

Hintergrundpapier zur Herleitung des Konzepts zur Beurteilung von Kunststoffmaterialien in Tretschichten auf Reitplätzen im LANUV-Arbeitsblatt 53

Hintergrundpapier zur Herleitung des Konzepts zur Beurteilung von Kunststoffmaterialien in Tretschichten auf Reitplätzen im LANUV-Arbeitsblatt 53

Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen Recklinghausen 2021

IMPRESSUM

Herausgeber Landesamt für Natur, Umwelt und Verbraucherschutz

Nordrhein-Westfalen (LANUV)

Leibnizstraße 10, 45659 Recklinghausen Telefon 02361 305-0, Telefax 02361 305-3215

E-Mail: poststelle@lanuv.nrw.de

Bearbeitung Dr. Marianne Hegemann (LANUV), Jörg Leisner (LANUV), Andreas Schwach (LANUV),

Prof. Dr. Jens Utermann (Ministerium für Umwelt, Landwirtschaft, Natur- und Ver-

braucherschutz des Landes Nordrhein-Westfalen).

Redaktion Dr. Marianne Hegemann (LANUV)

Bei den Mitarbeiterinnen und Mitarbeitern des LANUV-Labors bedanken wir uns für die sehr umfangreiche Arbeit der Probenvorbereitung und -elution sowie für die che-

mische Analytik.

Titelfoto istock/ sergio_kumer

Stand Dezember 2021

ISSN 2197-8336 (Print), 1864-8916 (Internet), LANUV-Arbeitsblätter

Informationsdienste Informationen und Daten aus NRW zu Natur, Umwelt und Verbraucherschutz unter

www.lanuv.nrw.de

Aktuelle Luftqualitätswerte zusätzlich im WDR-Videotext

Bereitschaftsdienst Nachrichtenbereitschaftszentrale des LANUV

(24-Std.-Dienst) Telefon 0201 714488

Nachdruck – auch auszugsweise – ist nur unter Quellenangaben und Überlassung von Belegexemplaren nach vorheriger Zustimmung des Herausgebers gestattet. Die Verwendung für Werbezwecke ist grundsätzlich untersagt.

Inhalt

1.	Verteilung von Makro- und Mikroplastik	5
2.	Freisetzung von Chemikalien aus Kunststoffen	5
2.1	Ableitung von Beurteilungswerten für Feststoffgehalte in kunststoffhaltigen Tretschichten	7
2.1.1	Schadstoffe mit Unterschreitung der Beurteilungswerte im Feststoff und im 2:1- Eluat	13
2.1.2	Schadstoffe mit Unterschreitung von Vorsorgewerten im Feststoff und Überschreitung von Eluatwerten in Einzelfällen	13
2.1.3	Überschreitung der Beurteilungswerte im Feststoff und im 2:1-Eluat	18
2.2	Orientierungswerte im Feststoff (Tabelle 4 im LANUV-Arbeitspapier)	22
Abküı	rzungen	25
Anhai	ng: Analysenergebnisse	28

Hintergrundpapier zur Beurteilung von kunststoffhaltigen Tretschichten auf Reitplätzen

Zerkleinerte Kunststoffmaterialien, z. B. Teppichböden, Geotextilien und Vliese, werden zur Herstellung von Tretschichten auf Reitplätzen genutzt. Die Kunststoffmaterialien werden als vollsynthetische Tretschicht oder als Gemische mit Sand auf Reitplätzen eingesetzt.

Durch die Nutzung der zerkleinerten Kunststoffmaterialien als oberste Schicht (Tretschicht) auf Reitplätzen sind Auswirkungen auf die Umwelt zu besorgen, da die in den Kunststoffen enthaltenen Chemikalien freigesetzt und in Boden und Grundwasser gelangen können. Außerdem kann nicht ausgeschlossen werden, dass Makro- sowie Mikroplastik in die Umwelt verteilt werden. Das LANUV-Arbeitsblatt 53 befasst sich u. a. mit der Bewertung dieser Umweltauswirkungen.

Im Folgenden wird das im LANUV-Arbeitsblatt 53 vorgeschlagene Bewertungskonzept zusammenfassend dargestellt und erläutert. Die Bewertung der Auswirkungen auf die Gesundheit von Mensch und Tier im Sinne einer toxikologischen Bewertung sind nicht Gegenstand der folgenden Ausführungen. Die Bewertung der Umweltauswirkungen von kunststoffhaltigen Tretschichten auf Reitplätzen im Freien erfolgt unter folgenden Aspekten und umfasst auch die Anwendung auf Reitplätzen in Hallen (Austrag der Tretschichten ins Freie).

1. Verteilung von Makro- und Mikroplastik

Bisher existieren keine Bewertungskonzepte für Kunststoffe in den verschiedenen Umweltmedien. Genormte Untersuchungsmethoden als Grundlage für regulatorische Maßnahmen gibt es ebenfalls nicht. Auf nationaler Ebene laufen derzeit Forschungsvorhaben u. a. mit dem Ziel, harmonisierte Untersuchungsverfahren zu entwickeln, die Probennahme, Probenaufbereitung und Detektion umfassen. Daher fehlt eine konkrete Bewertungsgrundlage zur Beurteilung von Kunststoffen mit Blick auf deren Auswirkung auf die verschiedenen Umweltmedien¹.

Nach dem Vorsorgeprinzip bleibt es im LANUV-Arbeitsblatt 53 bei dem Appell, den Eintrag von Kunststoff in die Umwelt zu vermeiden bzw. zu minimieren.

2. Freisetzung von Chemikalien aus Kunststoffen

Konkrete Regelungen in Bezug auf die Bewertung der Freisetzung von Chemikalien aus Kunststoffen durch die Nutzung als Tretschicht auf Reitplätzen liegen ebenfalls nicht vor.

Jedoch bestehen verschiedene Regelungen zum Schutz der Umwelt, insbesondere zum Schutz von Boden und Wasser vor Stoffeinträgen, die hilfsweise auf kunststoffhaltige Tretschichten zur Nutzung im Freien angewendet werden können. Außerdem sind die nach Chemikalienrecht als besonders besorgniserregenden Stoffe (SVHC) und Persistente Organische Stoffe (POP) in Materialien zur Herstellung von Tretschichten auszuschließen.

¹ Braun, U. & Bannick, C.G. (2020): Analyse von Kunststoffpartikeln – Die Standardisierung von Untersuchungsverfahren für (Mikro-)Plastik in der Umwelt hat begonnen. – ReSource, 1: 4-9.

Das Vorgehen im LANUV-Arbeitsblatt 53 umfasst folgende Punkte:

(1) Ausschluss bestimmter Polymere für die Herstellung von Tretschichten

Das LANUV-Arbeitsblatt 53 empfiehlt solche Polymere (z. B. Weich-PVC und PU-Schaum) zur Herstellung von kunststoffhaltigen Tretschichten auszuschließen, die im Allgemeinen sehr viele verschiedene Additive enthalten. Viele dieser Additive wurden nach Chemikalienrecht als besonders besorgniserregende Stoffe eingestuft, da sie z. B. karzinogene, mutagene, reproduktionstoxische oder persistente Eigenschaften aufweisen.

(2) Begrenzung der durch Niederschlagswasser freisetzbaren Stoffe

Zur Ableitung von Beurteilungswerten hat das LANUV eigene Untersuchungen an Vlies- und Teppichmaterialien zur Verwendung in Tretschichten durchgeführt. Dabei wurden die Feststoff- und Eluatwerte für ein breites Schadstoffspektrum nach den Methoden der am 01.08.2023 in Kraft tretenden Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV-2023)² bestimmt. Es zeigte sich in der Praxis, dass die normgerechte Aufbereitung der Kunststoffe zur Elution aufgrund der speziellen Materialeigenschaften extrem aufwändig und fehleranfällig ist. Aus diesem Grund wurde eine Materialbeurteilung anhand von Feststoffwerten entwickelt, deren Ableitung das Auslaugverhalten des untersuchten Materials berücksichtigt.

Die LANUV-Untersuchungen sind exemplarisch an wenigen Proben durchgeführt worden. Deshalb stellen die abgeleiteten Werte einen nach derzeitigem Wissensstand fachlich begründeten Beurteilungsmaßstab dar. Dieser kann sich gegebenenfalls ändern, wenn zukünftig weitere Erkenntnisse vorliegen sollten. Es handelt sich daher um vorläufige Beurteilungswerte.

Die Ableitung dieser Beurteilungswerte stellt Kapitel 2.1 dar. Die zugrundeliegenden Ergebnisse der chemischen Analysen des LANUV an Vliesen und Teppichresten zur Verwendung in Tretschichten sind dem Anhang beigefügt, der außerdem die im LANUV vorliegenden Feststoffanalysen Dritter enthält.

(3) Orientierungswerte als Hinweis auf besonders besorgniserregende Chemikalien in Kunststoffmaterialien

Die als geeignet gekennzeichneten Polymere in den Kunststoffmaterialien bestehen aus den Elementen Kohlenstoff, Wasserstoff und Sauerstoff. Werden andere Elemente in relevanten Mengen in den Kunststoffen festgestellt, ist dies ein Hinweis, dass besonders besorgniserregende Chemikalien enthalten sein können. So könnten z. B. die Halogene Fluor, Chlor und Brom aus Chemikalien wie den perfluorierten Tensiden, chlorierten Weichmachern oder bromierten Flammschutzmitteln stammen.

Bei Überschreiten der vorgeschlagenen Orientierungswerte könnten insbesondere bestimmte besonders besorgniserregende, halogenierte Stoffe oberhalb der nach Chemikalienrecht zulässigen Konzentration im Kunststoff enthalten sein. Deshalb sollten

https://www.bgbl.de/xaver/bgbl/start.xav?#__bgbl__%2F%2F*%5B%40attr_id%3D%27bgbl121s2598.pdf%27%5D 1626682255918.

² Verordnung zur Einführung einer Ersatzbaustoffverordnung, zur Neufassung der Bundes-Bodenschutz- und Altlastenverordnung und zur Änderung der Deponieverordnung und der Gewerbeabfallverordnung vom 9. Juli 2021 (BGBI. I S. 2598),

diese Kunststoffmaterialien nicht zur Herstellung von Tretschichten auf Reitplätzen eingesetzt werden.

Die Weichmachergruppe der Phthalate wird im Wesentlichen in Weich-PVC eingesetzt und sollte in den als geeignet gekennzeichneten Polymeren in der Regel nicht vorkommen.

Die verwendeten Kunststoffmaterialien sollten alle unter Punkt (1) - (3) genannten Bedingungen erfüllen. Aufgrund lokaler Gegebenheiten vor Ort, können auch andere oder strengere Kriterien für eine Umweltbewertung herangezogen werden, z. B. im Rahmen einer wasserrechtlichen Genehmigung.

2.1 Ableitung von Beurteilungswerten für Feststoffgehalte in kunststoffhaltigen Tretschichten

Wenn zerkleinerte Kunststoffmaterialien, wie Teppichbodenreste, Geotextilien oder Vliesmaterialien als Tretschichten im Freien auf Böden aufgebracht werden, sind grundsätzlich schädliche Auswirkungen auf die Umwelt, insbesondere auf Nutzbarkeit und Qualität von Boden und Grundwasser zu besorgen. Konkrete Regelungen zur Beurteilung möglicher Stoffeinträge für diese Fallgestaltung existieren bisher nicht. Für die Ableitung von Beurteilungswerten waren daher Voruntersuchungen der so verwendeten Materialien auf ihre Gehalte an Schadstoffen und deren Mobilitätsverhalten notwendig.

In verschiedenen, beispielhaft beprobten Materialien wurden zunächst die Gesamtgehalte und die Eluierbarkeit im 2:1-Säuleneluat für ein breites Stoffspektrum untersucht. Insbesondere aus den Eluat-Untersuchungen ergaben sich Hinweise, dass bei üblicher Anwendung eine Gefährdung des Grundwassers nicht auszuschließen ist. Das betrifft im Wesentlichen einige Schwer- und Halbmetalle. Andere Elemente und organische Schadstoffe wie PAK, PCB, PCDD/F und PFT wurden in den untersuchten Materialien und im Eluat nicht oder nur in vernachlässigbar niedrigen Konzentrationen nachgewiesen.

