

Algorithmic Collusion:
Insights from Deep Learning

Matthias Hettich †

94/2021

† Einstein Center Digital Future, TU Berlin, Germany

wissen•leben
 WWU Münster

Algorithmic Collusion: Insights from Deep Learning

Matthias Hettich
Einstein Center Digital Future

TU Berlin, Germany
matthias.hettich@tu-berlin.de

November 24, 2021

Abstract

Increasingly, firms use algorithms powered by artificial intelligence to set prices. Previous research
simulated interactions among Q-learning algorithms in an oligopoly model of price competition.
The algorithms learn collusive strategies but require a long time that corresponds to several years
to do so. We show that pricing algorithms using deep learning (DQN) can collude significantly
faster. The availability of these more powerful pricing algorithms enables simulations in larger
markets. Collusion disappears in wide oligopolies with up to 10 firms. However, incorporating
knowledge of the learning behavior by reformulating the state representation increases the ability
to collude effectively.

Keywords Algorithmic Pricing, Collusion, Artificial Intelligence, Reinforcement Learning, DQN

JEL Classification D21, D43, D83, L12, L13

1 Introduction

Firms increasingly deploy algorithms to set prices for their products and services. Enhancements in machine

learning and artificial intelligence enable algorithms to learn pricing strategies without any previous knowledge by

active experimentation. This autonomous nature fuels concerns that the algorithms of competing firms learn to

collude without communicating with each other and without any instruction to do so (Mehra 2016; Ezrachi and

Stucke 2016, 2017). Current antitrust regulation focuses on communication leading to a conscious commitment,

rather than collusion as such. Thus, the current regulatory approach becomes insufficient when algorithms learn

collusive strategies by themselves and without communication (Harrington Jr. 2019; Calvano et al. 2020a).

The risk of collusion by algorithms is hard to assess empirically, except for cases where rich market data is available

(e.g. Assad et al. 2020). Thus, current research focuses mainly on theoretical and experimental approaches. First

theoretical studies yield interesting insights (e.g. Salcedo 2015; Brown and MacKay 2021; Harrington Jr. 2020;

Hansen et al. 2021), but often rely on simplifying assumptions because interactions among firms in pricing games

generate complex stochastic dynamic systems. Experimental approaches observe the complex interaction of

pricing algorithms in computer-simulated marketplaces. By analyzing a repeated Bertrand competition, Calvano

et al. (2020b) provide the most comprehensive analysis so far. Not only do they find that algorithms systematically

set supra-competitive prices, but they verify that the algorithms facilitate collusion with reward-punishment

Algorithmic Collusion: Insights from Deep Learning

schemes.1 Based on this fundamental work, further studies investigate the influence of imperfect monitoring

(Calvano et al. 2021), platform design (Johnson et al. 2020) and how markets could be disciplined to hinder

collusion (Abada and Lambin 2020).

Previous simulations model the pricing algorithms with Q-learning.2 Even though Q-learning is suited to provide

a proof-of-concept of algorithmic collusion, it is only partly representative of algorithms used in practice. The

inability to use powerful approximation methods makes Q-learning too slow to be applied in real-world scenarios.3

Additionally, Q-learning’s limited computational resources restrict the previous studies to markets with two to

four firms.

This paper contributes to the experimental research branch by approaching a more realistic pricing algorithm. We

demonstrate how deep learning can be incorporated in pricing algorithms, thereby paving the way for further

research on even more realistic algorithms or market environments. We let Deep Q-Network (DQN) algorithms

compete against each other in markets with up to 10 firms. This algorithm is the straightforward enhancement

of Q-learning to function approximation with the help of Deep Neuronal Networks (DNNs). The simulated

marketplace builds on the repeated Bertrand competition of Calvano et al. (2020b) which can go on infinitely.

DQN is designed to tackle episodic tasks and, thus, we restated DQN’s optimization problem with an average

reward formulation, as proposed by Sutton and Barto (2018).

Our results indicate that DQNs consistently learn collusive strategies in a duopoly. They learn significantly faster

than previously used algorithms and start to increase prices after 20,000 time-steps. With an increasing number of

market participants, the level of collusion decreases, and with seven or more firms, at the latest, collusion entirely

disappears. However, incorporating knowledge about the algorithm’s learning behavior by reformulating the state

representation seems to make collusion even in wide oligopolies possible.

The paper continues with a description of the simulated economic environment. Section 3 explains the pricing

algorithms. The simple Q-learning illustrates the concept of Reinforcement Learning (RL) and makes the

understanding of the more complex DQN easily possible. Section 4 demonstrates the learning pace of DQN in a

duopoly. Section 5 focuses on wider oligopolies and presents two interesting extensions. The paper concludes with

a short discussion of the findings.

2 Economic Environment

Following Calvano et al. (2020b), we model the oligopolistic competition between pricing algorithms by a repeated

Bertrand model. Each firm i, i = 1, 2, .., n, uses an independent pricing algorithm and produces a single product

with quality gi and marginal costs ci. We assume no fixed costs. The Bertrand model describes interactions among

firms that set price pi for their product and consumers that choose quantities at this price, the demand di. This one-

1. Klein (2021) uses a market model of staggered prices and finds that self-learning pricing algorithms frequently set supra-competitive
prices as well.

2. One exception is Meylahn and Boer (2021).
3. In the study of Calvano et al. (2020b), the Q-learning algorithms have, on average, 850,000 time-steps for learning. Even If we

assume 30 updates per hour (the maximum update frequency of the Amazon (2020) API), this translates to more than three years.

2

Algorithmic Collusion: Insights from Deep Learning

shot game repeats each period. At the end of each period t, firm i earns profit ri,t(pj∈n,t)
.= (pi,t− ci)×di,t(pj∈n,t).

The well-known multinomial logit model describes the demand side of the simulated oligopolistic market.4 In each

period, the demand di,t for firm i’s product is:

di,t(pj∈n,t)
.= e

gi−pi,t
µ

1 +
∑n
j=1 e

gj−pj,t
µ

. (1)

Thus, a firm’s profit and demand depends not only on the price pi that the firm itself sets, but on the prices pj∈n

that the competing firms set.

