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Abstract

This article presents a new method to test on whether a parametric model is capable
of describing data properly. It also introduces a simple procedure to generate simul-
taneous prediction bands based on independent copies of a process. The performance
of these prediction bands, e.g. in a leave-one-out cross-validation, will also be used as
another indication of whether data is modeled properly. Both methods are applied
to data from fatigue experiments on prestressed concrete beam girders. These experi-
ments highlight a couple of different influences on the fatigue of such girders, namely
the so-called cable factor and the deflection force. Both effects are incorporated into
different load sharing models for component failures which then are compared and used
for predicting these failure times.

Keywords: Accelerated life testing, cable factor, deflection force, load sharing models, K-
sign depth.

1 Introduction

Properly modeling and predicting component failures of a system are two key aspects of
reliability theory. This article will tackle both problems by first introducing a new approach
to check whether a parametric model is capable of describing given data and then presenting
a general method to derive prediction bands for stochastic processes.

The methods in this article will be used to compare several new model extensions
to a load sharing model for successive failures of tension wires in prestressed concrete
beams. There is a vast literature on load sharing models and their applications (Kim and
Kvam, 2004; Park, 2010; Phoenix and Newman, 2009; Xu et al., 2017, 2019b; De Oliveira
and Colosimo, 2004; Xu et al., 2019a), often in context of so-called k-out-of-n systems
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(Kong and Ye, 2017; Zhang et al., 2020; Cramer and Kamps, 1996; Beutner, 2010) with
n components and k failures. The specific models considered in this article are extensions
of a load sharing model used in Szugat et al. (2016) and Leckey et al. (2020b). Since
the underlying fatigue experiments are expensive and time consuming, only a fairly low
number of independent failure series are available. Therefore, distributional assumptions
in form of parametric models are necessary. Szugat et al. (2016) and Leckey et al. (2020b)
managed to model a first series of experiments published in Heinrich et al. (2016) and
Heeke et al. (2019) using a load sharing model with only two parameters. This was only
possible since the experiments in this first series only differed in their initial stress range
(their “load”), keeping other parameters such as the number of wires and their placement
(curvature) within the concrete beams constant.

In order to investigate the influence of certain parameters on the fatigue strength of
these prestressed beam girders, additional experiments were conducted which will be pre-
sented and analyzed in this paper. Within these experiments, the number and/or size of
the tension wires differed from the choice made in the first series of experiments (Heinrich
et al., 2016; Heeke et al., 2019). These changes have a major impact on the failure times
due to effects like the cable factor and deflection force discussed in Section 3.1. Hence,
the first challenge in analyzing this new data set is to construct a suitable model that
incorporates these additional effects. Moreover, these experiments are accelerated life time
experiments since the experiments would take too long if they ran under realistic stress
ranges. Therefore, a second challenge is to extrapolate failure predictions under realistic
stress conditions. We are mainly treating the first challenge here, but also present some
new results concerning the prediction of a future failure process.

In order to select proper models in our application, a new method based on the so-
called 3-sign depth, a special case of the K-sign depth, is introduced. An introduction to
the K-sign depth and some basic properties including its asymptotic quantiles can be found
in Leckey et al. (2020a) and Malcherczyk et al. (2021). While tests based on the K-sign
depth are usually used for parameter testing within a parametric model, the application
in this paper shows that they are also capable of detecting whether a model is suited to
represent given data. More precisely, they can be used to check whether the median of
each coordinate of a process is modeled correctly.

Having found an appropriate model, predicting a new failure process is important. Pre-
dicting accelerated life time experiments is treated for example in Patel (1989), Xiong and
Milliken (2002), Hong and Meeker (2013), and Leckey et al. (2020b). Moreover, predic-
tions for degradation processes are given for example in De Oliveira and Colosimo (2004),
Wang and Xu (2010), and Meeker et al. (1998). Predictions in this article aim to cover
the entire trajectory of a process, i.e. all component failures of a system. Such predictions
are usually called simultaneous prediction bands and are computationally more challenging
than single point predictions. These bands have a variety of different applications such as
wind power forecasting (Bessa, 2015), economics (Härdle and Marron, 1991), econometrics
(Hymans, 1968), and mortality forecasting (Li and Chan, 2011). A general overview over
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simultaneous prediction bands and their most desirable properties can be found in Kolsrud
(2007). The predictions introduced in this paper are broadly applicable since they make
no specific distributional assumptions other than that i.i.d. copies of the process have to
be either available (as data) or can be simulated. In particular, they are very similar to
the so-called adjusted intervals in Kolsrud (2007) but are computed more directly with a
scoring function based on extreme coordinate-wise ranks.

The paper is organized as follows. Section 2 contains the main statistical methods
in their most general setup. In particular, methods for parameter estimation and model
checks based on the 3-sign depth are given in Section 2.1 whereas simultaneous prediction
bands for arbitrary processes are presented in Section 2.2. The fatigue tests for prestressed
concrete beams as well as different parameters/forces that can impact their lifetime will
be discussed in Section 3. The resulting statistical models are given in Section 4. These
models are compared and used for predictions in Section 5. In particular, they will be
compared based on their 3-sign depth as well as the coverage rates that their resulting
prediction bands achieve in a leave-one-out cross-validation. Finally, a conclusion and
outlook is given in Section 6.

2 Statistical methods

This paper contains a couple of general methods for parameter estimations, model checking,
and simultaneous prediction intervals. We start by complementing classical approaches for
estimation and model checking with an approach based on 3-sign depth.