Zudem zeigten sich praktische Schwierigkeiten bei der Probenvorbereitung und Elution der Kunststoffmaterialien, so dass zusätzlich kontinuierliche Säulenversuche durchgeführt worden sind, um daraus Erkenntnisse für die Ableitung von Beurteilungswerten im Feststoff zu gewinnen.

Dies Vorgehen wird im Folgenden beschrieben.

Probenvorbereitung und Elution

Die Voruntersuchungen des LANUV wurden an zwei verschiedenen Vliesmaterialien (Probe 1 und 2) und einem Teppichmaterial (Probe 3) durchgeführt (s. Abbildung 1). Bei der Probenvorbereitung dieser Materialien und der Eluatherstellung daraus zeigten sich in der Praxis erhebliche Schwierigkeiten. Die BBodSchV-2023 bestimmt, dass die wässrigen Eluate mit einem Flüssigkeits-Feststoffverhältnis von 2:1 durch Schüttelverfahren oder Säulenschnellverfahren nach DIN 19529 bzw. DIN 19528 herzustellen sind. Dazu sind die zu eluierenden Feststoffe auf eine Korngröße von < 2 mm zu zerkleinern.

Abbildung 1: Originalmaterial "Weißes Vlies" (links) und "Teppichreste" (rechts)

Die Materialzerkleinerung wurde im LANUV mittels Schneidmühle (s. Abbildung 2) in zwei Arbeitsgängen unter hohem Zeitaufwand durchgeführt. Es musste aufgrund der geringen Materialdichte ein sehr großes Materialvolumen zerkleinert werden, um die benötigte Materialmasse zu erhalten. Zudem führt der vergleichsweise niedrige Schmelzpunkt der Kunststoffmaterialien dazu, dass der Mahlprozess in kurzen Zeitabständen zu unterbrechen ist, um das Mahlwerkzeug abkühlen zulassen und so das Schmelzen des Materials im sich erwärmenden Werkzeug zu verhindern.

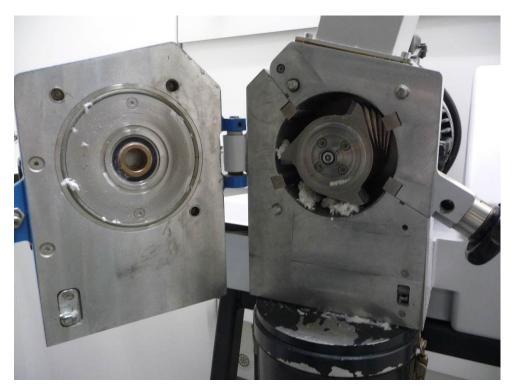


Abbildung 2: Geöffnete Schneidmühle mit Überresten einer Vliesprobe im Mahl-/Schneidraum

Im Weiteren wurde zur Eluatherstellung das Säulenverfahren gewählt, da das zerkleinerte "watteähnliche" Kunststoffmaterial (s. Abbildung 3) so saugfähig ist, dass das leichter durch-

zuführende Schüttelverfahren nicht sinnvoll anzuwenden ist. Um die für den festgelegten Untersuchungsumfang benötigte Eluatmenge zu erhalten, mussten viele Säulenversuche (s. Abbildung 4) parallel durchgeführt werden.

Abbildung 3: Weißes Vlies (links) und Teppichreste (rechts), zerkleinert auf eine Korngröße von < 2 mm

Abbildung 4: Säulenansatz mit einer Menge von 50 g an zerkleinertem, weißen Vlies

Insgesamt betrachtet erfordert die Probenvorbereitung und Eluatherstellung einen extrem hohen Arbeitsaufwand und birgt viele potentielle Fehlerquellen.

Deshalb wurde die Forderung, zur Beurteilung des Gefährdungspotenzials dieser Kunststoffmaterialien Eluat-Untersuchungen durchzuführen, als unverhältnismäßig eingestuft. Es wurden zusätzliche Untersuchungen an einem weiteren Vliesmaterial (Probe 4) durchgeführt, um zu prüfen, ob Beurteilungswerte auf Basis der einfacher zu ermittelnden Gesamtgehalte festzulegen sind. Die dabei gewonnenen Ergebnisse werden im Folgenden dargestellt.

Ableitung von Feststoffwerten

Eine mögliche Gefährdung des Grundwassers wurde als Wirkungspfad mit hoher Relevanz angesehen, so dass eine Methodik entwickelt wurde, die anhand gemessener Gesamtgehalte sicherstellen kann, dass nach Aufbringung synthetischer Tretschichtmaterialien keine relevante Belastung des Grundwassers eintritt. Unter Vorsorgeaspekten ist für die eingesetzten Materialien zu fordern, dass die in den Vorversuchen festgestellten, teils hohen Anfangskonzentrationen im 2:1-Schütteleluat innerhalb eines definierten kurzen Zeitraums die in Anlage 1, Tabelle 4 und 5 der BBodSchV-2023 genannten Eluatwerte bei Materialaufbringung unterschreiten (Tabelle 1). Dazu war es zwingend notwendig, Informationen über den zeitlichen Verlauf der Freisetzungsprozesse der Stoffe und des Abklingverhaltens zu gewinnen.

Tabelle 1: Eluatwerte nach Anlage 1, Tab. 4 und 5 BBodSchV-2023

Parameter	Eluatwerte						
	(Anlage 1, Tab. 4 und 5 BBodSchV-2023)						
Eluat (w/f = 2:1) nach DIN 19529 oder DIN 19528 in μg/l							
Antimon	5*						
Arsen	13						
Blei	43						
Cadmium	4						
Chrom, gesamt	19						
Kobalt	62*						
Kupfer	41						
Molybdän	35*						
Nickel	31						
Quecksilber	0,1						
Thallium	0,3						
Selen	5*						
Vanadium	35*						
Zink	210						

^{*} Werte aus Tabelle 5 der Anlage 1 BBodSchV-2023

In die Ableitung fanden darüber hinaus die in der zukünftigen BBodSchV-2023 in Tabelle 1 der Anlage 1 genannten Vorsorgewerte für Feststoffgehalte in Sandböden und hilfsweise die in Tabelle 5 genannten Feststoffwerte für das Auf- und Einbringen von Materialien unterhalb oder außerhalb einer durchwurzelbaren Bodenschicht Eingang (Tabelle 2).

Tabelle 2: Feststoffwerte nach Anlage 1, Tab. 1 und 5 BBodSchV-2023

Parameter	Feststoffwerte [mg/kg TS] (Anlage 1, Tab. 1 und 5 BBodSchV-2023)
Antimon	4
Arsen	10
Blei	40
Cadmium	0,4
Chrom, gesamt	30
Kobalt	50*
Kupfer	20
Molybdän	4*
Nickel	15
Quecksilber	0,2
Thallium	0,5
Selen	3*
Vanadium	200*
Zink	60

^{*} Werte aus Tabelle 5 der Anlage 1 BBodSchV-2023

An die Festlegung der Beurteilungswerte für synthetische Materialien in Tretschichten wurde die Anforderung gestellt, dass sie transparent und nachvollziehbar hergeleitet ist und die Ableitung einer möglichst einheitlichen Methodik folgt. Plausibel zu begründende Anpassungen der Methodik sollten jedoch möglich sein.

Die Analysenergebnisse der unterschiedlichen Materialien (s. Anhang) lassen stoffspezifisch drei unterschiedliche Fallgestaltungen erkennen:

- 1. Sowohl Eluatgehalte als auch Feststoffgehalte unterschreiten die Beurteilungswerte der Tabelle 1 und Tabelle 2.
- 2. Die gemessenen Feststoffgehalte halten die Vorsorgewerte der Tabelle 2 ein. Die Eluatwerte überschreiten dennoch die Beurteilungswerte der Tabelle 1.
- 3. Es wurden sowohl Überschreitungen der Beurteilungswerte für Feststoffe nach Tabelle 2 als auch für 2:1-Eluate nach Tabelle 1 festgestellt.

Im LANUV wurde eine weitergehende Untersuchung dieser drei Fallgestaltungen durchgeführt und im Ergebnis wurden die in Tabelle 3 aufgeführten, vorläufigen Beurteilungswerte im Feststoff abgeleitet.

Tabelle 3: Vorläufige Beurteilungswerte für Kunststoffmaterialien in Tretschichten auf Reitplätzen

Parameter	vorläufige Beurteilungswerte [mg/kg TS]
Antimon	270
Arsen	10
Blei	20
Cadmium	0,2
Chrom, gesamt	30
Kobalt	25
Kupfer	10
Molybdän	4
Nickel	15
Quecksilber	0,2
Thallium	0,5
Selen	3
Vanadium	200
Zink	30

Im Folgenden wird die Ableitung dieser Beurteilungswerte anhand der drei unterschiedlichen Fallgestaltungen in Bezug auf die vorliegende Analytik beschrieben, wobei unter der Bezeichnung "Stoff" die genannten Elemente und deren Verbindungen zu verstehen sind.

2.1.1 Schadstoffe mit Unterschreitung der Beurteilungswerte im Feststoff und im 2:1-Eluat

Aus den Materialuntersuchungen zur Eluierbarkeit ergeben sich für **Arsen** (As), **Quecksilber** (Hg), **Thallium** (TI), **Molybdän** (Mo), **Selen** (Se) und **Vanadium** (V) keine Hinweise, dass Gefahren für das Grundwasser bestehen, sofern die Vorsorgewerte nach Anlage 1, Tabelle 1 bzw. die Einbringungswerte der Tabelle 5 der BBodSchV-2023 eingehalten werden. Die Beurteilungswerte für das aufzubringende Material orientieren sich deshalb an diesen Werten.

Als Beurteilungswerte für Kunststoffmaterialien, die als Tretschichten auf Reitböden aufgebracht werden sollen, werden für die Stoffe As, Hg, Tl, Mo, Se und V folgende Beurteilungswerte festgelegt:

Parameter	Beurteilungswert [mg/kg TS]
Arsen	10
Quecksilber	0,2
Thallium	0,5
Molybdän	4
Selen	3
Vanadium	200

⇒ Diese Beurteilungswerte wurden in allen bisher untersuchten Materialien deutlich eingehalten.

2.1.2 Schadstoffe mit Unterschreitung von Vorsorgewerten im Feststoff und Überschreitung von Eluatwerten in Einzelfällen

Die in bisherigen Materialuntersuchungen gemessenen Feststoffgehalte unterschreiten auch für **Cadmium** (Cd), **Blei** (Pb), **Zink** (Zn) und **Kobalt** (Co) durchgängig die Vorsorgewerte nach Anlage 1, Tabelle 1 und 5 des BBodSchV-2023. Für **Kupfer** (Cu) wurde an einer Probe eine geringfügige Überschreitung festgestellt. Allerdings wurden bei diesen Stoffen in Einzelfällen dennoch Überschreitungen der Beurteilungswerte im 2:1-Eluat festgestellt, aus denen abzuleiten ist, dass selbst bei Einhaltung der Vorsorgewerte in dem synthetischen Material Grundwasserbelastungen nicht sicher auszuschließen sind.

Um Aussagen treffen zu können, ob und über welche Zeiträume nach der Aufbringung Schadstoffe aus dem Material austreten und in Richtung Grundwasser verlagert werden können, wurden an einem Vliesmaterial kontinuierliche Säulenversuche mit Wasser-Feststoffverhältnissen von jeweils 1:1, 2:1, 4:1 bis 10:1 in vierfacher Wiederholung durchgeführt.

Die Untersuchungen zeigen in allen Fällen eine Abnahme der Stoffkonzentrationen mit steigendem Wasser-Feststoffverhältnis (W/F-Verhältnis). Die Ergebnisse weisen zumeist auf eine exponentiell abnehmende Quellkonzentration hin und können über folgende Kurvenanpassung beschrieben werden:

$$C_t = a * e^{b*x}$$

wobei *C_t* dem Konzentrationswert bei einem W/F-Verhältnis von *x* entspricht.

Das lässt sich grafisch, wie in Abbildung 5 in generalisierter Form gezeigt, darstellen. Für die abschließende Festlegung des Beurteilungswertes wird in der Regel die aus den Maximalwerten der vier Wiederholungen abgeleitete Funktion zugrunde gelegt.