To compare the degree of collusion, we need a consistent measure across all simulations. In line with Calvano

et al. (2020b), we use the average profit gain ∆i, defined as:

∆i
.= r̄i − rNi
rMi − rNi

, (2)

where r̄i denotes the average profit of firm i over a given number of periods. rNi is the profit of firm i in the static

Bertrand-Nash equilibrium, and rMi is the monopoly profit. With collusion, firms can obtain supra-competitive

profits per definition. The Nash profit rN of the one-shot game is a reasonable estimation of the competitive

outcome and the monopoly profit rM normalizes the collusion measure between 0 and 1. Thus, for ∆ = 0, the

average profit corresponds to the competitive outcome, and for ∆ = 1, to the outcome under full collusion (Calvano

et al. 2020b).

To be computationally feasible, the pricing algorithms must choose from a discrete price range. A reasonable price

range includes the static Nash equilibrium prices pNi∈n and the monopoly prices pMi∈n of the one shot-game. Then,

the price range A is given by m equally spaced points in the interval A .=
[
min(pNi∈n)− ξ,max(pMi∈n) + ξ

]
, where

we set ξ .= 0.1[max(pMi∈n)−min(pNi∈n)]. This markup increases the price range by 10% in both directions.5

3 Pricing Algorithms

Repeated games, like the repeated Bertrand competition, can be modeled as a Markov Decision Process (MDP).

In a MDP, the decision-maker, called the agent, interacts continually with the environment, that is, everything

outside of the agent. In each period t, t = 1, 2, ...,∞, the agent observes the environment’s state, St ∈ S. Based

on the observed state, the agent selects an action, At ∈ A. As a consequence of the action, the agent receives a

numerical reward, Rt+1 ∈ R ⊂ R and the system moves on to the next state, St+1, according to the state-transition

probabilities F . They describe a probability distribution for each combination of a ∈ A and s ∈ S:6

F (s′, r|s, a) .= Pr {St+1 = s′, Rt+1 = r | St = s,At = a} . (3)

4. Other demand models are conceivable. Calvano et al. (2020b) show that the choice of the demand model does not influence the
collusive behavior of self-learning algorithms.

5. Please refer to Calvano et al. (2020b) for a more in-depth description of the economic environment.
6. Capital letters denote random variables, whereas lower case letters are used for values of random variables. s′ is shorthand for

the next period’s state.

3

Algorithmic Collusion: Insights from Deep Learning

The agent’s goal is to find a policy π : S → A that maximizes the present value of future rewards Gt
·=∑∞

k=0 γ
k Rt+k+1, where γ is a discount factor, 0 ≤ γ < 1.7 RL algorithms encode policies by estimating value v

or action-value q functions that reflect how good it is for the agent to be in a given state or state-action pair.8

The action-value function defines the value of taking action a in state s and then following a policy π:

qπ(s, a) .= Eπ

[∞∑
k=0

γk Rt+k+1|St = s,At = a

]
. (4)

As stated above, we try to find an optimal policy π∗ that maximizes the agent’s goal. Optimal policies share

the same optimal action-value function that is defined as q∗(s, a) .= maxπ qπ(s, a). We can rewrite the optimal

action-value function without reference to a policy by using the Bellmann equation. The value of a state-action

pair under an optimal policy equals the reward expected from transition to the next period plus the discounted

action-value of the next state. The next state’s action-value assumes that the agent will behave optimally, and

again reflects all future rewards under an optimal policy. With this recursive property, the optimal action-value

function becomes:

q∗(s, a) = E
[
Rt+1 + γmax

a′∈A
q∗(St+1, a

′)|St = s,At = a

]
. (5)

The Bellmann optimality equation (5) reflects all long-term returns as a locally available value. If the optimal

action-value function is known, an optimal policy π∗ can easily be derived by π∗(a | s) = arg maxa q∗(s, a). The

optimal policy describes which action a to take in state s. The agent simply observes the current state s and

chooses action a for which q∗(s, a) is maximal (Sutton and Barto 2018).

If we apply the MDP framework to the repeated Bertrand competition, one independent agent represents each

firm. The state of the environment at period t, St, are the prices that the agents, or firms, played in the previous

period t − 1. The set of possible actions A are the prices that an agent can set for her product, i.e., the price

range. After each agent played her action At, the environment moves to the next state St+1. The environment

determines the demand for the products, and each agent receives her reward signal Rt+1, i.e., the profit.

The Bellmann optimality equation(5) describes a system of |S| × |A| nonlinear equations, one for each state-action

pair, in the same number of unknowns. If the state-transition probabilities (3) are known, standard methods can

solve the system of equations. In the repeated Bertrand competition, the state-transition probabilities are unknown

because the transition from one state to the other state depends not only on the own action but also on all other

agents’ actions.9 Thus, the agents must estimate the optimal action-value function q∗(s, a) by trial-and-error

interactions with the environment, i.e., with RL. Even though RL algorithms are initially designed to tackle

MDPs with a single agent and time-invariant state-transition probabilities, they can be applied to environments

with multiple agents (Sutton and Barto 2018; Leibo et al. 2017).

7. The name policy originates from the RL literature’s terminology. It describes the agent’s way of acting and corresponds to the
term strategy from the game theory domain. In the following, we will use both terms synonymously.

8. The action-value function is related to the value function by the identity v(s) ·= maxa∈A q(s, a).
9. Besides, the agents do not know the demand function.

4

Algorithmic Collusion: Insights from Deep Learning

3.1 Q-Learning

One of the simplest and best understood RL algorithms is Q-learning. It learns the Q-values Q(s, a) that directly

approximate the optimal action-value function q∗(s, a) by the following updating rule:

Q(St, At)← Q(St, At) + α
[
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

]
. (6)

After initializing Q(s, a) with arbitrary values for each state-action pair, the value of a state-action pair is updated

every time it is visited according to equation (6). The quantity in the square brackets constitutes an error term.

It measures the difference between the current estimate of the action-value and an updated estimate, the target

value Yt = Rt+1 + γmaxaQ(St+1, a). This target value comprises the observed reward and the discounted value

of being in the next state Q(St+1, a). The latter assumes that the agent will behave optimally in the next state

and includes all expected future rewards.10 The learning rate α, 0 ≤ α ≤ 1, specifies how much weight the agent

gives to new knowledge compared to the current estimation (Sutton and Barto 2018).