2.1 Estimations and model checks in parametric models based on 3-sign
depth

Let Z = (Zn)1≤n≤N be a random vector with some distribution given by a parametric
model with a d-dimensional model parameter θ ∈ Rd for some d ≥ 1. We assume that, for
every n = 1, . . . , N ,

Z1, . . . , ZN are independent, (1)

Zn has a continuous distribution with some density function fn,θ. (2)

Note that the density function fn,θ : R → [0,∞) of Zn may depend on the index n ∈
{1, . . . , N}. In particular, we do not assume that the coordinates of Z are identically
distributed.

The vector Z will represent the entire data from all experiments in applications later
on. Assumptions (1) and (2) allow us to use the well-known maximum likelihood principle
for parameter estimation. This approach as well as the closely related likelihood-ratio (LR)
test will be the main classical methods for parameter estimation and confidence sets. For
the reader’s convenience, these approaches are summarized in the next paragraph.
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2.1.1 The classical likelihood approach

Let z = (zn)n=1,...,N be a realization of the random vector Z. The likelihood function L
maps a parameter θ to the value of the corresponding joint density function at z, that is

L(θ) := L(θ, z) :=
N∏

n=1

fn,θ(zn). (3)

The maximum likelihood estimation (MLE) for θ is defined as

θ̂ := argmax
θ

L(θ). (4)

With the likelihood function given in (3), an asymptotic (1 − α)-confidence set for the
parameter θ can be derived using the likelihood-ratio test (Schervish, 1995, pp. 459-461):

CLR
α :=

{
θ ∈ Rd; −2 ln

(
L(θ)
L(θ̂)

)
≤ χ2

d,1−α

}
(5)

in which χ2
d,1−α denotes the (1−α)-quantile of the χ2-distribution with d degrees of freedom.

Model checks with the likelihood approach are only possible by comparing different
models via the likelihood. Having only one model, it is not possible to decide whether this
model is good or not for a given data set. This is different to the new approach based on
sign-depth which is presented in the next paragraphs.

2.1.2 Parameter estimation via 3-sign depth

As a robust counterpart to the likelihood approach, we will use the 3-sign depth as a special
case of the K-sign depth that can be found, e.g., in Kustosz et al. (2016) or Malcherczyk
et al. (2021). This approach is based on the residuals, which are defined as follows. Let
medn(θ) denote the median of the coordinate Zn according to the model with parameter
θ, i.e. ∫ medn(θ)

−∞
fn,θ(x)dx =

1

2
.

If the median is not unique, any choice will be fine for the subsequent method. Then the
residuals associated to a parameter θ ∈ Rd are defined as

R(θ) = (R1(θ), . . . , RN (θ)) with Rn(θ) = Zn −medn(θ).

The 3-sign depth d3(r) of an arbitrary vector r = (r1, . . . , rN ) ∈ RN , N ∈ N, is defined
as the relative number of 3-tuples (ri, rj , rk), i < j < k, that have alternating signs. More
formally,

d3(r) :=
1(
N
3

) ∑
i1<i2<i3

 3∏
j=1

1{(−1)jrij > 0}+
3∏

j=1

1{(−1)jrij < 0}

 , (6)
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in which 1 denotes the indicator function, i.e. a {0, 1}-valued function that is 1 if and only
if the condition in its brackets holds. An efficient R-implementation of this depth notion
can be found in Horn (2020). When applied to the residual vector (R1(θ), . . . , RN (θ)), a
large 3-sign depth indicates a good model fit whereas a small depth is caused by regions
with atypically many/few positive residuals and therefore a bad fit. In particular, the 3-
sign depth can be used for parameter estimations and confidence sets in the same way L is
used in the likelihood approach. More formally, let (r1(θ), . . . , rN (θ)) denote a realization
of R(θ). The 3-sign depth of a parameter θ is defined as

d3(θ) := d3(r1(θ), . . . , rN (θ))

with d3 given in (6). Using this depth notion, alternatives to the MLE and the LR-based
confidence sets can be defined as

θ̂SD := argmax
θ

d3(θ),

CSD
α :=

{
θ ∈ R3; d3(θ) ≥ qSDα

} (7)

in which the necessary α-quantile qSDα can be obtained via simulation or the limit theorem
in Malcherczyk et al. (2021); see also the R-function qdepth from Horn (2020).

Remark 2.1. Note that by design the 3-sign depth only considers signs of residuals, which
makes it outlier robust. Moreover, assuming that the independence (1) is given, it only
checks whether the model medians medn(θ) are correct without checking any other prop-
erties of the distribution of each coordinate Zn. In particular the latter property makes
this approach an interesting alternative to the likelihood method in situations where the
distributional assumption based on the density fn,θ is an obvious oversimplification of the
true nature behind a given data set. However, both properties automatically cause the 3-
sign depth approach to be less powerful than the likelihood method in situations where the
distributional assumptions are correct and outlier robustness is not needed.

Remark 2.2. The value of the 3-sign depth depends on the order of r1(θ), . . . , rN (θ).
While the general approach works with any order that does not affect the independence
assumption (i.e. orders based on the values z1, . . . , zN of the underlying process are not
allowed), poorly ordered residuals can result in a test with low power. Suitable orders
should ensure that whenever θ deviates from the true underlying parameter, large blocks
of consecutive residuals exist that all tend to have the same sign. A discussion on the
performance of different orderings in linear models can be found in Horn and Müller (2020);
see also Section 4.1 for the order chosen in our application.

2.1.3 The 3-sign depth for model checks

The 3-sign depth will mainly be used to check which of the models introduced in Section 4
are best suited for the data at hand. In a more general setting, this depth can be used to
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test hypotheses of the form

H0 : there is a θ ∈ Rd such that Zn has median medn(θ) for all n. (8)

If this hypothesis does not hold then, in particular, the parametric model cannot properly
describe the distribution of Z. The hypothesis can be tested with a type I error of at most
α ∈ (0, 1) via:

reject H0 if d3(θ̂
SD) ≤ qSDα

with d3(θ̂
SD) and qSDα as in (7). Moreover, p-values for this test can be generated by

computing the value of the distributional function at d3(θ̂
SD), e.g., by using pdepth from

the R-package Horn (2020).

