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1 Introduction

Forecasters often strive to predict future values of a univariate target variable, while hav-

ing access to multiple individual point forecasts. The econometric task then consists of

optimally processing all pieces of information contained in the individual forecasts. A

renowned methodology designed for this purpose is that of combining the individual fore-

casts to obtain a pooled univariate forecast (Bates and Granger, 1969) and, up to date, a

large body of literature on forecast combinations has emerged. Prevalent articles include,

inter alia, in-depth reviews (Clemen, 1989; Timmermann, 2006; Rossi, 2013), as well as

studies that aim to predict (i) macroeconomic and monetary variables (Stock and Watson,

2004; Capistrán and Timmermann, 2009; Gaglianone and Lima, 2014; Zhang, 2019), (ii)

financial quantities (Guidolin and Timmermann, 2009; Rapach et al., 2010; Pesaran and

Pick, 2011; Taylor, 2020), and (iii) commodity prices (Nowotarski et al., 2014; Baumeister

and Kilian, 2015; Garrat et al., 2019).

Recently, Weigt and Wilfling (2021) have proposed a ’post-processing’ forecast-error

modeling approach with the objective of first improving the individual forecasts, which

might then lead to accuracy gains for the forecast combinations obtained from them. In a

nutshell, the authors’ approach, referred to as Vector Autoregressive Forecast Error Mod-

eling (VAFEM), consists of the following three steps. Step 1. Modeling the individual

forecast-error series as a vector autoregression (VAR), the parameters of which are esti-

mated from past observations. Step 2. Using the estimated VAR model to obtain predic-

tions of future individual forecast-errors. Step 3. Adapting the initial (original) individual

forecasts to the predicted individual forecast-errors, obtained in Step 2.1

Having executed the three steps, the individual VAFEM forecasts may ultimately be

combined. A follow-up question is then whether this VAFEM forecast combination gener-

1To distinguish the ’initial (original) individual forecasts’ from the ’adapted individual forecasts’ ob-
tained in Step 3, we refer to the latter as the ’individual VAFEM forecasts’ hereafter.
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ates mean-squared-error (MSE) accuracy gains vis-à-vis the identical forecast combination

scheme applied to the initial (original) individual forecasts. In view of our informal de-

scription of the three above steps, we would expect intuitively that any VAFEM accuracy

gain can be thought of as stemming from two sources. (i) Systematic components that are

inherent to the history of the idiosyncratic initial individual forecast-error series (e.g. au-

tocorrelation). (ii) Existing correlation/covariation among the multiple initial individual

forecast-error series. In principle, the magnitude of potential VAFEM accuracy gains should

hinge on three aspects. (i) The selection of the ’correct’ VAR model, specifying the interre-

lationships among the individual forecast-error series in Step 1 of the VAFEM procedure.

(ii) The accurate estimation of the VAR parameters in Step 1. (iii) The quality of the

individual forecast-error predictions in Step 2.

Weigt and Wilfling (2021) outline the VAFEM procedure within the (classic) covariance-

stationary, stable VAR framework, in which (i) parameters can be consistently estimated

via multivariate Least Squares (LS), and (ii) forecasting routines are well-established in

the literature. In this paper, we adopt this very classic VAR framework, enabling us to use

common VAR theory in our formal analysis.2

In the next sections, we first formalize the VAFEM approach within the classic VAR

setting. We establish various theoretical results that elaborate the VAFEM benefits to

both (i) the individual forecasts, and (ii) any linear-convex combination of them.3 We

obtain the following four key results. (i) Under LS estimation in Step 1, all individual

VAFEM forecasts obtained in Step 3 are unbiased (in the sense of having unconditional

mean-zero prediction errors). This implies that any (non-stochastic) linear-convex VAFEM

combination forecast is also unbiased. (ii) If the VAR parameters in Step 1 are known with

2Weigt and Wilfling’s (2021) article is empirical by nature. In their VAFEM-application to the well-
known 7-country data set on output growth (Stock and Watson, 2004), the authors switch to a Bayesian
estimation framework, which is better suited to handling large (high-dimensional) time-varying parameter
VARs.

3Note that any particular individual forecast can be viewed as a special linear-convex combination of
the set of all individual forecasts.
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certainty, any linear-convex VAFEM forecast combination unambiguously outperforms its

original (non-VAFEM) analogue in terms of lower (theoretical) MSE. This clear-cut ac-

curacy gain may reverse if the VAR parameters need to be estimated (due to estimation

errors). (iii) We establish settings—that are likely to bring about theoretical MSE reduc-

tions for any (non-stochastic) linear-convex VAFEM combination forecast—pertaining to

(a) in-sample sizes, (b) out-of-sample forecast horizons, and (c) the biasedness of the corre-

sponding initial (non-VAFEM) combination. (iv) We can broadly confirm our theoretical

VAFEM results in an empirical application to out-of-sample realized-volatility forecasting,

using daily S&P 500 data with three individual forecast series.