Algorithm 1 Q-Learning
1: For all s ∈ Sanda ∈ A, initialize Q(s, a) arbitrarily
2: Initialize S1 arbitrarily
3: for t = 1, T do
4: With probability εt play a random action At

Otherwise play At = arg maxaQ(St, a)
5: Observe Rt+1, St+1
6: Q(St, At)← Q(St, At) + α

[
Rt+1 + γmaxaQ(St+1, a)−Q(St, At)

]
The Q-value updates only for state-action pairs who are visited. Therefore, all state-action pairs have to be

visited sufficiently often in order to approximate the optimal action-value function q∗(s, a) for all s ∈ S and a ∈ A.

Instructing the agent to experiment, i.e., randomly choose an action that may appear sub-optimal based on her

current knowledge, assures sufficient exploration. A straightforward procedure to ensure exploration is a ε-greedy

policy. With probability ε, 0 ≤ ε ≤ 1, the agent will randomly select any of the possible actions. In all other cases,

the agent behaves optimal or greedy according to her current knowledge:

a =


arg maxaQ (s, a) with probability 1− ε

U {A} with probability ε
, (7)

where U {A} denotes a sample from the discrete uniform distribution over the set of actions A. Experimentation

is especially helpful at the beginning when the agents have little knowledge about the environment or the

behavior of the competitors. However, experimentation comes at increasing costs of not exploiting the current

knowledge. Therefore, the agents follow a policy with exponentially decreasing probability of experimentation

εt =
(

0.015 2
T

)t
.11 See algorithm 1 for the pseudocode of Q-learning.

10. It is interesting to note that Q-learning estimates Q(St, At) based on another estimate maxa Q(St+1, a): it uses bootstrapping.
11. The probability of experimentation starts around 1 in the first period to 0.015 halfway the run until 0.000225 in the last period

t = T (Klein 2021).

5

Algorithmic Collusion: Insights from Deep Learning

...

...
...

...

p1

p2

pn

Q(S, a1)

Q(S, a2)

Q(S, am)

Input
Layer

Hidden
Layer

Hidden
Layer

Output
Layer

Figure 1: Schematic illustration of the Q-network.

3.2 Deep Q-Network

Q-learning estimates the optimal action-values for each state-action pair separately. The learning capabilities of this

approach are not efficient enough for real-world applications. Thus, it is common to use a function approximation

with weights θ to estimate the optimal action-value function Q(s, a, θ) ≈ q∗(s, a). Since the pioneering work of

Mnih et al. (2015), nonlinear function approximation based on DNNs, called Q-network, are widely used.

Using function approximation has two advantages: First, the experience from one state-action pair improves the

estimate for nearby state-action pairs by generalization. Second, it frees us from the curse of dimensionality. The

tabular representation of action-values used by Q-learning exponentially increases in the number of agents, and

memory consumption quickly reaches its limit.

Figure 1 shows the structure of the Q-network. Input is the agents’ previously played prices, the state of the

environment. Therefore, the number of input nodes corresponds to the number of agents in the market. The

Q-network has two fully-connected hidden layers with 32 nodes each, followed by rectified linear activation functions

and one output unit for each possible action. The output layer is fully-connected as well and uses a linear activation

function. Thus, the output of the DNN corresponds to the Q-values of all actions at the input state.12 The main

advantage of this approach is that only one forward pass is required to compute the Q-values of all actions in a

given state (Mnih et al. 2015).13

With function approximation, we improve weights θ instead of direct estimates of the action-values. There are more

state-action pairs than weights by definition.14 In contrast to Q-learning, we cannot get each action-value exactly

correct: making one state-action pair’s estimate more accurate means making others’ less accurate. Thus, the Mean

12. E.g., if an agent wants to play the greedy action, she chooses the action for which the Q-Network predicts the highest value,
At = arg maxa Q(St, a, θ).
13. The size of the network is a somewhat arbitrary decision. Theoretically, one large hidden layer can approximate any function. In

practice, deep networks with more than one hidden layer proved to perform better than shallow networks (Goodfellow et al. 2016).
14. In the duopoly setting and with baseline parameters for the Q-networks we have |S| = 2 input nodes, two times 32 hidden nodes,

and |A| = 15 output nodes . This translates to 2× 32 + 32× 32 + 32× 15 = 1, 568 node weights and 32 + 32 + 15 = 79 bias weights.
The number of state-action pairs is 15× 15× 15 = 3, 375. For larger markets the difference further increase, e.g. for markets with
three firms there are 1,679 weights and 50,625 state-action pairs.

6

Algorithmic Collusion: Insights from Deep Learning

Squared Error (MSE) evaluates the measure-of-fit of our approximation. At each iteration, we adjust the weights θ

to reduce the MSE in the Bellman optimality equation (5). Again, the true target value, the optimal action-value

function Rt+1 + γmaxa q∗(St+1, a), is not known. Thus, we approximate it by Yt = Rt+1 + γmaxa Q̂(St+1, a, θ̂)

using the Q-network with weights θ̂ from a previous iteration.15 Then, the loss function we want to minimize is:

L(θ) .=
[
Rt+1 + γmax

a
Q̂(St+1, a, θ̂)−Q(St, At, θ)

]2
. (8)

As described above, we need to balance the fit between action-values. At each learning step, we train the Q-network

with only a small sample. Instead of reducing the error for this sample completely, the weights should move only a

small step in the direction where the error falls most rapidly. We use the popular Adam optimizer to implement

this iterative fitting procedure. This gradient descent method considers estimations of first-order and second-order

moments to guide the search to areas where the loss declines fastest (Goodfellow et al. 2016).16

Algorithm 2 Deep Q-Network
1: Initialize local network Q(s, a, θ) with arbitrary weights θ
2: Initialize target network Q̂(s, a, θ̂) with weights θ̂ = θ
3: Initialize average reward estimate R̄ arbitrarily
4: Initialize S1 arbitrarily
5: for t = 1, T do
6: With probability εt play a random action At

