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Effects of Noise on the Grammar of Languages(1)

Abstract

We study a signaling game of common interest in which a stochastic noise is perturbing the com-
munication between an informed sender and an uninformed receiver. Despite this inhibiting factor,
efficient languages exist. In equilibrium, sender uses a tessellation consisting of convex cells while re-
ceiver converts posterior beliefs into Bayesian estimators serving as interpretations. Shannon entropy
measures the noise level and describes to which extent communication is possible. A limit case of er-
rors that respect the distance between words leads to concise interpretations in the decoding process.
Comparative statics for different levels of noise reveal which grammatical structures are more robust
towards noise. For increasing error separation between most distinct types becomes more important
than precision about each single one. Furthermore, distinct words are saved for the description of
opposite domains of the type space. Evolutionary modeling approaches converge to equilibria, but
not every equilibrium is stable.

Keywords: cheap talk, noisy communication, language formation, Voronoi language

1 Introduction

In many situations our communication is flawed by errors having various origins. A person may
stammer or slip his tongue, background noise may make it harder to understand or the recipient may
suffer from a hearing impairment. Thus, it is natural to assume that any kind of communication is
imperfect and prone to error. This noise is to be taken into account by both, the speaker and the
recipient in order to come to a proper understanding that does not break down in presence of small
errors. While stochastic error in communication can be analyzed generally, an intuitive approach to
this problem is chosen in this paper. Precisely, in order to reflect properties of common day languages,
such as English, a mistake in understanding is more likely to arise if words are used that are in a sense
close to one another. The more two words differ in letters and pronunciation the less likely it becomes
to confound one for the other. Led by this idea, it is natural to endow the set of words with a metric
and make the noise depend on it. Having a common language in mind it stands to reason to pick an
infinite, possibly high dimensional state space while on the other hand the set of messages or words is
limited to a finite amount. This immediately prevents people to reveal perfect information, no matter
if there’s a common interest or not. It is thus interesting to see how rational individuals cope with
this if in addition noise is added to the communication, further deteriorating the circumstances in a
way that resembles to day-to-day routines. This situation is modeled by a cheap talk game in which
a metric dependent noise confounds the signals in a publicly known way.

Cheap talk game are classically studied in situations of strategic conflict. The seminal paper [CS82]
introduced a game of strategic information transmission between an informed sender and an unin-
formed receiver. In their model, sender learns the state of the world and can send a costless signal

(1)We gratefully acknowledge financial support by the DFG (Deutsche Forschungsgemeinschaft / German Research
Foundation) via grant Ri 1128-9-1 (Open Research Area in the Social Sciences, Ambiguity in Dynamic Environments).
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to receiver who in turn chooses an action. Both players utilities are depending on the state of the
world and the chosen action. The strategic aspect in the equilibrium outcomes stems from a bias in
the agents’ utility functions. It turns out that in equilibrium, sender will choose a partition, revealing
to receiver only to which element of the partition the state belongs. This partition is the coarser the
higher the bias of the agents is, thus revealing less information. These partitions consist of convex
subsets, even in settings of organizational codes ([Sob15]) or multidimensional applications ([FR11]),
i.e. close types use the same word - a property that we will recover under noise and provide a reasoning
for.
An introduction of stochastic noise to a game can indeed lead to welfare improvements as observed
by [Mye91]. The same observation is made by [BBK07] in a strategic setting generalizing [CS82].
More precisely, they find that low and high levels of noise lead to equilibria that Pareto dominate the
equilibria in the no-noise setting of [CS82]. Said differently, noise, although disturbing communication,
can create incentives to reveal more information for sender.
In settings of common interest, sender would rather like to fully reveal her type to receiver. While there
are instances not to do so in a communication, e.g. in elections ([BS07], [FV20]), the main purpose
of a language is to exchange information. In the following are focusing on this aspect. In presence
of noise, full revelation is not possible as receiver cannot distinguish between a message purposefully
sent by sender or creates by error. In such a cheap talk game, sender and receiver must recalibrate
their equilibrium strategies in order to deal with the distortion that pulls receiver to a pooling action,
i.e. the equilibrium where information is ignored and communication thus has no effect. The model
proposed in this paper follows the spirit of [BBK07] in the common interest setting while differing from
it in two ways. Firstly, the message space will be taken finite whereas [BBK07] consider a continuum
of messages. Secondly, the structure of the studied noise in this paper will depend on the sent signal
to a significant degree, whereas in [BBK07] a fixed and independent noise distribution is mixed in the
correct transmission (even if the convex combination can depend on the sent message). Concerning
the message space, choosing one or the other setting per se does not pose any technical difficulties.
However, having a finite set of messages resembles the proposed model to the one of Voronoi languages
[JMR11], which also which will also serve us as the mathematical benchmark. The choice of noise
proposed brings in line errors in common day language where it is more likely to mix up similar words.

The structure of the paper is as follows. In section 2 the model is introduced and its assumptions
are briefly discussed. Section 3 deals with the informational environment that a language induces.
Receiver’s posterior beliefs are studied in general and a sharp upper bound on the expected loss
of communication is given. Two conceptually different origins of non-beneficial communication are
stated. The existence of efficient languages for arbitrary noise channels is discussed in section 4.
The best reply correspondence of sender is stated. Furthermore, the restriction to pure strategies
is explained and formalized. Section 5 introduces a natural class of noise frameworks that capture
the idea that close words are more likely to be confounded. Shannon entropy serves as a measure for
different levels or noise. Bayesian updates are possible even for the limiting case of no error, formalizing
why slight stammers or spelling mistakes do not disturb a proper understanding. Section 6 analyzes
the restriction to quadratic loss function on a Euclidean space. Receiver’s best reply is a Bayesian
estimator of the state space given the posterior belief. Sender’s best communication strategy is built
of convex tessellations and generically unique up to null sets. Sections 7 and 8 provide examples that
best capture our main intuition that languages have error robust properties. The used word space
is the simplest one not covered in the economic literature so far. Properties of languages as well as
comparative statics w.r.t. to increasing error are discussed. A foundation of a dynamic evolutionary
approach to the proposed model is given in section 9. Equilibria can be learned under many different
dynamics, but their outcomes need not be stable. Section 10 concludes.
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2 Model and notation

We adapt the setting of Voronoi languages, c.f. [JMR11]: A cheap talk game of common interest
between a sender (she) and a receiver (he) is analyzed. Let T ( RL, L ∈ N≥ 1, be a convex and
compact set representing the sender’s type which can also be thought of as the state of the world
that she wants to inform receiver about. An atomless probability distribution µ0 on T , absolutely
continuous w.r.t. the Lebesgue measure on T with strictly positive and continuous density function f0

is fixed and known to both players. Having any type t ∈ T , sender can choose a word v out of a finite
set of messages/words W to be sent to receiver. The new feature of this model is the introduction of a
commonly known stochastic error ε : W→ ∆(W) that confounds the communication channel, making
it possible that not the intended word v is being received, but w with a probability ε(w | v). The error
admits the notion of a Markov kernel by interpreting ε : 2W ×W → [0, 1] where W is endowed with
the discrete σ-algebra. Receiver interprets the received word w as some point α(w) ∈ T . Despite
the inhibiting factor, we incentivize both players to want the type t and the interpretation α(w) to
be as close as possible. To this end, we endow T with a norm ‖.‖ and weigh the norm-difference in
communication by a convex and strictly increasing function ` : R≥0 → R. Thus, given (pure) strategies
π : T → W (measurable w.r.t. µ0) and α : W → T , players seek to minimize their expected loss in
communication

L (π, α) : = Eµ0 [Eε(. |π(t))[`(‖t− α(w)‖)]]

=

∫
T

∑
w∈W

ε(w |π(t)) · `(‖t− α(w)‖)µ0(dt).

We call π a communication device and α an interpretation (map). Note that null sets play no role for
the integral. Furthermore, if there is no error, i.e. ε(w | v) = 1 if and only if w = v, the expected loss
and hence the analysis collapses to the one in [JMR11], thus constituting a proper generalization.

We briefly discuss the reasons for choosing these requirements.The compactness of T together with
the continuity of ` ensure integrability. Convexity of T guarantees that all optimal actions lie within
T , i.e. can be played. Convexity along with monotonicity of ` prevents receiver from hedging by using
randomized responses, as his optimal action becomes unique.

From a mathematical and game theoretic point of view, it is important to immediately clarify whether
or not the minimization problem over all possible strategy profiles (π, α) is well-posed and if we need
to allow for mixing. Any such solution is considered an efficient language. Fortunately, efficient
languages always exist and can be assumed to be pure ones (see Theorem 3 and Lemma 4). As the
concrete strucure of efficient outcomes is not easy to elicit, the game theoretic solution concept of
perfect Bayesian Nash equilibria is used to give necessary conditions. To this end, the best reply
correspondence is to be determined in the first place. For now, the general problem is studied from
the point of view of posterior beliefs, pinning down the receiver’s best reply.

3 Induced beliefs and receiver’s best reply

A first step towards understanding the game is to pin down the best replies of both players in order
to characterize Bayesian Nash equilibria. Since in games of common interest strategy profiles leading
to an efficient outcome are necessarily Nash equilibria, we thus get a better understanding of efficient
languages.

