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Abstract

We introduce a generalization of the Maschler—Perles bargain-
ing solution to smooth bargaining problems for n players. We
proceed by the construction of measures on the Pareto surface of
a convex body.

The MP surface measure is defined for Cephoids, i.e., Minkowski
sums of simplices (see [14]| for a coherent description); this mea-
sure cannot directly be extended to a smooth Pareto surface.

Therefore, we introduce a further extension of the Maschler—
Perles idea to Pareto surfaces of convex bodies. This extension
is suggested by the density /m;---m, of normals in coordinate
directions — a term generalizing the Maschler—Perles line integral
of \/—dxidzs — the “donkey cart” in their interpretation. The
“deGua” measure defined this way, is then verified to be the lim-
iting measure of the MP measures along the filter of convergent
Cephoids as established in [15].
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1 Notations and Definitions

We consider specific compact convex comprehensive polyhedra located within
the nonnegative orthant of R"”. The notation is taken from [14], see also [6],
[7]. To this end, let I := {1,...,n} denote the set of coordinates of R™, the
positive orthant is R” := {z = (21,...,2,) | 2, > 0, (i € I)}. Let e’ denote
the ¢ unit vector of R” and e := (1,...,1) = > " e’ € R" the “diagonal”
vector.

The notation CovH A is used to denote the convex hull of a subset A of
R". The comprehensive hull of a set A C RY} is given by

CmpH A = {yE]R’HEIa:GA : ygaz}.

Given a vector a = (a1,...,a,) > 0 € R", we consider the n multiples
a' := a;e' (i € I) of the unit vectors. Then
(1.1) A® .= CovH {al,...,a"}

is the Simplex resulting from a (we use capitals in this context). Figure 1.1
represents a Simplex in R3 .

as

Aa

a1 a9

Figure 1.1: The Simplex in R? generated by a = (a1, as, a3)

Next, for J C I we write R} := {& € R"|2; =0 (¢ ¢ J)}. Accordingly, we
obtain the Subsimplex

(12) A :={zeA%|2;=0( ¢ J)} =A°NR} =CovH {a'|ic J} .

There is a second type of simplex we associate with a positive vector a € R’}
This is the one spanned by the vectors a’ plus the vector 0 € R, that is

(1.3) In* .= C’ovH{O,al,...,a”} = CmpH A® .
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In order to distinguish both types, we call [I* the deGua Simplex associ-
ated to a, paying homage to J.P. de Gua de Malves 3] who generalized the
Pythagorean theorem for simplices of this type. Consistently, we write, for

any J C I the corresponding deGua Subsimplex of 11* as
(1.4) g = {zell®|x;=0 (i ¢ J)}
' = [I"NR; = CovH{0,d'|icJ} = CmpHAS.

Figure 1.2 indicates the deGua Simplex [1* generated by a.

Figure 1.2: The deGua Simplex I1*; a = (aq, az, a3)

In the terminology of Convex Analysis, A% is the mazimal (outward) face
of TI®. Here we prefer the MathEcon notation, calling A® the Pareto face
of I1¢.

A mormal to some convex set C' in some point & € JC is a vector that
generates a separating hyperplane in &. A vector that is a normal to some
face F of a convex set C' in all points of F' is called normal to F. A deGua
Simplex I1* admits of a normal

1 1
1.5 a .— — =) .
(1.5) n ( )

to A% All other normals to A® are positive multiples of this one, i.e., the
normal cone to A® is

N = {tn*|t >0} .

We refer to this situation saying that the normal of A% is “unique up to a

multiple” or “essentially unique” etc.
The projection of n® to R’ is denoted by n§ = n® | By, The subface
J+

G of the Pareto face admits of a normal cone NG generated by the normals
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We use operations on convex sets that are a standard in Convex Geometry,
see e.g. PALLASCHKE-URBA'NsKI [8]). E.g., for A,B C R%}, A € Ry, the
algebraic or Minkowski sum A + B and the multiple AA are well defined
quantities.

A Cephoid is a Minkowski sum of deGua Simplices, precisely:

Definition 1.1. Let K = {1,..., K} and let {a®*
positive vectors. The Minkowski (or algebraic) sum

(1.6) m= 3y m"

keK

)}keK denote a family of

is called a Cephoid.

The surface of a polyhedron can be described by either a list of extremal
points or by maximal faces. We focus on the Pareto surface of a Cephoid.
For completeness, we provide the following

Definition 1.2. 1. A face F of a Cephoid Il is maximal if, for any
face F° of TT with F C F° it follows that F = FY is true.

2. The (outward) or Pareto surface of a compact convex set (specif-
ically: of a Cephoid II) is the set

(1.7) Ol = {xell| Ayellyiel : y>x, y; > x; }.

3. The points of the Pareto surface are called Pareto efficient.
4. Maximal faces in the Pareto surface are called Pareto faces.

5. Pareto efficient extremal points are called wvertices

The vector 0 is always an extremal point of a Cephoid in R™ but it is not
Pareto efficient. A® is the only Pareto face of 11?; similarly for A and II9.

Remark 1.3. Generally, the Pareto surface of a Cephoid in n dimensions
with K summands consists of a number ¢(K, n) of Pareto faces. This number
is universal, it depends on K and n only (see CHAPTER 5 of [14]). Yet, there is
a great variety of orderings of such faces. A most efficient tool to describe the
lattice of Pareto faces is provided by representations. These are mappings of
OII onto a multiple of A¢.

Recall the canonical representation of a Cephoid as defined in DEFINI-
TION 2.1 of CHAPTER 1 of [14]. This notion is established via a bijection

(1.8) ) 1 Ol = KA
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of the Pareto surface of II onto an appropriate multiple of the unit Simplex
A¢€. k maps the Pareto faces bijectively on a system of convex polyhedra de-
fined on a grid of K'A® such that the lattice structure is preserved bijectively
as well (see [14], CHAPTER II).

More detailed, any extremal w € OII is uniquely represented as a sum of
vertices of the {A®}, k via a mapping

(1.9) i, = K—1

i.e., by

(1.10) u=a" =) a®i
ke K

u is mapped onto
(1.11) u = k(u) = Zao(k)ik.
keK

L

Correspondingly, for any Pareto face F with extremals u!, ..., u’, we obtain

for a vector € F with representation

L
Xr = Z alu(l)
l

the image
(1.12) Kk(x) = Z(xm‘,(ul).

This induces an image F° = k(F) C KA°. The mapping & is then extended
to bijectively map the lattice V of Pareto faces from OII onto the correspond-
ing lattice V0 of KA®,

Example 1.4. Figure 1.3 (the Cephoid “Odot”) is a sum of 4 deGua Simplices
in 3 dimensions.

Figure 1.4 shows the canonical representation of “Odot” . The lattice of
Pareto efficient faces is exactly copied.
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Figure 1.3: “Odot”: a sum of 4 deGua Simplices

Figure 1.4: The canonical representation of “Odot”
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2 Surface Measures:
The Machler—Perles Surface Measure

We review the idea of extending the MASCHLER-PERLES solution (|9], see
also [14], [10]) via an appropriate measure defined on the Pareto surface of a
Cephoid. We follow the presentation provided in [5] and explained in detail
in [14].

