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We investigate the problem of optimal transport in the so-called Beckmann form, i.e.
given two Radon measures on a compact set, we seek an optimal ow eld which is a
vector valued Radon measure on the same set that describes a ow between these two
measures and minimizes a certain linear cost function.

We consider L𝛼 regularization of the problem, which guarantees uniqueness and forces
the solution to be an integrable function rather than a Radon measure. This regularization
naturally gives rise to a semi-smooth Newton scheme that can be used to solve the problem
numerically. Besides motivating and developing the numerical scheme, we also include
approximation results for vanishing regularization in the continuous setting.

1. Introduction

The Beckmann formulation of optimal transport is the problem of nding a ow eld that describes
how to move some measure onto another measure of the same mass such that a certain linear cost
functional is minimal. It was rst introduced in [5] in a more general form. Specically, for a domain
Ω ⊂ ℝ𝑑 , two Radon measures 𝜇+, 𝜇− on Ω with 𝜇+(Ω) = 𝜇−(Ω) and a continuous cost function
𝑤 : Ω → [0,∞) our goal is to solve

inf
𝑞∈𝔐 (Ω,ℝ𝑑 ) ,

div 𝑞=𝜇

∫
Ω
𝑤 d|𝑞 | , (BP)

where we abbreviated 𝜇 := 𝜇+ − 𝜇− and the divergence constraint has to be understood in a suitable
weak sense. Existence of solutions is well known [28, 14], but since the objective functional in (BP)
is not strictly convex, solutions may not be unique. Moreover, for general Radon measures 𝜇+, 𝜇−, a
solution may not admit a density w.r.t. the Lebesgue measure. Hence, standard approximation tools
from numerical analysis are not applicable. This motivates the use of regularization of the continuous
problem to obtain approximate solutions that are functions instead of measures, which in turn can be
treated by classical discretization techniques in order to solve the regularized problem. Here, we aim
to employ L𝛼 -regularization which, as we will see, also naturally gives rise to a semi-smooth Newton
scheme that can be used to solve the problem numerically.
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The Beckmann problem is closely related to other problems of optimal transport theory, namely the so
called Monge problem and the Kantorovich problem as well as the Monge-Kantorovich equation [28, 2].
For example, for 𝑤 ≡ 1 (BP) is equivalent to the Kantorovich problem (with Euclidian cost), [28, §
4.2.1].

1.1. Notation and problem statement

Before we formulate our problem, let us x the notation that will be used in the remainder. The space
of Radon measures and the set of probability measures on Ω ⊂ ℝ𝑑 will be denoted by 𝔐(Ω) and
P(Ω), respectively. The space of vector valued Radon measures will be denoted by 𝔐(Ω,ℝ𝑑 ) and we
will use the same convention for all other classes of measures and functions as well. With C(Ω) and
C𝑘 (Ω) we denote the spaces of continuous functions and 𝑘 times continuously dierentiable functions,
respectively.

For a Banach space 𝑋 we will denote its topological dual by 𝑋 ∗. The 𝑑-dimensional Lebesgue measure
will be denoted by L𝑑 and, where appropriate, integrals w.r.t. the Lebesgue measure are simply denoted
by d𝑥 with the appropriate integration variable 𝑥 . For a set Ω ⊂ ℝ𝑑 we will also use the shorthand
notation |Ω | := L𝑑 (Ω). For the space of 𝑝-integrable functions on Ω with respect to the Lebesgue
measure, the symbol L𝑝 (Ω) will be used. The symbol W𝑘,𝑝 (Ω) denotes the Sobolev space of functions
for which the weak derivatives up to order 𝑘 are functions in L𝑝 (Ω).

When a measure 𝜈 is absolutely continuous with respect to another measure 𝜇, written as 𝜈 � 𝜇, the
Radon-Nikodym derivative of 𝜈 w.r.t. to 𝜇, i.e. the density of 𝜈 w.r.t. 𝜇, will be denoted by d𝜈

d𝜇 . Conversely,
by I : L1(Ω,ℝ𝑑 ) →𝔐(Ω,ℝ𝑑 ) we denote the embedding, which identies an integrable function with
a Radon measure on Ω via

(I(𝑓 )) (𝐴) :=
∫
𝐴

𝑓 dL𝑑 ∀𝐴 ⊂ Ω .

Hence, I( d𝜈
dL𝑑 ) = 𝜈 .

With slight abuse of notation, we will denote the Nemytskii-operator 𝑞 ↦→ (Ω 3 𝑥 ↦→ 𝐹 (𝑥, 𝑞(𝑥)))
associated with a function 𝐹 : Ω × ℝ𝑑 → ℝ𝑙 by the same symbol. The characteristic function of
a set 𝐴 will be denoted by 1𝐴. In contrast, 𝜄𝐴 denotes the indicator functional of 𝐴. We denote the
Euclidian norm on ℝ𝑑 with | . | and the positive part of a scalar 𝑐 as 𝑐+ := max{𝑐, 0}. The inner product
of 𝑥, 𝑦 ∈ ℝ𝑑 will be denoted by 𝑥 · 𝑦 .

In the following we will consider a compact domain Ω. For 𝑓 : Ω → ℝ and 𝑐 ∈ ℝ, we will use the
shorthand notation

{𝑓 > 𝑐} := {𝑥 ∈ Ω | 𝑓 (𝑥) > 0}

and analogously for {𝑓 ≥ 𝑐}, {𝑓 < 𝑐}, {𝑓 ≤ 𝑐} and {𝑓 ≠ 𝑐}.

The regularized Beckmann problem of optimal transport considered in this work now reads as

inf
𝑞∈L𝛼 (Ω,ℝ𝑑 ),

div 𝑞=𝜇

∫
Ω
𝑤 |𝑞 | dL𝑑 + 𝜀

𝛼
‖𝑞‖𝛼L𝛼 (Ω,ℝ𝑑 ) . (BP𝜀 )

Let us summarize our standing assumptions:
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Assumption 1.1. We assume that 𝑑 ∈ ℕ and Ω ⊂ ℝ𝑑 is a compact set, whose interior is a bounded
Lipschitz domain in the sense of [18, Chapter 1.2]. The cost function𝑤 : Ω → ℝ is continuous. Assume
1 < 𝛼 < 𝑑

𝑑−1 . Finally, we assume 𝜇𝑖 ∈ P(Ω), for 𝑖 = 1, 2.

Remark 1.2. 1. In contrast to standnard notation in PDE literature, we use the symbol Ω for a closed
set. Nevertheless, for convenience, we simply writeW𝑘,𝑝 (Ω) instead ofW𝑘,𝑝 (int(Ω)) for Sobolev
spaces.

2. Note that by standard Sobolev embeddings (e.g. [1, Theorem 4.12]), it holds thatW1,𝛼′ (Ω) ↩→ C(Ω),
since 𝛼 < 𝑑

𝑑−1 . Hence, 𝔐(Ω) ↩→ (W
1,𝛼′ (Ω))∗. This allows us to use arbitrary measures 𝜇+, 𝜇− ∈

P(Ω) as marginals in (BP𝜀 ).

3. Note that for the integral
∫
Ω
𝑤 |𝑞 | dL𝑑 to exist, the cost function𝑤 does not need to be continuous

and the problem may be formulated for more general cost functions. However, some of the results in
this work require this assumption and for simplicity it shall be assumed throughout the paper.

1.2. Related Work

Due to its relation with other optimal transport problems, the Beckmann problem has been considered
in a number of dierent settings.

The authors of [29] tackle the Beckmann problem with uniform cost function 𝑤 from a geometry
processing point of view to compute the distances between points on discrete surfaces. The Helmholtz-
Hodge decomposition and the spectral decomposition of the Laplacian are used to reformulate the
Beckmann problem into an unconstrained problem,where the coecients of the spectral decomposition
are the optimization variables. The authors then pass to a discrete setting and truncate the spectral
decomposition, which reduces the problem size and gives an approximation of the original problem.

Several publications employ rst order schemes to solve the Beckmann problem. In [22], the authors
discretize the problem via a nite dierences scheme and employ the Chambolle-Pock algorithm.
They, too, only consider uniform cost 𝑤 , which allows to derive closed form expressions for the
involved proximal operators. To ensure uniqueness, they add a regularization term similar to to the one
in (BP𝜀 ), but only consider the case 𝛼 = 2. The methods of [22] are extended to unbalanced transport
(i.e. 𝜇+(Ω) ≠ 𝜇−(Ω)) in [27] and [23] proposes a multilevel initialization approach to speed up the
computation time for ne grids. Another rst order scheme is covered in [21], where a variant of the
Chambolle-Pock algorithm is analyzed, which involves the computation of optimal step sizes. The
results are applied to an ROF formulation of the Beckmann problem in two dimensions with uniform
weight and without regularization. Moreover, an estimate for the error in the objective value is derived.
In [6] multiple dierent problems are covered, including the Beckmann problem with general cost
or L𝑝-regularization (in the context of so-called congested transport), but not both at the same time.
The problems are solved numerically by solving the dual formulation by the ADMM algorithm. This
requires to solve a Laplace equation with Neumann boundary conditions in each iteration step.

The authors of [8, 7] consider the closely related problem of trac congestion [13]. This problem
generalizes the Beckmann problem by allowing the cost function 𝑤 to depend on 𝑞 in the sense
𝑤 = 𝑤 (𝑥, |𝑞(𝑥) |) and the so-called trac intensity is computed instead of 𝑞, which allows to model a
congestion eect. A fast marching algorithm is proposed to treat the problem numerically. In [12] the
authors consider regularity results for this line of work and model the congestion by a term 1

𝑝
|.|𝑝 . This
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corresponds to our regularization term, however they only consider uniform cost. [19, 11] consider a
even more general, anisotropic setting and [19] includes numerical examples, which rely on [6].

A dierent type of regularization is employed in [4], where the authors use the Monge-Kantorovich
equation as starting point and consider the functional

∫
Ω
𝑤 d|𝑞 |𝑟 with 𝑟 > 1 after smoothing the

marginals 𝜇+ and 𝜇− accordingly. After providing a convergence result for 𝑟 → 0, the authors switch
to a discrete setting and give another approximation result for increasing discretization neness. The
numerical scheme then relies on a xed-point iteration of the form |𝑥𝑖 |𝑟−2(𝑥𝑖+1 − 𝑥𝑖) + |𝑥𝑖 |𝑟−2𝑥𝑖 , where
an additional regularization is required due to the non-smoothness of | . |. We point out that in contrast
to (BP𝜀 ) this choice of regularization does not preserve the non-smooth structure of (BP). The setting
of [4] is extended to a setting of unbalanced transport in [3].

The authors of [15] propose a dynamic formulation of the Monge-Kantorovich equations (for uniform
cost) and conjecture that the solution approximates the solution of the static equations for 𝑡 → ∞.
However, the conjecture is still open. The authors argue that the dynamic formulation naturally adds
a regularization to the problem and derive an Euler scheme for solving the problem numerically.

1.3. Organization

The remainder of this work is organized as follows. We start in Section 2 by rigorously dening the
divergence constraint in (BP𝜀 ) and proving existence and uniqueness of solutions. Afterwards we
derive a semi-smooth Newton iteration in Section 3, which will also involve a second regularization.
We detail how to choose appropriate step sizes via an auxiliary minimization problem and make a
connection between that problem and (BP𝜀 ). Section 4 is concerned with approximation results. More
precisely, we prove weak convergence of minimizers of the regularized problems towards minimizers
of (BP𝜀 ) and (BP) under suitable assumptions. After discussing numerical examples in Section 5, we
nally conclude in Section 6.

2. Existence of solutions

Let us rigorously dene the divergence constraint in problem (BP𝜀 ). Motivated by the zero-ux boundary
condition, the divergence constraint in (BP) is to be understood as

−
∫
Ω
grad𝜑 · d𝑞 =

∫
Ω
𝜑 d𝜇 ∀𝜑 ∈ C1(Ω) . (2.1)

Therefore, the equality constraint in the regularized problem (BP𝜀 ) reads

−
∫
Ω
𝑞 · grad𝜑 dL𝑑 =

∫
Ω
𝜑 d𝜇 . ∀𝜑 ∈ W1,𝛼′ (Ω) (2.2)

Lemma 2.1. Let 𝑞 ∈ L𝛼 (Ω,ℝ𝑑 ) and let Assumption 1.1 hold. Then 𝑞 solves (2.2) if and only if it solves

−
∫
Ω
𝑞 · grad𝜑 dL𝑑 =

∫
Ω
𝜑 d𝜇 ∀𝜑 ∈ W1,𝛼′

∅ (Ω), (2.3)

where

W1,𝛼′
∅ (Ω) :=

{
𝑣 ∈ W1,𝛼′ (Ω)

���� ∫
Ω
𝑣 (𝑥) d𝑥 = 0

}
.
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Proof. If 𝑞 solves (2.2), then it trivially also solves (2.3). On the other hand, if 𝑞 solves (2.3), then for
every 𝜑 ∈ W1,𝛼′

∅ (Ω) and every 𝑐 ∈ ℝ, the assumptions on the marginals imply

−
∫
Ω
𝑞(𝑥) · grad(𝜑 (𝑥) + 𝑐) d𝑥 =

∫
Ω
𝜑 d𝜇 =

∫
Ω
𝜑 d𝜇 + 𝑐 (𝜇+(Ω) − 𝜇−(Ω))

=

∫
Ω
(𝜑 (𝑥) + 𝑐) d𝜇 (𝑥) .