To this end, assume that receiver knows the sender’s communication device π : T →W. Then, upon
observing w, receiver’s informational environment changes, leading to a new belief, called posterior
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belief which is obtained by Bayes rule. To write it down we begin by noting that f0 and π induce a
distribution over received words which is given by

λπ(w) := Eµ0 [ε(w |π(t))] =

∫
T
ε(w |π(t))µ0(dt). (1)

The value λπ(w) represents the expected probability with which receiver will actually receive the word
w if sender uses the communication device π.

If we think of ε as representing some possible error in communication, we may assume that there
is always a small but positive probability of making any error. Following this, we often impose
λπ(w) > 0 ∀w ∈W for convenience, discussing general cases within the proofs which can be found in
the appendix. In the mentioned case, λπ defines a fully supported probability measure over W. Thus,
receiver can always use Bayes rule to update his prior belief to the posterior µπw with density function

fπw(t) := λπ(w)−1 · f0(t) · ε(w |π(t)). (2)

That is, knowing π and receiving signal w, receiver uses this information to re-evaluate the chances
that sender is of some type t by applying µπw.

One immediate observation is, that the set of induced posterior beliefs {µπw}w∈W can be interpreted
as a decomposition of the prior belief µ0: We can interpret λπ as a distribution over posterior beliefs
with support on the finite set {µπw}w∈W. Then we have the following property which is referred to as
Bayes-Plausibility in the setting of Bayesian Persuasion, c.f. [KG11]:∑

w∈W

λπ(µπw) · µπw = µ0. (3)

More precisely: For any random variable X : T → R we have

Eλπ [Eµπw [X]] = Eµ0 [X]. (4)

Intuitively, by means of a communication device one can only induce such posterior beliefs that are
in expectation (w.r.t. λπ) the prior belief µ0.

Before using the gathered knowledge about receiver’s informational environment, we first state an
additional way of writing down the loss functional by means of the introduced notations:

L (π, α)

=Eµ0 [Eε(. |π(t))[`(‖t− α(w)‖)]] =

∫
T

∑
w∈W

ε(w |π(t)) · `(‖t− α(w)‖)µ0(dt) (5)

=
∑

w∈W

λπ(w) ·
∫
T
λπ(w)−1 · ε(w |π(t)) · `(‖t− α(w)‖)µ0(dt)

=Eλπ [Eµπw [`(‖t− α(w)‖)]]. (6)

While expression (5) describes the expected loss by a weighted sum of the deficits that occur due to
the error for each realized type, term (6) can be interpreted as counting the expected loss under each
of the posteriors and assessing them under the accumulated probability with which the posterior is
induced.

Especially, in terms of optimization, the last term just requires receiver to choose an optimal interpre-
tation for any (induced) posterior belief: Having any (posterior) belief µ ∈ ∆(T ) with continuous and
strictly positive density function f , receiver optimally responds by choosing the unique minimizer

ŝ ∈ arg min
s∈T

Eµ[`(‖t− s‖)]. (7)
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The uniqueness arises due to the convexity assumption on `. Henceforth, denote by α̂(µ) this unique
minimizer. We can thus define α̂(w) := α̂(µπw) if π is understood and refer to α̂ as the unique best
reply of receiver. This way, the profound connection between an action being taken as a response
of either a word heard and interpreted by means of linguistics or an updated belief induced by the
received word by means of game theory, is stressed. Furthermore, having a unique solution to the
minimization problem, receiver will play a pure strategy in equilibrium.

If communication was not beneficial, the formation and use of languages would be questionable. It
is thus of importance to compare the findings of the presented model to the situation without the
possibility to send signals. In this default setting, it is only up to receiver to take an action and the
only information at hand for him is the common prior µ0. He thus optimally picks the default action
or pooling action α0 := α(µ0) = arg mins∈T Eµ0 [`(‖t− s‖)] and the default loss L0 := Eµ0 [`(‖t− α0‖)]
is realized.

Proposition 1. Given any communication device π, we have L (π, α̂) ≤ L0. The inequality is strict
if and only if there is a word w ∈W with λπ(w) > 0 and α̂(w) 6= α0.

In words, as long as receiver knows the communication device π the presence of signals can not be
detrimental.

We conclude this section by stating two readily verified conditions under which communication is not
beneficial.

Corollary 2. If π is constant or if ε is the constant uniform distribution on W, then µπw = µ0 for all
w ∈W. Especially, α̂ ≡ α0 and thus L (π, α̂) = L0.

Although easy and intuitive, this result demonstrates that there are two sources that can lead to
non-profitable communication. Firstly, if the communication device is not meaningful, i.e. does not
provide receiver with additional information in any realization. Secondly, if the error channel does
not convey any information. If everything is equally likely to be received, no matter what is sent, any
kind of communication is useless. While the latter problem is to be considered an exogenous problem
of the environment, the first one lies within the reach of strategic choices on the side of the sender.
However, not any non-constant communication device leads to a profitable language, even if it changes
the informational environment of receiver, see Example 10.

4 Noise equilibria and efficient languages

An ideal outcome of cooperation is now being analyzed. As mentioned in [JMR11] one can think of
rational players coordinating their strategies before playing the game in a meta-language with the
aim to minimize the loss functional L (π, α). A language (π, α) is called efficient if it minimizes the
expected loss L (π, α) over all (π, α). In the presented setting, this necessarily requires both agents to
minimize the occurring loss over their own action sets, i.e. to play a best reply each. Any such Nash
equilibrium is called noise equilibrium ([BBK07]). The examples in section 8 show, that being a noise
equilibrium is not sufficient to be efficient.

While the best reply of receiver is always uniquely determined, the sender’s response can obviously
always be arbitrarily perturbed on a null set. More importantly for an economic interpretation, in
the interim stage, sender might be indifferent between sending two or more different words. This can
only be because the corresponding actions taken by receiver in response amount to the same loss. To
see this more precisely, fix any interpretation α : W → T of receiver. Then, by focusing on interim
equilibria(2) a type t-Sender can pick any word v ∈W to be sent out of the non-empty set

arg min
v′

∑
w∈W

ε(w | v′) · `(‖t− α(w)‖). (8)

(2)Which is w.l.o.g., as the marginal distributions have full support.
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Applying suitable choices in the presence of multiple minimizers (see the proof of Theorem 3 for details)
we can derive possible partitions Cα = {Cαv }v∈W of T , where each Cαv is (Lebesgue-)measurable and
consists only of types where v is a minimizing response of sender given α. Any of these partitions
can be used to define a best reply communication device by setting πC

α
(t) = v if and only if t ∈ Cαv .

It is worth mentioning that the set of types where different words can serve as a minimizing interim
response, may not be a null set(3). Hence, two best replies constructed by means of such partitions
may differ perceptibly. However, for the Euclidean norm such cases do not occur generically (see
Proposition 13) as long as interpretations differ. This will be discussed in the subsection of section 8.

Employing any such a best reply for sender, one can prove the existence of efficient languages and
thus of noise equilibria.

Theorem 3. Efficient languages (π, α) exist.

We conclude this section by arguing why there is no reason to include the possibility of mixing for
languages. Before this detour is started, remember that a purely cooperative setting is being analyzed
in which preferences are aligned and it would be most preferred to sender if she could reveal her
true type to receiver. By introducing new randomness into the signaling or interpretation procedure
coordination is harder to achieve while also the convexity of the loss functional ` prevents the agents
from any kind of hedging.

To begin the formal analysis, one can restrict to pure strategies of receiver as he always favors the
pure strategy that consists of Bayesian estimators for each induced belief. Focusing on sender now,
denote by σ : T → ∆(W) a mixed strategy, specifying a probability σ(w|t) of sending w ∈W if she is
of type t ∈ T . Thus, expected payoff is given by

L (σ, α) =

∫
T

∑
v∈W

σ(v|t) ·
∑

w∈W

ε(w | v) · `(‖t− α(w)‖) µ0(dt). (9)

This equation immediately shows that sending any pure v ∈ arg minv′
∑

w ε(w | v) · `(‖t− α(w)‖) is
weakly preferred by a type-t sender, even strictly if σ(.|t) assigns a positive probability to any ṽ not
being a minimizer. This result is summarized in Lemma 4.

Lemma 4. For any mixed language (σ, τ) with strategies σ : T → ∆(W) and τ : W → ∆(T ) there is
a pure language (π, α) with weakly smaller loss L (π, α) ≤ L (σ, τ).
If τ is non-degenerated, the inequality can even be made strict by using receiver’s best reply α̂.
Especially, the payoff of any efficient language is attained by a pure one.

5 The q-ary symmetric error channel of length n

In the following we will give an example of a class of error functions that is usually studied in informa-
tion theory: The symmetric q-ary channel (c.f. [Rot06]). In order to apply this framework, the word
space is resembled to actual words and expressions, making it accessible to both, settings in computer
sciences and applications in linguistics. Another argument for this setup to be a canonical choice is
made by the fact that it behaves well in comparative static analysis, e.g., if the error is approaching
zero, see Proposition 6, giving at hand Bayesian updates even in cases when they are formally not
defined.