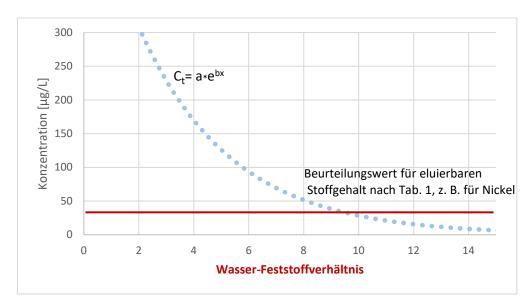


Abbildung 5: Generalisierte Darstellung des Abklingverhaltens von Schadstoffen, abgeleitet aus den im Säulenversuch gemessenen Eluatkonzentrationen bei unterschiedlichen W/F-Verhältnissen (Beurteilungswert für Eluatkonzentration nach Tab. 1 = rote Linie)

Auf die Fläche eines Reitplatzes werden von dem untersuchten Vlies-Material üblicherweise incl. der Nachfüllung ca. 4,8 kg/m² aufgebracht. Es wird von einer Gesamtnutzungsdauer von 15 Jahren ausgegangen. Aus dem in diesem Material jeweils gemessenen Feststoffgehalt [mg/kg Material] lässt sich eine stoffspezifische Aufbringungsmenge [mg/m²] berechnen.

Da Reitflächen im Freien üblicherweise regelmäßig beregnet werden, wird für die Berechnung möglicher Austräge in Richtung Grundwasser von einer Sickerwasserrate von 400 mm/a ausgegangen, was einer konservativen Annahme entspricht. Damit würden in einem Jahr 4,8 kg Material von ca. 400 I Wasser durchlaufen. Das entspricht einem W/F-Verhältnis von ca. 80:1. Unter der modellhaften und stark vereinfachten Annahme, dass dieses Wasser das aufgebrachte Material kontinuierlich durchfließt (wie im Säulenversuch simuliert), wäre ein W/F-Verhältnis von 10:1 nach ca. 45 Tagen erreicht $(365*\frac{10}{80})$.

Rückhalte- und Akkumulationsprozesse im Verlauf der anschließenden Stoffverlagerung mit dem Sickerwasser in Richtung Grundwasser werden im Folgenden nicht weiter betrachtet.

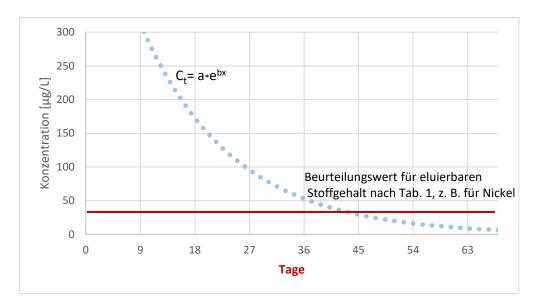


Abbildung 6: Generalisierte Darstellung des zeitlichen Verlaufs beim Abklingverhalten von Schadstoffen, übertragen aus den unterschiedlichen W/F-Verhältnissen im kontinuierlichen Säulenversuch (Beurteilungswert für Eluatkonzentration nach Tab. 1 = rote Linie)

Für die nachfolgend zu beurteilenden Schadstoffe werden diese Zusammenhänge zur Festlegung der Beurteilungswerte genutzt.

Die Messwerte für **Blei** (Pb) im Feststoff liegen in allen bisher untersuchten Fällen deutlich unterhalb des Vorsorgewertes. Bei den Messungen im 2:1-Eluat wurden allerdings erhebliche Streuungen, festgestellt, wobei in vier Fällen Überschreitungen des Beurteilungswertes nach Tabelle 1 festgestellt wurden. Dies betraf auch Fälle, in denen die Feststoffgehalte unterhalb der Bestimmungsgrenze lagen.

In den kontinuierlichen Säulenversuchen hat Blei jedoch ein schnelles Abklingverhalten bei erhöhten Eluatwerten (Maximum=blaue Linie) gezeigt, was dazu führt, dass in diesen Fällen innerhalb eines Zeitraums von ca. 40 Tagen mit einem Konzentrationsrückgang auf Werte unterhalb des Beurteilungswertes nach Tabelle 1 (43 µg/L) zu rechnen ist (Abbildung 7).

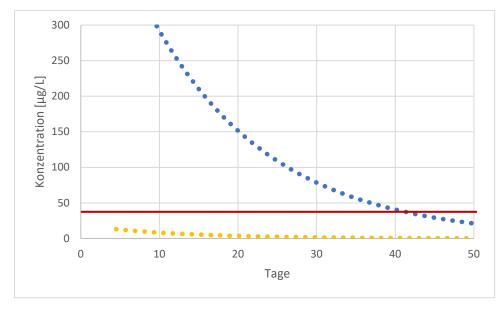


Abbildung 7: Abklingverhalten für Blei für den im Säulenversuch abgebildeten Zeitraum (Max = blau und Min = gelb; Beurteilungswert für Eluatkonzentration nach Tab. 1 = rote Linie)

Ein Feststoffwert für Blei in Höhe des halben Vorsorgewertes (20 mg/kg) ist damit zu rechtfertigen.

Ähnlich stellt sich die Situation bei **Kupfer** (Cu) und **Zink** (Zn) dar. Während allerdings auch bei Zink alle Feststoffgehalte deutlich unterhalb der Vorsorgewerte liegen, wurde bei Kupfer in einem Fall eine diesbezügliche Überschreitung festgestellt. Trotz niedriger Feststoffgehalte traten bei beiden Stoffen in verschiedenen Materialien Überschreitungen der Eluatwerte auf.

Bei den kontinuierlichen Säulenversuchen mit Vliesmaterial war dies nicht der Fall, so dass daraus nicht abzuleiten ist, wann Eluatwerte unterschritten werden. Unter der Voraussetzung, dass das Freisetzungsverhalten von Kupfer und Zink auf Konzentrationsbereiche außerhalb des jeweils gemessenen Bereichs übertragbar ist, ist bei beiden Stoffen damit zu rechnen, dass in einem Zeitraum von ca. 30 bis 40 Tagen ein Konzentrationsrückgang auf ca. 10 % der mit 2:1 Elution gemessenen Gehalte erfolgt (Abbildung 8 und Abbildung 9). Auch für diese beiden Stoffe wird deshalb konservativ ein Beurteilungswert in Höhe der halben Vorsorgewerte festgelegt.

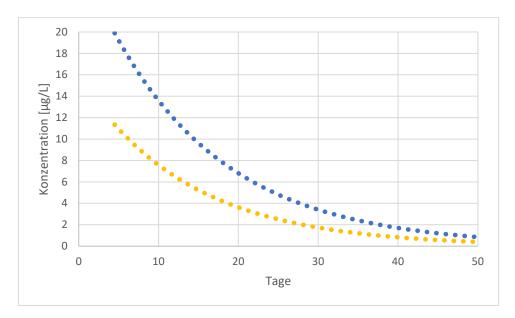
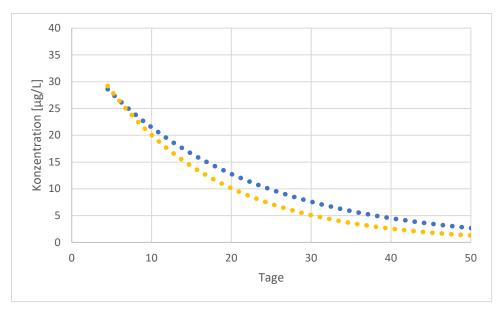



Abbildung 8: Abklingverhalten für Kupfer für den im Säulenversuch abgebildeten Zeitraum (Max = blau und Min = gelb)

Abbildung 9: Abklingverhalten für Zink für den im Säulenversuch abgebildeten Zeitraum (Max = blau und Min = gelb)

Kobalt (Co) zeigt in der Wiederholungsuntersuchung mit den höchsten und niedrigsten Werten ein sehr schwaches Abklingverhalten, das sich nur ungenügend mit Hilfe von Exponentialfunktionen beschreiben lässt. Die Wiederholungsuntersuchungen mit mittlerem Werteniveau zeigen hingegen mit Bestimmtheitsmaßen von r²=0,84 und 0,91 hohe Erklärungsbeiträge bei Annahme eines exponentiellen Abklingverhaltens (Abbildung 10). Werden diese beiden Messreihen zugrunde gelegt, kann auch für Kobalt eine Reduktion der Eluatkonzentration auf ca. 10 % der mit 2:1 Elution gemessenen Gehalte innerhalb von 30 bis 40 Tagen gerechnet werden, so dass auch für Kobalt die Festlegung des Beurteilungswertes in Höhe des halben Vorsorgewertes begründet ist.

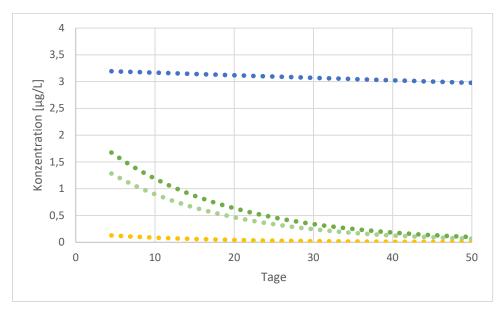
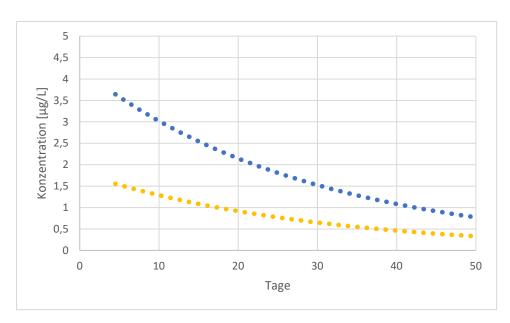


Abbildung 10: Abklingverhalten für Kobalt für den im Säulenversuch abgebildeten Zeitraum (Max = blau, Min = gelb, mittleres Werteniveau = hell-/dunkelgrün)

Die Messwerte für **Cadmium** (Cd) im Feststoff liegen in allen Fällen unterhalb des Vorsorgewertes und nahezu durchgängig im Bereich der Bestimmungsgrenze in Höhe von 0,05 mg/kg. Dennoch wird in einem Fall der Beurteilungswert im 2:1-Eluat mäßig überschritten. Eine Beschreibung des Abklingverhaltens ist aufgrund dieser Datenlage nicht zielführend, daher wird der Beurteilungswert ebenfalls auf die Hälfte des Vorsorgewertes festgelegt.

Da für die in diesem Abschnitt genannten Stoffe, auch bei Einhaltung der Feststoffgehalte nach Tabelle 2, nicht sichergestellt ist, dass die Beurteilungswerte für das Eluat eingehalten werden, werden folgende Beurteilungswerte jeweils in Höhe der halben Vorsorgewerte festgelegt:


Parameter	Beurteilungswert [mg/kg TS]
Blei	20
Zink	30
Kupfer	10
Kobalt	25
Cadmium	0,2

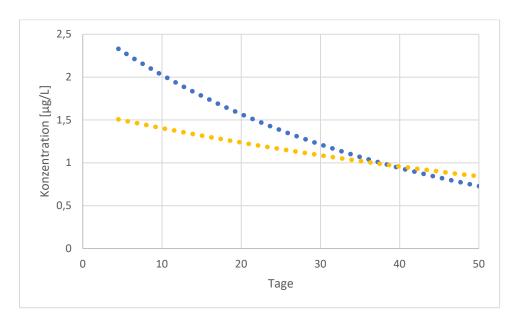
⇒ In den bisher untersuchten Materialien wurden diese Werte zumeist eingehalten, allerdings liegen die Zinkgehalte in zwei Proben nur knapp unterhalb des Wertes von 30 mg/kg. Der Beurteilungswert für Kupfer von 10 mg/kg wird in zwei untersuchten Proben aus Teppichresten überschritten.

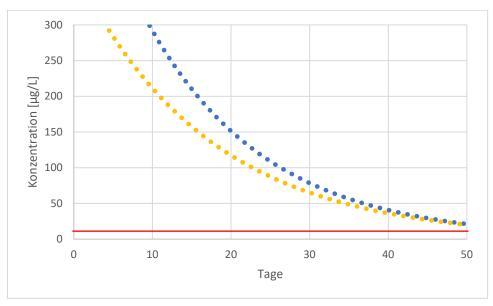
2.1.3 Überschreitung der Beurteilungswerte im Feststoff und im 2:1-Eluat

Bei den Stoffen **Chrom** (Cr) und **Nickel** (Ni) wurden in den bisher untersuchten Materialien sowohl Vorsorgewertüberschreitungen in der Feststoffphase als auch Überschreitungen der Beurteilungswerte für das 2:1-Eluat festgestellt. Dies gilt jedoch nicht für die Eluatwerte des Vliesmaterials aus den kontinuierlichen Säulenversuchen.