Since W1,𝛼′ (Ω) = W1,𝛼′
∅ (Ω) +ℝ, this gives the assertion. �

Using the previous result, we can now dene the divergence on L𝛼 (Ω,ℝ𝑑 ) as follows.

Denition 2.2. Dene

divL𝛼 : L𝛼 (Ω,ℝ𝑑 ) →W−1,𝛼⊥ (Ω) :=
{
𝑣 ∈ (W1,𝛼′ (Ω))∗

��� 〈𝑣 , 1〉 = 0
}
,

〈divL𝛼 𝑞 , 𝜑〉 := −
∫
Ω
𝑞 · grad𝜑 dL𝑑 ∀𝜑 ∈ W1,𝛼′

∅ (Ω) ,

where grad denotes the usual weak gradient.

Remark 2.3. Recalling Remark 1.2, we observe that 𝜇 ∈ W−1,𝛼⊥ (Ω), since 〈𝜇 , 1〉 = 𝜇+(Ω) − 𝜇−(Ω) = 0.
Thus, (2.3) (and (2.2), respectively) is equivalent to

divL𝛼 𝑞 = 𝜇 inW−1,𝛼⊥ (Ω) .

Next, we give a characterization of (W1,𝛼′
∅ (Ω))

∗.

Lemma 2.4. The space W−1,𝛼⊥ (Ω) is isomorphic to (W1,𝛼′
∅ (Ω))

∗
.

Proof. On the one hand, it is clear that a functional inW−1,𝛼⊥ (Ω) denes a functional onW1,𝛼′
∅ (Ω) so

that W−1,𝛼⊥ (Ω) ⊂ (W1,𝛼′
∅ (Ω))

∗.

On the other hand, the Hahn-Banach theorem implies that every ℓ ∈ (W1,𝛼′
∅ (Ω))

∗ can be extended to a
functional 𝐿 on W1,𝛼′ (Ω). If we dene 𝑣 := |Ω |−1

∫
Ω
𝑣 (𝑥) d𝑥 , then we observe for the functional 𝐿 that

〈ℓ , 𝑣 − 𝑣〉 = 〈𝐿 , 𝑣〉 − 𝑣 〈𝐿 , 1〉 ∀ 𝑣 ∈ W1,𝛼′ (Ω) .

If we now dene �̂� ∈ (W1,𝛼′ (Ω))∗ by �̂�(𝑣) := 𝐿(𝑣) − 𝑣𝐿(1), then

�̂�(1) = 0, i.e., �̂� ∈ W−1,𝛼⊥ (Ω), and ℓ (𝑣) = �̂�(𝑣) for all 𝑣 ∈ W1,𝛼′
∅ (Ω). �

Remark 2.5. In complete analogoy to the above argumentation, see that 𝑞 ∈ 𝔐(Ω,ℝ𝑑 ) solves (2.1) if
and only if 𝑞 solves

−
∫
Ω
grad𝜑 · d𝑞 =

∫
Ω
𝜑 d𝜇 ∀𝜑 ∈ C1∅ (Ω) :=

{
𝑣 ∈ C1(Ω)

���� ∫
Ω
𝑣 (𝑥) d𝑥 = 0

}
.
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We can then dene

div𝔐 : 𝔐(Ω,ℝ𝑑 ) → M⊥(Ω) :=
{
𝑣 ∈ (C1(Ω))∗

�� 〈𝑣 , 1〉 = 0
}
,

〈div𝔐 𝑞 , 𝜑〉 := −
∫
Ω
grad𝜑 · d𝑞 ∀𝜑 ∈ C1∅ (Ω)

and obtain thatM⊥(Ω) is isomorphic to (C1∅ (Ω))
∗. Hence, the divergence constraint in (BP) can be

understood as
div𝔐 𝑞 = 𝜇 inM⊥(Ω) .

Note that clearly C1∅ (Ω) ↩→ W1,𝛼′
∅ (Ω). Hence, for 𝑞 ∈ 𝔐(Ω,ℝ𝑑 ) with 𝑞 � L𝑑 and d𝑞

dL𝑑 ∈ L𝛼 (Ω,ℝ𝑑 ),
div𝔐 𝑞 = 𝜇 inM⊥(Ω) immediately implies divL𝛼 d𝑞

dL𝑑 = 𝜇 inW−1,𝛼⊥ (Ω).

The following two corollaries follow directly from the above denitions.

Corollary 2.6. The adjoint operator div∗L𝛼 of divL𝛼 : L𝛼 (Ω,ℝ𝑑 ) → W−1,𝛼⊥ (Ω) is given by − grad :
W1,𝛼′
∅ (Ω) → L𝛼′(Ω,ℝ𝑑 ).

Corollary 2.7. 1. The divergence operator div𝔐 is continuous w.r.t. weak-∗ convergence in𝔐(Ω,ℝ𝑑 ).

2. The divergence operator divL𝛼 is continuous w.r.t. weak convergence in L𝛼 (Ω,ℝ𝑑 ).

Before proving existence and uniqueness of solutions for (BP𝜀 ), we cover surjectivity of the divergence
operator under suitable assumptions.

Assumption 2.8. Assume that Ω is such that the equation

divL𝛼′ grad 𝑦 = 𝜈 inW−1,𝛼
′

⊥ (Ω) (2.4)

has a unique solution 𝑦 ∈ W1,𝛼′
∅ (Ω) for every 𝜈 ∈ W

−1,𝛼′
⊥ (Ω). Note that the associated solution operator,

denoted by ∆−1
𝛼′ : W

−1,𝛼′
⊥ (Ω) →W1,𝛼′

∅ (Ω) is continuous by the open mapping theorem.

Remark 2.9. Note that Assumption 2.8 holds in two and three dimensions provided that the interior of Ω
is a bounded Lipschitz domain in the spirit of [18, Chapter 1.2]. See e.g. [17, Theorem 3] for 𝑑 = 2 and [31,
Theorem 1.6] for 𝑑 = 3. We will assume Assumption 2.8 to hold for the remainder of this work.

Lemma 2.10. Let Assumption 2.8 hold. Then, the divergence operator divL𝛼 is surjective.

Proof. We denote the solution operator of (2.4) as ∆−1
𝛼′ . By identifyingW

1,𝛼
∅ (Ω) with its bi-dual space, we

note that the adjoint operator (∆𝛼′−1)∗ : W−1,𝛼⊥ (Ω) →W1,𝛼
∅ (Ω) is continuous as well with ‖(∆𝛼′

−1)∗‖ ≤
‖∆𝛼′−1‖. Moreover, we observe, that (∆𝛼′−1)∗ = (∆𝛼′∗)−1 and

∆∗𝛼′ = divL𝛼 grad : W1,𝛼
∅ (Ω) →W−1,𝛼⊥ (Ω) .

Hence, the elliptic equation∫
Ω
grad 𝑦 · grad𝜓 dL𝑑 = 〈𝜓 , d〉𝜈 ∀𝜓 ∈ W1,𝛼′

∅ (Ω)

has a unique solution 𝑦 ∈ W1,𝛼
∅ (Ω) for all 𝜈 ∈ W

−1,𝛼
⊥ (Ω). By setting 𝑞 = − grad 𝑦 , we nd divL𝛼 𝑞 = 𝜈

in W−1,𝛼⊥ (Ω), which shows the surjectivity of divL𝛼 from L𝛼 (Ω,ℝ𝑑 ) to W−1,𝛼⊥ (Ω). �
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Remark 2.11. Due to Remark 1.2 2, Lemma 2.10 also implies the surjectivity of div𝔐 .

Finally, we obtain an existence result.

Corollary 2.12. Let Assumptions 1.1 and 2.8 hold. For ever 𝜀 > 0 there is a unique solution for prob-
lem (BP𝜀 ).

Proof. First note that due to Remark 2.3 it holds 𝜇 ∈ W−1,𝛼⊥ (Ω), so that by Lemma 2.10 the feasible set
is non-empty.

Let now (𝑞𝑛) ⊂ 𝔐(Ω) be a minimizing sequence. Without loss of generality we assume that each
𝑞𝑛 is feasible and due to the regularization term ( d𝑞𝑛dL𝑑 ) is bounded in L𝛼 (Ω). We can thus extract a
weakly convergent subsequence (denoted by the same symbol) with weak limit 𝑞 ∈ L𝛼 (Ω,ℝ𝑑 ). As
𝑤 ∈ C (Ω) ↩→ L𝛼′(Ω), the objective functional is clearly lower semi continuous in L𝛼 (Ω) and thus, 𝑞
is a solution to (BP𝜀 ).

Uniqueness of the solution follows trivially from the strict convexity of ‖ . ‖L𝛼 (Ω) . �

3. Semi-Smooth Newton

We rst derive the rst order optimality system for (BP𝜀 ).

Proposition 3.1. There exists a Lagrange multiplier 𝑦 ∈ W1,𝛼′
∅ (Ω) such that the solution 𝑞 of (BP𝜀 )

fullls

𝜀 |𝑞 |𝛼−2𝑞 + 𝜕 |𝑞 |1,𝑤 + grad 𝑦 3 0 in L𝛼′(Ω,ℝ𝑑 ) (3.1)
divL𝛼 𝑞 = 𝜇 inW−1,𝛼⊥ (Ω) , (3.2)

where |𝑞 |1,𝑤 (𝑥) := 𝑤 (𝑥) |𝑞(𝑥) |.

Proof. Let us denote 𝐶 := {𝑞 ∈ L𝛼 (Ω,ℝ𝑑 ) : divL𝛼 𝑞 = 𝜇} such that (BP𝜀 ) is equivalent to

inf
𝑞∈L𝛼 (Ω,ℝ𝑑 )

∫
Ω
𝑤 |𝑞 | dL𝑑 + 𝜀

𝛼
‖𝑞‖𝛼L𝛼 (Ω,ℝ𝑑 ) + 𝜄𝐶 (𝑞) .

Since the rst two addends of the objective are continuous on the whole space L𝛼 (Ω,ℝ𝑑 ) and 𝐶 is
nonempty due to Lemma 2.10, the sum rule for convex subdierentials is applicable, which gives that
the solution 𝑞 of (BP𝜀 ) satises

0 ∈ 𝜀 |𝑞 |𝛼−2𝑞 + 𝜕 |𝑞 |1,𝑤 + 𝜕𝜄𝐶 (𝑞)

⇔ ∃𝜉 ∈ 𝜕 |𝑞 |1,𝑤,
∫
Ω
(𝜀 |𝑞 |𝛼−2𝑞 + 𝜉) (𝑝 − 𝑞) dL𝑑 ≥ 0 ∀𝑝 ∈ 𝐶

⇔ ∃𝜉 ∈ 𝜕 |𝑞 |1,𝑤, 𝜀 |𝑞 |𝛼−2𝑞 + 𝜉 ∈ ker(divL𝛼 )⊥ = ran(div∗L𝛼 ),

where we employed [24, §6.6, Theorem 2], which holds due to the surjectivity of divL𝛼 by Lemma 2.10.
Since div∗L𝛼 = − grad, this gives the assertion. �

7



We observe that the multi-valued map

(𝑥, 𝑞) ↦→ 𝜀 |𝑞 |𝛼−2𝑞 +𝑤 (𝑥)𝜕 |𝑞 |

has a single-valued inverse, which we denote by

𝐹𝜀 : Ω ×ℝ𝑑 → ℝ , 𝐹𝜀 (𝑥, 𝑝) =
( 1
𝜀

(
|𝑝 | −𝑤 (𝑥)

) )𝛼′−1
+

𝑝

|𝑝 | . (3.3)

Since (3.1) is a pointwise equation (as identity in L𝛼′(Ω,ℝ𝑑 )), this yields that (3.1)–(3.2) are equivalent
to

divL𝛼 𝐹𝜀 (− grad 𝑦) = 𝜇 inW−1,𝛼⊥ (Ω) . (3.4)

where the Nemytskii-operator 𝐹𝜀 maps L𝛼′(Ω,ℝ𝑑 ) to L𝛼 (Ω,ℝ𝑑 ). By Denition 2.2, the weak form
of (3.4) is given by

−
∫
Ω
𝐹𝜀 (− grad 𝑦) · grad𝜑 dL𝑑 =

∫
Ω
𝜑 d𝜇 ∀𝜑 ∈ W1,𝛼′

∅ (Ω) . (3.5)

We can now formally write down a semi-smooth Newton iteration for solving (3.5) as follows.

Algorithm 1. Semi-Smooth Newton Iteration for solving (3.5)

Require: 𝑦 ∈ W1,𝛼′
∅ (Ω)

for 𝑘 = 1, . . . do
Choose a step size 𝜎𝑘 > 0
nd 𝜂 ∈ W1,𝛼′

∅ (Ω) such that ∀𝜑 ∈ W1,𝛼′
∅ (Ω)∫

Ω

(
D𝑝𝐹𝜀 (− grad 𝑦) grad𝜂

)
· grad𝜑 dL𝑑 =

∫
Ω
𝐹𝜀 (− grad 𝑦) · grad𝜑 dL𝑑 +

∫
Ω
𝜑 d𝜇 (3.6)

Update 𝑦 ← 𝑦 + 𝜎𝑘𝜂
end for

Remark 3.2. We emphasize that (3.6) is purely formal. For Algorithm 1 to converge, we would need for
𝐹𝜀 to be Newton-dierentiable from L𝛼′(Ω,ℝ𝑑 ) to L𝛼 (Ω,ℝ𝑑 ) and existence of solutions to (3.6) in the
appropriate spaces. While the latter issue will be resolved by an additional Huber-regularization, see (3.7)
below, the Newton-dierentiability probably requires an additional smoothing step, as applied for instance
in [30, Section 6.1]. This is subject to future research.