For 0 < a € R"} we write

(2.1) Ta = n/Hai.

For a family a® = {a(’“)} e K of positive vectors we extend this notion via
(2.2) Tae = ) Tar .
keK

Surface measures for a Cephoid are defined on the Pareto surface. We will
discuss two versions named in homage to Maschler—Perles and deGua.

Definition 2.1. 1. For positive a € R} the MP measure

assigned to A® is
(2.3) ia(A%) =
in particular,

(2.4) ta(A%) = 1.
2. Let I =3, x 11 be Cephoid and let

(2.5) F = ZA%

keK

be a Pareto face with reference system J = {J(k)} . Then the MP
keK

measure of F is given by

Ji—1 Jr—1

(2.6) in(F)=c¢;" H al ce H ak

ieJ@ ieJ )

with certain “normalizing coefficients” cy.

For details and motivation see [14].



* SECTION 2: THE MP MEASURE % 7

Example 2.2. In 3 dimensions let @ = (a;,as,a3) > 0 and let II* be the
Cephoid generated. The MP-measure of A® is

(2.7) ta(AY) = {/(arazas)® .

This way, the unit Simplex is normalized in measure to ¢a(A€) = 1. Thus,
ta(e) on multiples of the unit Simplex is Lebesgue measure up to a constant
density.

Consider the sum of two deGua simplices [ = A% + AP as indicated in
Figure 2.1. The Pareto surface of this Cephoid consists of two translates of
the deGua Simplices involved and the rhombus

Aggb 13 = A%+ Alf:s
This rhombus is the sum of two Subsimplices of A% and AP,

3

Figure 2.1: A sum of two deGua Simplices

To A$? |, we assign

(2.8) ta(AP) = 2€/(a1a2a3)(blbgb3),

Note that equation (2.8) involves all coordinates of @ and b. The result is
based on the notion of a “measure preserving” representation, which allows to
map the Pareto surface of a cephoid consistently onto a multiple 740 A€ of the
unit Simplex. (see [14], CHAPTER III, SEcTION 1 for a detailed motivation).
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Remark 2.3. [Modifications of the canonical representation]

By a slight modification we obtain a normalized version of the canonical
representation, which we call the Simplex representation. This version
uses the unit Simplex A€ simultaneously for all Cephoids. It is defined via

R : Ol — A®
(2.9) A K(z)
k() = T

In what follows (SECTION 3, in particular Definition 3.3) we will change our
viewpoint and consider the inverse of a representation to be a parametrization
of a Pareto surface of a Cephoid. E.g., the mapping

%(o) = kRl AC oI

provides a parametrization

(2.10) (A°, Z(o))

of OII by A¢. The advantage of the Simplex representation (2.9) is that its
. A A, . . .

inverse (o) = k' acts simultaneously on a domain for all Cephoids.

Somewhat more generally, for some @ > 0 we can choose a multiple of A%
instead of K A® for the representation. Let II =}, . 11" and choose a set
of positive coefficients {ay }, . with sum ), - ax =: a. Then the represen-
tation will take place on IT := °, . aI1* = aA® with o 1= ), ou.

We call this a modified canonical representation written k®. A Pareto
face F =3, Af]k()k) of II is then mapped onto a face

(2.11) KUF) = F = Y A%,
keK

of the Cephoid IT = aA%. Also, the lattice V of Pareto faces of IT is bijectively
mapped on the lattice k*(V) =V on KA?®,

Specificylly, we set oy, = 1a(A%® (k € K). The inverse mapping z%(e)
constitutes a parametrization of II.
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3 Surface Measures: The deGua Measure

Now we turn our focus on more general compact convex sets I' € R’} with
Pareto surface 0I'. We distinguish the following versions.

Generally, we if we speak of a “convex body” we mean a compact convex
set, the surface being differentiable within an open and dense subset (the
complement of finitely many hyperplanes).

Specifically, let OI' be a compact and continuously differentiable surface
which, in addition, has not flat areas and no zero derivatives. That is, the
normal varies continuously, is always positive and uniquely corresponds to
Pareto efficient points. In this case we shall — somewhat sloppily — refer to
[' as a “smooth body”. Or else we consider I'" to be a Cephoid — which we
indicate by writing I — with Pareto surface 0" = OII.

We will heavily rely on the use of parametrizations as follows (see also Remark
2.3).

Definition 3.1. Let I' be a convex body. A parametrization of OI' is a
pair (T,x(e)), such that T € R"! is compact and convex and x(e) is a
bijective mapping

(3.1) x(e): T — O

which is continuously differentiable within an open and dense set. For a
smooth body we require that x(e) is continuously differentiable.

For a Cephoid II, a parametrization of OIl is a pair (T, x(e)), such
that x(e) : T — OIl is continuously differentiable within an open and
dense subset (the complement of finitely many hyperplanes) of T. We write
t = (t1,...,tn—1) € T for the generic element of T.

For a convex body I' the canonical parametrization is defined as follows.
Let

rem = FI—{n} = FH]RI\{R}

(3.2) _ {t c ]R:ifl ‘ I>0 = (t,t) F}

and define the (continuous and concave) function

Cc: T SR

(3.3) C(t) = max{t>0]|(¢t)eT},

then the canonical parametrization is (F(fn), :cc(o)) with

“(o) == I'"™™ — oT
(3.4) " (o) —
xTr

“t): = (t,C(t) (tel).
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Essentially, describing I' is tantamount to presenting a function C' such that
OI' (or OII) is the graph of C. This version is emphasized for the case of 2
dimensions in the context of the Maschler—Perles solution, see [14], CHAPTER
XI, SECTION 3.

Example 3.2. If ' = A%is a deGua Simplex, then the canonical parametriza-
tion is provided via the deGua unit Simplex in n — 1 dimensions; i.e.,

n—1
t:
Z—J < 1} =CovH{a',...,a" '} .

j=1 "

(35) T =A% = {t e Ry

and the function C' given by
n—1 t
(3.6) c(t) = ay <1 - —J>

Alternatively, we may use

(3.7) T = ¢ = {teml

and a parametrization x(e) given by

(38) w(t> = (altl, cey anfltnfl, Qp, (1 —

The following parametrization allows for the simultaneous choice of T for
all Cephoids. It will turn out that it can be extended to smooth surfaces as
well. Compare also Remark 2.3.

Definition 3.3. Let II be a Cephoid and let k be the canonical represen-
tation. The Simplex parametrization (A€ z*(e)) is obtained by shrinking
the canonical representation to the unit Simplex; i.e.,

Ale) : A® = oI

(3.9) wA B
x2(t) == k(Kt) (te A®).