Bei beiden Stoffen ist das Abklingverhalten der eluierbaren Gehalte langsamer als bei den vorgenannten Stoffen (Abbildung 11 und Abbildung 12). So ist bei Chrom mit einer Reduktion der Eluatkonzentration auf ca. 10 % der mit 2:1-Elution gemessenen Gehalte erst nach 4 und bei Nickel nach 6 Monaten zu rechnen. Gleichzeitig wurden als maximale Eluatkonzentrationen dieser beiden Stoffe jedoch nur moderate Überschreitungen der Beurteilungswerte im 2:1-Eluat nach Tabelle 1 festgestellt, während Feststoffgehalte im Bereich der Vorsorgewerte vergleichsweise häufig gemessen wurden.

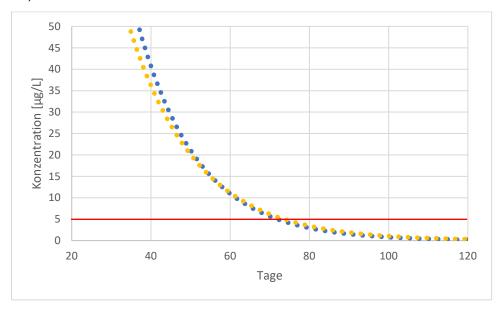
Abbildung 11: Abklingverhalten für Chrom für den im Säulenversuch abgebildeten Zeitraum (Max = blau und Min = gelb)



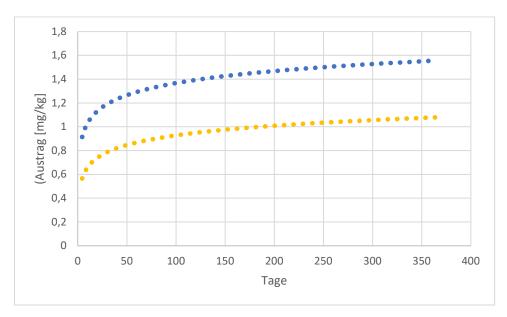

Abbildung 12: Abklingverhalten für Nickel für den im Säulenversuch abgebildeten Zeitraum (Max = blau und Min = gelb)

Unter der Voraussetzung, dass auch das Freisetzungsverhalten von Chrom und Nickel auf Konzentrationsbereiche außerhalb des jeweils gemessenen Bereichs übertragbar ist, werden für diese Stoffe Beurteilungswerte in Höhe der Vorsorgewerte festgelegt:

Parameter	Beurteilungswert [mg/kg TS]
Chrom	30
Nickel	15


⇒ In den bisher untersuchten Materialien wurde der Wert für Nickel in zwei und der für Chrom in drei Fällen überschritten.

Bei **Antimon** (Sb) wurden in den bisher untersuchten Materialien sowohl deutliche Überschreitungen des Beurteilungswertes nach Tabelle 2 in der Feststoffphase als auch deutliche Überschreitungen der Beurteilungswerte für das 2:1-Eluat festgestellt. Diese Überschreitungen wurden in unterschiedlichen Materialien der Vorversuche und auch in dem Material des kontinuierlichen Säulenversuchs festgestellt. Auch bei Antimon zeigt sich eine deutliche Abnahme der Stoffkonzentrationen im zeitlichen Verlauf (Abbildung 13). Die Konzentrationen lagen im kontinuierlichen Säulenversuch jedoch auch bei einem W/F-Verhältnis von 10:1 noch oberhalb der Beurteilungsschwelle für das Eluat.


Abbildung 13: Abklingverhalten für Antimon für den im Säulenversuch abgebildeten Zeitraum (Max = blau und Min = gelb; Beurteilungswert für Eluatkonzentration nach Tab. 1 = rote Linie)

Wenn die Abschätzung des Abklingverhaltens anhand der berechneten Gleichungen über den damit abbildbaren Zeitraum hinaus extrapoliert wird, lässt sich annehmen, dass der Beurteilungswert an der Unterkante der Quelle nach ca. 2 – 3 Monaten unterschritten wird (Abbildung **14**).

Abbildung 14: Prognostiziertes Abklingverhalten für Antimon im weiteren Zeitverlauf (Max = blau und Min = gelb; Beurteilungswert für Eluatkonzentration nach Tab. 1 = rote Linie)

Im Rahmen einer weiteren Plausibilitätsbetrachtung wurden für Antimon anhand der gemessenen Eluatwerte Austragsfrachten im zeitlichen Verlauf berechnet. Es wurden Kumulationskurven abgeleitet, mit Hilfe derer abgeschätzt werden kann, wie hoch der Gesamtaustrag zu bestimmten Zeitpunkten ist (Abbildung 15).

Abbildung 15: Kumulationskurve für ausgetragene Antimonfracht im zeitlichen Verlauf (Max = blau und Min = gelb)

Danach ist zu erwarten, dass sich nach 46 Tagen (entsprechend einem W/F-Verhältnis von 10:1) die Gesamtgehalte um lediglich 0,8 bis 1,4 mg Sb/kg reduziert haben und sich die darüberhinausgehende Abnahme im weiteren zeitlichen Verlauf stark verringert. Die Extrapolation des Modells legt nahe, dass, gemessen an den Feststoffgehalten von 270 mg Sb/kg zum Zeitpunkt der Materialaufbringung, mit einer relevanten Abnahme der Gesamtgehalte auch über längere Zeiträume nicht zu rechnen ist und somit voraussichtlich auch zum Ende der Nutzungszeit noch bedeutsame Antimongehalte im Material enthalten sind.

Da bei dem untersuchten Material mit einem Gesamtgehalt von 270 mg Sb/kg 2 bis 3 Monate nach der Aufbringung mit einer Unterschreitung des in Tabelle 1 genannten Eluatwerts zu rechnen ist, wird für Antimon dieser Wert als Beurteilungsgrundlage festgelegt.

Parameter	Beurteilungswert [mg/kg TS]
Antimon	270

⇒ In den bisher untersuchten Materialien wurde dieser Wert nicht überschritten, allerdings liegen mehrere Proben nur knapp unterhalb dieses Wertes.

Orientierungswerte im Feststoff (Tabelle 4 im LANUV-2.2 Arbeitspapier)

Zum Schutz der Umwelt und der menschlichen Gesundheit sollen Tretschichten auf Reitplätzen keine besonders besorgniserregenden Stoffe (SVHC) im Sinne der REACH-Verordnung³ bzw. Persistente Organische Stoffe (POP) im Sinne der POP-Verordnung⁴ enthalten, die über die jeweils dort festgelegten Konzentrationsgrenzen hinausgehen.

Diese Anforderung an Kunststoffmaterialien zur Herstellung von Tretschichten können anhand der in Tabelle 4 aufgeführten Orientierungswerte überprüft werden.

Tabelle 4: Orientierungswerte als Hinweis auf halogenierte Additive mit besonders besorgniserregenden Eigenschaften in Kunststoffmaterialien in Tretschichten (ohne PVC)

Leitparameter	Orientierungswert im Feststoff	Überschreitung der Orientierungswerte: Möglicherweise in Kunststoffen enthaltene gefährliche Additive (besonders besorgniserregende Stoffe nach REACH bzw. Persistente Organische Stoffe nach POP-Verordnung)
Fluor, gesamt	nicht bestimmbar (< 0,005 Ma%)	Schmutzabweisende Ausrüstung: • Perfluoroctansäure (PFOA) • Perfluoroctansulfonsäure (PFOS)
Chlor, gesamt	0,07 Ma%	Weichmacher: C10-C13-Chloralkane
Brom, gesamt	0,03 Ma%	Flammschutzmittel: Hexabromcyclododecan (HBCD) Polybromierte Diphenylether (PBDE)

Die Orientierungswerte in Tabelle 4 leiten sich auf Grundlage der chemikalienrechtlichen Anforderungen in drei Arbeitsschritten wie folgt ab:

a) Auswahl der für den Zweck geeigneten Kunststoffarten (relevante Kunststoffe)

Nach Literaturangaben werden insbesondere den Polymeren PVC und PU viele verschiedene Chemikalien als funktionale Additive zugesetzt, die umweltrelevante Auswirkungen haben können. Deshalb wird im LANUV-Arbeitsblatt 53 empfohlen, diese Kunststoffarten nicht zu verwenden. Die verwendbaren Kunststoffarten stellt Tabelle 1 des LANUV-Arbeitsblatts 53 zusammen (PP, PES, PET, PA, EVA). Dies sind die relevanten Kunststoffarten für die weitere Bewertung.

³ Verordnung (EG) Nr. 1907/2006 des Europäischen Parlaments und des Rates vom 18. Dezember 2006 zur Registrierung, Bewertung, Zulassung und Beschränkung chemischer Stoffe (REACH), zur Schaffung einer Europäischen Chemikalienagentur, zur Änderung der Richtlinie 1999/45/EG und zur Aufhebung der Verordnung (EWG) Nr. 793/93 des Rates, der Verordnung (EG) Nr. 1488/94 der Kommission, der Richtlinie 76/769/EWG des Rates sowie der Richtlinien 91/155/EWG, 93/67/EWG, 93/105/EG und 2000/21/EG der Kommission, zuletzt geändert durch Verordnung (EU) 2021/1297 der Kommission vom 4. August 2021.

⁴ Verordnung (EU) 2019/1021 des Europäischen Parlaments und des Rates vom 20. Juni 2019 über persistente organische Schadstoffe, zuletzt geändert durch die delegierte Verordnung (EU) 2021/277 der Kommission vom 16. Dezember 2020.

b) Ermittlung der möglicherweise in relevanten Kunststoffen enthaltenen halogenierten Additive mit chemikalienrechtlichen Restriktionen (relevante Inhaltsstoffe)

Die üblicherweise in Kunststoffen verwendeten Additive wurden auf Grundlage der im LANUV vorliegenden Literaturangaben ermittelt (siehe Zusammenfassung in Tabelle 3 im LANUV-Arbeitsblatt 53). Davon wurden im Weiteren die halogenierten Additive berücksichtigt, die im Wesentlichen in den relevanten Kunststoffarten enthalten sein können, und die stoffspezifischen Regelungen im Chemikalienrecht unterliegen oder als "Prioritäre Stoffe" im Sinne des Wasserrechts⁵ einzuordnen sind. Die halogenierten, organischen Stoffe werden über Halogen-Feststoffgehalte angezeigt.

Die als relevante Inhaltsstoffe identifizierten Chemikalien stellt Tabelle 5 zusammen, die außerdem Stoffdaten enthält, die zur stöchiometrischen Berechnung der Orientierungswerte im nächsten Arbeitsschritt benötigt werden.

c) Ableitung von Orientierungswerten zur Erkennung von besonders umweltrelevanten, halogenierten Chemikalien in verschiedenen Kunststoffarten

Die tatsächlich in den jeweils verwendeten Kunststoffarten vorhandenen Chemikalien sind den Herstellern von Tretschichten häufig nicht bekannt. Bei der Vielfalt möglicher Chemikalien ist die Analytik auf Einzelstoffe entsprechend aufwändig. Daher werden Orientierungswerte für den Halogengehalt abgeleitet, um prüfen zu können, ob besonders besorgniserregende, halogenierte Chemikalien in relevanten Konzentrationen in den betreffenden Kunststoffen vorliegen könnten. Dabei ergeben sich die relevanten Konzentrationen eines Stoffes aus den jeweiligen stoffspezifischen Regelungen des Chemikalienrechts.

Jeder relevante Inhaltsstoff (z. B. HBCD) wurde einem Halogen, z. B. Brom, zugeordnet. Dabei charakterisiert das Halogen den jeweiligen Inhaltsstoff in Abgrenzung zur Polymermatrix, die lediglich aus Kohlenstoff, Wasserstoff und Sauerstoff besteht. Das Halogen dient somit als Leitparameter (Messgröße) für die betreffenden halogenierten Inhaltsstoffe bei der chemischen Analyse.