Due to the positive part in (3.3), 𝐹𝜀 (𝑥, 𝑝) has vanishing slope for |𝑝 | ≤ 𝑤 , which will clearly lead to
illposedness of the Newton step (3.6). As mentioned above, to overcome this issue, we introduce a
Huber type regularization term [20] 𝑅𝛿 of the form

𝑅𝛿 : Ω ×ℝ𝑑 → ℝ𝑑 , 𝑅𝛿 (𝑥, 𝑝) =
𝛿𝑝

max( |𝑝 |,𝑤) ,

where 𝛿 > 0 is a regularization parameter. Denoting 𝐺𝜀,𝛿 := 𝐹𝜀 + 𝑅𝛿 we thus replace (3.5) by

−
∫
Ω
𝐺𝜀,𝛿 (− grad 𝑦) · grad𝜑 dL𝑑 =

∫
Ω
𝜑 d𝜇 ∀𝜑 ∈ W1,𝛼′

∅ (Ω) . (3.7)
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and (3.6) by∫
Ω
D𝑞𝐺𝜀,𝛿 (− grad 𝑦) grad𝜂 · grad𝜑 dL𝑑 =∫

Ω
𝐺𝜀,𝛿 (− grad 𝑦) · grad𝜑 dL𝑑 +

∫
Ω
𝜑 d𝜇 ∀𝜑 ∈ W1,𝛼′

∅ (Ω) .
(3.8)

3.1. Step Size Rule

In order to apply Armijo bracktracking, we lift (3.4) to a minimization problem. To that end, we observe
that both 𝐹𝜀 and 𝑅𝛿 admit an antiderivative (w.r.t. 𝑝), namely

F𝜀 : Ω ×ℝ𝑑 → ℝ𝑑 , F𝜀 (𝑥, 𝑝) :=
𝜀

𝛼 ′

( 1
𝜀
max

{
|𝑝 | −𝑤, 0

})𝛼′
and

R𝛿 : Ω ×ℝ𝑑 → ℝ𝑑 , R𝛿 (𝑥, 𝑝) := 𝛿 max
{
|𝑝 |,𝑤

}
+ 𝛿2 min

{ |𝑝 |2
𝑤
,𝑤

}
.

More precisely, we obtain the following result.

Lemma 3.3. Both F𝜀,R𝛿 : L𝛼′(Ω,ℝ𝑑 ) → L1(Ω,ℝ𝑑 ) are Gateaux-dierentiable with Gateaux-derivatives
given by

dF𝜀 (𝑝;𝜓 ) = 𝐹𝜀 (𝑝) ·𝜓 ,
dR𝛿 (𝑝;𝜓 ) = 𝑅𝛿 (𝑝) ·𝜓

respectively, where 𝐹𝜀, 𝑅𝛿 : L𝛼′(Ω,ℝ𝑑 ) → L𝛼 (Ω,ℝ𝑑 ).

Proof. Let now 𝑝,𝜓 ∈ L𝛼′(Ω,ℝ𝑑 ). Elementary calculations show

lim
𝑡→0

F𝜀 (𝑥, (𝑝 + 𝑡𝜓 ) (𝑥)) − F𝜀 (𝑥, 𝑝 (𝑥))
𝑡

→ 𝐹𝜀 (𝑥, 𝑝 (𝑥)) ·𝜓 (𝑥)

for a.e. 𝑥 ∈ Ω and similarly for R𝛿 . By Lebesgue’s dominated convergence theorem, it suces to show
that the right hand side is a function in L1(Ω,ℝ𝑑 ) and the mapping𝜓 ↦→ 𝐹𝜀 (𝑝) ·𝜓 is continuous.

To that end, note that by Hölder’s inequality∫
Ω
|𝐹𝜀 (𝑥, 𝑝 (𝑥)) ·𝜓 (𝑥) | d𝑥 ≤ 𝜀1−𝛼

′ ‖𝜓 ‖L𝛼′(Ω) ‖(|𝑝 | −𝑤)𝛼
′−1
+ ‖L𝛼 (Ω)

≤ 𝜀1−𝛼′ ‖𝜓 ‖L𝛼′(Ω,ℝ𝑑 ) ‖𝑝‖L𝛼′(Ω,ℝ𝑑 ) < ∞ .

For R𝛿 , we obtain the result by∫
Ω
|𝑅𝛿 (𝑥, 𝑝 (𝑥)) ·𝜓 (𝑥) | d𝑥 ≤ 𝛿

∫
Ω

|𝑞 | |𝜓 |
max( |𝑞 |,𝑤) dL

𝑑 ≤ 𝛿
∫
{𝑞 (𝑥)≠0}

|𝑞 |
|𝑞 | |𝜓 | dL

𝑑

≤ 𝛿 ‖𝜓 ‖L1 (Ω,ℝ𝑑 ) ≤ 𝛿 |Ω |
1
𝑟 ‖𝜓 ‖L𝛼′(Ω,ℝ𝑑 ) < ∞ ,

where 1 = 1
𝛼′ +

1
𝑟
. �
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Analogously to 𝐺𝜀,𝛿 , we will denote G𝜀,𝛿 := F𝜀 + R𝛿 .

In light of the above dierentiability results, we observe that (3.7) is nothing else than the necessary
optimality conditions of

min
𝑦∈W1,𝛼′

∅ (Ω)
J (𝑦) :=

∫
Ω
G
𝜀,𝛿
(− grad 𝑦) dL𝑑 −

∫
Ω
𝑦 d𝜇. (BP†)

As F𝜀 and R𝛿 are convex, (3.7) is indeed sucient for optimality so that (BP†) is equivalent to (3.7).
More precisely, G

𝜀,𝛿
is uniformly convex for 𝛿 > 0, as 𝛼

𝛼−1 ≥ 2. Now, we can peform a classical Armijo
backtracking for J as detailed in Algorithm 2. Note that

D𝑦J (𝑦)𝜂 = −
∫
Ω
𝐺𝜀,𝛿 (− grad 𝑦) · grad𝜂 dL𝑑 −

∫
Ω
𝜂 d𝜇

so that the Armijo condition in Algorithm 2 can be written as∫
Ω
G
𝜀,𝛿
(− grad 𝑦 − 𝜎𝑘 grad𝜂𝑘 ) dL𝑑 >

∫
Ω
G
𝜀,𝛿
(− grad 𝑦) dL𝑑

− 𝛾𝜎𝑘
∫
Ω
𝐺𝜀,𝛿 (− grad 𝑦) · grad𝜂 dL𝑑 + 𝜎𝑘 (1 − 𝛾)

∫
Ω
𝜂 d𝜇 .

Algorithm 2. Armijo line search for (BP†)

Require: 𝑦, 𝜂 ∈ W1,𝛼′
∅ (Ω), 𝜎0 > 0, 𝛽,𝛾 ∈ (0, 1)

𝑘 ← 0
while do J (𝑦 + 𝜎𝑘𝜂) > J (𝑦) + 𝛾 𝜎𝑘D𝑦J (𝑦)𝜂

𝜎𝑘+1 ← 𝛽𝜎𝑘
𝑘 ← 𝑘 + 1

end while

3.2. Connection to Primal Problem

We want to analyze the connection between problem (BP𝜀 ) and problem (BP†).

Lemma 3.4. The Fenchel conjugate G∗
𝜀,𝛿

w.r.t. the second variable is given by

G∗
𝜀,𝛿
(𝑥, 𝑞) =

{
|𝑞 |2 𝑤2𝛿 − 𝛿𝑤 , |𝑞 | ≤ 𝛿 ,
𝜀
𝛼
( |𝑞 | − 𝛿)𝛼 − 3

2𝛿𝑤 + |𝑞 |𝑤 , else .

Moreover, G
𝜀,𝛿

is a normal integrand in the sense of [26, Denition 14.27].

Proof. We begin by deriving the conjugate of G
𝜀,𝛿
. First note that

grad𝑝 (𝑠 · 𝑝 − G𝜀,𝛿 (𝑥, 𝑝)) = 𝑠 −𝐺𝜀,𝛿 (𝑥, 𝑝) .
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We then observe

𝐺𝜀,𝛿 (𝑥, . )−1(𝑧) =
{
𝑧 𝑤
𝛿
, |𝑧 | ≤ 𝛿 ,

𝑧
|𝑧 |

(
𝜀 ( |𝑧 | − 𝛿)𝛼−1 +𝑤

)
, else ,

so that we can insert 𝑝 := 𝐺𝜀,𝛿 (𝑥, . )−1(𝑠) into 𝑠 · 𝑝 − G𝜀,𝛿 (𝑥, 𝑝). By straightforward manipulations, the
rst claim follows.

For the second claim, we rst note that L𝛼 (Ω,ℝ𝑑 ) is decomposable relative to the Lebesgue measure
in the sense of [26, Denition 14.59]. The assertion then follows by [26, Example 4.29] as G

𝜀,𝛿
(𝑥, . ) is

continuous for all 𝑥 ∈ Ω and G
𝜀,𝛿
( . , 𝑝) is measurable for all 𝑝 ∈ ℝ𝑑 . �

Using the above result, we can characterize the connection as follows.

Theorem 3.5. The predual problem to

− inf
{∫

Ω
G∗
𝜀,𝛿
(𝑞) dL𝑑

����𝑞 ∈ 𝔐(Ω) , 𝑞 � L𝑑 , d𝑞
dL𝑑 ∈ L𝛼 (Ω), divL𝛼

d𝑞
dL𝑑 = 𝜇 inW−1,𝛼⊥ (Ω)

}
(BP𝜀,𝛿 )

is given by (BP†) and strong duality holds.

Proof. Let

𝑓 : C(Ω) → ℝ ∪ {±∞} , 𝑓 (𝜉) =
{
−〈𝜉 , 𝜇〉 , 𝜉 ∈ W1,𝛼′

∅ (Ω) ,
∞ , else

and 𝑔 : C(Ω,ℝ𝑑 ) → ℝ ∪ {±∞}, 𝑔(𝜉) =
∫
Ω
G
𝜀,𝛿
(𝜉) dL𝑑 . It is easy to see that

𝑓 ∗(𝜈) = 𝜄 {−𝜇 } (𝜈) =
{
0 , 𝜈 = −𝜇 in W−1,𝛼⊥ (Ω) ,
∞ , else.

Finally, by Lemma 3.4, 𝑔∗(𝜈) =
∫
Ω
G∗
𝜀,𝛿
(𝑞) dL𝑑 . The assertion then follows by standard arguments, see

e.g. [9, Theorem 4.4.3]. �

4. Approximation Results

Next we turn to results on approximation properties. More precisely, we show that minimizers of the
regularized problems converge to minimizers of (BP) under suitable assumptions.

Recall from, e.g., [10], that a sequence (𝐹𝑛) of functionals 𝐹𝑛 : 𝑋 → ℝ ∪ {∞} on a metric space 𝑋 is
said to Γ-converge to a functional 𝐹 : 𝑋 → ℝ ∪ {∞}, written 𝐹 = Γ-lim𝑛→∞ 𝐹𝑛 , if

1. for every sequence {𝑥𝑛} ⊂ 𝑋 with 𝑥𝑛 → 𝑥 , it holds 𝐹 (𝑥) ≤ lim inf𝑛→∞ 𝐹𝑛 (𝑥𝑛) and

2. for every 𝑥 ∈ 𝑋 , there is a sequence {𝑥𝑛} ⊂ 𝑋 with 𝑥𝑛 → 𝑥 and 𝐹 (𝑥) ≥ lim sup𝑛→∞ 𝐹𝑛 (𝑥𝑛).
This sequence is also called a recovery sequence.
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It is a straightforward consequence of this denition that if 𝐹𝑛 Γ-converges to 𝐹 and 𝑥𝑛 is a minimizer
of 𝐹𝑛 for every 𝑛 ∈ ℕ, then every cluster point of the sequence (𝑥𝑛) is a minimizer to 𝐹 . Furthermore,
Γ-convergence is stable under perturbations by continuous functionals.

To prove the desired approximation results, we will rely on smoothing of measures in order to construct
the necessary recovery sequences. Moreover, we need the following technical assumption.

Assumption 4.1. Assume that Ω is strictly star shaped w.r.t. 0, i.e. for all 𝑥 ∈ Ω and 0 ≤ 𝜆 < 1, it holds
𝜆𝑥 ∈ Ω◦.

Remark 4.2. We leverage Assumption 4.1 in Lemma 4.3 below. However, while we only use a linear
transformation of the domain in the following, the techniques we use in the proof of Lemma 4.3 could be
applied in more general settings of nonlinear bi-Lipschitz deformations which would allow us to relax this
assumption. We still focus on star shaped domains for the sake of brevity. Additionally, Assumption 4.1
is not overly restrictive as one can always formulate (BP) on a strictly star shaped domain 𝐾 ⊃ Ω and
approximate the original problem by choosing𝑤 to be large on 𝐾 \ Ω.