Otherwise play At = arg maxaQ(St, a; θ)
7: Observe Rt+1, St+1
8: Store transition St, At, Rt+1, St+1 in B
9: Sample random minibatch of transitions (Sj , Aj , Rj+1, Sj+1) from B

10: Set Yj = Rj+1 − R̄+ maxa Q̂(Sj+1, a, θ̂)
11: Perform a gradient descent step on [Yj −Q(Sj , Aj , θ)]2 with respect to θ
12: R̄← R̄+ λ

[
Rt+1 − R̄+ maxa Q̂(St+1, a, θ̂)− Q̂(St, At, θ̂)

]
13: Every C steps reset Q̂ = Q

Algorithm 2 shows the pseudo-code for DQN. Like Q-learning, the algorithm estimates q∗(s, a) and, thus, the

optimal policy π∗(a | s) by following the non-optimal ε-greedy policy. Algorithms that follow another policy while

learning the optimal policy, as DQN does, are said to learn off-policy. Off-policy learning combined with function

approximation leads to a danger of instability and divergence (Sutton and Barto 2018). As mentioned above, a

separate network with older weights, the target network Q̂(s, a, θ̂), calculates the approximated target values Yt.

The target network Q̂ has the same structure as the local network Q. The gradient descent step, i.e., the learning,

is performed on the local network Q(s, a, θ) and the agent uses this network to determine her actions. Each C

periods, the weights of local network θ replace the weights of target network θ̂. This delay between learning and

the effect in the target Yt considerably reduces the risk of oscillation or divergence in the learning process (Mnih

et al. 2015).

15. In contrast to supervised learning, the loss function’s target values are not fixed before training but depend on previous weights.
At each learning step, the weights θ̂ are held constant. Thus, the optimization problem is well-defined (Mnih et al. 2015).
16. There are many different implementations of gradient descent. For each of the most common optimization methods, we tested

how well the DNN learns several pricing strategies of increasing complexity, and Adam performed best.

7

Algorithmic Collusion: Insights from Deep Learning

The use of experience replay further improves the algorithm’s stability. Each period t, the agent does not learn with

the newest experience Et = St, At, Rt+1, St+1. Instead, she stores the experience in the replay buffer B = E1, ..., Eβ

and randomly samples ω experiences from the replay buffer. This minibatch is used to perform a gradient descent

step. The replay buffer is limited to store β experiences. If the replay buffer is full, the oldest experience is deleted

to free space for the new experience.

The last necessary modification to improve stability replaces the average reward formulation with the discounted

formulation. The discounted formulation is incompatible with function approximation in continuing tasks. The

definition of the optimal action-value function, q∗(s, a) .= maxπ qπ(s, a) implies that a policy is optimal if, for

every state-action pair, following this policy leads to a higher discounted sum of future rewards than any other

policy. The optimal policy satisfies the following inequality:

qπ∗(a, s) ≥ qπ(a, s) for all a, s and π. (9)

These inequalities define a partial order on the set of possible policies. Tabular methods store a separate estimate

for each state-action pair. Thus, they can represent any possible policy. E.g., Q-learning updates one state-action

pair at a time, thus, slowly improving its policy in the direction of the optimal policy. Q-learning can tackle this

problem formulation and find the policy that is at least as good as all other policies for each state-action pair

(Sutton and Barto 2018).

With function approximation, not each possible policy can be represented since there are fewer weights than

state-action pairs by definition. Thus, the optimal policy defined in (9) usually cannot be represented. Instead,

the agent tries to learn the best representable policy. However, there is typically no representable policy that is

universally better than all other representable policies. For some state-action pairs, one representable policy will

be better, and for other state-action pairs, another representable policy. The partial order described in (9) is not

transferable to representable policies and the problem formulation is not well-defined (Singh et al. 1994; Naik

et al. 2019).

Instead of the partial order of policies, we should use an explicit optimization objective to compare any two policies.

The repeated Bertrand competition has no natural end and will potentially go on infinitely. The agent tries to

maximize the rewards not just in the present but over the whole lifetime and should choose actions that cause

her to visit states with high rewards more frequently (Naik et al. 2019). Since the time horizon is infinitely in

continuing tasks, the average reward r(π) is a good candidate for the optimization objective:

r(π) ·= lim
h→∞

1
h

h∑
t=1

E[Rt|A0:t−1 ∼ π], (10)

8

Algorithmic Collusion: Insights from Deep Learning

where the expectation is conditioned on the prior actions A0, A1, ..., At−1 taken according to the policy π. This

measure can order the policies by a single number, their average reward r(π). Each policy that attains the

maximum value of r(π) is optimal (Sutton and Barto 2018).

In the average-reward setting, the agent’s goal must be restated as differences between rewards and average

rewards:

Gt
·= Rt+1 − r(π) +Rt+2 − r(π) +Rt+3 − r(π) + · · · . (11)

The optimal action-value function (5) can easily be adjusted to the average formulation by replacing the discount

factor γ with the difference between reward and the true average reward:

q∗(s, a) = E[Rt+1 − r(π∗) + max
a′∈A

q∗(St+1, a
′)|St = s,At = a]. (12)

The loss function (8) must reflect these changes as well:

L(θ) =
[
Rt+1 − R̄+ max

a
Q̂(St+1, a, θ̂)−Q(St, At, θ)

]2
, (13)

where R̄ is an estimate of the true average reward r(π∗) at time t. This estimate is updated at the end of every

period. It is pushed a small step, defined by λ, towards the true value as the learned policy converges to the

optimal policy (Sutton and Barto 2018).

Figure 2 shows the average profit gain ∆ of a DQN agent with discounted reward formulation compared to an

agent with average reward formulation. They play against an agent with a hard-coded Tit-for-Tat policy.17 Both

agents can increase their rewards over time. However, the oscillating behavior of the agent with discounted reward

formulation is a sign that the optimization problem is not well-defined. In contrast, the agent with average reward

formulation learns smoothly and behaves almost optimally at the end of the simulation.18

4 Fast Collusion by Deep Learning

Q-learning agents frequently learn to collude, as shown by Calvano et al. (2020b). However, the algorithms learn

on average 850,000 periods, which, at best, translates to more than three years on Amazon. It is unlikely that

markets stay unaltered that long, especially on e-commerce platforms. This section shows that agents based on

DQN learn to collude significantly faster in duopolies.