Aus der nach Chemikalienrecht strengsten Konzentrationsgrenze eines Stoffes wurde stöchiometrisch die entsprechende Konzentrationsgrenze des jeweiligen Halogens berechnet. Anschließend wurde pro Halogen, z. B. Brom, ein Orientierungswert festgelegt, der anzeigen soll, ob z. B. bromierte Flammschutzmittel wie HBCD in den relevanten Kunststoffen vorliegen könnten. Die Ableitung der Orientierungswerte fasst Tabelle 6 zusammen.

Werden die Orientierungswerte überschritten, ist dies ein Hinweis darauf, dass besonders besorgniserregende, halogenierte Stoffe in den verwendeten Kunststoffen vorliegen können und dabei möglicherweise geltende Verwendungsverbote und Beschränkungen des Chemikalienrechts nicht eingehalten werden.

⁵ Anhang X der Richtlinie 2000/60/EG des Europäischen Parlaments und des Rates vom 23. Oktober 2000 zur Schaffung eines Ordnungsrahmens für Maßnahmen der Gemeinschaft im Bereich der Wasserpolitik.

Erläuterungen zur stöchiometrischen Berechnung der Elementkonzentrationen in Tabelle 6:

Das Stoffmengenverhältnis eines Elements (Halogens) in einer Verbindung ist immer gleich und aus der Summenformel einer Verbindung abzulesen:

(1)
$$\frac{n_{Element}}{n_{Verbindung}} = \frac{x}{1}$$
 Summenformel der "Verbindung": Element_xRest, z. B. x=2 für H in H₂O

Dabei ist "n" die Stoffmenge an Teilchen (Atome, Moleküle), die durch folgende Formel definiert ist:

(2)
$$n = \frac{m}{M}$$
 mit $n = \text{Stoffmenge in mol}$ $m = \text{Masse in kg}$ $M = \text{Molare Masse in kg/mol}$

Zum Beispiel enthält 1 mol der Verbindung "Arsentrioxid" mit der Summenformel As_2O_3 immer 2 mol Arsen und 3 mol Sauerstoff. Das Stoffmengenverhältnis für Arsen in Arsentrioxid entspricht daher gemäß Gleichung (1) immer 2 : 1, wobei hier x = 2 ist. In Bezug auf Sauerstoff in Arsentrioxid entspricht das Stoffmengenverhältnis immer 3 : 1.

Setzt man Gleichung (2) in Gleichung (1) sowohl für das Element als auch die Verbindung ein und löst die Gleichung nach $m_{Element}$ auf, ergibt sich folgende Formel, nach der die Masse eines Elementes in einer Verbindung berechnet werden kann, wenn die Masse der Verbindung $m_{Verbindung}$ bekannt ist.

(3)
$$m_{Element} = x * M_{Element} \frac{m_{Verbindung}}{M_{Verbindung}}$$

In diesem Fall ist m_{Verbindung} die strengste Konzentrationsgrenze dieser Verbindung (dieses Stoffes) aus den betreffenden Regelungen des Chemikalienrechts (s. Tabelle 6). "x" entspricht dem Stoffmengenverhältnis eines Elements in einer Verbindung gemäß Summenformel. Die Molaren Massen (M) sind bekannt.

Abkürzungen

EVA Ethylen-Vinylacetat-Copolymere

Deca-BDE Deca-bromdiphenylether

HBCD Hexabromcyclododecan

Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen **LANUV**

PA Polyamid

PAK Polyzyklische Aromatische Kohlenwasserstoffe

PCB Polychlorierte Biphenyle

PCDD/F Polychlorierte Dibenzodioxine (PCDD) und Dibenzofurane (PCDF)

PES Polyester

PET Polyethylenterephthalat

PFOA Perfluoroctansäure

PFOS Perfluoroctansulfonsäure

PFT Perfluorierte Tenside

POP Persistent Organic Pollutants (persistente organische Schadstoffe)

PU Polyurethan

PP Polypropylen

PVC Polyvinylchlorid

SCCP Short Chained Chlorinated Paraffins (kurzkettige Chlorparaffine)

SVHC Substances of Very High Concern (besonders besorgniserregende Stoffe)

Tetra-BDE Tetra-bromdiphenylether

WGK Wassergefährdungsklasse

 Tabelle 5:
 Stoffliste mit relevanten, halogenierten Chemikalien in den für die Herstellung von Tretschichten relevanten Kunststoffarten

Stoffidentität		Daten zur Stöchiometrie			REACH			POP		Wasserrecht			
Name	CAS-Nr K		Summen- formel	Ele- ment			Kandi-	Anhang XIV	Anhang XIV Anhang XVII	Anhang I, Teil A	Anhang IV (Abfälle)	Priori-	
		Kürzel		Mess- größe	Stoff	Ele- ment	daten- liste	Zulassungs- pflicht	Beschränkungen	Spalte 4	Konzentra- tionsgren- zen %	tärer Stoff	WGK
Fluorierte organisch	e Stoffe												
Perfluoroctansäure	335-67-1	PFOA	C ₈ HF ₁₅ O ₂	F	414,07	18,998	SVHC		Nr. 28-30 (CMR, Stoffe, Gemische): 0,1%; Nr. 68 (Inverkehrbringungsverbot ab 04.07.2020 mit def. Ausnahmen)				3
Perfluoroctansulfon- säure	1763-23-1	PFOS	C ₈ HF ₁₇ O ₃ S	F	500,13				Nr. 28-30 (CMR, Stoffe, Gemische): 0,1%; Nr. 68 (Inverkehrbringungsverbot ab 04.07.2020 mit def. Ausnahmen, insb. für POP-PFOS)	Nr. 2 (Er- zeugnisse) 0,1%	0,005	Nr. 35	
Chlorierte organisch	e Stoffe												
kurzkettige Chlorpa- raffine (C10-C13)	85535-84-8	SCCP	$C_xH_{(2x-y+2)}CI_y$	CI			SVHC		Nr. 3 (fl. Stoffe, Gemi-	Nr. 1 (Er- zeugnisse) 0,15%	1	Nr. 7	3
Hochchloriert			C ₁₀ H ₉ CI ₁₃		590,07	35,45			sche)				
Niedrigchloriert			C ₁₃ H ₂₇ CI		218,81								
Bromierte organisch	e Stoffe	•		•		•		•				•	•
Deca-bromdiphenyl- ether	1163-19-5	Deca- BDE	C ₁₂ Br ₁₀ O	Br	959,17		SVHC		Nr. 67.2 Inverkehrbringungsverbot Erzeugnisse: 0,1%	Nr. 2 (Gemische, Erzeug-	Summe Tetra-		
Tetra-bromdiphenyl- ether	40088-47-9	Tetra- BDE	C ₁₂ H ₆ Br ₄ O	Br	485,79	79,9				nisse): Summe Tetra-Hepta-, Deca-BDE: 0,05%	Hepta-, Deca-BDE: 0,1	Nr. 5 (Tetra- bis Hepta- BDE)	
Hexabromcyclo- dodecan, Isomere	25637-99-4	HBCD	C ₁₂ H ₁₈ Br ₆	Br	641,73		SVHC	Nr. 3		Nr. 1: FSM in Erzeugnis: 0,01%	0,1	Nr. 43	3

 Tabelle 6:
 Ableitung der Orientierungswerte (Tabelle 4 LANUV-Arbeitsblatt 53) aus den Vorgaben des Chemikalienrechts

	lers zu beachtende Inhalt- n Kunststoffen (Elemente / Stoffe)			gene Regelung im Chemikalienrecht itär", geregelt im Wasserrecht)	Ableitung der Orientierungswerte						
Element, Mess-	relevante Bezugs-	Stoffgruppe	strengste Konz grenze	Regelung im Chemikalienrecht	stöchiome rechnet in Elemen		Vorschlag Orientierungswert für das Element / die Verbin- dung				
größe	verbindung		%		%	mg/kg	mg/kg	%	Berech- nung (gerundet)		
	Perfluoroctansulfonsäure (PFOS)	POP, prioritär	0,005	POP-V: Anhang IV: 50 mg Anhang I , Nr. 2 (Erzeugnisse): 0,1%	0,0032	32					
Fluor	Perfluoroctansäure (PFOA)	svhc	0,1	Beschränkungen nach Anhang XVII REACH: Nr. 28-30 (CMR-Stoffe, -Gemische)	0,069	700					
	Perfluorierte Tenside						< 50	< 0,005	nicht nach- weisbar		
	hoch chlorhaltiges SCCP (C ₁₀ H ₉ Cl ₁₃)				0,117	1170					
Chlor	niedrig chlorhaltiges SCCP (C ₁₃ H ₂₇ Cl)				0,024	240					
	SCCP: Kurzkettige Chlor- paraffine (C ₁₀ -C ₁₃)	svhc, POP, prioritär	0,15	POP-V: Anhang IV: 1% Anhang I, Nr. 1 (Erzeugnisse): 0,15%			700	0,07	Mittelwert aus "extremen" SCCP		
	Hexabromcyclododecan, Isomere (HBCD)	svhc, POP, prioritär	0,01	POP-V, Anhang I, Nr. 1	0,0075	75					
Brom	Decabromdiphenylether (Deca-BDE)	svhc, POP	0,05	POP-V, Anhang I, Nr. 2 (Summe Tetra- bis	0,0417	420					
DIOIII	Tetrabromdiphenylether (Tetra-BDE)	svhc, POP, prioritär	0,05	Hepta-,Deca-BDE)	0,033	330					
	Bromierte Flammschutz- mittel						300	0,03	Mittelwert		

Anhang: Analysenergebnisse

- Zusammenstellung der im LANUV vorliegenden Analysenergebnisse (Feststoff)
- Zusammenstellung der im LANUV vorliegenden Analysenergebnisse (Eluate/Perkolate)
- Kontinuierlicher Säulenversuch, LANUV