The Simplex parametrization preserves the lattice structure V of the Pareto
surface JII. It is just a rescaling of the canonical representation, but yields
a simultaneous parametrization basis T = A®. Later on (Lemma 4.4, Defi-
nition 4.5) we will show that, by uniform continuity, this choice of T = A*®
can be introduced for a smooth surface as well.
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In what follows we construct surface integrals which are independent on the
parametrization chosen. Not always will we explicitely verify this fact.

Let I" be a convex body with surface OI' parametrized by (T, x(e)). Let
t € T be a point at which we have differentiability. Then, for sufficiently
small £ > 0, a tangent through the point @(t) in direction of the curve

(3.10) {x(t;,t )| t; € [t; — e, +e]}

is given by the vector

ox 0x1 Oz o0x,, .

11 Y 1. . n—1).
Rt o R IR
Let

al'i
(3.12) D(f) = (Da) () = 2
i/ el jel\{n}
and let
(313) D) = (D)@ = |22 el
0t |ren (iy.jern)

denote the functional determinant of the quadratic submatrix of D obtained
by omitting the ¢ — th column. Then the normal at 9I" in (%) is given by

(3.14) a = n*® = (Di@),...,D.(1) .
Definition 3.4. Let I' C R"} be a convex body with Pareto surface OI" and
let (T, (x(e)) be a parametrization. The deGua measure on JI is

(3.15)

() = / Ydny - dny,
or

_ /md)\ - /V(Dl...Dn)oxdx

As we have emphasized above, one has to verify that the deGua measure is
independent on the parametrization chosen; a tedious but straightforward
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procedure well known for the analogues of Lebesgue measure on a smooth
surface. We provide a shorthand version as follows.

Indeed, let £(o) : S — OI' be a second parametrization. Then
h(e) == x(e)Vok(e), h(e) : ST

constitutes a bijective mapping. Now for some s € S, t € T and t = h(s)
we have

x(t) = x(h(s)) = &(s) ,
hence writing the functional determinant
Oh;
Oty

(3.16) Dh = '

ikel

we obtain for the deGua measure

_ / /Di(@ o h)(s) -~ Dn(@ o h)(s)(Dh)ds1, ... ds,
(3.17) s

_ / 2/D1(@ o h)(s)Dh] - [Dy(m o h)(s)Dhlds,, ..., ds,
S

_ / /Dr&(s) - Du€(s)ds, ... dsn
S

which proves the independence of a particular parametrization.

Example 3.5. Specifically, consider the case that n = 3. Let (T, x(e)) be a
parametrization of OT'. Then, for fixed (¢1,¢;) € T, the tangents in direction
of the curves {(x(fy,t3) | (t1,t2) € T} and {(x(t1,12) | (t1,%2) € T} are

Oz _ (Gu Oty Oxsy g 0% _ (O Oy Oty
oty "0t Oty o Oty Oty Oty Oty

Thus, the normal is (the “vectorial product”)

oxr Ox
3.18 n = —XxX-—
( ) oty 0Oty
which is conveniently written
el e é
(319)  no= |9 GF G | = Die'+ Doe’ + Dy’

Oz Oz %)
Oto Oto Oto

with the above notation D; for the subdeterminants of the determinant rep-
resenting n, i.e.,
&ri

2 Dy =
(3.20) = o

ieI\{k},je{1,2}
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In particular for the Simplex A% = A(@:928) and T = e'? = (1, 1), consider
the parametrization provided in (3.7) and (3.8), i.e.,

1

x(e) = II° P L AC

(3.21)
(t1,t2) — (art1, aste, as(1 — (41 +t2)))

we find the tangents

ox ox

9T _ (4,0, - 9T (0, az, —ay) .
atl (a'la ) a’3) ; 8t2 (7a27 a’3)

Consequently, we obtain

el 82 83
399 n = a; 0 —das = Dlel + D262 + D3€3
( ’ ) 0 ay —as
1 2 3
= Qa9qa3e + aijase + ajaqge” = (a,gag, aiasg, alag)

Hence the Lebesgue surface integral is

\/D% + D3 + D3 dtydty, = / \/agag + a2a3 + alad? dit,dt,

(3.23) Ael2 Ael2

1
— 202 4 0202 4 4202
= 5\/a2a3+a1a3+a1a2,

which is deGua’s Theorem.

On the other hand, the deGua measure (Definition 3.15) and formula (3.15)
for the Simplex A® is given by.

0(a%) = [ Vimdnydng
Aa
— [ Vomaezax = [ Dibibijew da

3.2 ~ [ VDia(e)Dala®) Difale)) dAs)
Ael2
= / \S/Dl(a,'(tl,tg))Dg(CB(tl,tg))Dg(l’(tl,tg)) dtldtg
Ael2
- / Yty = 53 (araa)?



* SECTION 3: SURFACE MEASURES: THE DEGUA MEASURE x 14

Example 3.6. Slightly more generally consider the canonical parametriza-
tion (I'=" 2% (e)) as described in (3.3),(3.4).

The tangent vectors as in (3.11) are then

(3.25) Z_z — (012—2) @ (Gell,...n—1})

with 1 at position j. A straightforward computation therefore reveals for the
functional determiants

oC

(3.26) Dy(z“(f)) = o, (D eI\ {n}) Dy(xC(5)) =1.

Remark 3.7. Definition 3.4 implies a deGua measure and integral calculus
defined on OI'. For any function F© : OI' — R we define the version
transported via some parametrization x(e) : T — JI" to be

(3.27) F*: TR, F* := Fox(e) = x(e)F .

Functions are being transported in a contravariant manner; F™* is the function
transported via x(e) from OI' to T. On the other hand, measures are being
transported covariantly with a mapping. Thus, in the present situation, we
want the transport to be carried on by x(e)~!. This is a feasible operation
as x(e) is bijective. We obtain the transported measure

9 = dox(e) = x '(e)V
We emphasize the transport of the measures involved:

x(e) : 9 =9 =x(e)9 = 9oz (o)
z (o) : 99 = x (&)Y = Jox(e).

Then we obtain for the integral via the formula for transformation of the
variables:

/ Fd® - / F/dny - dn, — / F(a)dd(x)

) = B}Fd(a:(o)ﬂ*) = / (x(e)F)d* = / F*do*(t)
or T T

(3.28) = [(Fom(e)dd = / Fa(t))do* (1)

J
F(2(t)) /Dy -~ Dodt, - - - dt,,

F(2(t)) Y/Dy(x(t)) - Dy (@(t))dty - - - dt, .

I
~o— S
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In particular, consider the canonical parametrization (F(_”), wc(o)). A straight-
forward computation yields (for x(e) = £ (e))

oG
D1 o:z:(t) = a—tl(t),
(3.29) T
oG
anl e} :B(t) = atnil (t),
Dyox(t) = 1.

Hence, the deGua integral is

(3.30) /ch - /F(m(t))(/g—g(m(t))-- OC (())dty - db s

atn—l
ar r(=n)

The above formulae (3.17) and (3.30) slightly generalize (3.15), they can be
considered as the defining relation for the deGua measure 9 in its own right.
Thus, for any measurable subset G C JI', the term 9(G) is well defined.