Throughout the rest of this section, for a given sequence 0 < 𝜏 → 0, let 0 ≤ 𝜑𝜏 ∈ C∞c (ℝ𝑑 ) be a
sequence of molliers. To avoid boundary eects, we will need to slightly extend the domain Ω. More
precisely, for every 𝜏 > 0, we choose 𝑠 > 1 such that Ω𝜏 := (1 + 𝑠)Ω ⊃ Ω + spt𝜑𝜏 . W.l.o.g. we may
assume Ω𝜏 ⊃ Ω𝜗 whenever 𝜏 > 𝜗 . Note that this is possible thanks to Assumption 4.1. Moreover,
we denote Ω̃ = ∪𝜏Ω𝜏 . Given a function (or measure) 𝑓 , we will denote by 𝑓 the extension of 𝑓 onto
Ω̃ by zero. With �̂� we will denote a continuous extension of 𝑤 ∈ C (Ω) onto Ω̃ which also satises
minΩ̃ �̂� = minΩ𝑤 .

For 𝜈 ∈ M⊥(Ω) and 𝜈𝜀 ∈ M⊥(Ω𝜀) let now 𝐻
𝜈𝜀
𝜀,𝛿

: 𝔐(Ω𝜀) → ℝ ∪ {±∞} and 𝐻 𝜈 : 𝔐(Ω) → ℝ ∪ {±∞}
be dened by

𝐻
𝜈𝜀
𝜀,𝛿
(𝑞) =

{∫
Ω𝜀
G∗
𝜀,𝛿
( d𝑞
dL𝑑 ) dL𝑑 , 𝑞 � L𝑑 , d𝑞

dL𝑑 ∈ L𝛼 (Ω𝜀,ℝ𝑑 ) , divL𝛼
d𝑞
dL𝑑 = 𝜈𝜀 inW−1,𝛼⊥ (Ω𝜀) ,

∞ , else,

where G∗
𝜀,𝛿
( . , 𝑞) is extended onto Ω𝜀 by extending𝑤 with �̂� , and

𝐻 𝜈 (𝑞) =
{∫

Ω
𝑤 d|𝑞 | , div𝔐 𝑞 = 𝜈 inM⊥(Ω) ,

∞ , else,

respectively. Note that

𝐻
𝜈𝜀
𝜀,0(𝑞) =

{∫
Ω𝜀
�̂� d|𝑞 | + 𝜀

𝛼
‖ d𝑞
dL𝑑 ‖𝛼L𝛼 (Ω𝜀 ,ℝ𝑑 ) , 𝑞 � L𝑑 , d𝑞

dL𝑑 ∈ L𝛼 (Ω𝜀,ℝ𝑑 ) , divL𝛼
d𝑞
dL𝑑 = 𝜈𝜀 in W−1,𝛼⊥ (Ω𝜀) ,

∞ , else.

Note that we can extend 𝐻 𝜈
𝜀,𝛿

and 𝐻 𝜈 to be dened on measures on Ω̃ by extending the argument onto
Ω̃ by zero as described above. Strictly speaking, the approximating problems that we consider are
given as problems on Ω𝜀 , i.e.

min
𝑞∈𝔐 (Ω𝜀 ,ℝ𝑑 )

𝐻
�̃�

𝜀,0(𝑞) and min
𝑞∈𝔐 (Ω𝜀 ,ℝ𝑑 )

𝐻
�̃�

𝜀,𝛿
(𝑞) ,

respectively. For convenience, we will refer to these problems by (BP𝜀 ) and (BP𝜀,𝛿 ), too.

Before we present the rst approximation result, we state two auxiliary results.
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Lemma 4.3. Let Assumptions 1.1, 2.8 and 4.1 hold and let 𝜏 > 0. Let 𝜈𝜏 ∈ W−1,𝛼⊥ (Ω𝜏 ). Then the elliptic
equation ∫

Ω𝜏

grad 𝑦𝜏 · grad𝜓 dL𝑑 = −〈𝜓 , 𝜈𝜏 〉 ∀𝜓 ∈ W1,𝛼′
∅ (Ω𝜏 ) .

has a unique solution 𝑦𝜏 ∈ W1,𝛼
∅ (Ω𝜏 ). Moreover, the solution operator ∆−1𝜏 : W−1,𝛼⊥ (Ω𝜏 ) → W1,𝛼

∅ (Ω𝜏 ) is
uniformly bounded for 𝜏 → 0.

A proof of Lemma 4.3 is given in Appendix B.

Lemma 4.4. Let Assumptions 1.1, 2.8 and 4.1 hold and let 𝑞 ∈ 𝔐(Ω,ℝ𝑑 ) and 𝜇 ∈ M⊥(Ω). Let 𝑞𝜀 ∈
𝔐(Ω𝜀,ℝ𝑑 ) such that 𝑞𝜀

∗−⇀ 𝑞 in 𝔐(Ω̃,ℝ𝑑 ) and div𝔐 𝑞𝜀 = �̃� in M⊥(Ω𝜀). Then also div𝔐 𝑞 = 𝜇 in
M⊥(Ω).

Proof. Let 𝜓 ∈ C1(Ω), 𝜂 > 0 and w.l.o.g. assume 𝜀 < 𝜂. Then with 𝜓𝜂 := 𝜓 ( . · (1 + 𝜂)−1) it holds
𝜓𝜂 |Ω𝜀

∈ C1(Ω𝜀) and𝜓𝜂 → 𝜓 in C1(Ω). Let now 𝜉𝜂 ∈ C (Ω̃,ℝ𝑑 ) be a continuous extension of grad𝜓𝜂
onto Ω̃. Then

−
∫
Ω
grad𝜓𝜂 d𝜇 =

∫
Ω̃
𝜉𝜂 · d𝑞𝜀 −−−→

𝜀→0

∫
Ω̃
𝜉𝜂 · d𝑞 =

∫
Ω
grad𝜓𝜂 · d𝑞

and passing to the limit 𝜂 → 0 concludes the proof. �

We are now in the position to state our rst approximation result, which covers convergence of the
minimizers of (BP𝜀 ).

Theorem 4.5. Let Assumptions 1.1, 2.8 and 4.1 hold. It holds Γ-lim𝜀→0𝐻
�̃�

𝜀,0 = 𝐻
𝜇 w.r.t. weak-∗ convergence

in 𝔐(Ω̃,ℝ𝑑 ).

Proof. 1. lim inf-condition: Let 𝑞𝜀 ∈ 𝔐(Ω𝜀,ℝ𝑑 ) be such that 𝑞𝜀
∗−⇀ 𝑞 ∈ 𝔐(Ω̃) in 𝔐(Ω̃). Due to

the weak-∗ convergence, (𝑞𝜀) is bounded in 𝔐(Ω̃), so that
∫
Ω̃
�̂� d|𝑞 | < ∞. Resort now to a

subsequence such that 𝐻 �̃�

𝜀,0(𝑞𝜀) < ∞. Then by Lemma A.2, spt𝑞 ⊂ Ω. Together with Lemma 4.4,
𝑞 is feasible for (BP) and the assertion then follows directly from

∫
Ω̃
�̂� d| . | being l.s.c. w.r.t.

weak-∗ convergence in 𝔐(Ω̃) and ‖ . ‖L𝛼 (Ω̃,ℝ𝑑 ) ≥ 0.

2. lim sup-condition: Let 𝑞 ∈ 𝔐(Ω,ℝ𝑑 ) be arbitrary. In the case 𝐻 𝜇 (𝑞) = ∞, the assertion holds
trivially. Hence, assume 𝐻 𝜇 (𝑞) < ∞.

Let now 𝜑𝜀 be as above and w.l.o.g. assume 𝜀‖𝜑𝜀 ‖𝛼L∞ (ℝ𝑑 ) → 0 for 𝜀 → 0. Set 𝑞𝜀 := 𝜑𝜀 ∗ 𝑞 and
𝜇𝜀 := 𝜑𝜀 ∗ �̃�. Then 𝑞𝜀 ∈ L𝛼 (Ω𝜀,ℝ𝑑 ) and I(𝑞𝜀) → 𝑞 in 𝔐(Ω̃,ℝ𝑑 ) by Lemma A.1. Dene now
𝑒𝜀 := �̃�𝜀 − �̃�. It is straightforward to see that 〈𝑒𝜀 , 1〉 = 0, i.e. 𝑒𝜀 ∈ W−1,𝛼⊥ (Ω𝜀). Then by Lemma 4.3
there is 𝑦𝜀 ∈ W1,𝛼

∅ (Ω𝜀) solving∫
Ω𝜀

grad 𝑦𝜀 · grad𝜓 dL𝑑 = −
∫
Ω𝜀

𝜓 d𝑒𝜀 ∀𝜓 ∈ W1,𝛼′
∅ (Ω𝜀) . (4.1)

13



Moreover, Remark 1.2 and Lemma A.1 yield 𝑒𝜀 → 0 inW−1,𝛼⊥ (Ω𝜀) and hence, �̃�𝜀 → 0 inW1,𝛼′
∅ (Ω̃)

by Lemma 4.3. Thus, �grad 𝑦𝜀 → 0 in L𝛼 (Ω̃) and by dening 𝑞𝜀 ∈ 𝔐(Ω𝜀) as

𝑞𝜀 := 𝑞𝜀 + grad 𝑦𝜀,

we obtain �I(𝑞𝜀) → 𝑞 in 𝔐(Ω̃,ℝ𝑑 ). For𝜓 ∈ W1,𝛼′
∅ (Ω𝜀), leveraging Lemma A.1 2 now yields

−
∫
Ω𝜀

grad𝜓 · d𝑞𝜀 = −
∫
Ω𝜀

grad𝜓 · 𝑞𝜀 dL𝑑 −
∫
Ω𝜀

grad𝜓 · grad 𝑦𝜀 dL𝑑

=

∫
Ω𝜀

𝜓 d𝜇𝜀 +
∫
Ω
𝜓 d𝜇 −

∫
Ω𝜀

𝜓 d𝜇𝜀 =
∫
Ω𝜀

𝜓 d�̃� ,

so that divL𝛼 𝑞𝜀 = �̃� in W−1,𝛼⊥ (Ω𝜀). Thus, 𝑞𝜀 is feasible for (BP𝜀 ). Going on, we note that∫
Ω
𝑤 |𝑞𝜀 | dL𝑑 →

∫
Ω
𝑤 d|𝑞 | due to �I(𝑞𝜀) → 𝑞 ∈ 𝔐(Ω̃). Moreover,

|𝑞𝜀 (𝑥) | ≤ sup
ℎ∈ℝ𝑑 , |ℎ | ≤1

��� ∫
Ω̃
𝜑𝜀 (𝑥 − 𝑦) d(𝑞(𝑦) · ℎ)

��� ≤ ∫
Ω̃

��𝜑𝜀 (𝑥 − 𝑦)�� d|𝑞(𝑦) | , (4.2)

which gives
‖𝑞𝜀 ‖L∞ (Ω𝜀 ) ≤ ‖𝜑𝜀 ‖L∞ (ℝ𝑑 ) |𝑞 | (Ω) . (4.3)

Hence, ( 𝜀
𝛼

) 1
𝛼 ‖𝑞𝜀 ‖L𝛼 (Ω𝜀 ,ℝ𝑑 ) ≤

( 𝜀
𝛼

) 1
𝛼
(
|Ω̃ |‖𝜑𝜀 ‖L∞ (ℝ𝑑 ) ( |𝑞 | (Ω)) + ‖grad 𝑦𝜀 ‖L𝛼 (Ω𝜀 ,ℝ𝑑 )

)
,

which, due to the assumption on 𝜑𝜀 , vanishes for 𝜀 → 0. This yields the desired assertion and
concludes the proof. �

Corollary 4.6. In the setting of Theorem 4.5, let 𝑤 ≥ 𝑤� > 0. Let 𝜀𝑛 > 0 be a vanishing sequence and
(𝑞𝑛) ⊂ L𝛼 (Ω𝜀𝑛 ,ℝ𝑑 ) be the sequence of corresponding solutions of (BP𝜀 ). Then (𝑞𝑛) admits a subsequence
that converges to a solution of (BP) w.r.t. weak-∗ convergence in𝔐(Ω̃).

Proof. Let 𝑞0 ∈ L𝛼 (Ω,ℝ𝑑 ) be xed such that divL𝛼 𝑞0 = 𝜇 inW−1,𝛼⊥ (Ω), which exists due to Lemma 2.10.
Then 𝑞𝑛 satises∫

Ω̃
�̂� |𝑞𝑛 | dL𝑑 +

𝜀𝑛

𝛼
‖𝑞𝑛 ‖𝛼L𝛼 (Ω̃,ℝ𝑑 ) ≤

∫
Ω̃
�̂� |𝑞0 | dL𝑑 +

𝜀𝑛

𝛼
‖𝑞0‖𝛼L𝛼 (Ω̃,ℝ𝑑 ) .

Thus, due to �̂� ≥ 𝑤� > 0 and 𝜀𝑛
𝛼
‖𝑞0‖𝛼L𝛼 (Ω̃,ℝ𝑑 )

→ 0 for 𝑛 →∞, it holds

𝑤�‖𝑞𝑛 ‖L1 (Ω̃) ≤
∫
Ω̃
�̂� |𝑞0 | dL𝑑 < ∞ .