	Gesamtgehalte													
							Untersuchung	en LANUV				Ur	ntersuchungen Dr	ritter
			20-15224- 01	20-15225- 01	20-15226- 01	21-02332-01	21-02334-01	21-02335-01	21-02336-01	Teilprobe Tret	tschicht > 2 mm	020144323	18-069310-01	612001715
Prüfmerkmal	Methode / Norm	Einheit	Probe 1, A weißes Vlies	Probe 2, A schwarzes Vlies	Probe 3, A Teppichbod en	Probe 4, P weißes Vlies Testmaterial Feststoff 1	Probe 4, P weißes Vlies Testmaterial Feststoff 2	Probe 4, P weißes Vlies Testmaterial Feststoff 3	Probe 4, P weißes Vlies Testmaterial Feststoff 4	Reithalle, gebrauchtes Vlies	Außenplatz, gebrauchtes Vlies	Teppichreste (in Gebrauch)	Teppichreste	Teppichreste
Trockenmasse	DIN EN 14346	%	97,4	99,6	99,6							91,3	88,7	83,4
Quecksilber	DIN EN ISO 12846/DIN EN ISO 16772/DIN EN 16175-1	mg/kg	<0,050	<0,050	<0,050	<0,050	<0,050	<0,055	<0,050	<0,050	<0,050			< 0,01
Thallium	DIN EN ISO 17294-2	mg/kg	<0,010	<0,010	0,01	<0,010	<0,010	<0,015	<0,010					
Arsen	DIN EN ISO 17294-2 / DIN ISO 22036	mg/kg	<0,050	0,085	0,16	0,14	0,08	0,43	0,22	4,3	6,5			3,6
Cadmium	DIN EN ISO 17294-2 / DIN ISO 22036	mg/kg	<0,050	<0,050	<0,050	<0,050	<0,050	<0,10	<0,050	0,07	0,09			0,34
Chrom	DIN EN ISO 17294-2 / DIN ISO 22036	mg/kg	3,4	1,9	2,4	13	4,1	37	5,3	101	51			5,9
Nickel	DIN EN ISO 17294-2 / DIN ISO 22038/DIN EN ISO 11885	mg/kg	2,2	n.b.	2,1	5	2	18	3,2	50	15			2,5
Cobalt	DIN EN ISO 17294-2 / DIN ISO 22038	mg/kg	0,49 100	3,3 260	0,91 27	12 250	260	13 260	12 270	56	80	157	10	< 0,1
Antimon	DIN EN ISO 17294-2/DIN EN ISO 11885 DIN EN ISO 17294-2 / DIN ISO 22036 / DIN EN ISO 11885	mg/kg	100	5	27			14	<2,0	<20	24	157	18	8,4
Zink Zinn	DIN EN ISO 17294-2 / DIN ISO 22036 / DIN EN ISO 11885 DIN EN ISO 17294-2 / DIN EN ISO 11885	mg/kg mg/kg	10) 5	21	<2,0 <0,50	<2,0 <0,50	<0,50	<0,50	<1,0	<1,0	<3	< 0,2	16 < 2
Kupfer	DIN EN ISO 11885 / DIN ISO 22038 / DIN EN ISO 17294-2	mg/kg	2,7	4	20	1	1,1	3,4	1,3	<10	<10		```,'	35
Blei	DIN EN ISO 11885 / DIN ISO 22038 / DIN EN ISO 17294-2	mg/kg	0,82	0,53	0,9	<0,50	<0,50	<2,7	<0,50	<20	<20			2,7
Titan	DIN EN ISO 11885/ DIN ISO 22036	mg/kg	89	n.a.	n.a.	n.b.	n.b.	130	n.b.	190	200			-,,
Molybdän	DIN EN ISO 17294-2	mg/kg	<0,50	<0,50	<0,50	<0,50	<0,50	<1,0	<0,50					
Vanadium	DIN EN ISO 17294-2	mg/kg	<0,50	<0,50	0,57	<1,5	<0,50	<1,1	<1,1					
Gadolinium	DIN EN ISO 17294-2	mg/kg	<0,050	<0,050	0,14	<0,050	<0,050	<0,065	<0,050					
Uran	DIN EN ISO 17294-2	mg/kg	<0,010	<0,010	0,05	<0,010	<0,010	<0,015	<0,010					
Selen	DIN EN ISO 17294-2	mg/kg	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050	<0,050					
Calcium	DIN ISO 22036	Gew %	n.a.	n.a.	180									
Chlor	DIN EN ISO 10304 / DIN EN 14582	Gew %	0,023	0,024	0,025	0,019	n.a.	n.a.	n.a.	<0,005	<0,005	0,028	0,027	0,04
Brom	DIN EN ISO 10304 / DIN EN 14582	Gew %	<0,025	<0,025	<0,025	<0,025	n.a.	n.a.	n.a.	<0,005	<0,005	<0,005	< 0,007	< 0,005
Fluor	DIN EN ISO 10304 / DIN EN 14582	Gew %	<0,005	<0,005	<0,005	<0,005	n.a.	n.a.	n.a.	<0,0025	<0,0025	<0,005	0,002	0,031
PCB-28	DIN EN 1948-3, -4/DIN EN 15308	μg/kg	0,27	<0,25	<0,25					0,058	0,88			<10
PCB-52	DIN EN 1948-3, -4/DIN EN 15308	μg/kg	0,38	0,25	<0,25					0,13	1,1			<10
PCB-101	DIN EN 1948-3, -4/DIN EN 15308	μg/kg	0,46	0,41	<0,25					0,58	1,5			<10
PCB-118	DIN 38414-20	μg/kg	0,35	<0,25	<0,25					0.00	17			-10
PCB-153	DIN EN 1948-3, -4/DIN EN 15308	μg/kg	0,46	0,32	<0,25					0,89	1,7			<10
PCB-138 PCB-180	DIN EN 1948-3, -4/DIN EN 15308 DIN EN 1948-3, -4/DIN EN 15308	μg/kg μg/kg	0,54 <0,25	0,41 <0,25	<0,25 <0,25					0,77 0,55	1,7 0,98			<10 <10
1,2,3,4,6,7,8,9-Octachlordibenzodioxin	DIN EN 1940-5, -4/DIN EN 15508	ng/kg	<0,25	<0,25	<0,25					43,0	110			<10
2,3,7,8-Tetrachlordibenzodioxin	DIN EN 1948-3, -4	ng/kg								<0,0560	<0,0650			
1,2,3,7,8-Pentachlordibenzodioxin	DIN EN 1948-3, -4	ng/kg								<0,100	0,230			
1,2,3,4,7,8-Hexachlordibenzodioxin	DIN EN 1948-3, -4	ng/kg								<1,10	1,30			
1,2,3,6,7,8-Hexachlordibenzodioxin	DIN EN 1948-3, -4	ng/kg								<0,730	1,10			
1,2,3,7,8,9-Hexachlordibenzodioxin	DIN EN 1948-3, -4	ng/kg								<8,00	2,30			
1,2,3,4,6,7,8-Heptachlordibenzodioxin	DIN EN 1948-3, -4	ng/kg								17,0	28,0			
1,2,3,4,6,7,8,9-Octachlordibenzofuran	DIN EN 1948-3, -4	ng/kg								1,90	6,30			
2,3,7,8-Tetrachlordibenzofuran	DIN EN 1948-3, -4	ng/kg								<0,0460	0,560			
1,2,3,7,8-Pentachlordibenzofuran	DIN EN 1948-3, -4	ng/kg								<0,210	0,350			
2,3,4,7,8-Pentachlordibenzofuran	DIN EN 1948-3, -4	ng/kg								<0,0930	0,510			
1,2,3,4,7,8-Hexachlordibenzofuran	DIN EN 1948-3, -4	ng/kg								<0,130	0,510			
1,2,3,6,7,8-Hexachlordibenzofuran	DIN EN 1948-3, -4	ng/kg		ļ						<0,140	0,560			
1,2,3,7,8,9-Hexachlordibenzofuran	DIN EN 1948-3, -4	ng/kg								<0,0310	<0,0560			
2,3,4,6,7,8-Hexachlordibenzofuran	DIN EN 1948-3, -4	ng/kg								<0,520	0,520			
1,2,3,4,6,7,8-Heptachlordibenzofuran	DIN EN 1948-3, -4	ng/kg								<1,20	4,00			
1,2,3,4,7,8,9-Heptachlordibenzofuran	DIN EN 1948-3, -4	ng/kg	-							<0,280	0,510			
Internationale Toxizitätsäquivalente Internationale Toxizitätsäquivalente mBG	DIN EN 1948-3, -4 DIN EN 1948-3, -4	ng/kg ng/kg								0,180 1,50	1,40 1,50			
Perfluorbutansäure	DIN 38414-14	ng/kg μg/kg	<5	<5	<5					<10	<10			
Perfluorpentansaure	DIN 38414-14	μg/kg μg/kg	<5	<5	<5					<10	<10			
Perfluorbutansulfonsäure inkl. Isomere	DIN 38414-14	μg/kg μg/kg	<5	<5	<5					<10	<10			
H4-Perfluorhexansulfonsäure	DIN 38414-14	μg/kg	<5	<5	<5					<10	<10			
Perfluorhexansäure	DIN 38414-14	μg/kg	<5	<5	<5					<10	<10			
Perfluorheptansäure	DIN 38414-14	μg/kg	<5	<5	<5					<10	<10			
Perfluorhexansulfonsäure inkl. Isomere	DIN 38414-14	μg/kg	<5	<5	<5					<10	<10			

		Untersuchungen LANUV									Untersuchungen Dritter				
			20-15224- 01	20-15225- 01	20-15226- 01	21-02332-01	21-02334-01	21-02335-01	21-02336-01	Teilprobe Tret	schicht > 2 mm	020144323	18-069310-01	612001715	
Prüfmerkmal	Methode / Norm	Einheit	Probe 1, A weißes Vlies	Probe 2, A schwarzes Vlies	Probe 3, A Teppichbod en	Probe 4, P weißes Vlies Testmaterial Feststoff 1	Probe 4, P weißes Vlies Testmaterial Feststoff 2	Probe 4, P weißes Vlies Testmaterial Feststoff 3	Probe 4, P weißes Vlies Testmaterial Feststoff 4	Reithalle, gebrauchtes Vlies	Außenplatz, gebrauchtes Vlies	Teppichreste (in Gebrauch)	Teppichreste	Teppichreste	
H4-Perfluoroktansulfonsäure	DIN 38414-14	μg/kg	<5	<5	<5					<10	<10				
Perfluoroktansäure inkl. Isomere	DIN 38414-14	μg/kg	<5	<5	<5					<10	<10				
Perfluorheptansulfonsäure	DIN 38414-14	μg/kg	<5	<5	<5					<10	<10				
Perfluornonansäure	DIN 38414-14	μg/kg	<5	<5	<5					<10	<10				
Perfluoroktansulfonsäure inkl. Isomere	DIN 38414-14	μg/kg	<5	<5	<5					<10	<10				
H4-Perfluordekansulfonsäure	DIN 38414-14	μg/kg	<5	<5	<5					<10	<10				
Perfluordekansäure	DIN 38414-14	μg/kg	<5	<5	<5					<10	<10				
Perfluordekansulfonsäure	DIN 38414-14	μg/kg	<5	<5	<5					<10	<10				
Perfluorundekansäure	DIN 38414-14	μg/kg	<5	<5	<5					<10	<10				
Perfluordodekansäure	DIN 38414-14	μg/kg	<5	<5	<5					<10	<10				
Naphthalin	DIN 38414-23/DIN EN 15527	mg/kg	<0,25	<0,25	<0,25					<0,10	<0,10	<1	< 0,5	< 0,05	
Acenaphthylen	DIN 38414-23/DIN EN 15527	mg/kg	n.a.	n.a.	n.a.							<1	< 0,5	< 0,05	
Acenaphthen	DIN 38414-23/DIN EN 15527	mg/kg	<0,25	<0,25	<0,25					<0,10	<0,10	<1	< 0,5	< 0,05	
Fluoren	DIN 38414-23/DIN EN 15527	mg/kg	<0,25	<0,25	<0,25					<0,10	<0,10	<1	< 0,5	< 0,05	
Phenanthren	DIN 38414-23/DIN EN 15527	mg/kg	<0,25	<0,25	<0,25					<0,10	0,16	<1	< 0,5	< 0,05	
Anthracen	DIN 38414-23/DIN EN 15527	mg/kg	<0,25	<0,25	<0,25					<0,10	<0,10	<1	< 0,5	< 0,05	
Fluoranthen	DIN 38414-23/DIN EN 15527	mg/kg	<0,25	<0,25	<0,25					<0,10	0,19	<1	< 0,5	< 0,05	
Pyren	DIN 38414-23/DIN EN 15527	mg/kg	<0,25	<0,25	<0,25					<0,10	<0,10	<1	< 0,5	< 0,05	
Benzo(a)anthracen	DIN 38414-23/DIN EN 15527	mg/kg	<0,25	<0,25	<0,25					<0,10	<0,10	<1	< 0,5	< 0,05	
Chrysen	DIN 38414-23/DIN EN 15527	mg/kg	n.b.	n.b.	<0,25					<0,10	<0,10	<1	< 0,5	< 0,05	
Benzo(b)fluoranthen	DIN 38414-23/DIN EN 15527	mg/kg	<0,25	<0,25	<0,25					<0,10	<0,10	<1	< 0,5	0,06	
Benzo(k)fluoranthen	DIN 38414-23/DIN EN 15527	mg/kg	<0,25	<0,25	<0,25					<0,10	<0,10	<1	< 0,5	0,07	
Benzo(a)pyren	DIN 38414-23/DIN EN 15527	mg/kg	n.b.	<0,25	<0,25					<0,10	<0,10	<1	< 0,5	< 0,05	
Dibenz(ah)anthracen	DIN 38414-23/DIN EN 15527	mg/kg	<0,25	<0,25	<0,25					<0,10	<0,10	<1	< 0,5	< 0,05	
Benzo(ghi)perylen	DIN 38414-23/DIN EN 15527	mg/kg	<0,25	<0,25	<0,25					<0,10	<0,10	<1	< 0,5	0,08	
Indeno(1,2,3-cd)pyren	DIN 38414-23/DIN EN 15527	mg/kg	<0,25	<0,25	<0,25					<0,10	<0,10	<1	< 0,5	< 0,05	
Summe 16 PAK		5. 0	n. b.	n. b.	n. b.					Ť		n. b.	n.b.	0,21	
Monobutylzinn-Kation	DIN EN ISO 23161	μg/kg	24	13	270									 	
Dibutylzinn-Kation	DIN EN ISO 23161	μg/kg	8,4	11	1500									 	
Tributylzinn-Kation	DIN EN ISO 23161	μg/kg	<2,0	<2,0	11										
Tetrabutylzinn	DIN EN ISO 23161	μg/kg	<2,0	<2,0	<10									 	
Monooctylzinn-Kation	DIN EN ISO 23161	μg/kg	26	9,2	1300									 	
Dioctylzinn-Kation	DIN EN ISO 23161	μg/kg	<2,0	<2,0	6000									·	
Tricyclohexylzinn-Kation	DIN EN ISO 23161	μg/kg	n.a.	n.a.	n.a.									·	
Triphenylzinn-Kation	DIN EN ISO 23161	μg/kg	<2,0	<2,0	<10									·	