Let F be a Pareto face of some Cephoid II. Then 9 on F has a constant
density w.r.t Lebuesge measure. The same is true for the MP measure to. To
compute the detailed factors is not necessary. However, we want to describe
the relation between both measures for the special case of a deGua Simplex.

Lemma 3.8. For n € N there is a constant o(n) such that for 0 < a € R}
(3.31) ta(e) =o(n)d(e) on A,

holds true.

Example 3.9. Recall Example 2.2, the sum of two deGua Simplices is re-
peated in Figure 3.1. The Pareto face

(3-32) A(QI:? 13 — Aga + All)B

is the sum of two Subsimplices of A% and A®.

For A%, we computed in (2.8) the value.

(3.33) La(A®?) = 23/(arazas)(bibobs) |

Note that equation (3.33) involves all coordinates of @ and b.
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1

Figure 3.1: The sum of two deGua Simplices

Now we turn to the computation of 9. The extremals of the rhombus are

a,3—|—b1 = (bl,O,ag), 0,2—|—b1 = (bl,ag,O),

3.34
( ) a’2+b3 = (0,&2,173), a’3+b3 = (0,0,Cl,g—f-bg)-

For a convenient parametrization we choose the square
(3.35) 0° = {xzeR|z<e=(1,1)}
and the parametrization

. e ab
xz : 0° = A% 5

3.36
( ) IB(tl, tz) = (bltl, a2t2, a3(1 — tz) + bg(l — tl)) (tl, tz) e e

which yields

IB(0,0) = (0,0,Gg + bg), CC(LO) = (bl,O,ag)

(3.37) x(0,1) = (0,a2,b3), =(1,1) = (by,as,0) .

In this case the tangents are

ox ox

8—151 = (51,07—53) ) 8—152 = (0,a2,—a3)-

Consequently we obtain

el e ¢

(338) n = bl 0 —bg = (azbg,blag,blag) .
0 a9 —as
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Consequently,
o) = [ Vimdudny
A(QL:? 13
_ / {/azbsbrasbrazdtdts
(3.39) e

— Voabasbias [ dsit
DE

which involves only coordinates as, ag, b1bs.

Remark 3.10. The essential difference between the MP measure ¢o and the
deGua measure 4 is demonstrated in the rhombus of Example 3.9. Equation
(3.33) involves all coordinates of @ and b. By contrast, (3.39), involves only
a; {i €{2,3}} and b; {i € {1,3}}, the coordinates involved in determining
the rhombus.

Both terms would be equal whenever

(3.40) asb; = a;by that is a2 _ @ )
ay b

This would reflect the fact that A{, and A}, have the same slope. This is not
compatible with the Cephoid IT under consideration as shown by inspection of
Figure 3.1. Obviously (3.40) violates the non degeneracy condition. However,
when IT approaches in some sense a sum of homothetic deGua Simplices, then
ta and ¥ would be approximately equal. This observation paves the ground
for the development in SECTION 7. There it will be shown that ¢p and ¥
are approximating the same limit when a sequence of Cephoid approaches a
smooth body.

The deGua measure is a surface measure respecting the rhombi, cylinders,
etc. It obeys certain continuity properties. The MP measure is lacking these
properties. It is specified on Cephoids only — justified by the axiomatic
treatment of the Maschler—Perles Solution as discussed in [14].

This provides the incentive for extending the Maschler—Perles solution via the
deGua measure to smooth surfaces as we shall attempt to do in the sequal.
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4 Approximation

The Main Theorem of [15] (Theorem 4.2 and Corollary 4.3) establishes the
approximation of a smooth body by a sequence of Cephoids. For reference,
we reformulate the content as follows.

For a smooth surface OI' and a finite set of points
41) X9 = {{;%}} Cor, with Q=1{1,...,Q}CN,
7€Q

located on JI' one can construct a Cephoid

(4.2) I = 109

arbitrarily close to OI' (uniformly or in Haussdorff distance). TI? is a sum of
Q (Pseudo—) Windmills

(4.3) no=>" it

q€Q

which are locally adapted, i.e., result from a “calotte” or segment
{a} {ga}
(4.4) ry, = <I'—z ,NR} .

The common point

{a} {a}
(4.5) x € o NIILG,

{a}
is the central vertex of the Windmill II. Moreover, for each ¢ € Q the

{a}
normal {t?t} of 8T in % is also a normal at (the local windmill I' 2, as well as)

x

at 119 in {:;1:} or its translate respectively. This fact is not explicitly stated in
the formulation of Theorem 4.2 of [15], but obviously appears as part of the
proof. Combining we obtain

Corollary 4.1. Let @ C N and let X@ C OI'. Then there exists a Cephoid
I19 such that
{a} Q
1. For every « € X

(4.6) & corMone

2. for every ¢ € @ the normal {1%} in {:(113} at O is as well a normal at OII%.
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The collection of finite sets as in (4.1) satisfying Corollary 4.1 is denoted by
(4.7) Q := {X?Car|QcN}

Q is ordered by inclusion; we consider the lattice Q to constitute a filter (with
reference to OI').

We can choose the approximating Cephoids in a way to ensure uniform con-
vergence or convergence in the Hausdorff metric along the filter Q. Formally,
we proceed as follows.

Definition 4.2. Let Q C N and X® € Q.

1. For {:(113} € X® with normal {1%} at O and at TI€ let

(4.8) H! = {:1: € R} :B{lgl} < {:;I:}{t%}}

be the half space generated by the supporting hyperplane to OI" in {:(113}.
2. Also let

(4.9) c? = (H*

q€Q
denote the convex body generated by these half spaces.

3. Next
(4.10) Cqo = CovH C’mpH{{:;I:} ‘ q€Q}

is the convex hull of the “southwest area” of X9 .

Collecting our results we obtain
Lemma 4.3. 1. Cq C e, T C c?
2. Co,l19, C? converge uniformly to 0T along the filter Q
(4.11) 1 —> O
Here the topology maybe chosen to be the Haussdorff topology or equiv-

alently the uniform topology for the functions C' defined by the canon-
ical parametrization (justifying the term “uniform”).
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Thus, given a smooth surface I" we may refer to Q as the convergent filter (of
Cephoids).

Now we will consider the behavior of the surface measures to and ¥ along
such a filter. We will show that both measures approximate each other and
— finally — the measure 9 on 0I'. We start out with extending the Simplex
parametrization (Definition 3.3), i.e., the mapping

(4.12) Z(e) : A° S TII, Z(t) = k\(Kt) (teA°)
to smooth surfaces via uniform continuity.

Lemma 4.4. Let I be smooth and let {HQ}QCN be an approximating filter,
that is, -

(4.13) 1 —dr

uniformly. Let the Simplex parametrizations be given by z9(e) (Q € Q).
Then the Simplex parametrizations converge uniformly to a mapping

(4.14) x(e) : A® — 0T,

which is continuous and bijective, hence constitutes a parametrization of OI'.