Hence, (I(𝑞𝑛)) is bounded in𝔐(Ω̃) and by the Banach-Alaoglu theorem there exists a subsequence
(denoted by the same symbol), which converges to 𝑞 ∈ 𝔐(Ω̃,ℝ𝑑 ) w.r.t. weak-∗ convergence in 𝔐(Ω̃).
The assertion then follows directly from Theorem 4.5 and the properties of Γ-convergence. �
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4.1. Convergence for vanishing Huber regularization

Going on, we turn to problem (BP𝜀,𝛿 ). As a rst step, we only consider the convergence for 𝛿 → 0. We
start by proving an auxiliary result.

Lemma 4.7. Let Assumption 1.1 hold. For 𝛿 → 0, the functional 𝑞 ↦→
∫
Ω𝜀
G∗
𝜀,𝛿
(𝑞) dL𝑑 converges locally

uniformly to 𝑞 ↦→
∫
Ω𝜀
G∗𝜀,0(𝑞) dL𝑑 on L𝛼 (Ω𝜀,ℝ𝑑 ).

Proof. Let 𝐾 ⊂ L𝛼 (Ω𝜀,ℝ𝑑 ) be a bounded set. We want to show

lim
𝛿→0

sup
𝑞∈𝐾

��� ∫
Ω𝜀

G∗
𝜀,𝛿
(𝑞) − G∗𝜀,0(𝑞) dL𝑑

��� = 0 .

Clearly, ��� ∫
Ω𝜀

G∗
𝜀,𝛿
(𝑞) − G∗𝜀,0(𝑞) dL𝑑

��� ≤ ��� ∫
{ |𝑞 (𝑥) |≤𝛿 }

G∗
𝜀,𝛿
(𝑥, 𝑞(𝑥)) − �̂� |𝑞(𝑥) | − 𝜀

𝛼
|𝑞(𝑥) |𝛼 d𝑥

���
+
��� ∫
{ |𝑞 (𝑥) |>𝛿 }

G∗
𝜀,𝛿
(𝑥, 𝑞(𝑥)) − �̂� |𝑞(𝑥) | − 𝜀

𝛼
|𝑞(𝑥) |𝛼 d𝑥

��� .
We rst consider the rst term:��� ∫

{ |𝑞 | ≤𝛿 }
G∗
𝜀,𝛿
(𝑥, 𝑞(𝑥)) − �̂� |𝑞(𝑥) | − 𝜀

𝛼
|𝑞(𝑥) |𝛼 d𝑥

��� = ��� ∫
{ |𝑞 | ≤𝛿 }

|𝑞 |2 �̂�
𝛿
− 𝛿�̂� − �̂� |𝑞 | − 𝜀

𝛼
|𝑞 |𝛼 dL𝑑

���
≤ 3𝛿 ‖�̂� ‖L1 (Ω𝜀 ) +

𝜀

𝛼
𝛿𝛼 |Ω𝜀 | −−−→

𝛿→0
0 ,

independent of 𝑞. For the second term it holds��� ∫
{ |𝑞 |>𝛿 }

G∗
𝜀,𝛿
(𝑥, 𝑞(𝑥)) − �̂� |𝑞(𝑥) | − 𝜀

𝛼
|𝑞(𝑥) |𝛼 d𝑥

��� = ��� ∫
{ |𝑞 |>𝛿 }

𝜀

𝛼

(
( |𝑞 | − 𝛿)𝛼 − |𝑞 |𝛼

)
− 3
2𝛿�̂� dL𝑑

���
≤
��� ∫
{ |𝑞 |>𝛿 }

𝜀

𝛼

(
( |𝑞 | − 𝛿)𝛼 − |𝑞 |𝛼

)
dL𝑑

��� + 3
2𝛿 ‖�̂� ‖L1 (Ω𝜀 ) .

Denoting 𝑄𝛿 : ℝ→ ℝ, 𝑄𝛿 (𝑥) = max{𝑥, 𝛿}, we see that

0 >

∫
{ |𝑞 |>𝛿 }

( |𝑞 | − 𝛿)𝛼 − |𝑞 |𝛼 dL𝑑 =

∫
{ |𝑞 |>𝛿 }

(𝑄𝛿 ( |𝑞 |) − 𝛿)𝛼 −𝑄𝛿 ( |𝑞 |)𝛼 dL𝑑

>

∫
Ω𝜀

(𝑄𝛿 ( |𝑞 |) − 𝛿)𝛼 −𝑄𝛿 ( |𝑞 |)𝛼 dL𝑑 .

By noting that 𝑄𝛿 ( |𝑞 |) − 𝛿 and 𝑄𝛿 ( |𝑞 |) are non-negative, we thus obtain

sup
𝑞∈𝐾

𝜀

𝛼

��� ∫
{ |𝑞 |>𝛿 }

( |𝑞 | − 𝛿)𝛼 − |𝑞 |𝛼 dL𝑑
��� ≤ sup

𝑞∈𝐾

𝜀

𝛼

��‖𝑄𝛿 ( |𝑞 |) − 𝛿 ‖𝛼L𝛼 (Ω𝜀 ) − ‖𝑄𝛿 ( |𝑞 |) ‖
𝛼
L𝛼 (Ω𝜀 )

�� .
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Because ( . )𝛼 is locally Lipschitz onℝ, there is a constant𝐶𝐾 ≥ 0 such that |‖𝑣 ‖𝛼L𝛼 (Ω𝜀 ,ℝ𝑑 )−‖𝑤 ‖
𝛼

L𝛼 (Ω𝜀 ,ℝ𝑑 ) | ≤
𝐶𝐾 |‖𝑣 ‖L𝛼 (Ω𝜀 ,ℝ𝑑 ) − ‖𝑤 ‖L𝛼 (Ω𝜀 ,ℝ𝑑 ) | for all 𝑣,𝑤 ∈ 𝐾 . Together with the reverse triangle inequality, this
yields

sup
𝑞∈𝐾

𝜀

𝛼

��‖𝑄𝛿 ( |𝑞 |) − 𝛿 ‖𝛼L𝛼 (Ω𝜀 ) − ‖𝑄𝛿 ( |𝑞 |) ‖
𝛼
L𝛼 (Ω𝜀 )

�� ≤ sup
𝑞∈𝐾

𝜀

𝛼
𝐶𝐾

��‖𝑄𝛿 ( |𝑞 |) − 𝛿 ‖L𝛼 (Ω𝜀 ) − ‖𝑄𝛿 ( |𝑞 |) ‖L𝛼 (Ω𝜀 )
��

≤ sup
𝑞∈𝐾

𝜀

𝛼
𝐶𝐾 ‖𝛿 ‖L𝛼 (Ω𝜀 ) =

𝜀

𝛼
𝐶𝐾 |Ω𝜀 |𝛿 −−−→

𝛿→0
0

and concludes the proof. �

Now we’re in a position to prove the desired result on Γ-convergence.

Theorem 4.8. Let Assumptions 1.1, 2.8 and 4.1 hold. Then for 𝜈 ∈ M⊥(Ω𝜀) it holds Γ-lim𝛿→0𝐻
𝜈
𝜀,𝛿

= 𝐻 𝜈
𝜀,0

w.r.t. weak-∗ convergence in 𝔐(Ω𝜀,ℝ𝑑 ).

Proof. 1. lim sup-condition: Let 𝑞 ∈ 𝔐(Ω𝜀,ℝ𝑑 ) be arbitrary. As recovery sequence, we use the
constant sequence, i.e. 𝑞𝛿 ≡ 𝑞. In the case 𝐻 𝜈

𝜀,0(𝑞) = ∞, the assertion holds trivially.

Hence, we assume 𝐻 𝜈
𝜀,0(𝑞) < ∞. In this case, d𝑞

dL𝑑 − 𝛿 ∈ L𝛼 (Ω𝜀,ℝ𝑑 ) with divL𝛼 d𝑞
dL𝑑 = 𝜈 in

W−1,𝛼⊥ (Ω𝜀) and thus, 𝐻 𝜈
𝜀,𝛿
(𝑞) < ∞. Then, by Lemma 4.7, 𝐻 𝜈

𝜀,𝛿
(𝑞) → 𝐻 𝜈

𝜀,0(𝑞) for 𝛿 → 0.

2. lim inf-condition: Let 𝑞 ∈ 𝔐(Ω𝜀,ℝ𝑑 ) be arbitrary and let 𝔐(Ω𝜀,ℝ𝑑 ) 3 𝑞𝛿
∗−⇀ 𝑞 in 𝔐(Ω𝜀,ℝ𝑑 ).

Moreover, we have
∫
Ω𝜀
�̂� d|𝑞 | < ∞ analogously to the proof of Theorem 4.5

First, assume𝐻 𝜈
𝜀,0(𝑞) < ∞ and w.l.o.g. resort to a subsequence of𝑞𝛿 (denoted by the same symbol)

such that lim𝛿→0𝐻
𝜈
𝜀,𝛿
(𝑞𝛿 ) = lim inf𝛿→0𝐻

𝜈
𝜀,𝛿
(𝑞𝛿 ) < ∞. We may w.l.o.g. assume 𝛿 ≤ 1 so that

G∗
𝜀,𝛿
(𝑥, 𝑝) ≥ �̂�

(
|𝑞 | − 3

2

)
+ 𝜀
𝛼

(
( |𝑝 | − 1)+

)𝛼
. (4.4)

Thanks to Lemma 2.10 we may choose 𝑞0 ∈ L𝛼 (Ω𝜀,ℝ𝑑 ) xed with divL𝛼 𝑞0 = 𝜈 in W−1,𝛼⊥ (Ω𝜀)
and obtain ∫

Ω𝜀

𝜀

𝛼
(( | d𝑞𝛿dL𝑑 | − 1)+)

𝛼
≤
∫
Ω𝜀

G∗
𝜀,𝛿
( d𝑞𝛿dL𝑑 ) dL𝑑 ≤

∫
Ω𝜀

G∗
𝜀,𝛿
(𝑞0) dL𝑑 < ∞ (4.5)

and hence d𝑞𝛿
dL𝑑 is bounded in L𝛼 (Ω𝜀,ℝ𝑑 ), i.e. there is some 𝐾 ⊂ L𝛼 (Ω𝜀,ℝ𝑑 ) bounded such that

( d𝑞𝛿dL𝑑 ) ⊂ 𝐾 . This also yields weak convergence of a subsequence of d𝑞𝛿
dL𝑑 in L𝛼 (Ω𝜀,ℝ𝑑 ) and

together with 𝑞𝛿
∗−⇀ 𝑞 in 𝔐(Ω𝜀,ℝ𝑑 ) we have d𝑞𝛿

dL𝑑 −⇀
d𝑞
dL𝑑 in L𝛼 (Ω𝜀,ℝ𝑑 ). Hence, Lemma 4.7

yields

lim inf
𝛿→0

𝐻 𝜈
𝜀,𝛿
(𝑞𝛿 ) ≥ lim inf

𝛿→0
(𝐻 𝜈

𝜀,𝛿
(𝑞𝛿 ) − 𝐻 𝜈

𝜀,0(𝑞𝛿 )) + lim inf
𝛿→0

𝐻 𝜈
𝜀,0(𝑞𝛿 )

≥ − sup
𝑝∈𝐾

��𝐻 𝜈
𝜀,𝛿
(I(𝑝))𝐻 𝜈

𝜀,0(I(𝑝))
�� + lim inf

𝛿→0
𝐻 𝜈
𝜀,0(𝑞𝛿 )

= lim inf
𝛿→0

𝐻 𝜈
𝜀,0(𝑞𝛿 ) ≥ 𝐻 𝜈

𝜀,0(𝑞) ,
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where the last inequality holds due to 𝐻 𝜈
𝜀,0 being l.s.c. w.r.t. weak convergence in L𝛼 (Ω𝜀,ℝ𝑑 ).

Assume now that 𝐻 𝜈
𝜀,0(𝑞) = ∞ with either d𝑞

dL𝑑 ∉ L𝛼 (Ω𝜀,ℝ𝑑 ) or 𝑞 3 L𝑑 . For a contradiction,
assume lim inf𝛿→0𝐻

𝜈
𝜀,𝛿
(𝑞𝛿 ) < ∞. As seen in (4.5), this implies boundedness of d𝑞𝛿

dL𝑑 in L𝛼 (Ω𝜀,ℝ𝑑 )
and as above, we obtain d𝑞𝛿

dL𝑑 −⇀
d𝑞
dL𝑑 in L𝛼 (Ω𝜀,ℝ𝑑 ), which is the desired contradiction.

Finally, we are left with the case 𝐻 𝜈
𝜀,0(𝑞) = ∞ with 𝑞 � L𝑑 and d𝑞

dL𝑑 ∈ L𝛼 (Ω𝜀,ℝ𝑑 ) but
divL𝛼 d𝑞

dL𝑑 ≠ 𝜈 in W−1,𝛼⊥ (Ω𝜀). For a contradiction, we assume lim inf𝛿→0𝐻
𝜈
𝜀,𝛿
(𝑞𝛿 ) < ∞ and

pass to a subsequence (denoted by the same symbol) such that 𝐻 𝜈
𝜀,𝛿
(𝑞𝛿 ) converges. As above, it

follows that d𝑞𝛿
dL𝑑 −⇀

d𝑞
dL𝑑 in L𝛼 (Ω𝜀,ℝ𝑑 ) and therefore

−〈𝜑 , 𝜈〉 =
∫
Ω𝜀

d𝑞𝛿
dL𝑑 · grad𝜑 dL𝑑 →

∫
Ω𝜀

d𝑞
dL𝑑 · grad𝜑 dL𝑑 ∀𝜑 ∈ W1,𝛼′

∅ (Ω𝜀) .