n.b. = nicht bestimmbar

n.a. = analysiert

n.n = nicht nachweisbar, unterhalb der methodenspezifischen Nachweisgrenze

		_	_						Elua	atkonzentrat	ionen												
						Säulenve	rsuch nach [DIN 19528				Berech	nete Eluatg	ehalte (cal)	mit untersch	niedlichen Flü	üssig:Feststo Anlehnung a		•	uentiellem S	äulenversuch	an einem ۱	Vlies in
			20-15224- 01-1	20-15224- 01-2	20-15224- 01-3	20-15225- 01-1	20-15225- 01-2	20-15225- 01-3	20-15226- 01-1	20-15226- 01-2	20-15226- 01-3	21-02332- 01-2	21-02332- 01-3	21-02332- 01-4	21-02334- 01-2	21-02334- 01-3	21-02334- 01-4	21-02335- 01-2	21-02335- 01-3	21-02335- 01-4	21-02336- 01-2	21-02336- 01-3	21-02336- 01-4
Prüfmerkmal	Methode / Norm	Einheit	Probe 1, A weißes Vlies P1	Probe 1, A weißes Vlies P2	Probe 1, A weißes Vlies P3	Probe 2, A schwarzes Vlies P1	Probe 2, A schwarzes Vlies P2	Probe 2, A schwarzes Vlies P3	Probe 3, A Teppichbod enschnitzel P1	Probe 3, A Teppichbod enschnitzel P2			Probe 4, Pweißes Vlie Festmaterial			Probe 4, P weißes Vlie Festmaterial			Probe 4, P weißes Vlie Testmaterial		<u> </u>	Probe 4, Pweißes Vlie estmaterial	
			2:1- Perkolat	2:1- Perkolat	2:1- Perkolat	2:1- Perkolat	2:1- Perkolat	2:1- Perkolat	2:1- Perkolat	2:1- Perkolat	2:1- Perkolat	2:1cal	4:1cal	10:1cal	2:1cal	4:1cal	10:1cal	2:1cal	4:1cal	10:1cal	2:1cal	4:1cal	10:1cal
Quecksilber	DIN EN ISO 17852	μg/l			0,014			<0,005	0,015			n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0,01	<0,01	<0,01	0,01	<0,01	<0,01
Arsen	DIN EN ISO 17294-2	μg/l	4,7		8	3,9		3,2	1,2		0,96	2,85	1,87	1,01	3,15	2,13	1,14	4,3	2,79	1,41	4,12	2,53	1,25
Cadmium	DIN EN ISO 17294-2	μg/l	3,9		6,8	1,6		0,23	0,064		0,021	0,082	<0,0479	<0,025	0,15	0,09	<0,042	0,11	0,07	<0,03	0,18	0,1	<0,05
Chrom	DIN EN ISO 17294-2	μg/l	21		56	42		9,4	0,68		0,58	2,15	<1,36	<0,85	2,6	<1,60	<0,94	4,26	2,62	<1,34	4,81	2,89	1,86
Kupfer Nickel	DIN EN ISO 17294-2 DIN EN ISO 17294-2	μg/l μg/l	270 30		460 95	140 29		39 9,7	54 4,2		44 3	14,6 <1,7	8,64 <1,36	3,94 <1,14	15,75 <2	10,02 <1,52	4,64 <1,20	23,68 2,86	14,48 <1,92	6,84 <1,37	24,27 2,57	13,97 <1,78	6,37 <1,31
Blei	DIN EN ISO 17294-2	μg/I μg/I	82		110	79		150	13		8,1	17,35	10,04	4,42	18,5	11,9	5,39	124,07	86,79	41,75	90,36	63	32,52
Antimon	DIN EN ISO 17294-2	μg/l	110		260	1400		640	23		23	345	218,26	107,65	415	260,28	123,9	537,17	315,63	149,02	534,41	308,7	143,07
Zink	DIN EN ISO 17294-2	μg/l	1500		2800	410		90	15		3,4	42	24,69	12,52	34,5	22,09	11,31	32,55	19,84	9,16	31,24	18,53	8,27
Zinn	DIN EN ISO 17294-2	μg/l																Ī			j	<u> </u>	
Kobalt	DIN EN ISO 17294-2	μg/l	14		210	31		130	0,97		1,6	1,55	0,96	0,46	1,8	1,18	0,56	3,28	2,53	2,09	2,53	1,66	0,9
Molybdän	DIN EN ISO 17294-2	μg/l	0,17		0,44	4		0,93	0,98		0,87	0,93	0,54	<0,27	0,755	0,47	<0,24	0,76	0,45	<0,23	0,92	0,51	<0,26
Selen	DIN EN ISO 17294-2	μg/l	<0,50		0,89	<0,50		<0,50	<0,50		<0,50	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
Thallium Vanadium	DIN EN ISO 17294-2 DIN EN ISO 17294-2	μg/l	0,25 4.9		0,36 9,1	0,26 4,3		0,12 3,5	0,091 2,4		0,081 1,8	0,08 1,15	0,05 <0,84	0,03 <0,63	0,08 1,31	0,05 0,96	<0,027 <0,68	0,11 3,64	0,07 2,66	<0,03 1,43	0,12 3,25	0,07 2,32	<0,03 1,27
Aluminium	DIN EN ISO 17294-2	μg/l μg/l	4,9		4900	1600		2300	1000		1200	240	<173,79	<129,97	235	<171,32	<128,33	6663,72	4467,47	2144,22	7436,94	4649,89	2217,62
Bor	DIN EN ISO 11885	μg/I			630	<100		<100	<100		<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Barium	DIN EN ISO 11885	μg/l			310	110		71	47		43	31,5	<21,33	<14,60	35,5	<23,47	<15,35	119,43	77,95	37,02	166,67	97,88	44,31
Calcium	DIN EN ISO 11885	mg/l			52	11		5,6	12		11	<1,4	<1,21	<1,08	<1,35	<1,18	<1,07	<1,82	<1,41	<1,16	<2,08	<1,54	<1,21
Eisen	DIN EN ISO 11885	μg/l			5400	770		210	<100		<100	<100	<100	<100	<100	<100	<100	356,55	242,53	<156,68	485,14	296,31	<176,64
Kalium	DIN EN ISO 11885	mg/l			19	9,2		6,5	18		15	13,45	8,04	<3,85	14	8,76	5,05	17,84	10,42	4,81	19,7	10,79	4,88
Magnesium	DIN EN ISO 11885	mg/l			2,6	1,7		0,5	8,4		6,9	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,63	<0,56	<0,53	<0,74	<0,62	<0,55
Natrium	DIN EN ISO 11885	mg/l			150	9		5,3	7,7		6,2	2,9	<1,76	<1,01	2,8	1,76	<1,00	3,15	1,83	1,03	4,49	<2,47	<1,27
Phosphor, gesamt	DIN EN ISO 11885	μg/l	1600000		2900000	260000		90000	440		370	2350	1333,21	<660,26	2750	1641,51	802,85	5615,04	3292,31	1490,12	5877,03	3291,28	1437,29
Strontium	DIN EN ISO 11885	μg/l	4000		110	40		21	120		<10	<10	<10	<10	<10	<10	<10	28,65	<19,26	<13,68	39,59	<24,69	<15,74
TOC/DOC Perfluorbutansäure	DIN EN 1484 DIN 38407-42	mg/l μg/l	1800 <0,010			338 0,011			298 <0,010			57,95	33,71	15,18	65,65	40,2	17,96	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Perfluorpentansäure	DIN 38407-42	μg/I	<0,010			0,011			<0,010									<u> </u>					+
Perfluorbutansulfonsäure inkl. Isomere	DIN 38407-42	μg/I	<0,010			0,025			<0,010									 			<u> </u>		
H4-Perfluorhexansulfonsäure	DIN 38407-42	μg/l	<0,010			<0,010			<0,010									1 []			! 		
Perfluorhexansäure	DIN 38407-42	μg/l	<0,010			0,14			<0,010														
Perfluorheptansäure	DIN 38407-42	μg/l	<0,010			0,01			<0,010] 					
Perfluorhexansulfonsäure inkl. Isomere	DIN 38407-42	μg/l	n.b.			n.b.			<0,010									i 			i !	<u> </u>	
	DIN 38407-42	μg/l	<0,010			0,02			<0,010									 			 	 	
Perfluoroktansäure inkl. Isomere	DIN 38407-42	μg/l	<0,010			0,009			<0,010									i 			i 	 	
Perfluorheptansulfonsäure	DIN 38407-42	μg/l	<0,010			<0,010			<0,010									1 [[
Perfluornonansäure Perfluoroktansulfonsäure inkl.	DIN 38407-42	μg/l	<0,010			<0,010			<0,010									<u> </u>					+
Isomere	DIN 38407-42	μg/l	<0,010			0,005			<0,010]]		
H4-Perfluordekansulfonsäure Perfluordekansäure	DIN 38407-42	μg/l μg/l	<0,010 <0,010			0,013			<0,010 <0,010									i 			i 		
	DIN 38407-42	μg/I μg/I	<0,010			n.b.			<0,010									<u> </u>					+
	DIN 38407-42	μg/I	<0,010			n.b.			<0,010						<u> </u>			<u>. </u>			<u>. </u>		+
	DIN 38407-42	μg/l	n.b.			n.b.			n.b.						j			Ï			İ		$\uparrow - \uparrow$
PCB-28	DIN 38407-37	ng/l		<0,50			<0,90			<0,50												· 	
PCB-52	DIN 38407-37	ng/l		<0,50			<0,90			<0,50													
PCB-101	DIN 38407-37	ng/l		<0,50			<0,90			<0,50								<u> </u>				<u> </u>	
PCB-118	DIN 38407-38	ng/l		<0,50			<0,90			<0,50	1	ĺ				1		l			l	İ	

			20-15224-	20-15224-	20-15224-	20-15225-	20-15225-	20-15225-	20-15226-	20-15226-	20-15226-	21-02332-	21-02332-		21-02334-	21-02334-		21-02335-	21-02335-		21-02336-	21-02336-	21-02336-
			01-1	01-2	01-3	01-1	01-2	01-3	01-1	01-2	01-3	01-2	01-3	01-4	01-2	01-3	01-4	01-2	01-3	01-4	01-2	01-3	01-4
Prüfmerkmal	Methode / Norm	Einheit	Probe 1, A weißes Vlies P1	Probe 1, A weißes Vlies P2	Probe 1, A weißes Vlies P3	Probe 2, A schwarzes Vlies P1	Probe 2, A schwarzes Vlies P2		Teppichbod	Probe 3, A Teppichbod enschnitzel P2	Teppichbod		Probe 4, P weißes Vlie Testmaterial			Probe 4, P weißes Vlie Festmaterial		-	Probe 4, Pweißes Vlie Testmaterial			Probe 4, Weißes Vlie estmaterial	
			2:1-	2:1-	2:1-	2:1-	2:1-	2:1-	2:1-	2:1-	2:1-	2:1cal	4:1cal	10:1cal	2:1cal	4:1cal	10:1cal	2:1cal	4:1cal	10:1cal	2:1cal	4:1cal	10:1cal
			Perkolat	Perkolat	Perkolat	Perkolat	Perkolat	Perkolat	Perkolat	Perkolat	Perkolat	2.101	4.100	10.1Cai	2.1Cai	4.100	10.1Cai	2.1Cai	4.1Cai	10.1Cai	Z.ICai	4.100	10.1Cai
PCB-138	DIN 38407-39	ng/l		<0,50			<0,90			<0,50													
PCB-153	DIN 38407-40	ng/l		<0,50			<0,90			<0,50								<u> </u>					
PCB-180	DIN 38407-41	ng/l		<0,50			<0,90			<0,50													
Summe PCB6+PCB118		ng/l		<3,5			<6,3			<3,5								į					
Naphthalin	DIN EN 16691	ng/l			13			4,4			<1,0												
Acenaphthylen	DIN EN 16692	ng/l			2			1,6			1,5												
Acenaphthen	DIN EN 16693	ng/l			13			<0,50			2,2												
Fluoren	DIN EN 16694	ng/l			6,4			<1,0			1,4												
Phenanthren	DIN EN 16695	ng/l			15			9			3,7												
Anthracen	DIN EN 16696	ng/l			0,83			0,54			<0,50												
Fluoranthen	DIN EN 16697	ng/l			5,9			2,4			<0,50												
Pyren	DIN EN 16698	ng/l			2,8			1,9			0,5												
Benzo(a)anthracen	DIN EN 16699	ng/l			<0,50			<0,50			<0,50							Ī					
Chrysen	DIN EN 16700	ng/l			2,6			4			2,7												
Benzo(b)fluoranthen	DIN EN 16701	ng/l			0,71			0,72			0,37												
Benzo(k)fluoranthen	DIN EN 16702	ng/l			0,49			0,58			0,28							<u> </u>					
Benzo(a)pyren	DIN EN 16703	ng/l			0,62			0,42			0,22							<u> </u>					
Indeno(1,2,3-cd)pyren	DIN EN 16704	ng/l			0,14			0,27			0,15							İ					
Dibenz(ah)anthracen	DIN EN 16705	ng/l			0,1			0,41			0,22												
Benzo(ghi)perylen	DIN EN 16706	ng/l			<0,050			0,35			0,19												
Summe PAK15 ohne Napthalin		ng/l			< 51,55			< 24,2			< 16							 					
Elektrische Leitfähigkeit bei 25°C	DIN EN 27888	μS/cm	n.a.	3858	4662	599	402	312	242	232	224							<u> </u>					
pH-Wert	DIN 38404-5/DIN EN ISO 10523		3,4	3,7	3,4	5,3	5,9	6,1	8,8	8,7	8,7							i 					
n h = night hastimmhar	n a = analysiert		-							. —							. —						