To start with, it is reasonable to give the space of words W a measure of distance between words in
order to distinguish how similar or different two words are. To this end, a metric d is bestowed upon
W, making it a metric space. As to confound similar words is more likely, it is assumed that the error

(3)Figure 1 in [JMR11] gives an example for this using the maximum norm.

6



Gerrit Bauch October 5, 2021

should depend only on the distance of the words and is the larger the further away two words are from
one another.

Our proposed notion takes a finite alphabet A whose elements we interpret as letters (a,b,c,. . . ) or
expressions (tiny,tall; left, right; etc). The message space consists of a sequence of letters of length n,
i.e. W = An. The Hamming distance

d : W ×W→ N0, ((wk)k, (vk)k) 7→ #{k ∈ {1, . . . , n} |wk 6= vk}, (10)

first introduced and studied in [Ham50], is used as a measure of distance. Thus, words are to be
considered further away from one another the more letters in the order of appearance differ. It is
worth noting that the Hamming distance plays a crucial role in any applied fields related to information
theory, especially coding theory (c.f. [Rot06]).

Turning to the definition of an error, we start by defining it on letters. To this end we set ε̃ : A → ∆(A)
to be the function

a 7→ ε̃(. | a), ε̃(b | a) := ε̃(a)(b) =

{
1− p , b = a,
p

#A−1 , b 6= a
, (11)

where the exogenous parameter p ∈ [0, 1] is the probability of wrongly transmitting the intended letter
a and in case of an error, each of the other #A− 1 symbols is equally likely received. For an alphabet
of length q (in our case q = #A), this type of error structure is called symmetric q-ary symmetric
channel (c.f. [Rot06]). It is a well-known noise channel that is used to model error transitions in
telecommunication, data storage, but also finds application in DNA heritage of cell-divisions (c.f.
[Mac02], [CT06]).

Assuming, that the error of transmitting a letter is independent of the symbols transmitted before, we
can extend the error channel on W by gluing n independent copies of ε̃ together. The result is called
q-ary symmetric channel of length n Using the Hamming distance, this can explicitly be written as
follows.

ε : W→ ∆(W),

v 7→ ε(. | v), ε(w | v) = (1− p)n−d(v,w) ·
(

p

#A− 1

)d(w,w′)

, (12)

In words, ε(w | v) refers to the probability that w is received if v is sent and it only depends on
the Hamming distance d(v,w) and the letter transmitting error p. Noting that for fixed v ∈ W
and d ∈ {0, . . . , n} there are precisely

(
n
d

)
· (#A − 1)d different words w with d = d(w, v) in W,

the probability distribution of the family ({w ∈W | d(w, v) = d})nd=0 follows a binomial distribution.
However, as we are interested in the transition probability from v to a particular w rather than to
such a class of words, ε is itself the natural probability distribution to consider for us.

Using the notation m := #A− 1 and p̃ := p
(1−p)m we can rewrite ε(w | v) = (1− p)n · p̃d(w,v) which is

often convenient.

Note that for fixed p, ε(w | v) only depends on d(w, v). By symmetry of the metric, this in turn
implies that ε(w | v) = ε(v |w) for all v,w ∈ W. Thus, there are mathematically indistinguishable
twin languages created by isometries, i.e. metric-preserving bijections of (W, d). When analyzing
examples, this enables us to restrict our attention to a particular generic word v as for any word v′

there is an isometry mapping v′ to v. The downside of this is that we have to give up uniqueness
of any equilibrium and, although we are able to pin down geometric structures, will not be able to
explain the forming or evolution of one particular language. This problem can be tackled by resolving
symmetries by dynamic learning as is done in [Blu04].

7
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The following result about the introduced error channel is immediate, but captures the qualitative
connection between the metric between words and the probability distribution with which one is
confounded for the other for different levels of the single error probability p.

Lemma 5. Let v ∈W be sent by sender.

(i) If p = 0 receiver will receive v with probability 1, i.e. there is no error and the model becomes
the one for Voronoi languages.

(ii) If 0 < p < m
m+1 the probability of receiving a word w 6= v is decreasing in the distance d(w, v),

i.e. d(w, v) > d(w′, v) =⇒ ε(w | v) < ε(w′ | v).

(iii) If p = m
m+1 , there is no information to be gained from communication as ε is constant and equal

to the uniform distribution.

(iv) If m
m+1 < p < 1 the probability of receiving a word w 6= v is increasing in the distance d(w, v),

i.e. d(w, v) > d(w′, v) =⇒ ε(w | v) > ε(w′ | v).

(v) If p = 1 receiver will receive a word w with maximum distance n = d(w, v) to v and any such
with equal probability.

Starting from the classical case without error (i.e. p = 0), for values 0 < p < m
m+1 words are more likely

to be received (or sent from the receiver’s point of view) that are closer to the word sent (received).
Especially it is most likely to receive the unique word with distance 0 to v, i.e. w = v itself. Reaching
the threshold p = m

m+1 , any communication using this channel is useless, see corollary 2).

Interestingly, for m
m+1 < p ≤ 1 informative communication can take place again, even though in general

less efficiently then before. This is due to the fact that receiver now puts more weight on the event
that the received word stems from one among those having the maximal distance to the it, extracting
some information but not as much as if a single word would be the most likely one.(4) This feature
is illustrated and further discussed in the subsection about entropy where we provide a quantitative
measure for the information permitted by the channel.

Most often, we reckon the single error probability to fulfill 0 < p < m
m+1 as there is always reason to

assume some error, but not too much. The upcoming proposition to studies the limit cases towards
both border. To start with, a short calculation reveals that the investigated error function induces
posteriors beliefs with densities of the form

fπw(t) = f0(t) ·
(∫

T
p̃d(w,π(t′))−d(w,π(t)) µ0(dt′)

)−1

. (13)

Note that the integrand is continuous in p̃.

Proposition 6. Let π be a communication device, which is known to receiver, p ∈ (0, m
m+1) and

w ∈W be the observed word by receiver. Then the following properties hold.

(i) lim
p→ m

m+1

fπw(t) = f0(t).

(ii) Let d∗ := min {d ∈ {0, . . . , n} |µ0({t′ | d(w, π(t′)) = d}) > 0}.

(a) If d∗ < d(w, π(t)) then lim
p→0

fπw(t) = 0.

(b) If d∗ = d(w, π(t)) then lim
p→0

fπw(t) = f0(t) · µ0({t′ | d(w, π(t′)) = d(w, π(t))})−1.

(4)For binary channels, i.e. m = 1, the roles of the two letters simply switch and there is no such loss in information,
whereas for m > 1 there is.
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(c) If d∗ > d(w, π(t)) the limit of the posterior belief for p→ 0 does not exist.

The first statement simply says that there is a smooth transition of the beliefs towards the common
prior if the error channel gets uninformative. The second part deals with the behavior of the posteriors
if the error is getting infinitesimally small. In the presented non-discrete type space setting(5) it is
important to keep track of null sets but can still be explained. To start with, after receiving w and
considering t as a possible type, receiver determines the closest words to w that are sent by a set of
sender types of positive probability w.r.t. µ0. This distance is called d∗. Let p be close to 0 now so
that the probability of wrongly transmitting a word is close to 0.

If d∗ < d(w, π(t)) then it is unreasonable for receiver to assume that sender is of type t as there is a
set of sender types with positive probability mass that is sending words closer to w then type t does.

If d∗ = d(w, π(t)) then there is no set of sender types with positive probability mass that send words
strictly closer to w than type t does. As there is an arbitrarily small error probability, receiver will
not consider types that send a word even further away from w than type t. He only believes that
types t′ with d∗ = d(w, t′) are possible and forms the update over all those types. This even holds
true if w /∈ π(T ) which is surprising as if compared to the classical setting (i.e. p = 0) there would
be no possible Bayesian update: If an English receiver hears the word ”orunge” while assuming an
arbitrarily small error would correctly conclude that ”orange” would be the word sent.

However, the case d∗ > d(w, π(t)) makes it impossible to use Bayes rule as receiver neither expects w
to be sent with positive probability nor does he believe that type t or any other type t′ that sends a
word in distance d(w, π(t)) can be the source of the received word. Although this is a drawback to
the promising former point, for a finite type space this last case disappears.(6)

Entropy

In the following we provide a quantitative measure of the noise ε in terms of the single letter error
probability p by using (Shannon) entropy [Sha48]. Intuitively, the more noise, the harder it gets
for Receiver to properly decode an observed message. We will see that the noise is maximal for
p = m

m+1 and strictly monotonically increasing for both p↗ m
m+1 and p↘ m

m+1 . While p = 0 always
corresponds to a non-noisy channel, for p = 1 not all uncertainty in the channel can be resolved
provided a non-binary alphabet, i.e. m > 1.

Let us start with a short introduction and discussion of entropy. Formally, for a discrete probability
measure P on a finite set X, entropy is defined as follows.