Remark 2.3. Note that no other model is necessary for this model check. If H0 in (8)
is rejected then the assumed model is not appropriate. However, it also can be used to
compare different models as done with the likelihood approach. Then the p-values of the
depth tests for the different models can be compared.

2.2 Prediction bands

With both a model check and parameter estimation at hand, we will now first discuss how
to generate prediction bands for a real-valued process Y = (Yi)1≤i≤I of length I ∈ N. In
contrast to the previous section, this process will only represent the outcome of a single
experiment (with all of its component failures) while the other experiments are usually
used to estimate its distribution. We begin with some general theory before adapting this
theory to parametric models in Section 2.2.2.

When predicting the trajectory of Y = (Yi)1≤i≤I , it is reasonable to aim for a so-called
simultaneous prediction band defined in, e.g., Kolsrud (2007):

Definition 2.4. Let (ℓi)1≤i≤I and (ui)1≤i≤I be real-valued sequences with ℓi < ui for all
i. The set B = [ℓ1, u1]× [ℓ2, u2]× · · · × [ℓI , uI ] is called simultaneous prediction band for
Y = (Yi)1≤i≤I with coverage probability 1− α ∈ (0, 1] if

P(Y ∈ B) = P

(
I⋂

i=1

{ℓi ≤ Yi ≤ ui}

)
= 1− α.

In contrast to simple one-dimensional prediction intervals, there are several approaches
that lead to different simultaneous prediction bands. Roughly speaking, this difference is
caused by the different options for the point-wise coverage probabilities P(ℓi ≤ Yi ≤ ui),
i = 1, . . . , I, and the possibility to add asymmetry by choosing P(Yi < ℓi) ̸= P(Yi > ui). A
more thorough discussion on different properties and approaches to derive prediction bands
can be found in Kolsrud (2007); see also Claeskens and Van Keilegom (2003) and Chew
(1968) for other approaches and special cases. The prediction bands in the subsequent
analysis will aim for the arguably most natural form of prediction bands with the following
properties for all i, j = 1, . . . , I:

6



(a) P(ℓi ≤ Yi ≤ ui) = P(ℓj ≤ Yj ≤ uj),

(b) P(Yi < ℓi) = P(Yi > ui).

Such a prediction band can be obtained by a procedure called adjusted intervals in Kolsrud
(2007). This procedure starts by letting [ℓi, ui] be (1 − β)-prediction intervals for Yi for
every i, initially with β = α. Afterwards, β is continuously decreased until the resulting
band indeed becomes a simultaneous (1− α)-prediction band. A description of a stepwise
procedure to generate such intervals by a simulation can be found in Kolsrud (2007).

Since the computation of adjusted intervals given in Kolsrud (2007) is fairly time con-
suming, we will present a more direct approach that yields similar results. The approach
only requires that i.i.d. copies of the process Y = (Yi)1≤i≤I are available. In particular, the
coordinates Y1, . . . , YI of the process may be dependent and have an arbitrary distribution
(distributional assumptions are only required for simulations and are therefore unnecessary
in data applications with i.i.d. samples).

2.2.1 Simulation procedure

First generate1 a total of M samples from the distribution of Y = (Yi)1≤i≤I where the
number M of samples is chosen sufficiently large (we used M = 1000 for the prediction
bands in Section 5). Let y(1), . . . ,y(M) denote these realizations of i.i.d. copies of Y =
(Yi)1≤i≤I . Roughly speaking, we may now generate a prediction band by keeping all
samples except for the α-fraction that has either one of the highest or lowest coordinate-
wise ranks in one of its coordinate i. More precisely, for each coordinate i ∈ {1, . . . , I}, let
ri := (r

(1)
i , r

(2)
i , . . . , r

(M)
i ) denote the rank vector of (y

(1)
i , y

(2)
i , . . . , y

(M)
i ), that is

r
(m)
i = #{n ∈ {1, . . . ,M}; r(n)i ≤ r

(m)
i }, m = 1, . . . ,M,

where #S denotes the cardinality of a finite set S. Based on these ranks, a score cm is
assigned to each sample y(m), m ∈ {1, . . . ,M}:

cm := max
i=1,...,I

∣∣∣∣r(m)
i − M + 1

2

∣∣∣∣ .
Note that a sample has a very high score if and only if at least one of its coordinates has
a very low or high rank. To actually build a prediction band which covers all but the
α-fraction of samples with the most extreme ranks, we may therefore choose the smallest
band that covers the set

S :=
{
y(m); m ∈ {1, . . . ,M} with cm ≤ q1−α(c1, . . . , cM )

}
1or use a given data set consisting of i.i.d. samples
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in which q1−α(c1, . . . , cM ) denotes the empirical (1 − α)-quantile of c1, . . . , cM . Such a
band covering S is called the envelope of S, cf. Kolsrud (2007). Its lower and upper
bounds (ℓi)i=1,...,I and (ui)i=1,...,I are given by

ℓi := min{yi; y = (y1, . . . , yI) ∈ S},
ui := max{yi; y = (y1, . . . , yI) ∈ S}.

2.2.2 Prediction bands for parametric models

The simultaneous prediction bands in Section 2.2.1 were designed for a process Y = Y0

with a fixed distribution. Since the underlying model parameter θ in a parametric model is
usually unknown, a simulation of these prediction bands is only possible when estimating
the parameter in advance based on other processes Y1, . . . ,YJ resulting in a data set
Z := (Y⊤

1 , . . . ,Y
⊤
J )

⊤. Two different approaches called naive and confidence-set-based are
presented below.