n.b. = nicht bestimmbar

n.a. = analysiert

Kontinuierlicher Säulenversuch

								Konti	nuieriicher Saulen	versucii	
			21-02332-01-1	21-02332-01-2	21-02332-01-3	21-02332-01-4	21-02334-01-1	21-02334-01-2	21-02334-01-3	21-02334-01-4	21-02335-01-1
			Probe 4, 2:1 P	Probe 4, 2:1 P	Probe 4, 2:1 P	Probe 4, 2:1 P	Probe 4, 2:1 P	Probe 4, 2:1 P	Probe 4, 2:1 P	Probe 4, 2:1 P	Probe 4, 2:1 P
Prüfmerkmal	Methode /Norm	Einheit	weißes Vlies 1;	weißes Vlies 1;	weißes Vlies 1;	weißes Vlies 1;	weißes Vlies 2;	weißes Vlies 2;	weißes Vlies 2;	weißes Vlies 2;	weißes Vlies 3;
			Säule 1; L/S-	Säule 1; bis LS-	Säule 1; bis L/S-	Säule 1; bis L/S-	Säule 2; L/S-	Säule 2; bis L/S-	Säule 2; bis L/S-	Säule 2; bis L/S-	Säule 3; L/S-
			Verhältnis 1:1	Verhältnis 2:1	Verhältnis 4:1	Verhältnis 10:1	Verhältnis 1:1	Verhältnis 2:1	Verhältnis 4:1	Verhältnis 10:1	Verhältnis 1:1
SÄULENELUATKONZENTRA	TION	<u>'</u>									
Trübung, Messg. d.											200
gestreuten Strahlung	DIN EN ISO 7027-1	FNU	n.a.	n.a.	n.a.	12	n.a.	n.a.	n.a.	20	290
pH-Wert	DIN EN ISO 10523	-	n.a.	n.a.	n.a.	8,2	n.a.	n.a.	n.a.	8,2	7,9
Elektrische Leitfähigkeit bei	i	2/									100
25°C	DIN EN 27888	μS/cm	n.a.	n.a.	n.a.	<100	n.a.	n.a.	n.a.	<100	120
Organischer Kohlenstoff,											
gesamt (TOC)	DIN EN 1484	mg/l	92,5	23,4	6,7	2,5	98,8	32,5	11,7	3,3	n.a.
Antimon	DIN EN ISO 17294-2	μg/l	520	170	77	32	620	210	87	34	840
Quecksilber	DIN EN ISO 17852	μg/l	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0,021
Aluminium	DIN EN ISO 11885	μg/l	360	120	<100	<100	300	170	<100	<100	10000
Bor	DIN EN ISO 11885	μg/l	<100	<100	<100	<100	<100	<100	<100	<100	<100
Barium	DIN EN ISO 11885	μg/l	50	13	<10	<10	52	19	<10	<10	180
Calcium	DIN EN ISO 11885	mg/l	1,8	<1	<1	<1	1,7	<1	<1	<1	2,7
Eisen	DIN EN ISO 11885	μg/l	<100	<100	<100	<100	<100	<100	<100	<100	490
Kalium	DIN EN ISO 11885	mg/l	21	5,9	2	<1	21	7	2,9	2,6	28
Magnesium	DIN EN ISO 11885	mg/l	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	0,78
Natrium	DIN EN ISO 11885	mg/l	4,6	1,2	<0,5	<0,5	4,1	1,5	0,6	<0,5	5,0
Phosphor, gesamt	DIN EN ISO 11885	μg/l	3900	800	200	200	4300	1200	400	250	8900
Strontium	DIN EN ISO 11885	μg/l	<10	<10	<10	<10	<10	<10	<10	<10	42
Arsen	DIN EN ISO 17294-2	μg/l	4,1	1,6	0,78	0,42	4,5	1,8	0,99	0,48	6,1
Cadmium	DIN EN ISO 17294-2	μg/l	0,14	0,024	<0,01	<0,01	0,23	0,075	0,025	<0,01	0,18
Kobalt	DIN EN ISO 17294-2	μg/l	2,4	0,69	0,31	0,11	2,6	1	0,49	0,15	4,2
Chrom	DIN EN ISO 17294-2	μg/l	3,4	0,9	<0,5	<0,5	4	1,2	<0,5	<0,5	5,9
Kupfer	DIN EN ISO 17294-2	μg/l	23	6,2	2	0,73	23	8,5	3,6	1,1	36
Molybdän	DIN EN ISO 17294-2	μg/l	1,4	0,46	0,11	<0,1	1,1	0,41	0,16	<0,1	1,2
Nickel	DIN EN ISO 17294-2	μg/l	2,4	<1	<1	<1	3	<1	<1	<1	4,3
Blei	DIN EN ISO 17294-2	μg/l	28	6,7	1,9	0,58	27	10	4,5	1,1	160
Selen	DIN EN ISO 17294-2	μg/l	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
Thallium	DIN EN ISO 17294-2	μg/l	0,13	0,038	0,016	0,01	0,12	0,044	0,022	<0,01	0,17
Vanadium	DIN EN ISO 17294-2	μg/l	1,5	0,8	<0,5	<0,5	1,7	0,91	0,58	<0,5	4,2
Zink	DIN EN ISO 17294-2	μg/l	68	16	5,4	4,2	52	17	8,2	4,2	50
		, , 0,	ı		<u>'</u>	, , , , , , , , , , , , , , , , , , ,	L	1	, , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·	
Volumina Beginn		ml	73,00	73,00	131,00	405,00	70,00	70,00	125,00	402,00	110,00
Volumina Ende		ml	73,00	146,00	277,00	682,00	70,00	140,00	265,00	667,00	110,00

n.a. = nicht analysiert , n.b. = nicht bestimmbar

			21-02335-01-2	21-02335-01-3	21-02335-01-4	21-02336-01-1	21-02336-01-2	21-02336-01-3	21-02336-01-4
			Probe 4, 2:1 P	Probe 4, 2:1 P	Duals 4 D	Probe 4, 2:1 P	Probe 4, 2:1 P	Probe 4, 2:1 P	Probe 4, 2:1 P
Prüfmerkmal	Methode /Norm	Einheit	weißes Vlies 3;	weißes Vlies 3;	Probe 4, P weißes	weißes Vlies 4;	weißes Vlies 4;	weißes Vlies 4;	weißes Vlies 4;
			Säule 3; bis LS-	Säule 3; bis L/S-	Vlies 3; Säule 3; bis	Säule 4; L/S-	Säule 4; bis LS-	Säule 4; bis L/S-	Säule 4; bis L/S-
			Verhältnis 2:1	Verhältnis 4:1	L/S-Verhältnis 10:1	Verhältnis 1:1	Verhältnis 2:1	Verhältnis 4:1	Verhältnis 10:1
SÄULENELUATKONZENTRA	TION								
Trübung, Messg. d.	DIN EN ISO 7027-1	FNU	93	46	17	270	100	41	17
gestreuten Strahlung		1110							17
pH-Wert	DIN EN ISO 10523	-	8,1	8,3	8,5	7,3	7,9	8,1	8,3
Elektrische Leitfähigkeit bei	DIN EN 27888	μS/cm	<100	<100	<100	145	<100	<100	<100
25°C	DIN EN 27000	μο/ στι	100	100	100	143	\100	\100	\100
Organischer Kohlenstoff,	DIN EN 1484	mg/l	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
gesamt (TOC)	DIN LIN 1404	1116/1	n.a.	ii.a.	ii.a.	11.4.	n.a.	n.a.	n.a.
Antimon	DIN EN ISO 17294-2	μg/l	250	97	39	850	230	86	37
Quecksilber	DIN EN ISO 17852	μg/l	0,008	<0,005	<0,005	0,023	0,007	<0,005	<0,005
Aluminium	DIN EN ISO 11885	μg/l	3500	2300	610	11000	4000	1900	660
Bor	DIN EN ISO 11885	μg/l	<100	<100	<100	<100	<100	<100	<100
Barium	DIN EN ISO 11885	μg/l	62	37	10	270	67	30	10
Calcium	DIN EN ISO 11885	mg/l	<1	<1	<1	3,2	<1	<1	<1
Eisen	DIN EN ISO 11885	μg/l	230	130	<100	760	220	110	<100
Kalium	DIN EN ISO 11885	mg/l	8,2	3,1	1,1	34	5,9	2	1,1
Magnesium	DIN EN ISO 11885	mg/l	<0,5	<0,5	<0,5	0,99	<0,5	<0,5	<0,5
Natrium	DIN EN ISO 11885	mg/l	1,4	0,53	<0,5	8,1	1	<0,5	<0,5
Phosphor, gesamt	DIN EN ISO 11885	μg/l	2500	1000	300	10000	1900	740	250
Strontium	DIN EN ISO 11885	μg/l	16	<10	<10	63	17	<10	<10
Arsen	DIN EN ISO 17294-2	μg/l	2,6	1,3	0,49	6	2,3	0,97	0,43
Cadmium	DIN EN ISO 17294-2	μg/l	0,050	0,018	<0,01	0,31	0,064	0,021	<0,01
Kobalt	DIN EN ISO 17294-2	μg/l	2,4	1,8	1,8	3,7	1,4	0,8	0,42
Chrom	DIN EN ISO 17294-2	μg/l	2,7	1,0	<0,5	6,9	2,8	1	1,2
Kupfer	DIN EN ISO 17294-2	μg/l	12	5,4	1,8	37	12	3,8	1,5
Molybdän	DIN EN ISO 17294-2	μg/l	0,34	0,14	<0,1	1,6	0,27	0,1	<0,1
Nickel	DIN EN ISO 17294-2	μg/l	1,5	<1	<1	4	1,2	<1	<1
Blei	DIN EN ISO 17294-2	μg/l	90	50	12	98	83	36	13
Selen	DIN EN ISO 17294-2	μg/l	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5
Thallium	DIN EN ISO 17294-2	μg/l	0,055	0,026	<0,01	0,19	0,045	0,017	<0,01
Vanadium	DIN EN ISO 17294-2	μg/l	3,1	1,7	0,61	3,2	3,3	1,4	0,6
Zink	DIN EN ISO 17294-2	μg/l	16	7,3	2,1	46	17	6	1,7
Volumina Beginn		ml	116,00	229,00	689,00	109,00	113,00	225,00	698,00
Volumina Ende		ml	226,00	455,00	1144,00	109,00	222,00	447,00	1145,00

n.a. = nicht analysiert , n.b. = nicht bestimmbar

Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen

Leibnizstraße 10 45659 Recklinghausen Telefon 02361 305-0 poststelle@lanuv.nrw.de

www.lanuv.nrw.de