This implies divL𝛼 d𝑞
dL𝑑 = 𝜈 inW−1,𝛼⊥ (Ω𝜀), thus yielding the desired contradiction and concluding

the proof. �

Corollary 4.9. In the setting of Theorem 4.8, let 𝛿𝑛 > 0 be a vanishing sequence and (𝑞𝑛) ⊂ L𝛼 (Ω𝜀,ℝ𝑑 )
be the sequence of corresponding solutions of (BP𝜀,𝛿 ). Then (𝑞𝑛) admits a subsequence that converges to a
solution of (BP𝜀 ) w.r.t. weak-∗ convergence in𝔐(Ω𝜀).

Proof. Analogously to the argument involving (4.5) in the proof of Theorem 4.8,we obtain a subsequence
of 𝑞𝑛 (denoted by the same symbol) with 𝑞𝑛 −⇀ 𝑞 ∈ L𝛼 (Ω𝜀,ℝ𝑑 ) in L𝛼 (Ω𝜀,ℝ𝑑 ). This also implies
I(𝑞𝑛)

∗−⇀ I(𝑞) in 𝔐(Ω𝜀,ℝ𝑑 ) and the assertion follows directly from Theorem 4.8 and the properties
of Γ-convergence. �

4.2. Simultaneous Convergence of 𝜀 and 𝛿

Lastly, we aim to show Γ-convergence for 𝛿 → 0 and 𝜀 → 0 simultaneously.

Theorem 4.10. Let Assumptions 1.1, 2.8 and 4.1 hold and let ℎ : ℝ+ → ℝ+ such that ℎ(𝛿) → ∞ for
𝛿 → 0. Denote 𝜏 := (𝜀, 𝛿) and let 𝜏 → 0 such that

𝜀 · ℎ(𝛿)𝛼 → 0. (4.6)

Then Γ-lim𝜏→0𝐻
�̃�

𝜀,𝛿
= 𝐻 𝜇 w.r.t. weak-∗ convergence in𝔐(Ω̃,ℝ𝑑 ).

Proof. In the following, we will abbreviate 𝐻𝜏 := 𝐻 �̃�

𝜀,𝛿
.

1. lim inf-condition: Let 𝑞 ∈ 𝔐(Ω̃,ℝ𝑑 ) and (𝑞𝜏 ) ⊂ 𝔐(Ω𝜏 ,ℝ𝑑 ) such that 𝑞𝜏
∗−⇀ 𝑞 in 𝔐(Ω̃,ℝ𝑑 ).

Analogously to the lim inf case in the proof of Theorem 4.5, we obtain that 𝑞 is feasible for (BP)
with

∫
Ω
𝑤 d|𝑞 | < ∞.
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Without renaming,we resort to a subsequence of (𝑞𝜏 ) such that lim𝜏→0𝐻𝜏 (𝑞𝜏 ) = lim inf𝜏→0𝐻𝜏 (𝑞𝜏 ) <
∞. Then we obtain

lim inf
𝜏→0

∫{�� d�̃�𝜏
dL𝑑

��>𝛿} �̂� d|𝑞𝜏 (𝑥) | = lim inf
𝜏→0

∫
Ω̃
�̂� d|𝑞𝜏 (𝑥) | −

∫{�� d�̃�𝜏
dL𝑑

��≤𝛿} �̂� d|𝑞𝜏 (𝑥) |

≥ lim inf
𝜏→0

∫
Ω̃
�̂� d|𝑞𝜏 (𝑥) | − 𝛿 ‖�̂� ‖L1 (Ω̃) =

∫
Ω
𝑤 d|𝑞 |

thanks to
∫
Ω̃
�̂� d| . | being l.s.c. w.r.t. weak-∗ convergence in𝔐(Ω̃). Going on, we see that∫{�� d�̃�𝜏

dL𝑑

��>𝛿} 𝜀𝛼 ( | d�̃�𝜏dL𝑑 | − 𝛿)
𝛼
− 3
2𝛿�̂� dL𝑑 ≥ −32𝛿 ‖�̂� ‖L1 (Ω̃) −−−→𝜏→0

0

as well as ∫{�� d�̃�𝜏
dL𝑑

��≤𝛿} | d�̃�𝜏dL𝑑 |2
�̂�

2𝛿 − 𝛿�̂� dL𝑑 ≥ 𝛿 ‖�̂� ‖L1 (Ω̃) −−−→𝜏→0
0 .

In summary, this yields lim inf𝜏→0𝐻𝜏 (𝑞𝜏 ) ≥ 𝐻 𝜇 (𝑞).

2. lim sup-condition: Let 𝑞 ∈ 𝔐(Ω,ℝ𝑑 ) be arbitrary. In the case 𝐻 𝜇 (𝑞) = ∞ the assertion again
holds trivially.

Hence, let 𝐻 𝜇 (𝑞) < ∞. Let (𝜑𝜏 ) be as above and w.l.o.g. assume ‖𝜑𝜏 ‖L∞ (ℝ𝑑 ) ≤ ℎ(𝛿). Denote
𝑞𝜏 := 𝜑𝜏∗𝑞 ∈ L𝛼 (Ω𝜏 ,ℝ𝑑 ) and similarly for 𝜇𝜏 . By LemmaA.1, it holdsI(𝑞𝜏 ) → 𝑞 in𝔐(Ω̃,ℝ𝑑 ) and
div𝔐 I(𝑞𝜏 ) = 𝜇𝜏 inM⊥(Ω̃). Moreover, we obtain ‖𝑞𝜏 ‖L∞ (Ω̃) ≤ 𝐶ℎ(𝛿) for some constant 𝐶 > 0
similarly to (4.2) and (4.3). Analogously to the proof of Theorem 4.5, we set 𝑞𝜏 := 𝑞𝜏 + grad 𝑦𝜏 ,
where 𝑦𝜏 ∈ W1,𝛼′

∅ (Ω𝜏 ) solves the analogue to (4.1). Then we have �I(𝑞𝜏 ) → 𝑞 in 𝔐(Ω̃,ℝ𝑑 ),
divL𝛼 𝑞𝜏 = �̃� in W−1,𝛼⊥ (Ω̃) and �grad 𝑦𝜏 → 0 in L𝛼 (Ω̃,ℝ𝑑 ). Going on, it holds∫

{ |𝑞𝜏 |<𝛿 }
|𝑞𝜏 |2

�̂�

2𝛿 − 𝛿�̂� dL𝑑 ≤
∫
Ω̃
𝛿�̂� − 𝛿�̂� dL𝑑 = 0

and ∫
{ |𝑞𝜏 | ≥𝛿 }

G∗
𝜀,𝛿
(𝑞𝜏 ) dL𝑑 ≤

𝜀

𝛼

(
‖𝑞𝜏 +�grad 𝑦𝜏 ‖L𝛼 (Ω̃,ℝ𝑑 )

)𝛼
+
∫
Ω̃
|𝑞𝜏 |�̂� dL𝑑 . (4.7)

Due to (4.6), ( 𝜀
𝛼

) 1
𝛼 ‖𝑞𝜏 ‖L𝛼 (Ω̃,ℝ𝑑 ) ≤ 𝐶

( 𝜀
𝛼

) 1
𝛼

ℎ(𝛿) −−−→
𝜏→0

0 .

Together with the strong convergence of I(𝑞𝜏 ) for 𝜏 → 0 and �grad 𝑦𝜏 → 0 in L𝛼 (Ω̃,ℝ𝑑 ), the
right hand side of (4.7) converges to 𝐻 𝜇 (𝑞), thus concluding the proof. �

Corollary 4.11. In the setting of Theorem 4.10, let𝑤 ≥ 𝑤� > 0 and let 𝜀𝑛, 𝛿𝑛 > 0 be a vanishing sequences
such that (4.6) holds. Let (𝑞𝑛) ⊂ L𝛼 (Ω𝜀𝑛 ,ℝ𝑑 ) be the sequence of corresponding solutions of (BP𝜀,𝛿 ). Then
(𝑞𝑛) admits a subsequence that converges to a solution of (BP) w.r.t. weak-∗ convergence in𝔐(Ω𝜀).

Proof. Let 𝑞0 ∈ L𝛼 (Ω,ℝ𝑑 ) be xed such that divL𝛼 𝑞0 = 𝜇 inW−1,𝛼⊥ (Ω), which exists due to Lemma 2.10.
Then thanks to (4.4) 𝑞𝑛 satises∫

Ω̃
�̂�

(
|𝑞𝑛 | −

3
2

)
+ 𝜀𝑛
𝛼
((( |𝑞𝑛 | − 1)+))𝛼 dL𝑑 ≤

∫
Ω̃
G∗
𝜀𝑛,𝛿𝑛
(𝑞𝑛) dL𝑑 ≤

∫
Ω̃
G∗
𝜀𝑛,𝛿𝑛
(𝑞) dL𝑑 ,
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where for the right hand side it holds

lim sup
𝑛→∞

∫
Ω̃
G∗
𝜀𝑛,𝛿𝑛
(𝑞0) dL𝑑 ≤

∫
Ω̃
�̂�𝑞0 dL𝑑 < ∞

by similar argumentation as in lim sup case of the preceding proof. Thus, due to 𝑤 ≥ 𝑤� > 0, the
sequence (𝑞𝑛) is bounded in L1(Ω̃,ℝ𝑑 ) and the assertion then follows by argumentation analogous to
the proof Corollary 4.6. �

5. Numerical Examples

In this section, we report on the conducted numerical experiments. We start by briey explaining our
discretization scheme.

5.1. Discretization via Finite Elements

To discretize the Newton equation in (3.8), we employ standard piecewise linear and continuous nite
elements. The nodal basis associated with nodes 𝑥1, . . . , 𝑥𝑛 , 𝑛 ∈ ℕ, of a given triangular grid is denoted
by 𝜑1, . . . , 𝜑𝑛 such that the discretized ansatz and trial space is 𝑉𝑛 = span(𝜑1, . . . , 𝜑𝑛). Now, given an
iterate 𝑦ℎ ∈ 𝑉𝑛 , the discrete counterpart of (3.8) reads

𝜂ℎ ∈ 𝑉𝑛,
∫
Ω
𝜂ℎ dL𝑑 = 0,∫

Ω
𝐺 ′
𝜀,𝛿
(− grad 𝑦ℎ) grad𝜂ℎ · grad𝜓 dL𝑑 =

∫
Ω
𝐺𝜀,𝛿 (− grad 𝑦ℎ) · grad𝜓 dL𝑑 +

∫
Ω
𝜓 d𝜇

∀𝜓 ∈ 𝑉𝑛 :
∫
Ω
𝜓 dL𝑑 = 0 .

(5.1)

We introduce the matrices

𝐴(𝑦ℎ)𝑖 𝑗 :=
∫
Ω
𝐺 ′
𝜀,𝛿
(− grad 𝑦ℎ) grad𝜑𝑖 · grad𝜑 𝑗 dL𝑑 , 𝑀𝑖 𝑗 :=

∫
Ω
𝜑𝑖𝜑 𝑗 dL𝑑

and the vectors
𝑏 (𝑦ℎ)𝑖 :=

∫
Ω
𝐺𝜀,𝛿 (− grad 𝑦ℎ) · grad𝜑𝑖 dL𝑑 , 𝑑𝑖 :=

∫
Ω
𝜑𝑖 d𝜇. (5.2)

Then (5.1) is equivalent to

1>𝑀𝜂 = 0,
𝜂>𝐴(𝑦ℎ)𝑣 = (𝑏 (𝑦ℎ) + 𝑑)>𝑣 ∀𝑣 ∈ ℝ𝑛 : 1>𝑀𝑣 = 0 (5.3)

where 𝜂 ∈ ℝ𝑛 denotes the coecient vector of 𝜂ℎ for the basis 𝜑1, . . . , 𝜑𝑛 and 1 = [1, . . . , 1]>. If we
introduce a scalar Lagrange multiplier 𝑟 associated with (5.3), then the system is equivalent to the
saddle point problem (

𝐴(𝑦ℎ) 𝑀1
1>𝑀 0

) (
𝜂

𝑟

)
=

(
𝑏 (𝑦ℎ) + 𝑑

0

)
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a) 𝜀 = 5 · 10−1, 𝛿 = 10−2 b) 𝜀 = 5 · 10−1, 𝛿 = 10−3 c) 𝜀 = 5 · 10−1, 𝛿 = 10−4

d) 𝜀 = 5 · 10−3, 𝛿 = 10−2 e) 𝜀 = 5 · 10−3, 𝛿 = 10−3 f) 𝜀 = 5 · 10−3, 𝛿 = 10−4

Figure 1.: Visualization of the ow eld for an example with piecewise linear/constant cost function.
Both 𝜇+ and 𝜇− are Gaussians centered in the bottom left and top right quadrant, respectively.

Remark 5.1. If𝑤 is chosen piecewise constant on the triangular grid, the entries of 𝐴(𝑦ℎ) and 𝑏 (𝑦ℎ) can
be evaluated exactly, since grad 𝑦ℎ is constant on each element. The same holds for the objective J (𝑦ℎ)
in the Armijo line search, as the second integral only involves linear combinations of piecewise linear
functions on the elements, which can be integrated exactly.

5.2. Influence of 𝜀 and 𝛿

We rst illustrate eect of the regularization parameters 𝜀 and 𝛿 on the solutions of (BP𝜀,𝛿 ). We choose
a simple Friedrich-Keller grid, i.e. we divide the domain Ω = [0, 1]2 into a regular partition of equally
sized squares and divide each square into two congruent triangles.