Let α ∈ (0, 1). For every possible parameter θ, the method in Section 2.2.1 can be used
to derive a (1− α)-prediction band

Bα(θ) := [ℓ1(θ), u1(θ)]× · · · × [ℓI(θ), uI(θ)]

by generating i.i.d. copies of Y0 assuming that θ is the true model parameter. The so-
called naive/plug-in prediction will simply take the MLE θ̂ := θ̂(Z) (or any other consistent
estimation) and derive the prediction band with θ = θ̂. Hence, the naive/plug-in prediction
is given by

Bα(θ̂) = [ℓ1(θ̂), u1(θ̂)]× · · · × [ℓI(θ̂), uI(θ̂)]. (9)

Such a prediction usually works well for large sample sizes since in this case, a consistent
estimator θ̂ will be close to the true model parameter. However, if the estimator deviates
substantially from the true model, a naive prediction can become liberal in the sense that
its prediction error exceeds the α-level it is designed for.

In order to ensure that the α-level is kept, we will use another approach based on
confidence sets. To this end, fix α1, α2 ∈ (0, 1) with α1 + α2 = α. First derive a (1− α1)-
confidence set Cα1 := Cα1(Z) for θ, e.g., by using the LR-approach presented in Sec-
tion 2.1.1. Then derive a (1 − α2)-prediction band Bα2(θ) for every θ ∈ Cα1 . Finally,
use

Bα2(Cα1) :=
⋃

θ∈Cα1

Bα2(θ) (10)

as a (1 − α)-prediction for Y. Note that the prediction error is indeed at most α since if
θ∗ denotes the true model parameter then

Pθ∗(Y ∈ Bα2(Cα1)) ≥ Pθ∗ (Y ∈ Bα2(θ
∗),θ∗ ∈ Cα1) ≥ 1− α1 − α2

8



in which the last inequality follows from the union bound for the complementary event
{Y /∈ Bα2(θ

∗)} ∪ {θ∗ /∈ Cα1}. Also note that if the data used for Cα1 is independent from
Y then the last bound can be replaced with (1−α1)(1−α2), thus allowing to use slightly
larger errors α1, α2. Finally note that the confidence set Cα1 is usually approximated
by a grid. The choice of its mesh width results in a trade-off between the precision and
computational effort for Bα2(Cα1).

Remark 2.5. Since set-unions are inconvenient to compute, the predictions in Section 5
use the potentially larger prediction band

B̃α2(Cα1) := [ℓ1, u1]× . . .× [ℓI , uI ]

with lower- and upper bounds given by

ℓi := min{ℓi(θ); θ ∈ Cα1}, ui := max{ui(θ); θ ∈ Cα1}.

Remark 2.6. In the subsequent analysis, the error rates will be chosen as α = 0.05 in
the naive prediction bands and α1 = α2 = 0.05 in bands based on confidence sets. Note
that if the sample size N (i.e. the dimension of Z) is very large, it is advisable to choose
α1 := α1(N) in such a way that α1(N) → 0 with a sufficiently slow rate of convergence
that still ensures that Cα1(N) converges to a single point set consisting of the true model
parameter. As mentioned in Leckey et al. (2020b, Remark 2), such a convergence is ensured
if χ2

3,1−α1(N)/N converges to zero. However, since the amount of data used in Section 5

is fairly small (N < 300), we decided to stick to α1 = 0.05 which yields a reasonably
sized confidence set. Finally note that the theoretical error for prediction bands based on
confidence sets is chosen twice as large (α1 + α2 = 0.1) as the one in the naive approach
since despite this larger theoretical error it always holds that θ̂ ∈ CLR

α2
and therefore

B0.05(θ̂) ⊆ B0.05(CLR
0.05).

Remark 2.7. Simultaneous predictions bands in combination with a leave-one-out cross-
validation are another good indication for whether a (parametric) model describes the data
properly. In particular if the coverage rate of the more conservative predictions Bα2(CLR

α1
)

is much lower than 1 − (α1 + α2), then the model is probably not capable of modeling the
data correctly.

3 Component failures in prestressed concrete beams

Heinrich et al. (2016), Szugat et al. (2016), Heeke et al. (2019), and Leckey et al. (2020b)
present experiments and their analysis of test series with prestressed beams where only
the initial stress range was varied. These tests series are called reference test series in
the following. They are complemented here by test series called GS, GR and GL where
additional test parameters were varied.
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All test specimens were 4.50m long, 1m high and 0.30m wide prestressed concrete
beams. The tendons of the beams consisted of seven-wire strands installed in a steel duct
and was also arranged curved over the length of the girder (cf. Figure 1). The tests were
performed as 4-point bending tests with a cyclic loading. Here, the level of cyclic loading
had a significant influence on the test duration. As the level of cyclic loading increases,
the test duration decreases accordingly. At a test frequency of 3-10Hz, the test duration
was already several months with more than 108 endured load cycles.

The end of the test was usually initiated by a failure of the test girder due to fatigue.
However, the failure did not occur abruptly. Rather, a successive increase in single wire
breaks of the tendon was observed. As soon as a critical number of wires broke, a total
collapse of the test occurred.

The time of the individual wire breaks (number of load cycles) could already be accu-
rately determined during the test procedure by simultaneous microphone, acceleration and
crack width measurements. Further information on the test execution and the results of
the reference test series is given in Heinrich et al. (2016) and Heeke et al. (2019).

The tests of the GS, GR and GL test series differ from the reference test series in
particular by the variation of the tendon geometry (tendon size and tendon alignment).
This was intended to investigate certain influences on the fatigue strength. The differences
and the influences are described below in more detail.

3.1 Influences on fatigue strength

3.1.1 General comments

The list of influencing parameters on the fatigue strength of a prestressed concrete beam
is long. In Suresh (1998) and Schijve (2009), a selection of the most important influencing
parameters is listed.