Each firm or agent i has marginal costs ci = 1.0 and product quality gi = 2.0. The price sensitivity is set to

µ = 0.25, the agents can choose from m = 15 prices, and one simulation run lasts T = 100, 000 periods. The

superior performance of DQN is achieved at the cost of higher complexity and, thus, more parameters. It is

17. The Tit-for-Tat agent will play the lowest possible price if the opponent undercut her in the previous round. Otherwise, she will
replicate the opponent’s previous action. This policy encourages cooperation.
18. We implemented the simulated marketplace in Python. Its object-oriented approach allows a free combination of different agents,

demand models, or policies. New agents or more sophisticated demand models integrate straightforwardly, and the environment is
freely scalable to markets with two or more firms. The complete source code can be found on GitHub (https://github.com/mesjou/
price_simulator). Deployment on the HPC cluster PALMA II of the WWU Münster allowed simulations on up to 8 GPUs in parallel.

9

https://github.com/mesjou/price_simulator
https://github.com/mesjou/price_simulator

Algorithmic Collusion: Insights from Deep Learning

1 250 500 750 1,000
Period

0.0

0.2

0.4

0.6

0.8

1.0

Average DQN
Discounting DQN

Figure 2: Learning behavior of DQN with discounted and average reward formulation against a Tit-for-Tat agent.
The lines show average values and the shaded areas show standard deviations over 10 simulation runs.

computationally not feasible to perform a systematic grid search to select values for all parameters. Besides, we

would like to observe if such behavior occurs with as little tuning as possible. Except for the learning rate α and

the size of the replay buffer β, we adopted standard values or performed an informal search.19

Learning rate α is the most important parameter for training a DNN. Together with the size of the replay buffer,

it determines the pace of learning. If the learning rate is too large, gradient descent will overshoot and oscillate

without finding local or global minima. If the learning rate is too low, the weights could shift too little, and it

is likely to end up in bad local minima (Goodfellow et al. 2016). Replay buffer size β determines how quickly

the training data represents changes in the competitor’s strategy. With small replay buffers, the learning targets

change too fast, and the DQNs do not have enough time to learn the opponent’s strategy. They play prices near

the one-shot game’s optimal price, which results in average profit gains near the static Nash equilibrium. If the

replay buffer is too large, the learning target is stable, but the algorithm will take a long time to adapt to changes

in the competitor’s strategy.

The significant influence of the two parameters on learning requires a systematic grid search for optimal values.

We considered replay buffer sizes β from 500 to 10,000 samples and learning rates α from 0.00025 to 0.005. For

replay buffer sizes above 5,000 and learning rates around 0.001, the average profit gains of DQN are comparable

to the ones of Q-learning. In the following, we keep the replay buffer size fixed at β = 5, 000 and the learning rate

at α = 0.001. However, the results are robust to reasonable changes in these parameters.

Figure 3 shows the average profit gain ∆ over time. At the beginning of the simulation, both agents experiment

frequently. It is not possible to answer to a stable strategy of the opponent. Thus, playing a low price to undercut

the opponent is the best an algorithm can do: prices decrease, and ∆ gears towards the static Nash equilibrium

level. As the experimentation probability ε decreases, the agents’ strategies become more stable. Already after

19. For an overview of all parameters, see appendix A.

10

Algorithmic Collusion: Insights from Deep Learning

1 25,000 50,000 75,000 100,000
Period

0.2

0.4

0.6

0.8

1.0

Figure 3: Average profit gain of DQN in a duopoly. The line shows average values and the shaded area shows
standard deviation over 50 simulation runs.

20,000 periods, the agents start to raise profits by increasing prices. After this turning point, collusion steadily

increases. In the last 5,000 periods of the simulation, the agents obtain average profit gains of ∆ = 63%.20

Besides looking at market outcomes, it is crucial to examine how collusion occurs. Supra-competitive prices

could arise because either i) the agents fail to learn how to compete effectively or ii) the agents learned effective

reward-punishment schemes. Following Calvano et al. (2020b), we verify that DQN learns a reward-punishment

scheme by analyzing the response to a price cut of the opponent. The agents play for T = 100, 000 periods against

each other. Then learning is disabled and the agents play for 50 periods with fixed strategies. In t = 0, we

artificially force the defecting agent to play the static Nash price, which causes the price cut in figure 4.

The non-defecting agent punishes the other agent by lowering her price in t = 1, the period after defection. The

defecting agent expects this punishment and sets her price near the punishment price as well. Then both agents

simultaneously start to increase their prices. Already after five periods, the prices are near the pre-defection

level. On average, the prices stay slightly below the long-run price after the punishment phase, making defection

unprofitable for both agents.

In addition, it is possible to show the average learned strategy for the whole state-space in markets with two

agents. Figure 5 shows the optimal action of agent 1 in each of the 15× 15 = 225 states.21 The first thing that

catches the eye is the symmetry of the surface. The DQN agent reacts similarly to previous prices no matter

which agent played which price. The agent will not just punish the opponent’s defection, but also anticipates

the punishment if she defects herself. For prices in the medium range, the agent holds the price approximately

20. We replicated the results of Calvano et al. (2020b). Q-learning has discount parameter γ = 0.95, learning rate α = 0.125 and one
simulation run lasts T = 1, 000, 000 periods. In a duopoly, the agents consistently reach ∆ = 67%. Calvano et al. (2020b) document
∆ from 70% to 90%. The reason for the higher values is the initialization of the Q-values. Instead of setting the Q-values to the
discounted return that would result if the opponent plays random prices, we initialized it to 0. We refrain from this procedure to make
a comparison to DQN possible, and it is not clear what pendant to use for initialization of the Q-network weights θ.
21. The strategy for agent 2 has the same shape.

11

Algorithmic Collusion: Insights from Deep Learning

-50 0 50
Period

1.5

1.6

1.7

1.8

1.9

Pr
ice

-1 0 5 10
Period

1.5

1.6

1.7

1.8

1.9

Pr
ice

Defecting Agent
Non-defecting Agent
Monopoly Price
Nash Price
Long-run Price

Figure 4: Price reaction after a defection of one agent to the static Nash equilibrium price. The lower figure zooms
in to the post-defection phase. The lines represent average values over 50 simulation runs (Own representation
following Calvano et al. 2020b).

constant. The concave shape of the surface at the top shows that the agent starts to undercut as prices approach

the monopoly price.