Proof:

The proof is standard, however, one has to establish bijectivity. This follows
as OI" is smooth, i.e. in our terminology, there is a bijection between points
x € JI' and normals n®.

q.e.d.

Definition 4.5. .%(o) := limgeo () constitutes the Simplex parametriza-
tion (A®, :%(o)) of OT'.

Next we derive some continuity properties of both measures on surfaces we
are dealing with.

Theorem 4.6. (Continuity of Surface Measures on Cephoids)
For any € > 0 there exists 6 > 0 such that, for any two families {a(k)}keK

and {c*z(k)} with
keK

(4.15) a®—a®| <5 (keK)
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such that the corresponding Cephoids I1 =, _ 1" and I1 = D kek ma®
* *
have Pareto Faces F' = ) | ;o Aff()k) and F = 3, Aff(),c) with the same
referecce set J = {J(k)} , it follows that
keK

*

(4.16) [ A(F) = ea(F)| <2 and |0(F)—0(F)| <<

holds true.

Proof: For the MP-measure ¢t this follows immediately from Definition 2.1
which is continuous in terms of a family {a(k) }keK; see also Definition 2.4 in
CHAPTER XII of [14]. For the deGua measure ¢ the proof follows from For-

mulae (3.28) by inserting the Simplex parametrization aA:(o) simultaneously
for all Cephoids (and their limits)

q.e.d.

The deGua measure is defined on all convex bodies, hence we can move one
step further with its continuity properties.

Theorem 4.7. (Continuity of the deGua Measure)

Let T be a smooth body and let Q be a filter of a Cephoids such that

8HQE>6P

holds true uniformly. Let 9,99 (Q € Q) denote the deGua measures on the
surfaces O, OT'Q respectively. Then, for every continuous function F : O —
R we have

(4.17) / Fdz?Q?/Fdﬂ.
or

o1e

Proof:

By Lemma 4.4 we can assume that the Simplex parametrization is employed
simultaneously for all surfaces involved, hence T is the same for all of them.
Continuity follows then from Formula 3.28.

q.e.d.

We perceive a Cephoid to be “almost flat” if all deGua Simplices involved are
close to each other or, simultaneously, of all the normals are closed. Formally,
this is reflected by
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Definition 4.8. Let IT = )", - I be a Cephoid. Let 0 < n® =@ € R?
and let n® = no” (ke K).Let § > 0. We say that Il is (ii,d)—flat if

(4.18) ’n(k) —fi|<d and ’a(k) —a|l<d (ke K)

holds true.

By Remark 2.3 we can represent the Pareto surface of a Cephoid on a suit-
able multiple of a deGua Simplex A®. In particular, let a Cephoid II =
D kek 11" be (i, §)-flat and let @ correspond to . Let ay, == ea (A" (k €
K)and a := ), _, a; (see Remark 2.3). Consider the representation

ke . I — aoll®.

We expect that the surface measures are approximated by the measures on
aA?,

Theorem 4.9. Let € > 0. For any 0 <w € R} there exists 6 > 0 such that
for all (w,d)—flat Cephoids 11 it follows that (locally on Pareto faces)

1.

(4.19)  [QM(e) — 132" (0)| <& and |97 (e) — 92 (e)| < ¢ .

2. Moreover,

(4.20) lta(e) —o(n)d(e)| < .

That is, ta and ¥ approach the measure of their representations on aA®.

Proof:
15*STEP : First we consider A®®. By Lemma 3.8 we have

(4.21) ta(A%) = o(n) 9(A?) .

Then

(4.22) ta(A%) = 3 aea(a™)
keK

and hence by (4.21)

(4.23) (A = Y a9 (a™”)
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2"dSTEP : We know that ¢ as well as ¥ behave continuously with respect
to vectors a or corresponding normals n® respectively (Theorem 4.6).

Consequently, for any € > 0 there exists some § > 0 such that whenever
In® —n| < e, it follows that

(4.24) lta(A%) —a(A®)] < e, |[9(A%) —I(A%Y)| <e.

3"9STEP : Now the analogue for (4.24) holds true for general Pareto faces.
Indeed, let

2
(4.25) F =Y A%
keK
be a Pareto face of IT and let

(4.26) F =A%)

keK

be the corresponding face of the Cephoid (homothetic) oIT*. Then, analo-
gously to (4.24) we have: for any € > 0 there exists some § > 0 such that

whenever [n® — ﬁ| < €, it follows from the Continuity Theorem 4.6 that
(4.27) a(F) —a(F)| <e, |9(F)—-9(F)| <e,

holds true. This is — not writing the superscripts — Formula (4.19). Also,
(4.28) ta(F) =o(n) 9(F) .

follows immediately, as this refers to the homothetic case.

Consequently, for any face F and the corresponding face F' we obtain that,
whenever [n® —a| < 0, it follows that
(4.29) _ ~
| ea(F) —o(m)d(F) | <| ¢a(F)—o(n)d(F)| +e(o(n) +1) =(o(n) +1)
which is (4.20).

q.e.d.
Now, whenever we approximate OI' by a sum of Local Windmills as described
in [15] (see (4.3),(4.4),(4.5)), then, for some common point % of the Pareto-

i {q

surfaces the family of normals (n) of the windmill II approximates the normal

{t%}, this can be done uniformly for ¢ € I.

Locally, therefore, both measures will be approximately the same up to the
scaling factor o(n). We have
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Theorem 4.10. Let T’ be a smooth body with surface OT' and let x < & € OI.
Let H% denote the the local windmill generated, i.e., adapted to the calotte
I'Z. Then, for e > 0 there exists 6 > 0 such that, whenever |& — | < 9§, it
follows that

(4.30) lea(e) —o(n)d(e)| < ¢

holds true locally on H%.

Proof: Both terms are defined to be measures on the local windmill, i.e.,
explicitly should be written

z @
ta = t,® and 9 = 9%

Both measures have a constant density w.r.t. Lebesgue measure and w.r.t.
each other on any Pareto face of the Cephoid H%’. Therefore, it suffices to
prove (4.30) with respect to arguments F' that are Pareto faces. Conse-
quently, the result follows immediately from Theorem 4.9.

q.e.d.

Now, given @ C N and X9 € Q with associated (Pseudo) Windmill I1%; we

also consider the measure Lg on I19. As the unit sphere of measures on oI

is weakly compact, there exist weak accumulation points of the system of
measures

{ta?[Q N}
This notion can be made precise. For every continuous function F : A® — R
with transported versions F'@ and F9T integrals

(4.31) / FR.Y, / FR4uY?, / FOF 499"

one one or

etc. can be formulated simultaneously in terms of the Simplex parametriza-
tion, see Remark 3.7, Theorem 4.6 and 4.7.

Theorem 4.11. Let i)\ be a weak accumulation point of {LAQ ‘ QC IN}.
Then

(4.32) th = o(n)d

holds true.

