3.2 Multivariate functional principal component analysis

The use of principal component analysis for functional data as a means for dimensionality reduction
was already proposed by Ramsay and Silverman (1997). Multivariate functional data require more
adaptive approaches, as shown by Jacques and Preda (2014b) and Schmutz et al. (2020). Specifically,
MFPCA aims to find the eigenvalues and eigenfunctions to solve the decomposition equation of the
covariance operator

vfj = A
where A; is a finite group of j positive eigenvalues, principal scores, and f; is a group of corresponding
multivariate eigenfunctions, principal factors. Following Schmutz et al. (2020), we assume that the lat-
ter are part of alinear space spanned by a matrix ¢:

fi(@®) = ¢(O)b;

Consequently, we can reformulate the eigenproblem using the covariance estimator

1 b
0(s,t) = md’(s)c Co ()

which leads to

1
m ¢(s)C CWb; = /11(]5(t)b;

where W = fOT @' (t)p(t)isa R X R-Matrix containing the inner product of our basis functions.



The principal component analysis is then reduced to an eigenvalue decomposition of the matrix

cw '/

n—1
allowing each multivariate curve S, (tn’p) to be identified by its scores §; = ((Sij) into the basis of
multivariate eigenfunctions (f]) for j = 1 (see Jacques and Preda (2014b) and Schmutz et al. (2020)
for proofs).

3.3 Mixture model-based clustering of multivariate functional data

Model-based clustering assumes that population data are a mixture of groups, sothat the elements of
this mixture can be modeled by their conditional probability distribution. Therefore, the latent finite
mixture model for the approach by Schmutz et al. (2020) canbe formulated as

K
96) = ) efilsy)
k=1
where g(s) is the probability density function of s, the mixture proportion of the k-th cluster is given
by m;, with 2%:1 m, = 1 and f; (s,,) being the conditional density function. However, a feature of func-
tional random variables is the lack of general notion of probability density functions (Delaigle & Hall,
2010), which necessitates the use of a parametric approximation:

K

g(s) = z T fre(Sn; Ok)
k=1
with 6, being the parameter vector of the k-th mixture element. Given this approximation, the likeli-

hood of the mixture model proposed by Schmutz et al. (2020) is then given by

N K
1(6;s;z) = Z z Zinlog (my f(Sy;01))
n=1k=1
where z,,is a latent group variable equal to 1if multivariate curves belong to cluster k or 0 otherwise.

Finally, we can obtain a fully parameterized form of the likelihood by including the gaussian density
function f(s,;0;)) (see Schmutz et al. (2020) for proofs):

K
1
1(6;s;2) = _Ez n, |—2log(m,,)
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where a,jand by area direct result of the MFPCA, since it is assumed that the scores of the n;, curves

of the kth cluster Snk follow a Gaussian distribution with mean function u;,, € R and a covariance
matrix Ag. The latteris crucial for both parameters as they are diagonal matrix elements:
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Due to this covariance matrix, the variance of the first d;, principal components can be modeled much
more accurately, while the other components can be retained and modeled via the parameter by,
which provides a model with much higher degrees of clustering flexibility (Schmutz et al., 2020).

3.4 Model inference via expectation maximization

An expectation maximization algorithm (Dempster et al., 1977) is used to estimate the parameters of
the complete likelihood given in the previous section, as this type of algorithm has been shown to be
reliable and reproducible in maximizing the likelihood of model-based clustering approaches. The al-
gorithm uses twostages to estimate the model parameters and constantly alternates from one to the
other until an optimal solution is found (Schmutz et al., 2020).

In the expectation step, the conditional expectation of the log-likelihood is calculated using the most
recent parameter estimates. Then, the maximization step updates these estimates by maximizing the
expected log-likelihood conditionally. The process is stopped when the difference of two successive
estimations is smaller than 10-¢ or a limit of 200 iterations has been reached. However, the algorithm
must first be initialized by either providing initial values or using random values. We choose to initialize
the clustering analysis by applying a k-means algorithm by Hartigan and Wong (1979) with four parti-
tions tothe discretized values of our functional dataset to obtain initial values for the functional parti-
tions. Although Schmutz et al. (2020) suggest to use multiple initialization strategies to prevent con-
vergence to a local maximum, we found this approach to result in nearly identical cluster solutions as
random initialization.