Another remarkable behavior is the price increase when both agents play prices near the Nash price. This mutual

understanding enables the agents to return to higher prices after a punishment. As long as both cooperate, prices

stay at a collusive outcome. If one of the agents defects and unilaterally decreases her price, both agents stop

cooperating and lower their prices. If both agents defect and play prices near the Nash equilibrium, both mutually

return to cooperation and again play prices at a collusive level. The learned strategy is reminiscent of the Pavlov

(or win-stay-loose-shift) strategy described by Kraines and Kraines (1989).

This section shows that the reinforcement learning algorithms based on deep learning do not simply fail to learn

competitive strategies but learn effective reward-punishment schemes. Equipped with this strategy, DQNs are

able to collude significantly faster than the simple Q-learning of previous studies. The algorithm description of

section 3.2 shows that the higher speed comes at the cost of greater complexity. Deep learning methods tend to

diverge to sub-optimal solutions and, thus, modifications of the Q-learning algorithm are necessary to ensure the

stability of learning.

12

Algorithmic Collusion: Insights from Deep Learning

Price Agent 1 1.47
1.581.701.821.93

Price
 Agent 2

1.47
1.58

1.70
1.82

1.93

Pr
ice

 R
ea

ct
io

n
of

 A
ge

nt
 1

1.51
1.54
1.58
1.62
1.66
1.70
1.74

1.54

1.58

1.62

1.66

1.70

1.74

Figure 5: Learned strategy of DQN in a duopoly. The figure displays the optimal action of agent 1 in each possible
state according to a = arg maxaQ(s, a, θ). The state s are the previously played prices of the two agents, the
values on the x-axis and y-axis. The 3-d surface shows the average optimal action over 50 simulation runs.

5 Collusion in Wide Oligopolies

Economic experiments show that collusion by human price-setters is strongly affected by the number of competitors.

Implicit coordination of prices above the competitive level is rarely observed in markets with four firms (Potters

and Suetens 2013). Calvano et al. (2020b) show that collusion among algorithms decreases but is still present in

markets with three or even four firms. The availability of DQN makes experiments in larger markets possible.

To answer if DQN can collude even in wide oligopolies, we repeat the previous section’s simulation for markets

with up to ten firms. Figure 6 shows the average profit gain ∆ In the last 5,000 periods for different market sizes.

Similar to Q-learning, collusion decreases in the number of market participants. In markets with three firms, the

average profit gain is ∆ = 30%, and thus significantly higher than the static Nash equilibrium level. With more

market participants, ∆ falls below 20% and quickly approaches zero.22

We tested for various factors that could have hindered the algorithms from coordinating their prices above

competitive levels in wide oligopolies. Neither a higher approximation capacity with larger DNN (up to three

hidden layers with 128 nodes each), more time to learn (simulation runs with up to T = 500, 000 periods), nor

straightforward enhancements of DQN (i.e., DDQN) increases ∆ significantly.

Alternatively, we tested the influence of the state representation on the learning of strategies. The state determines

how an agent perceives the environment and, therefore, the other agents’ behavior. The examination of strategies

22. In our benchmark simulations with Q-learning, the average profit gains are similar: ∆ = 30% in markets with three agents and
∆ = 27% with four agents. Q-learning, DQN, and the economic environment have the same parameter compared to section 4.

13

Algorithmic Collusion: Insights from Deep Learning

2 3 4 5 6 7 8 9 10
Number of Firms

0.0

0.2

0.4

0.6

0.8

1.0
Baseline
State Reformulation

Figure 6: Box-plot of the average profit gain of DQN in wide oligopolies over 10 simulation runs per setting.

in section 4 shows that it does not matter who played which price in the previous round. More important is the

overall price level and whether an agent defected by either playing a higher or lower price. Thus, a reasonable

state representation should contain the average of the last period’s prices. Defection can be measured by including

the minimum and maximum value of last period’s prices.

Figure 6 shows the results for simulations where each agent perceives the environment’s state according to this

formulation. The average profit gains are higher for all simulated market sizes. For three firms, the profit gain is

∆ = 57%, for four ∆ = 36% and for five still ∆ = 27%. With more firms, it falls below 20% and approaches zero,

similar to the baseline setting. Somewhat surprising is the fact that the reshaped state representation also helped

collusion in duopolies.

A possible explanation could be the reduction of detrimental variation by aggregating the previous period’s

prices. That frees the DNNs from distinguishing between important price defection and small price fluctuations.

In real-world applications, more advanced methods than the described pre-processing are available. Possible

candidates are a direct measure of the opponent’s willingness to cooperate, some economic structure, or a strategy

model. The simulation results indicate that such expert knowledge could facilitate collusion even in wide oligopolies.

The results so far have shown that wide oligopolies tend to make collusion more difficult. However, this finding

should be viewed in light of the fact that pricing algorithms with a rule-based or adaptive strategy are still in

use today. The managers or programmers define more or less exactly how the algorithm should set the price for

their product. Self-learning algorithms are on the rise, but there will be a transition phase where both types of

algorithms compete with one another. The question arises of which affect such simple algorithms have on collusion.

The left figure 7 shows the average profit gain in a market with two DQN agents and one rule-based agent. The

latter plays a strategy that Chen et al. (2016) found to be popular on Amazon: targeting the lowest price. The

14

Algorithmic Collusion: Insights from Deep Learning

DQN DQN Rule-based
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Q-learning DQN

0.5

0.0

0.5

1.0

1.5

Figure 7: Effect of a rule-based agent and different learning pace on average profit gains. The box-plot shows the
results for 50 simulation runs.

rule-based agent plays the lowest price of the competitor’s last period’s prices. The DQN agents reach average

profit gains of ∆ = 73% which is comparable to the duopoly case with two DQNs.