Both the marginals 𝜇+, 𝜇− and the cost function 𝑤 are non-negative functions which are constant
on the squares, i.e. they are constant across two adjacent triangles. For the exponent 𝛼 , we choose
𝛼 = 2. Note that we required 𝛼 < 𝑑

𝑑−1 in Assumption 1.1, so that 𝛼 = 2 is actually a limit case. We
start the iteration with 𝑦 ≡ 0 and use the parameters 𝜎0 = 1, 𝛽 = 1

2 , 𝛾 = 1
10 for the Armijo line search

(Algorithm 2). As stopping criterion, we use the relative error of the optimality condition (3.7). More
precisely, for each 𝑖 = 1, . . . , 𝑛 we calculated 𝑑𝑖 and 𝑏 (𝑦)𝑖 as in (5.2) and use the relative error

|𝑑 − 𝑏 (𝑦) |
|𝑏 (𝑦) | (5.4)

and stopped the iteration once this error dropped below 10−8 or after 1000 iterations.

20



a) 𝜀 = 5 · 10−3, 𝛿 = 10−1 b) 𝜀 = 5 · 10−3, 𝛿 = 10−3 c) 𝜀 = 5 · 10−3, 𝛿 = 10−5

d) 𝜀 = 5 · 10−5, 𝛿 = 10−1 e) 𝜀 = 5 · 10−5, 𝛿 = 10−3 f) 𝜀 = 5 · 10−5, 𝛿 = 10−5

Figure 2.: Visualization of the ow eld for an example where the cost function is a mixture of three
Gaussians. Both 𝜇+ and 𝜇− are concentrated on a single square in the top left and top right
corner, respectively.

Figures 1 to 3 show solutions of (BP𝜀,𝛿 ) for dierent choices of 𝜇+, 𝜇− and 𝑤 . The cost function 𝑤 is
encoded by the gray scale background, where darker shades denote higher costs. In all cases, 𝑤 is
bounded away from zero. The vector eld𝑞 is encoded by the blue arrows. For purposes of visualization,
we display a downsampled version of 𝑞, which was achieved by taking the average over the value of 𝑞
across 4 squares (i.e. 8 triangles) each. Moreover, we only plot arrows who’s Euclidian norm is larger
than 1% of the largest Euclidian norm of an entry in the averaged 𝑞. Note that the arrows are scaled for
each subgure independently. The mesh consists of 5000 triangles for Fig. 1, 6050 triangles for Fig. 2
and 8450 triangles for Fig. 3.

We can observe that for 𝜀 → 0, the solutions𝑞 becomemore singular, while for large 𝜀 the regularization
terms dominates the transportation cost so that the mass is transported more evenly through the
domain. As for the parameter 𝛿 controlling the Huber regularization term, we can observe that while
having only small inuence on the regularity of 𝑞, the overall objective value is reduced for large 𝛿 .
This can be seen best in Fig. 3, where the maze has multiple solutions. While for small 𝛿 the shortest
path is preferred, we see that other paths are used as well for larger 𝛿 . This observation is in accordance
to Theorem 3.5 due to the terms −𝛿𝑤 in G∗

𝜀,𝛿
.

5.3. Speed of Convergence

Figure 4 shows the observed relative errors in the optimality condition (as described above) in de-
pendence on the number of iterations for selected instances of the examples from Figs. 2 and 3. We
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a) 𝜀 = 5 · 10−2, 𝛿 = 101 b) 𝜀 = 5 · 10−2, 𝛿 = 10−1 c) 𝜀 = 5 · 10−2, 𝛿 = 10−3

d) 𝜀 = 5 · 10−4, 𝛿 = 101 e) 𝜀 = 5 · 10−4, 𝛿 = 10−1 f) 𝜀 = 5 · 10−4, 𝛿 = 10−3

Figure 3.: Visualization of the ow eld for an example where the cost function encodes a maze.
Both 𝜇+ and 𝜇− are concentrated on a single square in the top left and bottom right corner,
respectively.

observe that larger regularization parameters, both for 𝛿 and 𝜀 signicantly speed up convergence.
In fact, for some combinations of 𝛿 and 𝜀 the iteration failed to terminate for the given stopping
criterion within the given maximum number of iterations. These cases mostly correspond to very
small regularization parameters. However, for most test cases, we see quadratic convergence once
we’re close to the solution.

Note that larger values for 𝜀 are interesting in the context of trac congestion [12]. The eect studied
here can be observed by comparing Figs. 3c) and 3f). Here we can see, that the larger value of 𝜀 promotes
the shortest path, while the larger value promotes to spread the ow of mass across the dierent
possible paths even if they are longer.

We also point out that our stopping criterion (5.4) is rather strict. Among the literature reviewed
in Section 1.2, a similar criterion is used only in [6, 19]. In these publications rst order methods are
employed, which naturally need a much higher number of iterations to achieve the same accuracy.
In [27] a xed-point residual of the Chambolle-Pock iteration is used as stopping criterion, which is
not as easy to interpret. For the ROF-Model in [21], the authors are mainly interested in the objective
value. Hence, they only consider experiments where the objective value is known and use the error in
the objective value as stopping criterion. Finally, [4, 15] use the relative change in the iterates 𝑄 𝑗 and
𝜇ℎ (𝑡) (roughly corresponding to 𝑞 and |𝑞 | in our notation) as stopping criterion.
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a) Example from Fig. 3 for 𝜀 = 5 · 10−4
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b) Example from Fig. 3 for 𝛿 = 10−4
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c) Example from Fig. 2 for 𝜀 = 5 · 10−4
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d) Example from Fig. 2 for 𝛿 = 10−4

Figure 4.: Relative error as in (5.4) for each iteration for selected instances of the examples shown
in Figs. 2 and 3.

6. Conclusion & Outlook

In contrast to the original Beckmann problem, the L𝛼 -regularized counterpart has unique solutions
even for 𝜇+, 𝜇− ∈ 𝔐(Ω). Moreover, this regularization naturally gives rise to a semi-smooth Newton
scheme that can be used to solve the problem numerically. For the iteration step to be well posed,
we add a second regularization term of Huber type. Convergence towards the original problem for
vanishing regularization parameters can be proven, if the regularization parameters are coupled in an
appropriate way.

This work can be extended both on the theoretic part and the numerical part. On the theoretical part,
a rigorous convergence theory for the proposed semi-smooth Newton iteration Algorithm 1 is still
missing. Regarding numerics, we have only worked with simple, xed grids and similar to [4] one
could explore whether mesh adaption techniques are benecial for the speed of convergence and
accuracy of the solution. Moreover one could employ path following schemes to try and improve the
convergence speed.
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Appendix

For the following result, Ω̃ and .̃ are dened as in Section 4.

Lemma A.1. Let 0 < 𝜏 → 0 and let the notation of Section 4 hold. Let 𝑞 ∈ 𝔐(Ω,ℝ𝑑 ) such that
div𝔐 𝑞 = 𝜇 inM⊥(Ω) and denote 𝑞𝜏 := 𝜑𝜏 ∗ 𝑞. Then

1. 𝑞𝜏 ∈ L𝛼 (Ω̃,ℝ𝑑 )

2. divL𝛼 𝑞𝜏 = 𝜑𝜏 ∗ �̃� inW−1,𝛼⊥ (Ω̃)

3. 𝑞𝜏 → 𝑞 strongly in𝔐(Ω̃,ℝ𝑑 ).

4. |𝑞𝜏 | → |𝑞 | strongly in 𝔐(Ω̃) and hence also w.r.t. weak-∗ convergence in 𝔐(Ω̃).

Proof. 1. See [16, Proposition 1.16].

2. Let𝜓 ∈ W1,𝛼′
∅ (Ω̃). By Denition 2.2 and Fubini’s theorem, it holds

−〈divL𝛼 𝑞𝜏 , 𝜓 〉 =
∫
Ω̃
𝑞𝜏 · grad𝜓 dL𝑑 =

∫
Ω̃

∫
Ω̃
𝜑𝜏 (𝑦 − 𝑥) d(𝑞(𝑥) · grad𝜓 (𝑦)) d𝑦

=

∫
Ω̃

(∫
Ω̃
𝜑𝜏 (𝑦 − 𝑥) grad𝜓 (𝑦) d𝑦

)
· d𝑞(𝑥) .

(A.1)

Denote𝜓𝜏 (𝑥) :=
∫
Ω̃
𝜑𝜏 (𝑦 − 𝑥)𝜓 (𝑦) d𝑦 . Then for every 𝑥 ∈ Ω, integration by parts yields∫

Ω̃
𝜑𝜏 (𝑦 − 𝑥) grad𝜓 (𝑦) d𝑦 = grad𝜓𝜏 (𝑥)

due to 𝜑𝜏 ( . − 𝑥) = 0 on 𝜕Ω̃. Moreover, we note that 𝜓𝜏 |Ω ∈ W1,𝛼′ (Ω). Hence, since 𝑞 is the
extension by zero of 𝑞 onto Ω̃

−〈divL𝛼 𝑞𝜏 , 𝜓 〉 =
∫
Ω
grad𝜓𝜏 · d𝑞 = −〈�̃� , 𝜓𝜏 〉 = −〈𝜇 ∗𝜓𝜏 , 𝜓 〉 ,

where the last equation follows analogously to (A.1).

3. Let 𝐴 ⊂ Ω̃. Then

|𝑞𝜏 − 𝑞 | (𝐴) =
�� ∫
𝐴

∫
Ω̃
𝜑𝜏 (𝑦 − 𝑥) d𝑞(𝑥) d𝑦 − 𝑞(𝐴)

��
=
�� ∫

Ω̃

∫
𝐴

𝜑𝜏 (𝑦 − 𝑥) d𝑦 d𝑞(𝑥) − 𝑞(𝐴)
�� .

Clearly, the mapping 𝑥 ↦→
∫
𝐴
𝜑𝜏 (𝑦 − 𝑥) d𝑦 is bounded by 1 for all 𝜏 > 0 and converges to 1𝐴

pointwise thanks to spt𝑞 ⊂ Ω. Hence, by dominated convergence, |𝑞𝜏 − 𝑞 | (𝐴) → 0.

4. The last assertion is an immediate consequence of the reverse triangle inequality. �

LemmaA.2. Let 0 < 𝜏 → 0 and let the notation of Section 4 hold. Let𝑞𝜏 ∈ 𝔐(Ω𝜏 ,ℝ𝑑 ) and𝑞 ∈ 𝔐(Ω̃,ℝ𝑑 )
such that 𝑞𝜏

∗−⇀ 𝑞 in𝔐(Ω̃,ℝ𝑑 ). Then spt𝑞 ⊂ Ω.
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Proof. Assume the contrary such that there is a Borel set 𝐴 ⊂ Ω̃ \ Ω with |𝑞 | (𝐴) = 𝑀 > 0. Then there
is a compact set 𝐾 ⊂ 𝐴 such that |𝑞 | (𝐾) > 𝑀

2 and dist(𝐾,Ω) = 𝑟 > 0. Set 𝑁 := 𝐾 + B r
2
(0). From the

weak-∗ lower semicontinuity of 𝔐(Ω̃,ℝ𝑑 ) 3 𝑝 ↦→ |𝑝 | (𝐴) ∈ ℝ for an arbitrary (relatively) open set 𝐴
(c.f. e.g. [25]), we deduce

0 <
𝑀

2 < |𝑞 | (𝐾) ≤ |𝑞 | (𝑁 ) ≤ lim inf
𝜏→0

|𝑞𝜏 | (𝑁 ) = 0 ,

where we used that spt𝑞𝜏 ⊂ Ω𝜏 and Ω𝜏 ∩ 𝑁 = ∅ for 𝜏 > 0 suciently small. �

B. Proof of Lemma 4.3

In order to derive a proof for Lemma 4.3, we aim to express the transformation of the domain through
a transformation of the dierential operator. First, we present a special case of [17, Theorem 1] that is
adapted to our setting.

Theorem B.1. Let Assumptions 1.1 and 2.8 hold with 𝛼 ′ = 𝑟 ≥ 2 and by 𝑟 ′ denote the conjugate exponent,
i.e. 1

𝑟
+ 1
𝑟 ′ = 1. Let 𝐷 : Ω → ℝ𝑑×𝑑 be a measurable map satisfying𝑚𝐼 � 𝐷 (𝑥) � 𝑀𝐼 for all 𝑥 ∈ Ω with

0 < 𝑚 ≤ 𝑀 . Dene

𝐴 : W1,𝑟
∅ (Ω) →W−1,𝑟⊥ (Ω) , 〈𝐴𝑦 , 𝜑〉 :=

∫
Ω
(𝐷 (𝑥) grad 𝑦 (𝑥)) · grad𝜑 (𝑥) d𝑥 ∀𝜑 ∈ W1,𝑟 ′

∅ (Ω) (B.1)

and ∆𝑟 := divL𝑟 grad : W1,𝑟
∅ (Ω) →W−1,𝑟⊥ (Ω). Note that ∆𝑟 is continuously invertible by Assumption 2.8.

Let𝑚 and 𝑀 denote the inmum and supremum over 𝑥 ∈ Ω of the smallest and largest eigenvalue of
𝐷 (𝑥), respectively. Finally, set 𝑘 := (1 − 𝑚2

𝑀2 ).