H(P ) = −
∑
x∈X

P (x) · log(P (x)), (14)

where the base choice of the logarithm is a question of normalization and usually chosen to be #X
which is convenient for our setting later. It is the average of the information content − log(P (x))
which describes how surprising the observation of an element x is given its probability P (x). It thus
associates a value of average surprisal or uncertainty to the distribution.

Some important properties of the entropy function H include non-negativity, strict concavity in the
probability distribution P with the maximum being attained at the uniform distribution on X and
symmetry in the order of the elements.

(5)The analogous finite type set case is not that cumbersome in this regard.
(6)For fully supported µ0 any type t occurs with probability > 0 thus we always have d∗ ≤ d(w, π(t)).
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In our setting, for any arbitrary but fixed sent word v and any error probability p ∈ [0, 1], ε(. | v)
defines a probability distributions on the set W. As the choice of v leads only to a permutation of
the probabilities across W and the symmetry of H, H(ε(. | v)) does not depend on v and can thus be
defined as Hε(p) = H(ε) only in dependence on the single error probability p. We have the following
proposition, characterizing properties of Hε(p).

Proposition 7. The entropy of the error channel is

Hε(p) = −n · (p log(p) + (1− p) log(1− p)) + n · p log(m). (15)

It is a concave in p ∈ [0, 1] with the unique maximum being attained at p = m
m+1 with value log(#W).

Moreover, Hε(0) = 0 and Hε(1) = n log(m).

The proposition quantifies the observations we made in Lemma 5. Choosing the base #W for the
logarithm, we can interpret Hε(p) as the percentage of noise of the considered channel. For p = m

m+1
entropy is maximal and equal to 1. This is interpreted as each message being equally likely received
and thus the channel conveys no information. For p = 0 entropy is zero, showing that there is
no noise and each piece of information is transmitted truthfully and can be correctly decoded. If
p = 1 entropy is log(m/(m + 1)), telling us how much information is lost. For m = 1, i.e. a binary
alphabet, this expression is again zero. This makes sense since the roles of the letters simply swap.
For m > 1 however, we can see that although information can be recovered and thus reasonable
communication takes place, there is still noise left and received words cannot be unambiguously
decoded. In between those extreme cases, due to concavity, we have a monotonic increase of entropy
towards the uninformativeness bound p = m

m+1 from both sides. I.e., for p ↗ communication gets
hindered more and more on [0, m

m+1 ], while afterwards communication gets facilitated again.

We conclude the discussion about the error channel by an example that illustrates the relation between
an increasing noise in terms of entropy and the corresponding loss for a fixed communication device
with a non-binary alphabet.

Example 8. Let T = [−1
2 ,

1
2 ] with µ0 being the uniform distribution. Let W = {L,M,R} and fix

π : T →W, π([−1
2 , 0]) = L, π((0, 1

2 ]) = R. For p ∈ [0, 1] the optimal response α̂ of Receiver is given by

α̂(L) =
−2 + 3p

8− 4p
, α̂(M) = 0, α̂(R) = −α̂(L)

and the expected loss in dependence of p is given by

L (π, α̂)(p) =
1

12
− 2−5 · (−2 + 3p)2

2− p
.

A graphical illustration can be found in figure 1.

It’s worth noting that for p → 1 Receiver can perfectly decode L and R as R and L respectively.
However, he now also received message M with positive probability, but cannot determine from which
originally sent message this observation stems. Thus, communication under p = 1 is worse than for
p = 0. In numerical terms, we find that L (1)/L (2/3) = 0.625 ≈ 0.63 ≈ Hε(1), thus entropy roughly
captures the expected loss.

10
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Figure 1: Three Letters on a uniform Interval
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6 Quadratic loss function

In this section, we analyze the structure of the loss aggregation by restricting our attention to the
Euclidean norm ‖.‖ = ‖.‖2, induced by the scalar product 〈. , .〉 and a quadratic loss `(x) = x2 which
is common in cheap talk games (following [CS82]). In this case, for any posterior belief the optimal
response of receiver can be written down explicitly. It is a Bayesian estimator for the whole type set
T according to the induced posterior belief.

Lemma 9. Having any (posterior) belief µ, with continuous density f > 0, receiver’s unique best
action is given by

α̂(µ) = Eµ[t]. (16)

Thus, the expected loss of a publicly known communication device π is

L (π, α̂) = Eλπ [Eµπw [
∥∥t− Eµπw [t′]

∥∥2

2
]] = Eµ0 [‖t‖22]− Eλπ [‖α̂(w)‖22]. (17)

Furthermore, receiver plays on average the default action

Eλπ [α̂(w)] = α0.

Lemma 9 gives at hand a nice formula to calculate the expected loss of a communication device,
separating the problem into several steps. On the one hand, there is a language independent threshold
that stems from the probabilistic setting alone. On the other hand, the split of square norms of the
optimal interpretations induced by π is the determinant factor of the quality of the communication
device. This indicates that optimal languages are the ones maximizing this spread. In other words,
efficient languages are ”as separable as possible”. Adding and subtracting the term ‖α0‖22 = ‖Eµ0 [t]‖22
to the expected loss we can write it as

L (π, α̂) = L0 −
(
Eλπ [‖α̂(w)‖22]− ‖α0‖22

)
. (18)

This expression tells us how much better the communication device π is in comparison with the setting
of no (reasonable) communication.

Recall Corollary 2 where two rather restrictive necessary conditions for a profitable communication
device have been stated: Under both conditions the induced beliefs µπw where shown to be the same
and equal to the common belief µ0. This in turn implies that the induced actions are the same
and equal to the default action. One now might ask whether these conditions are sufficient and if
any non-profitable communication device always induces the same beliefs. However, the following
counterexample illustrates that neither one of the two statements is true.

11
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Example 10. Let T = [0, 1], µ0 ∼ U [0, 1],W = {A,B}2 and take the symmetric binary channel with
single error probability 0 < p < 1

2 , i.e. 0 < p̃ < 1. Consider the non-constant communication device

π : T →W, ω 7→

{
BB , t ∈ [1

3 ,
2
3 ],

AA , otherwise.

Some calculations reveal

fπAA(t) =

{
3p̃2

2+p̃2
, t ∈ [1

3 ,
2
3 ],

3
2+p̃2

, otherwise
, fπBB(t) =

{
3

2+p̃2
, t ∈ [1

3 ,
2
3 ],

3p̃2

2+p̃2
, otherwise

as well as fπAB = fπBA = f0. Hence µπAA, µ
π
BB 6= µ0 and µπAB = µπBA = µ0. However, â(µπw) = â(µ0) = 1

2
for all w, i.e. the induced actions and therefore the payoff (irrespectively of the error p), are always
the same as in the setting without communication. Thus, conveying different information optimal
interpretations may be the same. If, e.g., the received word is AA, receiver assigns a higher probability
to the state lying in the complement of [1

3 ,
2
3 ] then in the mentioned interval itself. However, the

suboptimal symmetric structure of the language does not allow him to get any benefit out of this
updated belief. The expected state still lies at 1

2 , which will be his action taken, leading to the default
loss. Note the action choice of receiver makes all communication devices a best reply for sender,
including the proposed one. Thus, this language defines a noise equilibrium, but not a strict one.

Example 10 can thus be taken as a bad choice of a language. Note that the cell for AA is not convex.
As we will see in the next results, this is an indication that we are either not having a noise equilibrium
or (which was the case in the example) that sender is indifferent between at least two words on a set
of positive probability mass, limiting a fruitful communication in these cases. More interestingly, we
will rediscover a crucial property of Voronoi languages with regard to linguistics: If the Euclidean
norm is used, the set of types for which a particular word v is the unique optimal choice by sender
constitutes a convex set. This provides evidence for the linguistic conjecture that simple words have
convex categories (c.f. [Jä07]) even in the presence of error.

Proposition 11. Let α be an interpretation. For any word v ∈ W, the set of types for which v is a
respectively the best reply by sender are convex sets. In the first case this set is a closed subset of T ,
in the latter an open one.

The convexity result does not hold true for an arbitrary choice of the norm as the following example
demonstrates.

Example 12. Consider a unit square with uniform prior distribution, W = {A,B}, ` ≡ id and
‖.‖ = ‖.‖∞. Then, the best tessellation corresponding to different receiver strategies are in general
non convex as the numerical simulations in figure 2 show.

Having studied a special error function and the quadratic loss case with Euclidean norm separately,
we will end this section by turn towards the interplay of the two.

Proposition 13. Let α be an interpretation. For any pair of words v, v′ ∈W, the set of sender types
for which she is indifferent between sending v and v′ is either a null set or T . The latter case can only
occur for at most n− 2 values of p ∈ (0, 1) if α(v) 6= α(v′).

To conclude this section, we will give another, yet for the moment again not efficient, example of a
noise equilibrium in the one dimensional case. The following language will constitute an almost surely
strict noise equilibrium while not using a full vocabulary, i.e. not all of the available words.

12
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Figure 2: Optimal cells for the maximum norm

Example 14. In the setting of Example 10 consider the communication device

π : Ω→W, ω 7→

{
BB ,ω ∈ [1

2 , 1],

AA , otherwise.