To obtain optimal cluster solutions for each IPC class, a series of models covering all parameter con-
straints provided by Schmutz et al. (2020) is estimated for a range of 2 to 10 clusters. We retain the
solutions with the lowest Bayesianinformation criterion (BIC) (Schwarz, 1978) as our final cluster so-
lution. The BIC is defined by

m
BIC = 1(6;s;2) —-3 *log(n)

where [(8; s; z) is the maximum log-likelihood value, the number of model parameters is given with m
and n is the number of individuals, which allows the log-likelihood to be penalized by model complex-
ity. This procedure is in line with proposals by Schmutz et al. (2020).

4 Results

Inthe following sections, the results of our mixture model-based cluster analysis are presented for the
eight IPC classes with respect tothe innovation indicators. As these cluster solutions are the results of
multivariate functional dynamics, differentiation of the clusters is based on a simultaneous evaluation
of all modeling variables, i.e. Innovation Gini coefficients, labor density, share of R&D labor, GDP per
labor, human capital density, and R&D investment per R&D labor (see table 1). This ensures that subtle
spatio-temporal regional dynamics in the modeled indicators are captured and regional disparities can
be shown more clearly. To optimize the cluster solution, a range of models with various parameter
constraints is used for up to 10 clusters, withthe lowest BIC indicating the best cluster solution for a
given set of variables. Accordingly, the number of clusters varies across the eight patent classes, but
the size of the clusters is not limited, i.e. the numbers of regions per cluster only depends on regional
similarities in innovation dynamics.

10



4.1 IPCClass A

The clustering process results in ten distinct clusters of spatio-temporal innovation dynamics for the
patent group ‘human necessities’ (IPC A, see Figure 1, 15trow, left panel). While clusters 1, 2, and 6 are
relative smalland limited to few regions spread over Central European countries, the clusters 4, 5 and
10 consist mostly of neighboring regions in, with few exceptions, large parts of Eastern Europe and the
Baltic Area (cluster 4), and Portugal and Spain (cluster 5). In contrast, cluster 10 is significantly less
spatially concentrated, containing most parts of France, but alsoregions in Italy, Austria, Germany or
Finland. Another large cluster is found in Scandinavian regions and Iceland, with regions in the United
Kingdom, Germany and Italy also assigned to this group of innovation concentration. East Germany
has similar innovation dynamics as regions in northern Spain, northern Ireland and southern Italy (clus-
ter 8). These regions are often characterized as structurally weak, which seems to be reflected in inno-
vation concentration potentials. Most regions in Central Europe, mainly Germany, Luxembourg, Bel-
gium and the Netherlands are highly diverse with neighboring regions not being part of the same in-
novation cluster.

Regarding the mean curve of the Innovation Gini (see Figure 1, 15trow, right panel), it is noticeable that
cluster 4 drops significantly compared to the other clusters until 2008, before a slight increase toa
stable trajectory sets in. In comparison, the mean curve of cluster5 rises very sharply from 2004 on-
wards, reaching a higher level of concentration than any of the other clusters. Most other cluster mean
curves either show a stale trajectory or increase slightly until 2008 before declining. Despite these
temporal dynamics, there are clearly noticeable crossings of most cluster mean curves, with cluster 5
being an exception, i.e. the clusters only develop in a relatively narrow range overall in terms of inno-
vation concentration, but evolve highly variable in this range. The mean curves of the variables for
labor density, share of R&D labor, GDP per labor and human capital density from 2000 to 2012 show a
relatively even and almost linear increase. Interms of human capital density, the clusters do not differ
much. In principle, these results hold for the mean curves of all indicators, but the decreasing function
of cluster 10 deviates from the other stable or slightly increasing cluster trajectories of the share of
R&D labor. The mean curves for R&D investment per R&D labor are very differentiated. While the
curves for clusters 6 and 10 initially increase, then decrease until 2005, cluster4 and 5 show a stable
level, which is, however, well below all other clusters.

4.2 IPC Class B

Ten clusters are found for the patent group ‘performing operations and transporting’ (IPC B). Again,
Central Europe is quite fragmentedin terms of cluster memberships, as the regions in this part of Eu-
rope are assignedtoclusters 1,2, 5,7 and 10 (see Figure 1, 2" row, left panel). Other regions in cluster
5 arelocated in England, large parts of Norway, Iceland and Finland, but alsoin Austria, northernltaly
and France, while cluster 8 is mainly located in Spain, Portugaland East Germany, which corresponds
to the clustering previously observed in these regions for IPC class A. Eastern Europe is largely com-
posed of regions in clusters 4 and 8, with slightly more variation thanfor class A. Ireland and Northern
Ireland are divided into three different clusters (6, 7 and 8), while Norway is divided into two large
clusters (3 and 5). Most Regions belonging to cluster 2 are located in southern Italy and the north-
eastern parts of Spain and France, as well as parts of the Netherlands and Germany.