Proof:

1tSTEP : First of all we deal with the quantities on II?. We show that, as
19 is sufficiently close to OI', the measure ¢a on OII approaches ¥ weakly.
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This happens locally, but as we have uniform convergence, globally as well.
As all measures involved have a constant density w.r.t to Lebesgue measure
on each Pareto face of some (Pseudo) Windmill involved, we have just to
verify the tp and 9 are close in measure on any such Pareto face. This is
implied by Theorem 4.9, for the normals of an approaching windmill are all

close to the one of the center point which equals the normal of this point, at
OII? as well s at OT.

More precisely, let € > 0 and choose § according to Theorem 4.9. Choose
dp > 0 and X9 such that the Haussdorff distance between OII? and OI is

smaller than dy. For {:%} € X with normal n? ( which is the same at I19

{q}
and at JI') it follows that all normals at the Windmill TI 7, are close to n.

£y

{q}
Decrease d, such that each JI1 %, (q € Q) is 6-flat. Then, by Theorem 4.9,

£y

{a}
we know that on 81‘[{3”} (g € Q) we have
z

(4.33) ea(e) — o(n)B(s)| < ¢

holds true. That is, ta = ¢1° and o(n) = o(n)'c?HQ are close in the weak
topology (“on I197).

2"dSTEP : Now let F': 9I' — R be a continuous function, the by (4.33) we
can find for any € > 0 some X% € Q such that

(4.34) / Fdi8 — o(n) / Fdo®| < ¢
e or
holds true. According to Theorem 4.17 we obtain

(4.35) / Fdo® = / Fdd .
one or
Consequently,
(4.36) / Fdi, = o(n) / Fdo" .
or or

q.e.d.

Corollary 4.12. Let I’ be a smooth body. Let {II®}gcq be an approximat-
ing Filter. Then, {¢9}0cq has a weak limit ¢} satisfying

(4.37) 1A ® ?LZ = o(n)9" .

holds true. For every continuous function F : A® — R with transported
Versions F'Q and F¢ one has

(4.38) / FRdu] — / FoPdY = o(n) / Frao" .
or

oIIR or
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5 The deGua Solution

Let I' be a convex body. Choosing a parametrization (T, z(e)) we compute
for a measurable F C oI

(51) Q9(F) = /d’&: / \n/ Dandtldtn,1 5
z-Y(F

F

cf. (3.28). In particular, for the canonical parametrization (I"™), 2% (e)) we
obtain by (3.30)

(5.2) I(F) = / (/g—g(t)--- O &ydty .. dt

atn—l

and if F* C T is a rectangle

F* = [Oél,ﬂl] X... X [an—laﬂnfl] = [aaﬁ]a

such that
F = a“(F") = {(t,C(t)) [t F*} ,

then (5.2) changes to

(5.3) / \/ U atn 1()dt1...dtn,1.

[, 3]

Applying this, we define our version of the generalized MASCHLER—PERLES
solution via the deGua measure 9.

Definition 5.1. Let I" be a smooth body and let (T, x(e)) be a parametriza-
tion of JI.

1

1. The image measure of ¥ transported to T via ™ is denoted

(5.4) 9 = Uy, = Jox(e) = x ()0
(measures are being transported contravariantly, see Remark 3.7).

2. The (n — 1) dimensional vector 3~

55 B = BT) = B(Tae) = g [0

is the barycenter or center of gravity of T under ¥*.
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3. The DeGua solution 6(I') € O of T is the inverse barycenter of T,
that is,

(5.6) 5T = 2(8) = @ | — / +9*(dt)

Remark 5.2. 1. The intuition behind this idea is the analogue definition
of the generalized MASCHLER-PERLES solution solution for Cephoids
([9], see also [14], [10]). Within that context, we obtain the solution
as the (transported) barycenter of the Pareto surface, with weights
assigned according to ta. The axiomatic justification — via superad-
divity in 2 dimensions and the appropriate generalizations in higher
dimensions — has been provided by Maschler and Perles and extended
in [5] and [13]. For a detailed discussion and justification of bargaining
solutions via surface measures we refer to the presentation in [14].

2. Necessarily, one should verify the independence of all concepts from the
choice of the parametrization. We omit the lengthy and tedious proofs.

3. The standard formula for the change of variables yields
5.7 a(r) o [ (@) a0
. = X are—— re
Y(ar)
or
4. Specifying this to the canonical parametrization (I, £%(e)) we have

(5.8) / \/E%l . atn 1( Ydty ... dt,

T(—n)

such that
(5.9) O = oy = 9ox(e) = aC '(e)9

is the image measure of ¥ transported to I'™™ via :c(o)c_l. We obtain
for the barycenter

ﬁ* _ ﬂ*i-r)/tﬂ*(dt) — m / t'ﬂ*(dt)
1

T(—n)

(5.10)

= WF)/({L‘l,...,l'n_l)’ﬂ(dl'l,...,dl‘n)
or
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and for the deGua solution

(5.11) &) = 2°(8") = aC L/(xl,...,xn_l)dﬂ

Example 5.3. For computational purposes, we change the parametrization.
For example, to obtain the barycenter for a Simplex A® in 3 dimensions, we
choose the parametrization via the unit Simplex; see (3.7) and (3.8), also
(3.21). Then (3.24) suggests for any function f on A"

/ f(@)9*(dt) = /f(t) v/ (D1 Dy D3) o @ dtidts

= %\3/(a1a2a3)2 / f(t) dtidts.

Ael2

Thus, in particular

(5.13) / (11, 12)0" (dt) — %\3/(611@2@3)2 / (b, ) dtydts.

Ael? Ael2
Now
1 1—t1
/tldtldtg = /tl /dtg dtl
AelQ 0 0
1
(5.14) 2 B
= [t(l—t)dy = |2 -2
-t = 55|
0
111
2 3 6
Also
1 1—t1
dtldtg = / /dt2 dtl
Ael2 0 0
1
(515) t2 1
- /(]_—tl)dtl = tl——l
2 0
0
1 1
2 2

For to determine 8* the common factor %</ (aiasa;3)? in (5.12) cancels out,
thus we obtain

(5.16) 5 — S etz tidtydis

_ &3

[y dtrdty, LT 53)
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From this we derive the deGua solution to be
(5.17) 8(A%) = 2(B") = (@t ety a1 (G +5) = (2.5, .

As expected, this is the barycenter of A®.

Similarly, for to compute the barycenter of the Pareto face A% |, we use the
parametrization indicated in (3.36), thatis 0° = {x e R: |z <e=(1,1)}
and

(518) a:(tl, tg) = (bltl, Cl,gtg, a3(1 — tg) + bg(l — tl)) (tl, tg) € e .

According to (3.39) the common factor v/asasazbbibs will cancle out, so the
barycenter of [1€ is

1
r=(=, =
(272)
and hence
(5.19)
by ay as+b as a b b
ab _ *\ Y1 @2 t3 3 _ w2 U3 Y1 U3
5(A2313)—$(ﬁ)— (2727 2 ) (07272>+(27072)
1
= 5@ +a%) +5(b"+b)

The results of the above example confirm the obvious: for simple geometrical
objects (DeGua Simplices, thombi, cylinders, etc.) the barycenter is easily
computed via symmetry properties. We combine these facts as follows.