Optimal actions can be calculated to be

α̂(AA) =
1 + 3p̃2

4(1 + p̃2)
, α̂(BB) = 1− α̂(BB), α̂(AB) = α̂(BA) =

1

2
.

The tessellation and optimal actions are illustrated in Figure 3.

Figure 3: Strict Nash but not full vocabulary

1
2

AA BB

0 1
â(AA)

= 1+3p̃2

4(1+p̃2)

â(BB)

= 3+p̃2

4(1+p̃2)

â(LR) = â(RL)

Using this and equation (8), we find that any type-t sender with t ∈ [0, 1
2) prefers to send AA over BB

as well as over AB. By symmetry arguments we thus find that the optimal communication device,
given the above interpretations, is uniquely π up to t = 1

2 - a null set. The proposed language is thus
a strict noise equilibrium under which the communication device does not use all possible words (with
positive probability).

This indicates a violation of Theorem 2 in [JMR11] where a classification of strict Nash equilibria is
given by Voronoi languages with full vocabulary. However, this finding is not that surprising as the
presence of an error lets each word be received with positive probability and implies a unique optimal
reply by receiver. Thus, the freedom of choice on words, that are not actually sent to (and for p = 0
also not received by) receiver must be given up.

7 Separation over Precision

Only a few words are really necessary to capture the main idea of a sentence. The remaining words
are either decorative, concerned with details or simply redundant. Emphasizing the important words
thus becomes thus more important the more likely communication may be flawed. The extreme case
is that of coding theory, where the sender deliberately refrains to use all accessible words so that
receiver has a chance to spot and correct small errors. This technique is of crucial importance not

13
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only in telecommunication but also in all kinds of storage devices. Obviously, this comes at the price
of having some kind of redundancy in the communication as it is no longer theoretically able to convey
as much information as possible.

This waiving of additional information that could be transmitted can also be found within our frame-
work. In the following example, sender gives up precision over types that are close to the pooling action
in order to prevent confusion about states that would come with a large loss if they are mistaken.

Example 15. Let L = 1 and T = [0, 1] endowed with the uniform distribution. The word space is
given by W = {A,B}2. For different values of p, we can categorize efficient languages. For some error
levels, these are depicted in Figure 4.

Figure 4: Efficient languages

p = 0

1
2

1
4

3
4

AA AB BA BB

0 1
â(AA) â(AB) â(BA) â(BB)

p = 0.1

1
2

0.630.37

AA AB BA BB

0 1
â(AA) â(AB) â(BA) â(BB)

p = 0.2

1
2

0.570.43

AA AB BA BB

0 1
â(AA) â(BB)

We observe that most opposite types (those close to 0 and 1) are separated by words that are less easily
confused (here AA and BB). This lowers the probability of huge losses resulting from a confounding
of very distinct types. While all messages are used, we see that for increasing noise the words that
mark the boundaries of the interval absorb more and more space and that the words used to describe
types close to the pooling equilibrium are less often used. That indicates that for higher levels of noise,
it becomes more reasonable to separate clearly extreme types than keeping up a uniform labeling that
could potentially be used to describe the state space with higher precision. This is achieved by putting
more weight on clearly distinguishable words and decreasing the use of words that result in more likely
spillovers from and to the former.
Imagine that sender wants to inform receiver about the height of a person, where 0 and 1 refer to the
tiniest or tallest possible option. The used words can be thought of as ”very tiny” (AA), ”rather tiny”
(AB) and so forth. Note that already the individual letters are endowed with an intrinsic meaning,
e.g. A describing the property ”small’. The distinction between AB and BA is non canonical and
could be swapped by symmetry. Now, as can be seen for increasing values of p ∈ [0, 1

2 ], sender puts
the more emphasize on the extreme cases than on the average sized persons, relinquishing on precision
in order to prevent misunderstandings that would lead to a large loss.

8 A two-dimensional state space with four words

We turn towards illustrative examples in a two dimensional state space and analyze the robustness of
different geometric language structures. The word space will again consist of two letters and words of
length 2, i.e. W = {A,B}2.

14



Gerrit Bauch October 5, 2021

Let L = 2 and T = [−1
2 ,

1
2 ]2 be endowed with the uniform distribution µ0 ∼ U(T ) and M = (0, 0).

Assume further that p < 1
2 , i.e. p̃ < 1, so that the error function is not uninformative and it is less

likely to confound words that are farther away from one another.

We will now study the four special kinds of tessellations, depicted in Figure 5. The respective cells of
the communication device are given by the following color schemes belonging to words: AA (green),
AB (blue), BA (violet), BB (yellow). The black lines indicate the respective optimal interpretations
for each p ∈ [0, 1

2 ], going to the center M if p ∈ [0, 1
2 ] increases. The considered languages differ in two

different aspects. Firstly, the shape of cells is either a square or a triangle (classes 1 or 2). Secondly,
the distribution of words to the cells in a way that leads to different Hamming distances of the used
words, differs across class-a and class-b languages. Note that while in class-a languages the proper
neighbors always use words with a Hamming distance of 1, while for class-b languages each word has
a neighbor with Hamming distance 2 as well.

Figure 5: Four Languages

1a

α(AA)

α(AB)

α(BA)

α(BB)

M

1b

α(AA)

α(AB) α(BA)

α(BB)

M

2a

α(AA)

α(AB) α(BA)

α(BB)

M

2b

α(AA)

α(AB)

α(BA)

α(BB)

M

Table 1: Optimal Values
Case α(AA) α(AB) α(BA) α(BB) L (π, α)

1a 1
4 (−1 + 2p, 1− 2p) 1

4 (−1 + 2p,−1 + 2p) 1
4 (1− 2p, 1− 2p) 1

4 (1− 2p, 1 + 2p) 1
6 −

1
8(1− 2p)2

1b 1
4

(
−1 + 2p, 1− 4p+ 4p2

)
1
4

(
−1 + 2p,−1 + 4p− 4p2

)
1
4

(
1− 2p,−1 + 4p− 4p2

)
1
4

(
1− 2p, 1− 4p+ 4p2

)
1
6 −

1
8(1− 2p)2(1− 2p+ 2p2)

2a 1
3 (0,−1 + 2p) 1

3 (−1 + 2p, 0) 1
3 (1− 2p, 0) 1

3 (0, 1 + 2p) 1
6 −

1
9(1− 2p)2

2b 1
3

(
−p+ 2p2, 1− 3p+ 2p2

)
1
3

(
−1 + 3p− 2p2, p− 2p2

)
1
3

(
p− 2p2,−1 + 3p− 2p2

)
1
3

(
1− 3p+ 2p2,−p+ 2p2

)
1
6 −

1
9(1− 2p)2(1− 2p+ 2p2)

Lemma 16. Let p ∈ [0, 1
2 ] be arbitrary. Then the following assertions hold about any of the four

languages in Figure 5.
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(i) The optimal interpretations and the expected loss are given by Table 1.

(ii) Given the interpretations in Table 1, the indicated tessellation is an optimal one.

Thus, each of the considered languages constitutes a noise equilibrium.

Figure 6: Expected Loss

L

0 p
0.5

1
24

1
18

1
6

0.06

π1,a

π1,b

π2,a

π2,b

There are several interesting comparisons that can be made with these languages. First of, the class-a
languages have interpretations that go in a straight line towards the default action α0 = M while
the class-b ones do so quadratically(7) with the bump towards the edge where words are closer w.r.t.
the Hamming distance. The intuition for this is straightforward: Look w.l.o.g. at α̂(AA): Within
the class-a languages, the cells of the words w with length d(AA,w) = 1 (AB and BA) absorb the
same amount of mistakes from and towards AA, while the word BB with length d(AA,BB) = 2 does
so quadratically but also point-symmetrically w.r.t. the default action. Increasing p thus shifts the
interpretation on a straight line towards M . In contrast, for the class-b languages, the locus of α̂(AA)
is again pulled linearly by the cells of AB and BA while quadratically of BB. As the cell of BB now
borders the one of AA and it is less likely to confound AA with BB, α̂(AA) is quadratically less pulled
by the cell of BB, leading to the parabola shaped locus.

Comparing the expected loss (see also Figure 6) we first note that in the classical case without error
(i.e. p = 0), the respective class-a and class-b languages are equivalent while in the presence of error,
this is no longer so. In general, increasing the error monotonically decreases the loss, and, reaching
the uninformative bound p = 1

2 , any communication collapses and the default loss is reached.

In general, we find that the class-a languages serve as better communication structures for any single
error probability 0 < p < 1

2 . Intuitively and mathematically, receiving AA given a class-b language
shifts our belief (and thus the interpretation) closer to the default one than a class-a language, as more
of the mass of distance 1 words is concentrated opposite of AA’s cell than in the class-a languages.
Even though the communication of class-b languages is more precise in distinguishing types from AA’s
cell to the ones in BB’s cell, this does not make up for the deterioration caused by the even stronger
pull towards the default belief. Thus we find again that it is better to clearly distinguish states that
are furthest away from each other by using words that are least likely to be confounded.