If 𝑘 ‖∆−1𝑟 ‖ < 1, then 𝐴 is bijective. Moreover, 𝐴−1 is continuous with

‖𝐴−1‖W−1,𝑟⊥ (Ω)→W1,𝑟
∅ (Ω)

≤ 𝑚‖∆−1𝑟 ‖
𝑀2(1 − 𝑘 ‖∆−1𝑟 ‖)

.

Proof. This proof follows the outline of the proof given in [17, Theorem 1].

We rst note that 𝐴 is well dened and bounded as mapping from W1,𝑟 ′
∅ (Ω) to W−1,𝑟⊥ (Ω), which can

be seen by applying Hölder’s inequality. Moreover, 𝐴 is injective, which can be seen as follows. Let
𝑦1, 𝑦2 ∈ W1,𝑟

∅ (Ω) with 𝐴𝑦1 = 𝐴𝑦2. Due to 𝑟 ≥ 2, we may choose 𝜑 = 𝑦1 − 𝑦2 ∈ W1,𝑟
∅ (Ω) ↩→ W1,𝑟 ′

∅ (Ω)
in (B.1), which yields 0 =

∫
Ω
(𝐷 (grad 𝑦1−grad 𝑦2)) · (grad 𝑦1−grad 𝑦2). Because 𝐷 has positive denite

values, this implies ‖𝑦1 − 𝑦2‖ = 0, as conjectured.

Let now 𝑡 := 𝑚𝑀−2 and let 𝐵 : L𝑟 (Ω,ℝ𝑑 ) → L𝑟 (Ω,ℝ𝑑 ), (𝐵𝑦) (𝑥) := 𝑦 (𝑥) − 𝑡𝐷 (𝑥)𝑦 (𝑥). Clearly, 𝐵 is
linear. Moreover, 𝐵 is bounded with ‖𝐵‖ ≤ 𝑘 .

Going on, let 𝜈 ∈ W−1,𝑟⊥ (Ω) and set

𝑄𝜈 : W1,𝑟
∅ (Ω) →W1,𝑟

∅ (Ω) ,
〈𝑄𝜈𝑦 , 𝜑〉 = 〈∆−1𝑟 (− divL𝑟 𝐵 grad 𝑦 + 𝑡𝜈) , 𝜑〉 ∀𝜑 ∈ W−1,𝑟

′
⊥ (Ω) .

(B.2)
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Note that

〈𝑄𝜈𝑦 , 𝜑〉 = 〈𝑦 , 𝜑〉 − 𝑡 〈𝐷 grad 𝑦 , grad (∆−1𝑟 )
∗
𝜑〉L𝑟 (Ω)×L𝑟 ′ (Ω) + 𝑡 〈𝜈 , (∆−1𝑟 )

∗
𝜑〉

= 〈𝑦 − 𝑡 ∆−1𝑟 (𝐴𝑦 − 𝜈) , 𝜑〉 . (B.3)

From (B.2), it is straight forward to derive

‖𝑄𝜈𝜁 −𝑄𝜈𝜉 ‖W1,𝑟
∅ (Ω)

≤ ‖∆−1𝑟 (− divL𝑟 )𝐵 grad‖‖𝜁 − 𝜉 ‖W1,𝑟
∅ (Ω)

≤ ‖∆−1𝑟 ‖‖(− divL𝑟 )𝐵 grad‖‖𝜁 − 𝜉 ‖W1,𝑟
∅ (Ω)

≤ 𝑘 ‖∆−1𝑟 ‖‖𝜁 − 𝜉 ‖W1,𝑟
∅ (Ω)

for all 𝜁 , 𝜉 ∈ W1,𝑟
∅ (Ω). Hence, 𝑄𝜈 is Lipschitz continuous with Lipschitz constant 𝑘 ‖∆−1𝑟 ‖. Due to the

assumption 𝑘 ‖∆−1𝑟 ‖ < 1, 𝑄𝜈 is also strictly contractive and by (B.3) the xed point 𝑦 ∈ W1,𝑟 (Ω) of
𝑄𝜈 is a solution of 𝐴𝑦 = 𝜈 . Hence, 𝐴 is surjective and it remains to prove the conjectured continuity
constant.

To that end, let 𝜈, 𝜌 ∈ W−1,𝑟 (Ω) and let 𝜉, 𝜁 ∈ W1,𝑟 (Ω) be the corresponding xed points of 𝑄𝜈 and 𝑄𝜌 .
Then,

‖𝜁 − 𝜉 ‖W1,𝑟 (Ω) = ‖𝑄𝜌𝜁 −𝑄𝜈𝜉 ‖W1,𝑟 (Ω) ≤ ‖𝑄𝜌𝜁 −𝑄𝜌𝜉 ‖W1,𝑟 (Ω) + ‖𝑄𝜌𝜉 −𝑄𝜈𝜉 ‖W1,𝑟 (Ω)

≤ 𝑘 ‖∆−1𝑟 ‖‖𝜁 − 𝜉 ‖W1,𝑟 (Ω) + ‖𝑡 ∆−1𝑟 (𝜌 − 𝜈)‖W1,𝑟 (Ω)

≤ 𝑘 ‖∆−1𝑟 ‖‖𝜁 − 𝜉 ‖W1,𝑟 (Ω) + 𝑡 ‖∆−1𝑟 ‖‖𝜌 − 𝜈 ‖W−1,𝑟 (Ω) .

Therefore, we obtain

‖𝐴−1𝜌 −𝐴−1𝜈 ‖W1,𝑟 (Ω) (1 − 𝑘 ‖∆−1𝑟 ‖) = ‖𝜁 − 𝜉 ‖W1,𝑟 (Ω) (1 − 𝑘 ‖∆−1𝑟 ‖) ≤ 𝑡 ‖∆−1𝑟 ‖‖𝜌 − 𝜈 ‖W−1,𝑟 (Ω) ,

which concludes the proof. �

Theorem B.1 now allows us to solve the Poisson equation on Ω𝜏 , which is covered by the following
Lemma.

Lemma B.2. In the setting of Theorem B.1, let Assumption 4.1 hold in addition and let 𝜏 > 0. Then, the
equation ∫

Ω𝜏

grad 𝑦𝜏 · grad𝜑 dL𝑑 = 〈𝜑 , 𝜈𝜏 〉 ∀𝜑 ∈ W1,𝑟 ′
∅ (Ω𝜏 ) . (B.4)

has a unique solution 𝑦𝜏 ∈ W1,𝑟
∅ (Ω𝜏 ) for every 𝜈𝜏 ∈ W−1,𝑟⊥ (Ω). Moreover, the solution operator ∆−1𝑟,𝜏 :

W−1,𝑟⊥ (Ω𝜏 ) →W1,𝑟
∅ (Ω𝜏 ) of (B.4) is continuous with

‖∆−1𝑟,𝜏 ‖W−1,𝑟⊥ (Ω𝜏 )→W1,𝑟
∅ (Ω𝜏 ) ≤ ‖∆

−1
𝑟 ‖(1 + 𝜏)2 .

Proof. W.l.o.g. we assume Ω𝜏 = (1 + 𝜏)Ω. Let Φ𝜏𝜑 (𝑥) = 𝜑
(
𝑥
1+𝜏

)
and note that Φ𝜏 is a homeomorphism

fromW1,𝑠
∅ (Ω) toW1,𝑠

∅ (Ω𝜏 ) for every 𝑠 > 1. Moreover, let 𝜔𝜏 := (1 + 𝜏)𝑑−2𝐼 ∈ ℝ𝑑×𝑑 . Note that the only
eigenvalue of 𝜔𝜏 is (1 + 𝜏)𝑑−2. Let now 𝑔 ∈ W−1,𝑟⊥ (Ω) and consider the equation∫

Ω
𝜔𝜏 grad 𝑦 · grad 𝑣 dL𝑑 = 〈𝑔 , 𝑣〉 ∀𝑣 ∈ W1,𝑟 ′

∅ (Ω) . (B.5)
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By Theorem B.1, (B.5) has a unique solution 𝑦 ∈ W1,𝑟
∅ (Ω). By dening 𝑔 ∈ W−1,𝑟⊥ (Ω) via 𝑔 :=

(1 + 𝜏)𝑑Φ−1𝜏 𝜈𝜏 as well as 𝑦𝜏 := Φ𝜏𝑦 ∈ W1,𝑟
∅ (Ω𝜏 ) and inserting both into (B.5), we obtain∫

Ω

(
𝜔𝜏 gradΦ−1𝜏 𝑦𝜏

)
· gradΦ−1𝜏 𝜓 = 〈𝜓 , 𝜈𝜏 〉 ∀𝜓 ∈ W1,𝑟 ′

∅ (Ω𝜏 ) , (B.6)

where we have used that Φ𝜏 is a bijection. Using the transformation formula, (B.6) can be seen to be
equivalent to (B.4) and hence, 𝑦𝜏 is a solution of (B.4). Note that 𝑦𝜏 is the unique solution, since 𝑦 is
the unique solution of (B.5) and Φ𝜏 is a bijection.

To show continuity of the solution operator, we rst note that thanks to (B.5) for 𝑦𝜏 it holds

‖𝑦𝜏 ‖W1,𝑟
∅ (Ω𝜏 ) = 𝜔

−1
𝜏 ‖Φ𝜏 ∆−1𝑟 𝑔‖W1,𝑟

∅ (Ω𝜏 ) ≤
‖Φ𝜏 ‖W1,𝑟

∅ (Ω)→W1,𝑟
∅ (Ω𝜏 ) ‖∆

−1
𝑟 ‖‖𝑔‖W−1,𝑟⊥ (Ω)

(1 + 𝜏)𝑑−2
,

where

‖𝑔‖W−1,𝑟⊥ (Ω) ≤ sup
1=‖𝑣 ‖

W1,𝑟 ′
∅ (Ω)

‖𝜈𝜏 ‖W−1,𝑟⊥ (Ω𝜏 ) ‖Φ𝜏𝑣 ‖W1,𝑟 ′
∅ (Ω𝜏 ) ≤ ‖𝜈𝜏 ‖W−1,𝑟⊥ (Ω𝜏 ) ‖Φ𝜏 ‖W1,𝑟 ′

∅ (Ω)→W1,𝑟 ′
∅ (Ω𝜏 )

and it remains to compute the operator norm ‖Φ𝜏 ‖W1,𝑠
∅ (Ω)→W1,𝑠

∅ (Ω𝜏 ) . To this end, let 𝜑 ∈ W
1,𝑠
∅ (Ω). Using

the transformation formula, it is straightforward to compute

‖Φ𝜏𝜑 ‖L𝑠 (Ω𝜏 ) = (1 + 𝜏)
𝑑
𝑠 ‖𝜑 ‖L𝑠 (Ω) ,

‖ 1
1 + 𝜏 gradΦ𝜏𝜑 ‖L

𝑠 (Ω𝜏 ) = (1 + 𝜏)
𝑑
𝑠
−1‖grad𝜑 ‖L𝑠 (Ω,ℝ𝑑 ) ,

such that

‖Φ𝜏 ‖W1,𝑠
∅ (Ω)→W1,𝑠

∅ (Ω𝜏 ) = sup
1=‖𝜑 ‖

W1,𝑠
∅ (Ω)

(1 + 𝜏)
𝑑
𝑠 ‖𝜑 ‖L𝑠 (Ω) + (1 + 𝜏)

𝑑
𝑠
−1‖grad𝜑 ‖L𝑠 (Ω,ℝ𝑑 )

≤ sup
𝜁 ,𝜉 ∈[0,1]
𝜁+𝜉=1

𝜁 (1 + 𝜏)
𝑑
𝑠 + 𝜉 (1 + 𝜏)

𝑑
𝑠
−1 = (1 + 𝜏)

𝑑
𝑠 .

Hence,

‖∆−1𝑟,𝜏 𝜈𝜏 ‖W1,𝑟
∅ (Ω𝜏 )

‖𝜈𝜏 ‖W−1,𝑟⊥ (Ω𝜏 )
=

‖𝑦𝜏 ‖W1,𝑟
∅ (Ω𝜏 )

‖𝜈𝜏 ‖W−1,𝑟⊥ (Ω𝜏 )
≤ ‖∆−1𝑟 ‖
(1 + 𝜏)𝑑−2

(1 + 𝜏)
𝑑
𝑟 (1 + 𝜏)

𝑑
𝑟 ′ = ‖∆−1𝑟 ‖(1 + 𝜏)2 ,

which yields ‖∆−1𝑟,𝜏 ‖W−1,𝑟⊥ (Ω𝜏 )→W1,𝑟
∅ (Ω𝜏 ) ≤ ‖∆

−1
𝑟 ‖(1 + 𝜏)2 and concludes the proof. �

Finally, we’re in the position to prove Lemma 4.3.

Proof. Choosing 𝑟 = 𝛼 ′ in Lemma B.2, we obtain that

−
∫
Ω𝜏

grad 𝜁 · grad𝜑 =

∫
Ω𝜏

𝜑 d𝜉 ∀𝜑 ∈ W1,𝛼
∅ (Ω𝜏 ) ,

has a unique solution 𝜁 ∈ W1,𝛼′
∅ (Ω𝜏 ) for all 𝜉 ∈ W

−1,𝛼′
⊥ (Ω𝜏 ), which corresponds to (2.4) on Ω𝜏 . Moreover,

the corresponding solution operator is uniformly bounded for 𝜏 → 0. The assertion now follows
analogously to the proof of Lemma 2.10. �
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