Lemma 5.4. 1. Let a >0 and J C I. Then

(5.20) O(A%) = ﬁ Z a .

2. Let I = >, 11" be a Cephoid and let F = D kek Af]k()k) be a
Pareto face of II. Then

(21)  8(F) = Y sA%)=%" J%k” T a®i

keK keK ieg®)

Proof: A formal proof just has to refer to the normal that is constant
on any Pareto face as treated. Hence, the deGua measure has a constant
density w.r.t. to the Lebesgue measure and in computing the barycenter we
experience that the common factors (generated by the density) do cancle out
as in our above examples.
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q.e.d.

For comparison we list the barycenter and the deGua solution for general
Cephoids. In the context of the MP-measure and the pm—solution the mea-
sure preserving mapping already incorporated the measure ta by construct-
ing the appropriate multiple of A®.

The results of Lemma (5.4) immediately carry over to the barycenter in K A¢€.

Lemma 5.5. Let FF = , A J(k) be a Pareto face of IT and let F* =
Kk(F'). Then

(522) B (F) = =Y g e

keK ZEJ(k)

Proof: Obvious. q.e.d.

Theorem 5.6. Let 11 be a Cephoid and let (KA® k™) be the standard
parametrization. Let P denote the collection of maximal Pareto faces and
denote F* := k(F'). Then

B (KA®) = B7(k(0))
(5.23) B ﬁ*(&(F)) “(F™)
N Z 19*(53(81_[)) Z 9*( KAe (F)
Fe?
is the barycenter of KA®. Consequently, the deGua solutzon I8

(G21) 8 = K~ (B)(R(EI) = A~ (Z %ﬁwm))
Fe?

Proof: Formula (5.23) is a standard proposition regarding the barycenter
in Physical context. As k is bijective and preserving the lattice structure of
the Pareto faces we have
(5.25) KA® = | | k(F)

FeP
and hence

BKAY) = gemer [t

1 *
(5.26) - ZW(KAC e / to* (dt)
w(F)
B ST
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6 Standard Axioms for 0

As a routine exercise we verify that § is a bargaining solution, that is,

Theorem 6.1. The mapping & respects anonymity, affine transformation of
utility, and is Pareto efficient.

Proof: 15*STEP : Pareto efficiency is obvious by definition.

2"dSTEP : In order to check anonymity, consider a permutation 7 : I — I.
A permutation constitutes a linear mapping 7 : R" — R” via

(m(x))i == Tr1) (@€ R", 1e€l).
Accordingly, for F' C R the permuted version is
(6.1) n(F) :={r(x)|x € F}
and if x(e) parametrizes OI" then
(ra)(s) = (a(e))

parametrizes 7(0I') = O(n["). Therefore we obtain

() = (n) | G / (D) (1)
- (7o) | / t () (o)) 0) (dt)
- - (o) | S / £ (O ((s))) ()
- (o) | gy [ H@E)@)

Hence, 7 () is the deGua solution to 7T, i.e.,

(6.3) o(wl) = =(6(1)),
3"iSTEP :
Covariance with a.t.u. is verified similarly. For positive a = (v, ..., ay,) let

L :R'"-R", Lx) = (v121,...,,2,) (x€R")
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be a (positive) linear mapping and let I' be a a bargaining problem with

smooth surface 0I'. The translated version is
(6.4) LT = {L(x) |z T}
and if x(e) := T — OI' parametrizes the surface 0", then

65) (L%)Sg.) . T— LT

(La)(ti, ... t,) = L(z(t,...,t,)) (teT)

parametrizes LI'. In view of (3.11) we obtain for the tangent vector

(6.6) O(Lx) _ (alaxl 9024 0, 0T,

and observing (3.13) we obtain

(6.7) DiLe)® = [ o | (Da)® (el

Jel\{i}
This yields the coordinates of the normal vector
(6.8) nO = ((Dy(La))(D),. .., (Du(La))(F)) -

Now, if FF C OI" then the translated LF yields a deGua measure

9(LF) = / Yd(Ln)y - - - d(Ln),

_ /Q/DI(L:L.)(.)...D”(L;B)(.) dX(e)

(6.9) n—1
- (H cw) [ /D@ D) axe)

= (H @i) I(F) .

and in particular

(6.10) 9(LT) = (Ha) _ 9(T) .

icl
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Therefore, we obtain

(6.11)

S5(LT) = (La) m / £ (900 (dt))

LT

1 -1
- (12) | ragr [ (e v<dt>>)

LT

Hence, L(9d) is the deGua solution to LT, i.e.,

(6.12) O(LT") = L(o(1")),
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7 Coincidence:
The MP—-Solution on Smooth Bodies

Our two concepts of a bargaining solution via a surface measure coincide
on smooth bodies. Therefore, the deGua Solution on smooth bodies can be
regarded as an extension of the Maschler—Perles solution.

Formally, the result is based on the existence of a unique positive normal.
Therefore, the approximating Cephoids essentially have locally a flat region
of the surface dictated by the limiting normal. It is important to reconsider
Example 3.10 in this context.

That example also shows that 9 and ¢A may differ and hence é and p cannot
be expected to generally coincide on Cephoids..

Theorem 7.1. Let I' be a smooth body. Let {HQ}QEQ be the filter of Wind-
mills according to Lemma 4.3 such that

% — ar.
Q
Then
1 1i ) = §(T
(1) im 8(119) = (1)
holds true.

Proof: This follows from the continuity properties of the deGua measure 9.

1*STEP : According to Theorem 4.7 we know that

(7.2) 9(119) — B(0T)
holds true. Also, as the Simplex parametrization
(a%.2%())

is chosen simultaneously for all surfaces involved, we know by Lemma 4.4
that

oo A (Ae,.%af(.))

(13 2 (o) — 4™ (o) as well as (éa (.)) - i (%ap(.)) =

uniformly, as the inverse of a continuous bijection is continuous.

2"dSTEP :
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Consequently, in view of Remark 5.2, and in particular Formula (5.7), we
obtain

(7.4) x9 ﬁ / (z2(e))Ld¥ ?9;5” ﬁ / (%" (o)) 1d0 | |
which is (7.1).
q.e.d.

Theorem 7.2. Let I' be a smooth body. Let {HQ}QGQ be the filter of Cephoids
according to Lemma 4.3 such that

° — or
Q
holds true. Then there exists
(7.5) lim p(I1%) = p(T) .
Proof: By Corollary 4.12
(7.6) N ry L

holds true. The Maschler—Perles solution for a Cephoid II is

(7.7) () = & LA;@F) / (w(e)) dea

The limiting equation

Qy — he| L [(z9e)1auQ
u(1e) = Lg(aFQ)Tﬂ (o) 3

(7.8)
+# | won / (@ (o) i | = (D)
holds true by exactly the same argments as in Theorem 7.1. q.e.d.
Definition 7.3.
(7.9) p(@) = lim p(119)

QeQ

is the Maschler—Perles solution of I.
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Theorem 7.4. [Main Theorem of MP-Solution Theory| Let I' be a
smooth body. Then the Maschler—Perles Solution and the deGua solution
coincide, 1i.e.,

(7.10) u() = §(I) .