(7)Note that as 0 ≤ p ≤ 1, a quadratical pull is less strong than a linear one.
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Loosely speaking, the border between AA and BB is less permeable than the one for AA and AB (or
BA), meaning that errors diffuse easier between cells with harder border (of degree d(v,w)).

Furthermore, comparing type-1 languages to the type-2 ones we find that the former are superior to
the latter (case a and b wise). Intuitively, the squares provide a more compact structure and less points
near and on indifference level (in this case the respective bisectors between the interpretations(8)) than
the triangle shapes. This also leads to the interpretations being farther away from the default action,
decomposing the common belief less tightly than in case 2.

Concluding the example, we also find that language 2a is superior to 1b for a single error probability
exceeding p = 1

2 −
√

2 ≈ 6%. This indicates that the distribution of words to cells seems more
important than the choice of stable cell structures.

Merging Words

So far, we did not encounter a non-null set of indifference points in the two dimensional case. Language
3 in Figure 7 provides such an example. Interestingly, the language can be condensed into one using
fewer words, thus making the active use of the remaining words redundant.

Consider on T = [−1
2 ,

1
2 ]2 with µ0 ∼ U(T ) and W = {A,B}2 the languages depicted in Figure 7. The

color schemes remain the same as before.

Figure 7: Merging words

3

MM

3?

MM

Table 2: Optimal Values - 3a,b

Case α(AA) α(AB) α(BA) α(BB) L (π, α)

3(?) 1
4 (−(1− 2p), 0) 1

4 (−(1− 2p), 0) 1
4 (1− 2p, 0) 1

4 (1− 2p, 0) 1
6 −

1
16(1− 2p)2

The optimal actions and the corresponding expected loss are exactly the same and stated in Table
2. Thus, both languages can be interpreted as (outcome) equivalent. The reason for this is that the
confusing structure of language 3 amounts to the same information gain of receiver as the simpler
language using only two words. Note that sender is indifferent between sending AA or AB on the left
hand side of M (and likewise BB or BA on the right hand side).

(8)In case 1, theres a total border length of 1 + 1 +
√

2, while in case 2 this is
√

2 +
√

2 + 1
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Surprisingly, if sender switches from 3 to 3?, the optimal interpretations do not change. This stems
from the fact that, for instance, the beliefs µπBB and µπBA are the same: The smaller likelihood of
receiving BB (than BA) in language 3? is exactly compensated by the increased confidence that
sender actually sent BA (and not AA) if BB is received.

To see this formally, start by verifying λπ
3?

(AA) = λπ
3?

(BA) = 1
2(1 − p)2(1 + p̃) and λπ

3?
(BB) =

λπ
3?

(AB) = p̃ · λπ3?
(AA). Finally, the density function yields

fπ
3?

BB (t) =
ε(BB |π3?(t)) · f0(t)

λπ3?(BB)
=
p̃ · ε(BA |π3?(t)) · f0(t)

p̃ · λπ3?(BA)
= fπ

3?

BA (t).

Thus, there is the possibility to achieve the same expected loss as in 3, merging the words on the left
resp. right hand side of the square in a way that leaves two words of distance 1 in W describing ”left”
and ”right”.

9 Evolution

As for usual languages we are interested in the formation and convergence process of communication.
This leads to the question how evolutionary forces, modeled by dynamical systems, shape populations
engaging in noisy communication.

As our strategy space consists not only of interpretations, amounting of points in T#W, but also
communication devices which are member of the set Σ of measurable functions π : T → W we are
facing rather complicated strategy spaces. Even more so when considering populations, i.e. probability
distributions over pure strategies. The technical foundation for well-known dynamics is given. These
include the replicator ([OR01], [CHR06]), payoff monotone ([HSS07]) and Brown-von-Neumann-Nash
dynamics ([HOR09]) and extends to our setting.

We proceed along the lines of [JMR11], considering the symmetrized version of the cheap talk game.
Agents are equally likely to become sender and receiver and thus needs to choose both, a communica-
tion device as well as an interpretation. Thus, an agent using (π, α) and meeting an individual using
(π′, α′) occurs in expectation a loss of

Λ((π, α), (π′, α′)) =
1

2
L (π, α′) +

1

2
L (π′, α). (19)

Describing a population of individuals by a probability distribution P on Γ := Σ×T#W this expected
loss is generalized to

Λ(P,Q) :=

∫
Γ

∫
Γ

Λ((π, α), (π′, α′))P (dπ,dα)Q(dπ′, dα′). (20)

Proposition 17. The following assertions hold.

(i) The expected loss function is continuous with respect to the weak topology.

(ii) The symmetrized loss function is a Lyapunov function for the replicator, regular and payoff
monotone and the Brown-von-Neumann-Nash dynamics.

(iii) Locally optimal languages are Lyapunov stable w.r.t. the replicator, regular and payoff monotone
and Brown-von-Neumann-Nash dynamics.

Approaching the question of language formation from a myopic point of view, one could ask whether
or not the same sender and receiver may be able to learn from one another if they are playing the
game many times. In fact, as Figure 8 demonstrates, a numerical analysis reveals that iteratively
playing a best reply to the action taken by the other player before, converges to stable languages of
the form 1, while indeed those of form 2 turn out not to be locally optimal.
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Figure 8: Best Reply Dynamics

Depicted are the optimal communication device given the marked interpretations. The dispersion to
equilibrium (’error’) is measured as norm distance between two subsequent interpretations.

10 Conclusion

Within our daily routine, errors in our communication are ubiquitous and inevitable. However, this
type of uncertainty is far from being arbitrary. In situations of communication, both, digitally or in
person, confounding is more likely to arise between messages that are similar than between ones that
are very distinct, thus giving noise a structure. Providing a mathematical foundation for such settings,
this paper analyzes not only general properties of such noise channels, such as existence of equilibria,
by incentivizing mutual understanding, but also provides normative and descriptive insights: On the
one hand, we find geometric criteria for languages to be robust in presence of errors that can be used
to develop message systems that minimize confusion. On the other hand, we find that such noise
properties can be learned over time by means of evolution, indicating that our common day languages
are shaped by forces of omnipresent small errors.

A Proofs

(best reply of receiver). The non-emptiness of the best reply set is given by continuity of the integrand
and compactness of T . Assume there are two distinct minimizers s1, s2 and let λ ∈ (0, 1). Then by
the triangle inequality and convexity of ` we find the contradiction

Eµ[`(‖t− (λs1 + (1− λ)s2)‖)] ≤ Eµ[`(λ ‖(t− s1)‖+ (1− λ) ‖t− s2‖)] (21)

< Eµ[λ`(‖t− s1‖)] + Eµ[(1− λ)`(‖t− s2‖)] (22)

= Eµ[`(‖t− ŝ‖)]. (23)

The strict inequality holds as f > 0 and ` is convex and strictly increasing.

Proof. (Proposition 1) Consider the constant strategy α0 of receiver. Then

L (π, α̂) = Eλπ
[
Eµπw [`(‖t− α̂(w)‖)]

]
(24)

≤ Eλπ
[
Eµπw [`(‖t− α0‖)]

]
(25)

= Eµ0 [`(‖t− α0‖)] = L0, (26)

where we applied the minimizing property for the inequality and Bayes-Plausibility to condense the
expectations. The inequality is strict if and only if there is a word w with λπ and α̂(w) 6= α0.
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Proof. (Corollary 2) If π ist constant, say π ≡ v, then ε(w |π(t)) = ε(w | v) is constant and even equals
λπ(w) for any w ∈W. This implies fπw = f0 and thus µπw = µ0.

If ε(. | v) is the uniform distribution on W for all v ∈ W it follows that ε(w | v) = #W−1 for all
w, v ∈W. Then λπ(w) = #W−1 for all w ∈W and again µπw = µ0.

Proof. (Theorem 3) We follow the proof of Lemma 1 in [JMR11] which can be adjusted, incorporating
the error function.

To this end, start by fixing a pure receiver strategy α : W→ T . Then, a type t ∈ T sender optimally
picks any word v out of

arg min
v′∈W

∑
w∈W

ε(w | v′) · `(‖t− α(w)‖). (27)

Note that the set of minimizers is non-empty as W is finite. Now, fix any strict ordering ≤W on W
and define a partition of T by setting

Cαv :=

{
t ∈ T | v is smallest element w.r.t. ≤W in arg min

v′∈W

∑
w∈W

ε(w | v′) · `(‖t− α(w)‖)

}
(28)

for each v ∈W. Note that Cαv is (Lebesgue-)measurable as all involved functions are continuous in t
and it is the set difference of a closed set from a finite union of closed sets:

Start by collecting all the t where v is a minimizer, which is a closed set. Now, for all v′ ≤W v take
away the indifference sets, which are closed, to obtain Cαv .

This way, a measurable function π : T →W is defined by π(t) = v ⇐⇒ t ∈ Cαv , which represents one
possible best reply of sender.

Using any such choice, the general loss minimization can be rewritten depending only on α as

min
α

∫
T

min
v

{∑
w∈W

ε(w | v) · `(‖t− α(w)‖)

}
µ0(dt). (29)

Now, note that we can identify any strategy α : W → T as a point in TN , N := #W. Thus, by
Lebesgue’s dominant convergence theorem, it suffices to prove continuity of the integrand in α for any
fixed t. But this is obvious as the pointwise minimum of finitely many continuous functions is again
continuous.