This stylized experiment illustrates an essential property of a self-learning algorithm: the algorithm perceives the

other firms as part of the environment. By interacting with the environment, the algorithm learns the demand

model plus the opponent’s strategy because both influence the state-transition probabilities (3). This task is

daunting with self-learning opponents because their strategy changes during the learning process and makes the

state-transition probabilities non-stationary. Contrary, a rule-based opponent behaves according to a time-invariant

strategy. Even though this increases the complexity of the state-transition probabilities, it does not decrease their

stationarity.

With these insights, it becomes apparent that the coordination problem’s complexity between two self-learning

algorithms will not significantly increase with an additional rule-based agent. Larger markets will decrease the

likelihood of algorithmic collusion. However, this seems only valid if the additional agents are self-learning. Simple

rule-based pricing algorithms or human-price setters that do not frequently change prices do not necessarily hinder

collusion.

Another fact about real marketplaces can be addressed with a stylized experiment. Firms develop their pricing

algorithms independently and will end up with algorithms that differ in many dimensions, e.g., state representation

or learning pace. Section 4 shows that algorithmic collusion relies upon the mutual understanding to increase

prices after defection. Up until now, the self-learning algorithms in each simulation are identical. One might

presume that this similarity facilitates collusion. Thus, we test what happens if two algorithms play against each

other that, in principle, can learn a similar level of collusion but learn at a different pace. We let one DQN agent

play against one Q-learning agent, and each simulation run lasts T = 100, 000 periods. The algorithms’ parameter

remain unchanged compared to section 4.

The right figure 7 reveals that the faster DQN exploits the slower Q-learning. DQN reaches profits above the

monopoly level, whereas Q-learning earns profits near the static Nash equilibrium. Inspection of prices, quantities,

and profits reveal that DQN plays a highly competitive strategy. DQN takes advantage of the fact that Q-learning

15

Algorithmic Collusion: Insights from Deep Learning

cannot optimize her behavior fast enough and lowers her price. In this way, she drives Q-learning out of the

market, increases the demand for her product, and gains high rewards.23 The high profits of DQN are not a sign

of collusion, but a sign of full exploitation. Again, this shows the importance of joint learning for collusion. If

both agents learn effective reward-punishment schemes, collusion emerges. However, cooperation is not an integral

part of self-learning algorithms. Instead, the algorithms fully take advantage of the chance to exploit the opponent

and selfishly increase their profit.

6 Conclusion

The simulations have shown that DQN algorithms systematically set supra-competitive prices in a duopoly. The

learned strategies contain a reward-punishment scheme that enforces collusion and, thus, coincide with those of

Q-learning. However, DQNs collude significantly faster than Q-learning. The algorithms start to increase prices

after approximately 20,000 periods. From a regulatory point of view, the results seem alarming, and algorithms

that learn even more efficiently than DQN are already available today, e.g., through self-play or meta-learning.

The more efficient DQN algorithm enabled experiments in wide oligopolies. With an increasing number of market

participants, the level of collusion decreases, and with seven or more firms, at the latest, collusion completely

vanishes. Remarkably, a slight reformulation of the state representation increases the ability to collude across

all market sizes. Future research should identify which state representation or incorporation of which expert

knowledge further facilitates collusion.

In contrast to additional self-learning algorithms, firms that use rule-based algorithms do not necessarily complicate

collusion. Thus, algorithmic collusion could emerge even in wide oligopolies that seem to bear a low risk of collusion

when two or three self-learning algorithms compete with simple rule-based algorithms or human price-setters with

low pricing frequency.

Examination of the learned strategies shows that collusion heavily depends on mutual understanding. Heterogeneity

in the pace of learning hinders collusion, and it could be suspected that this holds for differences in other

characteristics of the algorithms as well. Thus, competition policy should prevent firms from using the same or

similar algorithms. The implementation of DQN requires modifications to ensure stability of learning. Real-world

algorithms will require even more modifications, and it is unlikely that independently developed algorithms will be

exactly similar. Therefore, especially pricing algorithms from third-party providers may pose a high risk if widely

used in one market.

The presented work is the first step towards realistic pricing algorithms by demonstrating the deep learning

implementation of standard RL algorithms. However, in real-world applications, pricing algorithms have to deal

with two aggravating conditions. First, they have to choose prices from a continuous price spectrum or at least

23. We repeated the simulation with a longer time horizon of T = 1, 000, 000. With more time, Q-learning can learn a reward-
punishment scheme. Both agents start to cooperate and end up at similar collusive outcomes compared to duopolies with two
Q-learning or two DQN agents.

16

Algorithmic Collusion: Insights from Deep Learning

from a significantly wider price range than the one used in this study. Thus, future research should focus on policy

gradient algorithms.

Second, future simulations should take the temporary character of real-world markets into account. E.g., on

Amazon, the average product lifespan is between 15 and 30 days, and most price updates occur after more than 30

minutes (Chen et al. 2016). Even though the update frequency will likely increase in the future because it seems to

translate into competitive advantages, real-world algorithms must learn more sample-efficient than the algorithms

studied so far. A promising candidate for such algorithms is meta-learning that is expected to generalize learned

behavior to new environments (see, e.g. Wang et al. 2018). The meta-learning algorithm could learn general

pricing strategies across various market constellations. Based on this knowledge, the algorithm quickly adapts to a

new market constellation and learn proficient pricing strategies after a few periods. In order to more accurately

assess the risk of algorithmic collusion in real-world markets, it is essential to test whether such advances in RL

enable algorithms to quickly restart collusion in fast-changing markets.

References

Abada, Ibrahim, and Xavier Lambin. 2020. “Artificial Intelligence: Can Seemingly Collusive Outcomes Be Avoided?”
http://dx.doi.org/10.2139/ssrn.3559308.

Amazon. 2020. Selling Partner API Documentation. Accessed September 29, 2020. http ://docs .developer .
amazonservices.com/en_DE/dev_guide/index.html.

Assad, Stephanie, Robert Clark, Daniel Ershov, and Lei Xu. 2020. “Algorithmic Pricing and Competition :
Empirical Evidence from the German Retail Gasoline Market.” https://ssrn.com/abstract=3682021.

Brown, Zach, and Alexander MacKay. 2021. “Competition in Pricing Algorithms.” http://dx.doi.org/10.2139/ssrn.
3485024.