In the GS, GR and GL test series, the prestressing force was nearly doubled in the
tendon. The increase of the preload force therefore also increases the deflection force or
the lateral load in the area of the tendon deflection (influence of the deflection force).

The prestressing force was increased to compensate for the enlarged prestressing steel
surface, since the prestressing steel stress should be at the same level as in the reference
tests. Due to the larger number of prestressing steel strands or wires, it can be expected
that the local lateral pressures between the prestressing steel wires adjacent to the duct
will increase (influence of the cable factor).

3.1.2 Influence of the deflection force and lateral loads

Post-tensioned tendons are usually installed in a curved arrangement as it was the actual
case with the test specimens. The course of the tendon corresponds to the bending moment
course. The garland-shaped arrangement of the duct in the concrete beam ensures that the
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Figure 3 Overview of the conditions and variants of the different test series 
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Tabelle 1 Relevant test parameters for the GS, GR and GL test series and the reference tests. 

   Ref. GS01 GS02 GR01 GR02 GL01 GL02 

Tendon  [-] 5x3/8‘‘ 9x3/8‘‘ 9x3/8‘‘ 9x3/8‘‘ 9x3/8‘‘ 3x0,62‘‘ 3x0,62‘‘ 

Cross sectional area 
of prestressing steel 

Ap [mm²] 260 468 468 468 468 450 450 

Radius of curvature R [m] 5,0 5,0 5,0 10,0 10,0 5,0 5,0 

Minimum stress σmin [N/mm²] 900 900 900 900 900 900 900 

Maximum stress  σmax [N/mm²] 
980-
1100 

1020 990 1020 990 1020 990 

Stress range in 
prestressing steel 

Δσ [N/mm²] 
80-
200 

120 90 120 90 120 90 

Max. lateral load acc. 
to eq. (1) 

up [kN/m] 
51,0-
57,2 

95,5 92,7 47,7 46,3 91,8 89,1 

Stacking factor acc. to 
eq. (2) 

kmax [-] 2,04 3,68 3,68 3,68 3,68 2,36 2,36 

Max. lateral load acc. 
to eq. (3)  

up,max [kN/m] 
20,8-
23,3 

39,0 37,9 19,5 18,9 73,1 70,1 
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3
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Figure 1: Overview of the conditions and variants of the different test series.
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Figure 2: Lateral loads on curved tendons in post-tensioned concrete beams

prestressing steel is in direct contact with the duct when the prestressing load is applied
(Figure 2).

The deflection forces at the contact points between the prestressing steel strands and
the ducts depend on the prestressing force P and the radius of curvature R and can be
determined according to Equation (11):

up =
P

R
. (11)

As the prestressing force P increases, the deflection force also increases. Various investiga-
tions have already shown that lateral pressure can have an impact on the fatigue strength
(Remitz and Empelmann, 2018; Hills and Nowell, 1994; Ochi et al., 1970; Nishioka and
Hirakawa, 1969). With increasing lateral pressure up to from 0 to 100 MPa, a significant
decrease in fatigue strength was observed.

3.1.3 Influence of the cable factor

The deflection force calculated according to Equation (11) is a mean deflection force related
to the complete prestressing steel surface. If the radius of curvature is kept constant in the
deflection areas (R = const), this also results in a constant deflection force.

The illustration on the right in Figure 2 shows, however, that the deflection force
between prestressing steel and duct is not equally distributed over all strands. In the
diagram, the middle strand is supported by the two strands located above it. The deflection
force from the five strands is therefore only transmitted over four contact points. The same
problem also occurs with the single wires of the strands.

This effect is taken into consideration by the cable factor κmax, which describes the
maximum contact load between prestressing steel and duct in relation to the number of
prestressing steel elements.

Two simplified calculation methods for estimating the maximum cable factor are ex-
plained in Weiher (2007), Weiher et al. (2008) and Wollmann et al. (1988). In the following,
the approach of Weiher (2007), Weiher et al. (2008) will be considered:

κmax = 2 · �p

�duct
· nstr. (12)
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This equation includes the strand diameter (�p), the number of strands (nstr) and the
inner duct diameter (�duct). The maximum deflection force at the contact points between
tendon and duct is then determined according to Equation (13):

up,max = κmax ·
P

R · nstr
. (13)

3.2 Description of the test specimens

Table 1 and Figure 1 list the relevant test parameters for the GS, GR and GL test series
and the reference tests. The following abbreviations are used in Table 1:

� nstr: the total number of strands;

� I: the total number of wires, i.e. I = 7nstr since each strand consists of exactly seven
wires in all experiments below;

� Ap: the cross-sectional area of the prestressed steel;

� �p: the strand diameter;

� �duct: the inner duct diameter;

� R: the radius of curvature;

� Pmax: the maximal prestressing force resulting from the top load of the cyclic load;

� σmin: the minimal initial stress (which was 900MPa in all experiments);

� σmax: the maximal initial stress (σmax = Pmax/Ap);

� s: the initial stress range (s = σmax − σmin);

� I: the total number of wires breaks detected during the experiment;

� TEnd: total number of load cycles endured until the end of the experiment;

� κmax: the cable factor according to (12);

� up: the deflection force according to (11).
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Table 1: Relevant test parameters for the GS, GR, GL and the reference test series.
Parameter Unit Ref. GS01 GS02 GR01 GR02 GL01 GL02

nstr [-] 5 9 9 9 9 3 3
I [-] 35 63 63 63 63 21 21
Ap [mm2] 260 468 468 468 468 450 450
�p [mm] 9.3 9.3 9.3 9.3 9.3 15.7 15.7
�duct [mm] 45 45 45 45 45 40 40
R [m] 5 5 5 10 10 5 5