Proof. (Lemma 5) The case p = 0 is clear. For 0 < p̃ < 1 we have that

ε(w | v) > ε(w′ | v) ⇐⇒ p̃d(w,v) > p̃d(w′,v) ⇐⇒ d(w, v) < d(w′, v). (30)

The other cases follow similarly.

Proof. (Proposition 6)

(i) Clear by continuity of the integrand in p̃ and Lebesgue’s theorem.

(ii) To start with, always split the integral in three parts by disassembling the type space T into
{t′ | d(w, π(t′)) S d(w, π(t))}.

(a) The set {t′ | d(w, π(t′)) < d(w, π(t))} has positive probability and the negative exponent
d(w, π(t′))− d(w, π(t)) will let the integral go to infinity as p→ 0.

(b) The set {t′ | d(w, π(t′)) < d(w, π(t))} has probability zero and can be neglected. For p→ 0,
the integral over {t′ | d(w, π(t′)) > d(w, π(t))} will vanish as the exponent of p̃ is strictly posi-
tive. What is left of the overall integral is

∫
{t′ | d(w,π(t′))=d(w,π(t))} µ0(dt′) = µ0({t′ | d(w, π(t′)) =

d(w, π(t))}) which is strictly positive by assumption.
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(c) Ignoring the integral over null sets, the limit p → 0 makes the integral go to 0 making the
limit meaningless.

Proof. (Proposition 7) We start of by calculating the entropy

H(ε(. | v)) = −
∑
w∈W

ε(w | v) · log (ε(w | v)) (31)

= −
∑
w∈W

(1− p)n−d(w,v) ·
( p
m

)d(w,v)
· log

(
(1− p)n−d(w,v) ·

( p
m

)d(w,v)
)

(32)

= −
n∑
d=0

(
n

d

)
·md · (1− p)n−d ·

( p
m

)d
· log

(
(1− p)n−d ·

( p
m

)d)
(33)

= −
n∑
d=0

(
n

d

)
· (1− p)n−d · pd · log

(
(1− p)n−d · pd

)
(34)

+ log (m) ·
n∑
d=0

(
n

d

)
· d · (1− p)n−d · pd (35)

= −
n∑
d=0

(
n

d

)
· (1− p)n−d · pd · log

(
(1− p)n−d · pd

)
+ np log(m) (36)

= −np · log(p)− n(1− p) · log(1− p) + np log(m) (37)

= n · (H((p, 1− p)) + p log(m)). (38)

This function is concave in p since H((p, 1− p)) = −p log(p)− (1− p) log(1− p) is. The maximum is
attained for the uniform distribution which is attained for p = m

m+1 by Lemma 5 and yields H(U(W)) =
log(#W). The other assertions follow readily from the calculated expression.

Proof. (Lemma 9) To begin with recall receiver’s minimization problem:

min
α∈T

Eµ[‖t− α‖22] =

∫
T

L∑
k=1

(tk − αk)2 µ(dt). (39)

Using the Leibniz rule we check the first and second order conditions for each k and obtain the unique
local and global minimum by choosing

α̂k(µ) =

∫
T
tk µ(dt) = Eµ[tk]. (40)

Plugging â(µ) = Eµ[t] back into the expected loss and using the scaler product 〈. , .〉 we get

Eµ[
∥∥t− Eµ[t′]

∥∥2

2
] = Eµ[‖t‖22]− ‖Eµ[t]‖22 , (41)

which is the sum of the variances over the tk’s.

Thus, if a communication device π is given, an expected loss of

Eλπ [Eµπw [
∥∥t− Eµπw [t′]

∥∥2

2
]] = Eλπ [Eµπw [‖t‖22]−

∥∥Eµπw [t]
∥∥2

2
] (42)

= Eµ0 [‖t‖22]− Eλπ [
∥∥Eµπw [t]

∥∥2

2
] (43)

is faced, where Bayes-Plausibility was used. Finally, using again Bayes-Plausibility we observe

Eλπ [α̂(w)] = EλπEµπw [t] = Eµ0 [t] = α̂(µ0) = α0. (44)
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Proof. (Proposition 11) Recall (8) and that ‖x− y‖22 = ‖x‖22 − 2 〈x , y〉+ ‖y‖22. We start by reformu-
lating the condition that a type-t sender strictly prefers to send v instead of v′:∑

w

ε(w | v) ‖t− α(w)‖22 <
∑

w

ε(w | v′) ‖t− α(w)‖22 (45)

⇐⇒
∑

w

(
ε(w | v′)− ε(w | v)

)
·
(
−2 〈t , α(w)〉+ ‖α(w)‖22

)
> 0 (46)

By linearity of the scalar product, convexity and topological properties become clear. For the weak
preference substitute the proper inequality for an improper one.

Proof. (Proposition 13) Indifference for type t ∈ T means∑
w

(
ε(w | v′)− ε(w | v)

)
·
(
−2 〈t , α(w)〉+ ‖α(w)‖22

)
= 0 (47)

⇐⇒ − 2 ·

〈
t ,
∑

w

(
ε(w | v′)− ε(w | v)

)
· α(w)

〉
+
∑

w

(
ε(w | v′)− ε(w | v)

)
· ‖α(w)‖22 = 0. (48)

Now if
∑

w (ε(w | v′)− ε(w | v)) · α(w) 6= 0 the solution set is the translation of the L − 1 dimen-
sional hyperplane perpendicular to the vector

∑
w(ε(w | v′) − ε(w | v))}α(w) by a particular solution

(if it exists, otherwise it’s the empty set) and thus a null set in RL. If it is 0, then necessarily∑
w (ε(w | v′)− ε(w | v)) · ‖α(w)‖22 = 0 for indifference. But then any t in T (even RL) fits the equa-

tion.

In the latter case, it holds that ∑
w

(
ε(w | v′)− ε(w | v)

)
· α(w) = 0 (49)

⇐⇒
∑

w

(
p̃d(w,v′) − p̃d(w,v)

)
· α(w) = 0, (50)

which is a polynomial of degree at most n in p̃ with zeros in p̃ ∈ {0, 1}. It is not the zero polynomial
as the coefficient for p̃0 is α(v′)− α(v) 6= 0. On (0, 1) it thus has at most n− 2 other zeros.

Proof. (Lemma 16) As the proof is mostly about calculations to various objects, we structure it
as follows: We begin by calculating the optimal interpretations and the expected loss. Then we
characterize conditions on optimal cells for the considered word space. Eventually, fixing any of the
calculated interpretation we will show that the indicated tessellation is indeed an optimal one, even
uniquely up to null sets.

To start with, note, that for any considered cell µ0(Cv) = 1
4 and thus for any w

λπ(w) =

∫
T
ε(w |π(t)) dt =

∑
v

ε(w | v) · µ0(Cv) =
1

4
. (51)

in all cases.

(i) Interpretations and Expected Loss

Denote by �(AA) and ∆(AA) the respective area indicated in Figure 5.
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1. (a) Let us begin by calculating the expected values/center of gravity of each colored area, say the
one for AB:

E�(AB)[t] := Eµ0,�(AB)[t] = µ0(�(AB))−1 ·
∫
�(AB)

tdt (52)

= 4 ·
∫ 0

− 1
2

∫ 0

− 1
2

(t1, t2) dt1dt2 =

(
−1

4
,−1

4

)
. (53)

Similarly, or by using symmetry arguments, we obtain the expected values for AA,BA,BB
which are, resp. (−1

4 ,
1
4), (1

4 ,
1
4),(1

4 ,−
1
4).

Let us now calculate e.g. the optimal action α̂(AA).

α̂(AA) = EµπAA [t] = λπ(AA)−1 ·
∫
T
ε(AA |π(t)) · t µ0(dt) (54)

= 4 ·
∑

w

ε(AA |w) ·
∫
�(w)

t dt (55)

=
∑

w

ε(AA |w) · E�(w) (56)

= (1− p)2 · (−1
4 ,

1
4) + p(1− p) ·

(
(−1

4 ,−
1
4) + (1

4 ,
1
4)
)

+ p2 · (1
4 ,−

1
4) (57)

=
1

4
· (−1 + 2p, 1− 2p) . (58)

Analogously, by symmetry arguments or using Lemma 9 we get α̂(AB) = 1
4 · (−1 + 2p,−1 +

2p), α̂(BA) = 1
4 · (1 − 2p, 1 − 2p), α̂(BB) = 1

4 · (1 − 2p,−1 + 2p). For each word w we see
‖α(w)− α0‖2 ↘ 0 for p̃→ 1, where M = α0 = (0, 0) is the expected value over the whole state
space.