Calvano, Emilio, Giacomo Calzolari, Vincenzo Denicolò, Joseph E. Harrington Jr., and Sergio Pastorello. 2020a.
“Protecting consumers from collusive prices due to AI.” Science 370 (6520): 1040–1042.

Calvano, Emilio, Giacomo Calzolari, Vincenzo Denicoló, and Sergio Pastorello. 2021. “Algorithmic collusion with
imperfect monitoring.” International Journal of Industrial Organization, 102712.

Calvano, Emilio, Giacomo Calzolari, Vincenzo Denicolò, and Sergio Pastorello. 2020b. “Artificial Intelligence,
Algorithmic Pricing, and Collusion.” American Economic Review 110 (10): 3267–3297.

Chen, Le, Alan Mislove, and Christo Wilson. 2016. “An Empirical Analysis of Algorithmic Pricing on Amazon
Marketplace.” In 25th International World Wide Web Conference.

Ezrachi, Ariel, and Maurice E. Stucke. 2016. “Virtual Competition.” Journal of European Competition Law &
Practice 7 (9): 585–586.

. 2017. “Artificial Intelligence & Collusion: When Computers Inhibit Competition.” University of Illinois
Law Review, 1775–1810.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. Cambridge: MIT Press.

Hansen, Karsten T., Kanishka Misra, and Mallesh M. Pai. 2021. “Frontiers: Algorithmic Collusion: Supra-
competitive Prices via Independent Algorithms.” Marketing Science 40 (1): 1–12.

Harrington Jr., Joseph E. 2019. “Developing Competition Law for Collusion by Autonomous Artificial Agents.”
Journal of Competition Law & Economics 14 (3): 331–363.

. 2020. “Third Party Pricing Algorithms and the Intensity of Competition.” http://dx.doi.org/10.2139/ssrn.
3723997.

Johnson, Justin, Andrew Rhodes, and Matthijs R. Wildenbeest. 2020. “Platform Design When Sellers Use Pricing
Algorithms.” http://dx.doi.org/10.2139/ssrn.3691621.

17

http://dx.doi.org/10.2139/ssrn.3559308
http://docs.developer.amazonservices.com/en_DE/dev_guide/index.html
http://docs.developer.amazonservices.com/en_DE/dev_guide/index.html
https://ssrn.com/abstract=3682021
http://dx.doi.org/10.2139/ssrn.3485024
http://dx.doi.org/10.2139/ssrn.3485024
http://dx.doi.org/10.2139/ssrn.3723997
http://dx.doi.org/10.2139/ssrn.3723997
http://dx.doi.org/10.2139/ssrn.3691621

Algorithmic Collusion: Insights from Deep Learning

Klein, Timo. 2021. “Autonomous Algorithmic Collusion: Q-Learning Under Sequential Pricing.” RAND Journal of
Economics 52 (3): 538–558.

Kraines, David, and Vivian Kraines. 1989. “Pavlov and the Prisoner’s Dilemma.” Theory and Decision 26:47–79.

Leibo, Joel Z, Vinicius Zambaldi, Marc Lanctot, Janusz Marecki, and Thore Graepel. 2017. “Multi-Agent
Reinforcement Learning in Sequential Social Dilemmas.” In Proceedings of the 16th International Joint
Conference on Autonomous Agents and Multiagent Systems.

Mehra, Salil K. 2016. “Antitrust and the Robo-Seller: Competition in the Time of Algorithms.” Minnesota Law
Review 100 (4): 1323–1375.

Meylahn, Janusz M., and Arnoud den Boer. 2021. “Learning to Collude in a Pricing Duopoly.” http://dx.doi.org/
10.2139/ssrn.3741385.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves,
et al. 2015. “Human-Level Control through Deep Reinforcement Learning.” Nature 518 (7540): 529–533.

Naik, Abhishek, Roshan Shariff, Niko Yasui, Hengshuai Yao, and Richard S. Sutton. 2019. “Discounted Reinforce-
ment Learning Is Not an Optimization Problem.” https://arxiv.org/abs/1910.02140.

Potters, Jan, and Sigrid Suetens. 2013. “Oligopoly Experiments in the Current Millennium.” Journal of Economic
Surveys 27 (3): 439–460.

Salcedo, Bruno. 2015. “Pricing Algorithms and Tacit Collusion.”

Singh, Satinder P., Tommi Jaakkola, and Michael I. Jordan. 1994. “Learning Without State-Estimation in Partially
Observable Markovian Decision Processes.” In Machine Learning Proceedings 1994.

Sutton, Richard S., and Andrew G. Barto. 2018. Reinforcement Learning: An Introduction. 2. Edition. Cambridge:
MIT Press.

Wang, Jane X., Zeb Kurth-Nelson, Dharshan Kumaran, Dhruva Tirumala, Hubert Soyer, Joel Z. Leibo, Demis
Hassabis, and Matthew Botvinick. 2018. “Prefrontal Cortex as a Meta-Reinforcement Learning System.”
Nature Neuroscience 21 (6): 860–868.

18

http://dx.doi.org/10.2139/ssrn.3741385
http://dx.doi.org/10.2139/ssrn.3741385
https://arxiv.org/abs/1910.02140

Algorithmic Collusion: Insights from Deep Learning

A Simulation Parameter

Parameter Symbol Default Value

Economic Environment

Marginal costs c 1.0

Quality g 2.0

Price sensitivity µ 0.25

Number of prices m 15

Q-learning

Learning rate α 0.125

Discount factor γ 0.95

Deep Q-Network

Learning rate α 0.001

Reward step size λ 0.01

Periods between target network updates C 100

Size of the replay buffer β 5,000

Number of hidden layers 2

Number of nodes per hidden layer 32

Minibatch size ω 32

The exponential decay rate for the 1st moment estimates of Adam β1 0.9

The exponential decay rate for the 2nd moment estimates of Adam β2 0.999

A small constant for numerical stability of Adam ε 1e-7
Table 1: Default parameter of the economic environment and the algorithms.

19

	Titelblatt Hettich WP 94
	Working Paper Hettich 94
	Introduction
	Economic Environment
	Pricing Algorithms
	Q-Learning
	Deep Q-Network

	Fast Collusion by Deep Learning
	Collusion in Wide Oligopolies
	Conclusion
	References
	Simulation Parameter