Consequently, for any parametrization (T, x(e)), the Maschler—Perles solu-
tion is the image of the barycenter under the deGua measure ¥:

(7.11) T) = = ﬁ/(m(o))ldﬂ
or
Proof: By Corollary 4.12
(7.12) ty = o(n)dr .
holds true. Hence,
bt = | rom / (2" (o)) iy

1 L e))-1 r

(7.13) = WA[(:BB (e)) "d(o(n)9")
1 D (eVy—1 7(a97 _
= | gram [ @@ | = o).

Ae
as the term o(n) cancels out. Formula (7.11) follow then from (5.7).

q.e.d.
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8 Conditional Additivity

The axiomatic characterization for the (generalized) Maschler—Perles solution
is at length presented in [14]. To some extent, this justifies the solution for
smooth bodies, so far as one is willing to accept the limiting procedure as
a mere technicality. See AUMANN’S remarks regarding smooth bargaining
solutions in [1]. In this context, Aumann provides an axiomatization of
SHAPLEY’S NTU value [17].

Analogously, we will now discuss the concept of conditional additivity in
our context, which is exactly based on AUMANN [1]. However, in Aumanns
version (as well as in SHAPLEY’S and others, see HART [4], DE CLIPPEL|2]),
authors consider values or solutions as correspondences, that is, set—valued
mappings. In our context, a solution is a (point valued) function, see also
[14] CHAPTER X I11. We recall the basic definition.

Definition 8.1. Let ¢ be a mapping from convex bodies into R?} such that
@(I") € O holds true for all G. ¢ is conditionally additive if, for any
two convex bodies T" and © such that o(T") 4+ (0) € (T + 0), it follows
that

(8.1) o(I') +¢(0) =¢((I' +0)

holds true. Equivalently, one requires that for any family of convex bodies
re = {Fq}qu and any probability p on @ such that E,p(I'*) is Pareto
efficient in [E,I'® it follows that

(8.2) P(Epl) = Epp(I) .

For two players conditional additivity is equivalent to superadditivity in order
to characterize the Maschler—Perles solution . See CHAPTER XII of [14].

AUMANN’S concept refers to a smooth surfaces. The MASCHLER—PERLES
solution g and its generalizations as treated in [14] are defined on Cephoids.
Indeed p (and the derived version of the Shapley value) are conditionally
superadditive ( CHAPTER XIV, Theorem 3.2., [14])

The main goal of this section is Theorem 8.5 which establishes conditional
superadditivity of the MP (= deGua) solution on smooth bodies. The resulat
is based on the one for Cephoids (see [14], CHAPTER XIV, SEcTION 3). The
serious obstacle is that, in a sense, conditional superadditivity is not an lL.h.c.
property. That is, limiting Cephoids approaching a smooth body may lack
limiting correct normals.

Hence, some prerequisites are necessary. We will approximate smooth convex
bodies I" in a way such that the normal at ¥(I') = §(I") is achieved by the
normal at §(II?) when Q is approaching I'. This property is not provided
by the construction in [15] but follows from a series of Lemmas as below.



* SECTION 8: CONDITIONAL ADDITIVITY * 38

Lemma 8.2. Let I' be a smooth body and let & € OI' admit the normal
il = (&,...,2) >0. Let Q € Q be such that £ € 9II9. For small € > let

ay’ ? an
(8.3) M%° = (1 —¢)[I9 + A%,
Then the vectors '
(I1—e)x+ea’ (iel)
are extremals in I19¢. Hence
(8.4) o = (1—¢e)x+ A®

is Pareto efficient (and “flat”) in OTI9=.

Proof: A priori we have
(8.5) [ CA®.

Choose @ such that & € OII? with @t as normal as well (Corollary 4.1). Then
necessarily we have as well

(8.6) e c A% .

Therefore, with sufficiently small ¢ > 0 it follows that II%° C A®. The
extremals @’ i € I of A% yield extremals

(8.7) a* = (1 —¢e)x+cea' cl9,
this follows from (8.6). Hence, OII** is indeed a Pareto efficient part of
ones=.

q.e.d.

Lemma 8.3. Let I' be a smooth body and let @ € Q be sufficiently close to
I in the Hausdorff metric. Let £ = §(I") € OI'. For sufficiently small € > 0
let TI?< be defined by (8.3). Then

(8.8) (1 —e)d(II9) + (A% = (1 — )&+ 6(A%) € III%* .

Proof: Instead of the Simplex parametrization I%, we choose the parametriza-
tion x%(e) suggested by A% This is the inverse of the modified canonical
representation kK as treated in Remark 2.3. It is seen that x%(e) behaves
in a linear affine manner. Using formula (5.7) for the deGua Solution, we
obtain indeed

(8.9) (1 —2)8(I19) +£8(A%) = (1 —&)F + e8(A%) € %=
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Corollary 8.4. Let I' be a smooth body. Then, for ¢ > 0, there exists a
Cephoid II¢ such that

1. the Hausdorff distance between I' and II¢ is smaller than 2e.

2. 6(T') and &(I1¢) admit of the same normal.

Proof: Choose the filter II? such that
e —» o

to I according to Lemma 4.3 in a way that £ = §(I') € II9 is satisfied for
all @ € Q. Then §(I") - §(I19) by the continuity Theorem 7.2.
Consequently

O(II9%) = (1 —e)d(I19) +£8(A?)
(8.10) —+ (1=2)8(I") +6(A%)

= T +:e6(A%) € oI1*~.

Hence, eventually
(8.11) §(119) € o1 ™=

holds true. Therefore, eventually §(I19¢) admits of the normal @ which is
the normal of Z = §(I") by construction. q.e.d.

Theorem 8.5. The Maschler—Perles (deGua) solution p (= 6) is condition-
ally superadditive on smooth bodies.

Proof:

15*STEP : Let I and T'™* be smooth bodies and let §(T") + 8(I'*) be Pareto
efficient in I' + I'*. Then necessarily §(I"), §(I'™*) and §(I" + ['*) admit of the
same normal fi. According to Corollary 8.4 we can approximate I and I'* by
Cephoids 19 and I19* such that all deGua solutions have the same normal
n. The solutions follow the approximations by the Continuity Theorem.

Also, it follows from the common normal property that &§(I1?) + &(I19*) is
Pareto efficient in IT® + I19*. Hence, as the MP-solution is conditionally
superadditive on Cephoids (Theorem 3.2 CHAPTER XIV of [14]) we know that

6 +1I") = lim §(I1° + 119%)
(8.12) = lim o(M9) + lim o(I19%)
= (1) +&(T%)
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