We are now ready to calculate the expected loss. We start be observing that each interpretation
has the same norm:

‖α̂(w)‖22 = ·
∥∥∥∥1

4
· (1− 2p, 1− 2p)

∥∥∥∥2

2

=
1

8
· (1− 2p)2. (59)

Having calculated ET [‖t‖22] = 1
6 , we use equation (17) to obtain the expected loss

L (π1,a, α̂) =
1

6
−
∑

w

1

4
· 1

8
· (1− 2p)2 =

1

6
− 1

8
· (1− 2p)2. (60)

One clearly sees that the expected loss is increasing monotonically in p ∈ [0, 1
2 ]

(b) Using the calculations from (a) we can directly compute the optimal interpretations, only
keeping in mind that the centers of gravity are switched for BA and BB. We obtain α̂(AA) =
1
4 · (−1 + 2p, 1 − 4p + 4p2), α̂(AB) = 1

4 · (−1 + 2p,−1 + 4p − 4p2), α̂(BA) = 1
4 · (1 − 2p,−1 +

4p− 4p2), α̂(BB) = 1
4 · (1− 2p, 1− 4p+ 4p2)

Thus, for any word w we have

‖α̂(w)‖22 =
1

16
· ((1− 2p)2 + (1− 2p)4), (61)

resulting in an expected loss of

L (π1,b, α̂) =
1

6
− 1

16
·
(
(1− 2p)2 + (1− 2p)4

)
(62)

=
1

6
− 1

8
· (1− 2p)2 · (1− 2p+ 2p2). (63)
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We observe for 0 < p < 1
2

L (π1,a, α̂) < L (π1,b, α̂), (64)

thus, the language, putting far words farther away from one another, achieves a lower expected
loss.

2. (a) The expected values of each colored area can be determined to be E∆(AA)[t] = (0, 1
3), E∆(AB)[t] =

(−1
3 , 0), E∆(BA)[t] = (1

3 , 0), E∆(BB)[t] = (0,−1
3).

Optimal actions can be computed to be α̂(AA) = (0,−1
3 + 2

3p), α̂(AB) = (−1
3 + 2

3p, 0), α̂(BA) =
(1

3 −
2
3p, 0), α̂(BB) = (0, 1

3 + 2
3p).

We thus get

‖α(w)‖22 =
∥∥(0, 1

3 −
2
3p)
∥∥2

2
=

1

9
· (1− 2p)2. (65)

The resulting expected loss is thus

L (π2,a, α̂) =
1

6
− 1

9
· (1− 2p)2, (66)

which is strictly higher than L (π1,a, α̂) for any p ∈ [0, 1
2).

(b) Optimal actions can be calculated to be α̂(AA) = 1
3 · (−p + 2p2, 1 − 3p + 2p2), α̂(AB) =

1
3 ·(−1+3p−2p2, p−2p2), α̂(BA) = 1

3 ·(p−2p2,−1+3p−2p2), α̂(BB) = 1
3 ·(1−3p+2p2,−p+2p2).

We thus get for any word w

‖α̂(w)‖22 =
1

9
(1− 2p)2(1− 2p+ 2p2) (67)

and hence

L (π2,b, α̂) =
1

6
− 1

9
(1− 2p)2(1− 2p+ 2p2), (68)

which is worse than L (π2,a, α̂) for 0 < p < 1
2 .

(ii) Optimal Cell Structure

To start with we simplify the expressions from Lemma 11 and Proposition 13 for W = {A,B}2. To
this end, fix w.l.o.g. (by the subsection on language isometry) the word AA and derive conditions on
a fixed t ∈ T for AA to be the optimal word.

• Type t prefers to send AA over BB if and only if∑
w

ε(w | v) ‖t− α(AA)‖22 <
∑

w

ε(w | v) ‖t− α(BB)‖22 (69)

⇐⇒ ‖t− α(AA)‖2 < ‖t− α(BB)‖2 . (70)

• Type t prefers AA over AB (the case BA is analogous) if and only if∑
w

ε(w | v) ‖t− α(AA)‖22 <
∑

w

ε(w | v) ‖t− α(AB)‖22 (71)

⇐⇒ ‖t− α(AA)‖22 − ‖t− α(AB)‖22 < p̃
(
‖t− α(BB)‖22 − ‖t− α(BA)‖22

)
(72)

⇐⇒ 2 〈t , α(AB)− α(AA) + p̃(α(BB)− α(BA))〉 (73)

+ ‖α(AA)‖22 − ‖α(AB)‖22 + p̃(‖α(BA)‖22 − ‖α(BB)‖22) < 0. (74)
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Whereas in (i) we clearly see that the set of sender types that are indifferent between AA and BB lie
on the perpendicular bisector (and thus a null set in T ) of α(AA) and α(BB) if the interpretations
do not agree, it is not so obvious in case (ii). What we can say for sure is, that, as long as α(AB)−
α(AA) + p̃(α(BB) − α(BA)) is not the zero vector, the set of indifferent types is again a null set as
the intersection of a line and T .

To drop some notation and just write AA instead of α(AA) from Table 1 when talking about points
in T . Consider the variants (a) and (b) respectively and let t ∈ �(AA) (resp. t ∈ ∆(AA)) be in the
interior.

(a) Observe that
‖t−AA‖2 < ‖t−AB‖2 , ‖t−BA‖2 < ‖t−BB‖2 . (75)

Obviously, sending AA is preferred to BB as ‖t−AA‖2 < ‖t−BB‖2.

Realizing that

‖t−AA‖22 − ‖t−AB‖
2
2 < 0 < p̃ ·

(
‖t−BB‖22 − ‖t−BA‖

2
2

)
, (76)

reveals that sending AA is preferred to AB (and analogously BA). Thus, AA is the unique best
word to be send.

(b) As before preferring AA to BB is clear from ‖t−AA‖2 < ‖t−BB‖2.

Since
0 ≤ ‖t−AA‖2 < ‖t−AB‖2 , ‖t−BB‖2 < ‖t−BA‖2 , (77)

we observe

‖t−BA‖22 − ‖t−AA‖
2
2 >

∣∣∣‖t−AB‖22 − ‖t−BB‖22∣∣∣ (78)

> p̃ ·
∣∣∣‖t−AB‖22 − ‖t−BB‖22∣∣∣ (79)

≥ p̃ ·
(
‖t−AB‖22 − ‖t−BB‖

2
2

)
, (80)

showing that AA is preferred toBA.

Finally, using AA = −BA, AB = −BB and that ‖α(w)‖ is constant, we realize

2 · 〈t , −AA+AB + p̃(BB −BA)〉+ ‖AA‖22 − ‖AB‖
2
2 + p̃(‖BB‖22 − ‖BA‖

2
2) (81)

= 4 ·

〈
t , AB+BA

2︸ ︷︷ ︸
=:P

〉
. (82)

This term is smaller than zero in both cases 1 and 2:

1. As t1 < 0, t2 > 0 and P1 = 0, P2 < 0.

2. t = (y, z) with z > 0, |y| < z and P = (−x, x), x > 0.

Thus, sending AA is preferred to AB as well.

From the calculations it is clear that the borders of the cells consist precisely of the indifference points
for senders.
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Proof. (Proposition 17) We only show continuity and boundedness of L as this implies continuity of
Λ. The rest of the assertions follow well-known lines ([HSS07], [HOR09]) as well as [BS02] for the last
statement.

Let (πn)n be a sequence of communication strategies converging uniformly to π, i.e. for all ρ′ > 0 there
is an M such that for all t ∈ T we simultaneously find d(πn(t), π(t)) < ρ′ for n > M . As d has only
values in {0, . . . , n}, this is equivalent to πn ≡ π for all n > N0 for some N0. Let ρ > 0 be arbitrary. As
T is compact and |.| as well as ` are continuous,there is δ > 0 such that |`(a)− `(b)| < ρ if ‖a− b‖ < δ.
Furthermore, let (αn)n be a sequence converging to α uniformly on T#W ( R#W. Then there is
N1 ≥ N0 such that for all t ∈ T and w ∈W we have ‖t− αn(w)− (t− α(w))‖ = ‖αn(w)− α(w)‖ < δ
for all n > N1. Thus, for all n > N1 we find

|L (πn, αn)−L (π, α))| ≤
∫
T

∣∣∣∣∣∑
w

ε(w |πn(t))`(‖t− αn(w)‖)−
∑

w

ε(w |π(t))`(‖t− α(w)‖)

∣∣∣∣∣ µ0(dt)

(83)

=

∫
T

∣∣∣∣∣∑
w

ε(w |π(t)) (`(‖t− αn(w)‖)− `(‖t− α(w)‖))

∣∣∣∣∣ µ0(dt) (84)

≤
∫
T

∑
w

ε(w |π(t)) |`(‖t− αn(w)‖)− `(‖t− α(w)‖)| µ0(dt) (85)

≤
∫
T

∑
w

ε(w |π(t)) · ρµ0(dt) (86)

= ρ. (87)

Finally, boundedness of L follows from compactness of T and continuity of `, since ¯̀ := supt∈T |`(‖t‖)| <
∞. For any π, α

|L (π, α)| ≤
∫
T

∑
w

ε(w |π(t)·) |`(‖t− α(w)‖)| µ0(dt) ≤
∫
T

∑
w

ε(w |π(t)) · ¯̀µ0(dt) = ¯̀<∞. (88)
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