Regarding the temporal dynamics of the cluster for this IPC class, there are significant differences in

the mean curves for innovation concentration (see Figure 1, 2"d row, right panel). For example, clusters

4and 9, both located mainly in Eastern Europe, differ strongly. While the mean curves for most clusters

decrease over time, cluster 3 seems to be an exception, as regions in this cluster seem to slightly in-

crease their degree of concentration. In general, cluster 10 is the most stable in terms of innovation

concentration. However, the mean curves of most clusters have slightly decreased since 2005, which
11



corresponds to a decrease in innovation concentration. The other covariates, with exception of R&D
investment per R&D labor, mostly show stable or slightly almost linearly increasing over time. The
mean curves of all clusters are very close to each other and similar in terms human capital density,
which againis consistent with the results for IPC class A. The mean curves for GDP per labor show wide
variation in terms of the level, with only cluster 6 and its exclusive focus on the UK showing a slight
decline from 2007 onwards, while the regions of cluster 3, which are mostly locatedin Norway, show
the highest overall mean values. In terms of the share of R&D labor, cluster 6 again diverges from the
other clusters, showing a steady decline over time, while the other clusters remain largely stable. In
terms of labor density, the mean curve for cluster 3 is significantly higher than all other curves, which
are stable over time. The mean curves of cluster 5 and 6 show opposite trends in R&D investment per
R&D labor, with one cluster increasing while the other decreases andvice versa. With the exception of
the last four years, cluster 5 is mostly above the other clusters, which show a slight and steady increase
over time.

4.3 1PC Class C

For the patent class ‘chemistry and metallurgy’, the spatio-temporal clustering process againresulted
in ten clusters (see Figure 1, 3" row, left panel). Essentially, the clustering appears to be similarto the
results of the previous patent class, with a few exceptions. For example, cluster 6,9 and 10 are mostly
identical, with two Portuguese regions now belonging to the cluster mainly located in Eastern Europe.
The latter is nolonger divided, as all Eastern European regions have innovation profiles that make them
part of the same homogeneous cluster. Compared tothe results of the previous patent class, there are
some changes affecting a few regions in cluster 1. While Central Europe is again fragmented compared
to patent class B, and this also applies to a higher degree to Spain and Portugal, the homogeneous
structure of Eastern Europe represents a clear contrast to the rest of Europe.

The mean curves for the Innovation Ginis are quite similar in their temporal dynamics, with several
curves intersecting each other, but most remaining within a narrow, slightly declining corridor (see
Figure 1, 3" row, right panel). While cluster 3, with its focus on Eastern Europe, has the highest level
of mean curves, but declines sharply from 2008 onwards, clusters 5and 6 seem to develop comparably
from 2008 onwards with slight time lags, whereas previously they had complementary trajectories. As
in the previous cluster results, the labor-related covariates show a slight, but constant increasein the
mean curves. Interms of human capital density, the mean curves are again close to each other and
alsoincrease linearly. Thereis an increase in GDP per labor for all clusters, witha slight dipin 2008 and
the Eastern European regions of cluster 3 showing the lowest mean curve values. The share of R&D
labor is more or less stagnant for all clusters, with cluster 5 again showing the highest mean curve
values. Interms of R&D investment in R&D labor, the spatially-spread cluster 8 shows a strong increase
in 2003, followed by a similarly long decline until 2008. Regarding labor density, all clusters show linear
trajectories at verylow levels, with the exception of cluster 5, whichis spread over half a dozen regions
across Europe and shows significantly higher and slightlyincreasing mean curve values. Across all co-
variates, mean curves of cluster 3 are lower than all others, with the exception of Innovation Gini
curves.