Pmax [kN ] 247 - 352 477 463 477 463 459 445
σmin [N/mm2] 900 900 900 900 900 900 900
σmax [N/mm2] 950 - 1355 1020 990 1020 990 1020 990
s [N/mm2] 50 - 455 120 90 120 90 120 90
I [-] 1 - 19 33 29 32 29 6 6

TEnd [million] 0.2 - 108 17.6 4.0 6.6 5.6 1.7 19.4

κmax [-] 2.07 3.72 3.72 3.72 3.72 2.36 2.36
up [kN/m] 49.4 - 70.5 95.5 92.7 47.7 46.3 91.8 89.1

4 Statistical models

The older data from the reference tests can be modeled fairly well using the so-called
Basquin load sharing model from Szugat et al. (2016) or Leckey et al. (2020b). In this
model, the interarrival times between consecutive wire breaks are assumed to be indepen-
dent and exponentially distributed with increasing rates that incorporate the load sharing
effect. More precisely, let J denote the total number of experiments and Ij the number of
broken wires observed in the j-th experiment, j = 1, . . . , J . Moreover, let Tj,i denote the
time (in loadcycles) when the i-th wire in the j-th experiment breaks. Then the interarrival
times are defined as

Wj,i := Tj,i − Tj,i−1, j = 1, . . . , J, i = 1, . . . , Ij ,

with the convention that Tj,0 := 0 for all j. The models given in Szugat et al. (2016) or
Leckey et al. (2020b) make the following assumptions:

Wj,i, j = 1, . . . , J, i = 1, . . . , Ij , are independent, (A1)

Wj,i is exponentially distributed with rate λθ(j, i), (A2)

in which θ = (θ1, θ2) ∈ R2 is a model parameter and the rate is given by

λθ(j, i) := λBasq
θ (j, i) := e−θ1 ·

(
sjIj

Ij − (i− 1)

)θ2

(14)

where Ij and sj denote the total number of wires and initial stress range in the j-th
experiment. These failure rates are referred to as the Basquin model since they are based
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Figure 3: Failure times in different experiments from GS,GR and GL with an initial stress
range of 120MPa (left) or 90MPa (right) and an experiment from the reference series with
an initial stress range of 150MPa (left) or 100MPa (right).

on a relation between stress and fatigue already proposed by Basquin (1910). Note that
the failure rates in this model only depend on the current stress range given by an equal
load sharing rule (i.e. the initial stress sj divided by the relative number of intact wires).
However, taking only these features into account seems to be insufficient for the new test
series since wires in these experiments tend to break faster than in the reference series;
see Figure 3. As already discussed in Section 3.1, this could potentially be caused by the
different deflection forces (11) and/or cable factors (12). We therefore introduce several
model extensions to include these influence factors and use the methods from Section 2 to
determine the most promising models among them.

Remark 4.1. Experiment GS01 depicted on the left part of Figure 3 shows an extremely
atypical behavior: While the time between consecutive wire breaks usually decreases when
less wires are intact, the time between breaks seems to increase in this experiment, in
particular after around 30% of the wires are broken. This will be very unfortunate for
parameter estimations later on since a direct comparison between the GR and GS series
would be ideal to consider the effect of deflection forces without taking the cable factor into
account.

For comparison, the following three model expansions will be considered. The first
expansion adds the cable factor to the Basquin model by defining new rates with a three-
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dimensional parameter θ ∈ R3:

λcf
θ (j, i) = e−θ1

(
sjIj

Ij − (i− 1)

)θ2

κθ3max,j (15)

in which κmax,j refers to the maximal cable factor κmax in the j-th experiment calculated
with (12). Such a model can perform reasonably well when considering only data such as the
reference and GR series which have similar deflection forces. When instead considering data
such as the GS and GR series, which have the same cable factors but different deflection
forces, the following rates are more useful:

λdf
θ (j, i) = e−θ1

(
sjIj

Ij − (i− 1)

)θ2

uθ3p,j (16)

in which up,j refers to the deflection force in the j-th experiment calculated with (11).
Finally, the previous two rates can be generalized to the following overall model with a
four-dimensional parameter θ ∈ R4:

λfull
θ (j, i) = e−θ1

(
sjIj

Ij − (i− 1)

)θ2

κθ3max,ju
θ4
p,j . (17)

Remark 4.2. While the rates given by (17) are the preferable choice to jointly model all
experiment series (Ref., GS, GR, GL), they unfortunately require a four-dimensional model
parameter θ. Such a parameter can easily be estimated based on a sufficiently large amount
of data. Since all of our experiments combined consist of 17 beams with a total of 272
observed wire breaks, models with higher dimensional parameters automatically bear the
risk of overfitting.

4.1 Ordering the data when applying the 3-sign depth

As already mentioned in Remark 2.2, the power of the 3-sign depth test is affected by
the way the data is ordered. While one could use the simple chronological order (i.e. first
according to the experiment index j and then according to number i of broken wires), it is
advisable to choose an order that tends to lead to large blocks of residuals with the same
sign whenever a parameter θ other than the true model is considered.

The order used in this article will first sort according the cable factor of the experiment
and then according to the deflection force, hence:

reference data < GL02 < GL01 < GR02 < GR01 < GS02 < GS01.

Finally, the data within each group is ordered according to their current stress range, that
is according to

(j1, i1) < (j2, i2) :⇐⇒ sj1Ij1
Ij1 − (i1 − 1)

<
sj2Ij2

Ij2 − (i2 − 1)
.
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Any remaining ties will be ordered chronologically (hence increasing in the experiment
index j). The parameter estimations and model checks in the next section are based on
the general approach from Section 2.1 with a process Z = (Zn)n=1,...,N equal to the sequence
(Wj,i)j,i ordered according to the procedure described above.