44 IPCClassD

Interms of the patent class forinnovations in ‘textiles and paper’, a set of 9 distinct clusters was found
in the clustering process, possibly due to missing data for some regions included in previous clustering
results (see Figure 2, 15t row, left panel). The cluster with the highest number of regions is cluster 3,
which includes regions in Finland, most of France and parts of Italy, Austria, Germany, Belgium, Lux-
embourg and the Netherlands. With the exception of Southern Germany, Belgium, Luxembourg and
the Netherlands, neighboring regions are part of the same cluster. The United Kingdom is divided
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between four different clusters, with cluster 9 occurring only in England. Most parts of Eastern Ger-
many, Northern Ireland and parts of Spain are members of cluster 8. As the innovation profiles for this
patent class seem to be more homogeneous than in previous results, most regions belong to a few
larger clusters, while the remaining regions are divided into the highly distinct clusters 1, 4 and 6.

Compared to the previous results, the mean curves for the Innovation Ginis are at a very low level (see
Figure 2, 15t row, right panel). Here, the regions of Eastern Europe and Portugal of cluster 4 show the
highest values, but decline slightly after 2008. This contrasts with cluster 6, which consists of only two
regions and follows a U-shaped trajectory, so that the curve only rises steadily after 2008 and shows
the highest values of all clusters. Regarding the other variables, the mean curves show mostly linear
trajectories, with a a few exceptions such as cluster 1, which mostly consists of Norwegian regions and
shows the highest mean values with increasing trends. This is particularly noticeable for labor density
and GDP per labor. Comparedto the other clusters, cluster 6 varies the most over time, with its trajec-
tory changing towards 2004 and even increasing non-linearly for both covariates and human capital
density. As with the previous results, the most variation across all clustersis found for R&D investment
per R&D labor. Here, cluster 5, which is scattered across Europe, shows a sharpincrease tothe highest
mean curve value in 2008, before declining in a similar way. This is mirrored at a lower level in cluster
3, 7 and 9, with the first two reaching their maximum around 2002.

4.5 [IPCClass E

The clustering for innovations in ‘fixed constructions’ are quite similar to the clustering for the IPC class
C, although only 8 clusters are found (see Figure 2, 2" row, left panel). Essentially, clusters 2,4 and 7
are evidence for this similarity. The fragmentation of Central Europe is shifted slightly to the west, as
western German regions are members of the same cluster. The Scandinavian cluster also is found in
Central European regions and is scattered across northern Italy, parts of the United Kingdom and Ire-
land. Another similarity to the innovation profiles of IPC classes C and E can be seen through due to
cluster 2, which is exclusively found in the UK.

In comparison with the results of IPC class C, the mean curves for the Innovation Ginis for fixed con-
structions are on a much lower level, withthe Eastern Europeanregions of cluster 7 showing the high-
est mean curve values (see Figure 2, 2" row, right panel). Furthermore, clusters 5 and 6 show compli-
mentary trajectories and while the mean curves are steadily decreasing, at the same time the disper-
sion of all mean curves is decreasing over time. For labor density, share of R&D labor, GDP per labor
and human capital density, the temporal dynamics of the mean curves are again comparable to the
results of IPC class C, with the exception being that the dispersion across the mean curves is much
smaller and no cluster has significantly higher mean values than all other clusters. In terms of R&D
investment per R&D labor, clusters 5 and 6 show high maxima in the period from 2000 to 2004 and
then converge to the overall corridor of cluster mean curves.

4.6 IPCClassF

For the patent class for ‘mechanical engineering, lighting, heating, weapons, and blasting’ innovations,
eight clusters are found, again showing noticeable similarities to the cluster results for IPC class C (see
Figure 2, 3" row, left panel). Especially the Eastern European regions (cluster 6), Scandinavia and parts
of Central Europe (cluster 4), Spain, Portugal and East Germany (clusters 2 and 6) as well as France
(clusters 6 and 7) are the reason for the similarities in the spatial cluster pattern. Nevertheless, some
deviations from previous clustering results can be found in western Germany, northern Italy, Austria
and parts of France. Compared to Western Europe, innovation profiles int the Northern and Eastemn
European regions seem to be more homogenous.
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The cluster mean curves for the Innovations Ginis show some temporal variation and an overall in-
creasing trend, with cluster 6 showing the highest level until 2004 before decreasing thereafter (see
Figure 2, 3 row, right panel). The strongest increase is shown by the mostly non-adjacent Central
Europe regions of cluster 5 and the cluster 2 (East Germany and Spain), while the regions of cluster 4
stagnate at a stable level. With regardto the other covariates, similar temporal trajectories as for IPC
class E are shown for the mean curves. Due to the curve maxima not standing out from the curves as
in previous results, the cluster mean curves show smoother trajectories overall.

4.7 1PC Class G

As with most previous results, teninnovation clusters are found for the patent class for ‘physics’ that
resemble the clustering pattern of IPC class C, while sharing a few similarities with IPC classes Eand F
(see Figure 3, 1strow, left panel). With the exception of Denmark, which is now an independent cluster
with a single region in northern Germany (cluster 7) and no longer part of the Scandinavian cluster
(cluster 2). In addition, some smaller regions in the Netherlands are assigned differently compared to
other IPC classes.

In the cluster mean curves of the Innovation Ginis, both the overall level and the curve maxima are
very pronounced in comparison to IPC class C (see Figure 3, 15t row, right panel). The highest mean
curve values are shown for cluster 10, which is located mostly in Norway, while cluster 8 increases
sharply in 2004 before matching the temporal dynamic of cluster 10 from 2008 onwards. In contrast,
most cluster mean curves remain stable for this variable, with cluster 7 being an exception that de-
creases over time. As far as the other variables are concerned, cluster 10 has the highest level of all
mean curves for almost all of these variables. For labor density, share of R&D labor, GDP per labor and
human capital density, the difference between cluster 10 and the other clusters in the mean values is
very clear. Only in terms of R&D investment per R&D labor is cluster 10 surpassed by the maxima of
clusters 6 and 7 until 2005, but as these curves decline again, the mean curve of cluster 10 reaches the
highest level againin 2012.

4.8 IPC Class H

The last clustering found a set of ten clusters for electrical innovations (IPC H, see Figure 3, 2" row,
left panel). The East German regions are divided into three larger clusters (clusters 1, 6 and 7), with
cluster 6 again consisting of regions in East Germany, Spain and Portugal that were assigned to the
same cluster for other IPC classes. Inaddition, severalregions in Ireland, England as well as southern
Italy are members of this cluster. Scandinavia is also divided into three clusters, with members of clus-
ter 4 found in Finland, France, Austria and other regions all throughout Central Europe. Another cluster
is found in the southernregions of Norway as well as the central region of Paris. The rest of Scandinavia
is clustered together with southern Ireland, southern Germany and the central London region (cluster
5). Most regions in England form their own cluster, with only few exceptions in Denmark, Italy and the
southwest of France (cluster 10).

Consistent with all previous results, there is a high degree of variationin the mean curves of innovation
concentration, with cluster 1 showing the highest overall mean values, but steadily decreasing over
time, with a noticeable minimum in 2005 (see Figure 3, 2"d row, right panel). While most other clusters
stagnate at a stable level, cluster 7 increases sharply after a minimum in 2001. In comparison, cluster
10decreases until 2004, stagnates until 2009 before finally increasing. In terms of the other covariates,
there are large similarities to IPC class G. Regarding labor density, cluster 8 shows the highest mean
values and an increase with a clear gap to the other clusters, which remain constant over time and
show similar values with minor variations. For all other variables, cluster 10 differs the most from the
other clusters, as the mean curve for share of R&D labor decreases while all others increase constantly.
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In addition, there is a dip in GDP per labor in 2007 and human capital seems to be gradually increasing
for cluster 10. While the mean curves for most clusters are quite similar to the curves for IPC class G,
high maxima for R&D investment per R&D labor are missing.

5 Discussion

Overall, innovation clusters in Europe differ by IPC class, although some regions are more similar than
others and some IPC classes more interconnected in terms of innovation concentration. The Innova-
tion Gini is mostly similar in the main regions in Eastern Europe, Spain, Portugal, and East Germany,
resulting in these regions being in the same spatio-temporal cluster groups. Regarding the Innovation
Gini and the different covariates used in the mixture model-based multivariate functional clustering,
it is noticeable that some covariates seem to have opposite functional effects. This is the case when
considering regions with the highest values of innovation concentration over times, which is usually
accompanied by the lowest values in the covariates. This holds for all IPC classes except for class G
(‘physics’). The clustering results for the classes E, C and F are similar, with the pair E/F being more
similar than the pair E/C. In addition, cluster solutions for the classes G and C as well as Gand H show
similar temporal dynamics.