5 Data analysis

This section has mainly two objectives: the first one is to identify which of the models in
Section 4 are sufficient to describe either all or part of the data from the experiment series
mentioned in Section 3.2. The second objective is to use proper models combined with
the methods in Section 2.2 to predict the outcome of single experiments. All graphics and
simulations in this section are done with the statistics software R (R Core Team, 2020).

5.1 Testing different models with 3-sign depth

In order to study different effects such as the deflection force and cable factor, the following
subsets of data will be used:

� All: Taking all data (reference, GS, GR, and GL series) into account.

� RefGR: Taking data from the reference and GR series. These experiments have
similar deflection forces up but different cable factors κmax. Hence the rates λcf

θ (j, i)
in (15) should yield a sufficient model.

� GSGR: Taking data from the GS and GR series. These experiments have the same
cable factors κmax but different deflection forces up. Hence the rates λdf

θ (j, i) in (16)
should yield a sufficient model.

� Ref : Taking only data from the reference test series. These experiments have the
same cable factors κmax and similar deflection forces up. Hence the Basquin model
(14) already used in Szugat et al. (2016) and Leckey et al. (2020b) should be sufficient
to describe the data.

Moreover, since later breaks, e.g., during the experiment GS01, turned out to be atypically
long and thus changed models and predictions significantly, we also consider reduced data
where the total number of wire breaks is bounded from above. More precisely, for all data
subsets mentioned above, we also consider a reduction of the observations to all breaks up
to the point where 25% of the wires are broken. This leads to at most 8 broken wires in
each experiment of the reference series, at most 15 broken wires in the GR and GS series,
and at most 5 broken wires in the GL series. The corresponding reduced data sets are
denoted by All25%, RefGR25%, GRGS25%, and Ref25%, respectively.
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Table 2: Parameter estimations and p-values according to the 3-sign depth for all models
from Section 4. All values are based on all failure times from different subsets of experi-
ments.

All RefGR GRGS Ref

λfull θ̂SD


26
1.9
2.9
0.1




66
1.7
3.9
3.8




12
0.04
0.3
0



184
0.2
4.9
15


p-value 0.982 0.994 0.985 0.988

λcf θ̂SD

25
2
2.8

 26
2.2
3

  12
0.04
0.04

  24
2.6
−3.1


p-value 0.978 0.987 0.985 0.819

λdf θ̂SD

74
2.3
4.5

  3.2
4.4
−2.9

  9
0.1
−0.3

 180
0.2
15


p-value 0.067 0.067 0.985 0.988

λBasq θ̂SD

(
63
10

) (
33
3.9

) (
12
0.04

) (
26
2.6

)
p-value 0.008 0.044 0.985 0.819

Table 2 contains a summary of parameter estimations and p-values in the different
subsets of data and with respect to the different models introduced in Section 4. All esti-
mations and p-values are based on the 3-sign depth described at the end of Section 2.1. In
particular, the test is only focused on whether the average behavior of wire breaks is mod-
eled correctly without assuming that the interarrival times are exponentially distributed.
Note that the full model given by λfull in (17) yields very high p-values above 0.98 for all
data subsets. Hence, this model yields a very good fit through the data which, however,
could also indicate an overfitting since the 3-sign depths became atypically large. Surpris-
ingly, all models yield essentially the same results when considering the data from the GR
and GS series only. In particular, the model λdf in (16) that includes the deflection force
could not be used to properly describe the difference between the GR and GS series as
the matching high p-values of all models indicate. This is probably caused by the atypical
behavior of GS01 mentioned in Remark 4.1. As expected, the different cable factors in the
reference and GR series can only be modeled properly by λfull and λcf , whereas all models
are capable of describing the reference series only. Finally, it turns out that the rates λcf

in (15) are actually sufficient to model the entire data.
Table 3 contains results similar to Table 2 when only considering data until at most

25% of all wires are broken in each experiment. With this restriction, the most atypical
part of GS01 is removed and therefore λdf at least yields an improvement to the simple
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Table 3: Parameter estimations and p-values according to the 3-sign depth for all models
from Section 4. All values are based on failure times until at most 25% of the wires broke
in different subsets of experiments.

All25% RefGR25% GRGS25% Ref25%

λfull θ̂SD


42
1.3
2.4
1.8




169
0.4
5.4
13.7




56
1

14.7
1.8




182
−0.05
−3.3
15.7


p-value 0.997 0.997 0.966 0.975

λcf θ̂SD

29.5
2.7
3.4

 27.5
2.3
3.1

 38.3
5.4
0.4

 25.8
2.4
0.2


p-value 0.983 0.995 0.839 0.946

λdf θ̂SD

195
0.03
16.6

  0.9
4.8
−3.4

 36.1
0.9
1.8

  201
−0.3
17.3


p-value 0.275 0.152 0.966 0.975

λBasq θ̂SD

(
114
20.8

) (
34
4.1

) (
35.6
4.9

) (
26.3
2.5

)
p-value 0.03 0.091 0.839 0.946

Basquin model λBasq when considering data from the GR and GS series only. Aside from
this improvement, the overall comparison between the different models remains the same:
both λfull and λcf seem to be the best rates to jointly model all data while λfull is likely to
actually overfit the data.

5.2 Analysis via prediction bands

With the result from the previous section at hand, we will only include the models λfull

from (17) and λcf from (15) in the upcoming analysis. All estimations are either based on
all data or on the reduced data All25% which only contains observations until at most 25%
of the wires are broken.

Table 4 contains the maximum likelihood estimations obtained when using these dif-
ferent models and data. Note that the estimated value for θ4 is negative when considering

Table 4: The maximum likelihood estimations θ̂ based on different models/data.

All All25%

λfull
(
10.79, 2.44, 2.08, −1.51

) (
42.03, 2.63, 3.36, 1.16

)
λcf

(
25.15, 2.12, 1.35

) (
30.15, 2.75, 3.62

)
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Figure 4: Estimated averages and naive 95%-prediction bands for GS01 based on either
model (17) or (15).

the full data set. In fact, when using the LR-approach in (5), the entire 95%-confidence set
for θ contains only parameters with θ4 < 0. Hence, the results indicate that the deflection
force has a negative effect on the rates in the sense that a larger deflection force leads to
longer times between consecutive wire breaks. As before, this effect could potentially be
caused by the odd behavior of GS01 mentioned in Remark 4.1. In particular, the maximum
likelihood estimation is positive in all of its coordinates when only considering the data
All25% and therefore reflects a more intuitive effect of the deflection force.

In order to compare predictions based on different models and/or methods, we will now
conduct a leave-one-out cross-validation. More precisely, for each of the 17 experiments
(11 reference and two each from GS, GR, GL), prediction bands are computed based on
estimations obtained from the other 16 experiments using either the naive approach (9)
or the approach (10) based on the LR-confidence set (5). As mentioned in Remark 2.6,
the errors are chosen to be α = 0.05 in the naive approach and α1 = α2 = 0.05 in the
LR-confidence set approach. The confidence set is approximated via grid search with mesh
widths equal to 0.1 in each dimension.

Figure 4 depicts the naive prediction bands for GS01. Note that the bands do not
cover the atypical later breaks in the experiment but at least manage to predict the first
20-25 failures correctly. Surprisingly, the model λcf with a lower dimensional parameter θ
performed better when predicting GR01 and GL01 as can be seen in Figures 5 and 6. In
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Figure 5: Estimated averages and naive 95%-prediction bands for GR01 based on either
model (17) or (15).

0 1 2 3 4 5 6

0
10

20
30

40

Number of broken wires

Lo
ad

cy
cl

es
 (

in
 m

ill
io

ns
)

GL01
Est. av. with λfull

Est. av. with λcf

Pred. band with λfull

Pred. band with λcf

Figure 6: Estimated averages and naive 95%-prediction bands for GL01 based on either
model (17) or (15).
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Table 5: Coverage rates (in %) of prediction bands in a leave-one-out cross-validation based
on the models from (17) and (15).

Method Model All Ref. GS GR GL

Naive λfull 47.06 63.64 0.00 0.00 50.00
CS-LR λfull 82.35 90.91 0.00 100.00 100.00
Naive λcf 47.06 54.55 0.00 0.00 100.00
CS-LR λcf 76.47 90.91 0.00 50.00 100.00

Number of experiments 17 11 2 2 2

Table 6: Coverage rates (in %) of prediction bands in a leave-one-out cross-validation based
on the models from (17) and (15) in the reduced data set All25%.

Method Model All25% Ref25% GS25% GR25% GL25%

Naive λfull 76.47 72.73 100.00 50.00 100.00
CS-LR λfull 94.12 90.91 100.00 100.00 100.00
Naive λcf 70.59 72.73 50.00 50.00 100.00
CS-LR λcf 88.24 90.91 100.00 50.00 100.00

Number of experiments 17 11 2 2 2

contrast to the other model, it manages to cover GL01 with its prediction band and also
covers all breaks in GR01 except for the 23rd one. On the other hand, model λfull has a
slightly higher coverage rate in the reference data; see Table 5 for a summary. This higher
coverage rate in the reference series combined with negative θ4 value in the parameter
estimation once again indicates that the extra parameter is used for a better fit (or even
overfit) in the reference data rather than a proper modeling of the deflection force itself.
In fact, none of the methods was able to produce predictions that cover any of the two GS
experiments. Also the overall coverage rate in all 17 experiments is less than 50% for the
naive predictions. Since the (asymptotic) coverage rate of the naive methods should be
95%, the results from naive predictions seem a bit low even for the small sample of only
17 experiments2.

Table 6 contains the coverage rates in the reduce data All25%. All methods perform
significantly better when only considering breaks until at most 25% of all wires are broken.
In particular, they now predict either one or both of the GS experiments correctly. Also
the confidence set approach based on the four-dimensional model λfull now manages to
exceed a 90% coverage rate in all test series. The same approach used with model λcf still
covers almost 90% of the experiments and even the naive approach covers more than 70%
of the data. Hence, both models seem to be well suited to predict at least the earlier wire
breaks in all test series.

2For a proper 95%-prediction band, the coverage rate should have a binomial distribution with N = 17
and p = 0.95.
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6 Conclusion

We have presented a new method for model checking based on sign depth and applied
this on component failures in prestressed concrete beams. Since the experiments varied
in different parameters such as the number of wires and their diameter, the simple load
sharing model from Szugat et al. (2016) was extended by adding extra factors representing
the deflection force and cable factor. Then we applied a new simple method to obtain
simultaneous prediction bands for the failure times and used them in a leave-one-out cross-
validation. This resulted in a second model validation method for the data. The resulting
predictions covered the data fairly well, at least up to the point when 25% of all wires are
broken. Later breaks were harder to predict, in particular for the GS series with largest
deflection force and cable factor that showed unexpectedly long waiting times between
these breaks.

Unfortunately, experiments to study the fatigue of prestressed concrete beams are very
expensive and time consuming, which is why we only had two experiments for each of the
GS, GR and GL series in addition to the 11 reference experiments. In combination with
the atypical behavior in the GS01 experiment, this caused our methods to struggle when
adding the deflection force to the models, often resulting in negative parameter estimations.
The addition of the cable factor, however, significantly improved the simple load sharing
model and turned out to be sufficient to properly predict most of the data. It therefore
seems like the cable factor has a higher impact on the fatigue than the deflection force but
more experiments are required to confirm this hypothesis.
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