If one relates the clustering results toanalyses of innovation promoting policies from the same period,
the clustering clearly shows the various efforts in innovation policy and general economic trends such
as the economic crisis of 2008. The crisis is reflected in the functional curves and affects almost all IPC
cluster solutions, with some being more affected than others. As Izsdket al. (2013) state in their final
report for the European Commission, funding focused on innovation development slowed down during
the period of our analysis, especially after the economic crisis. Nevertheless, funding shifted towards
more collaborative projects which is one reason that our analysis showed the emergence of clusters
not only of neighboring regions, but also at supra-regional level. Furthermore, the funding priorities
have not shifted in their scientificand technological cores, so the FDA cluster model should be able to
capturerelevant effects to alarge degree.

In general, our analysis would benefit from longer time series of data that could provide further in-
sights into national and regional innovation dynamics. The time periods of funding programs often
span several years or even decades, and it is possible that their impact is not fully captured by the
analysis conducted in this paper. Similarly, it is possible that the impact of regional innovation policies
has not been significant enough to have lasting effects related to innovation concentration (l1zsak et
al., 2013).

The concept of the European and Regional Innovation Scoreboards takes into account innovation de-
velopments over time and divides nations by regions, but policies derived from the European legisla-
tion are relatively inconsistent when. The innovation index generally shows little variation between
countries, with most countries occupying the same or similar categories of innovation leadership. This
is alsotrue across regions, with exceptions due to highly specialized regions (e.g. Malta as a moderate
innovator, is among strongest innovators in digitalization) (European Commission, 2021b).

Izsdket al. (2013) conclude that innovation policy should location-based and tailored to different con-
ditions in order to take into account national characteristics. This idea is supported by the results of
our analysis, as regional characteristics and differing conditions in the technological mix foster the
emergence of heterogeneous innovation portfolios and thus suggest higher policy efficiency if properly
taken into account.
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6 Conclusion

Knowledge about regional innovation dynamics, leading to different Innovation Ginis that result in
clustering regions differently across all of Europe, depending on the type of innovation activity is crucial
when designing policies for supporting innovation in Europe.

In this paper, a mixture model-based multivariate functional clustering algorithm by Schmutz et al.
(2020) has been adapted to analyze the spatio-temporal dynamics of European regional innovation
activities at the NUTS-2 level from 2000 to 2012. Using multiple time series for the main patent classes
as proxies for innovation activity as well as other closely related indicators, 225 Europeans regions
were clustered according to their temporal innovation profiles. In this way, multi-characteristic inno-
vation activity is taken into account, reflecting the political efforts of European policy programs. Our
measurements for identifying the clusters are innovation- and economy-related variables including
innovation concentration indicators which are based on Krugman’s (1991) Innovation Ginis, with the
distinction that as innovation indicator different IPC classes of patents are considered and regions are
profiled according to their innovation portfolios.

The resulting innovative activity across the European clusters differs, although some regions in Eastern
Europe and on the Iberian Peninsula are reliably constant across innovation type. Accounting for the
differences in innovation, clustering for IPC classes E (“fixed constructions’) and F ‘mechanical engineer-
ing, lighting, heating, weapons, and blasting’) is almost identical, whereas similarities in regional clus-
tering of classes E and C (‘chemistry and metallurgy’) are relatively more distinct, but stillcomparable.
Clusters of classes G (‘physics’) and C are correspondent while classes H (‘electricity’) and G exhibit
comparable dynamics over time. This supports a place based regional innovation policy approach that
is not only able toaccount for differing regional potentials in innovation, but alsofor diverging special-
ization in innovation types.
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Figure 1: Results of the mixture model-based multivariate functional clustering algorithm. Rows: IPC classes A, B, and C (A:
‘human necessities’; B: ‘performing operations and transporting’; C: ‘chemistry and metallurgy’). Columns: left: Spatial clus-
ter mapping, right: Temporal cluster dynamics. Source: Own calculations.
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Figure 2: Results of the mixture model-based multivariate functional clustering algorithm. Rows: IPC classes D, E, and F (D:
‘textiles and paper’; E: ‘fixed constructions’; F: ‘mechanical engineering, lighting, heating, weapons, and blast ing’). Columns:
left: Spatial cluster mapping, right: Temporal cluster dynamics. Source: Own calculations.
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Figure 3: Results of the mixture model-based multivariate functional clustering algorithm. Rows: IPC classes G and H (G:
‘physics’; H: ‘electricity’). Columns: left: Spatial cluster mapping, right: Temporal cluster dynamics. Source: Own calculations.
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