The paper is organized as follows. Section 2 sets out the VAFEM procedure, and

establishes its theoretical forecasting properties. Section 3 reviews the individual volatility

forecasting models used in the empirical application. Section 4 presents the out-of-sample

realized-volatility forecasting analysis with S&P 500 data. Section 5 concludes.

2 Vector autoregressive forecast error modeling

The objective of this section is threefold. Section 2.1 outlines (i) our econometric frame-

work, and (ii) the 3-step VAFEM procedure. Section 2.2 establishes the unbiasedness

of VAFEM forecasts and compiles results on their theoretical MSEs. Section 2.3 elab-

orates conditions under which the VAFEM forecasts may outperform their non-VAFEM

analogues.

2.1 Econometric setup, and the VAFEM procedure

For s = 0,±1,±2, . . ., we consider the univariate target variable ys and, at present date

t, aim at forecasting the future value yt+h, h = 1, 2, . . ., based on information available

at date t. We denote such a forecast by ŷt+h|t. We assume M given alternative h-step
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forecasts, ŷt+h|t,1, ŷt+h|t,2, . . . , ŷt+h|t,M , that may stem from different sources. We collect

these individual forecasts in the M × 1 vector ŷt+h|t = (ŷt+h|t,1, ..., ŷt+h|t,M)′, and the as-

sociated individual forecast errors, et+h|t,i = yt+h − ŷt+h|t,i, i = 1, . . . ,M , in the vector

et+h|t = (et+h|t,1, . . . , et+h|t,M)′. We summarize the information available at date t in the set

It. Explicitly, It consists of the entire histories of (i) the target variable, and (ii) the M indi-

vidual h-step-ahead forecasts up to date t, that is It = {. . . , ŷt+h−1|t−1, ŷt+h|t, . . . , yt−1, yt}.4

We formalize the 3-step VAFEM procedure as follows.

Step 1. We assume that the forecast-error vector et+h|t is governed by the covariance-

stationary, stable VAR(p) process,

et+h|t = ν + A1e(t−1)+h|t−1 + . . .+ Ape(t−p)+h|t−p + εt+h, (1)

with intercept vector ν = (ν1, . . . , νM)′ and M ×M parameter matrices A1, . . . ,Ap. The

innovation vector εt+h = (εt+h,1, ..., εt+h,M)′ is assumed to be Gaussian white noise with

non-singular covariance matrix Σε. Under these classic assumptions, we estimate the VAR

parameters in Eq. (1) consistently by multivariate LS (Lütkepohl, 2005, pp. 69-72).5

Step 2. For the prediction of the future individual forecast errors, we consider the

conditional expectation vector eItt+h|t ≡ E[et+h|t|It] according to Eq. (1). Replacing the

unknown VAR parameters in eItt+h|t with their LS estimates from Step 1, we write the

estimated forecast-error predictions as

êItt+h|t = ν̂ + Â1ê
It
(t−1)+h|t−1 + . . .+ Âpê

It
(t−p)+h|t−p, (2)

4Under this timeline, es|s−h is It-measurable for s ≤ t.
5The forecast-error modeling in Eq. (1) is particularly suited to situations in which the M individual

forecasts are of a ’black-box’ nature, in the sense that the specific forecasting processes are not fully
formalized or even entirely unknown (e.g. judgmental, survey forecasts). The forecaster requires only the
information set It, from which to obtain the forecast-error sample {. . . , et−1|t−1−h, et|t−h}, for estimating
the VAR parameters in Eq. (1) via multivariate LS.

4



where êIts+h|s = es+h|s for s+ h ≤ t. To obtain êItt+h|t for h > 1, we start with the prediction

of êItt+1|(t+1)−h, and then recursively apply Eq. (2).

Step 3. We adapt the initial individual forecasts in ŷt+h|t by adding to them the pre-

dicted VAFEM errors from Step 2. Formally, we obtain our individual VAFEM forecasts

as

˜̂yt+h|t ≡ ŷt+h|t + êItt+h|t. (3)

Having executed these three steps, we may principally combine the M individual

VAFEM forecasts contained in ˜̂yt+h|t, in the hope of increasing the forecast accuracy (in

terms of lower MSEs), using any of the combination schemes suggested in the literature. In

this paper, we restrict our attention to the class of time-invariant (non-stochastic) linear-

convex combinations. Formally, for h = 1, 2, . . ., we consider the VAFEM and non-VAFEM

forecast combinations

˜̂ycomb
t+h|t = w′ ˜̂yt+h|t and ŷcomb

t+h|t = w′ŷt+h|t, (4)

with weighting vector w = (w1, . . . , wM)′, satisfying wi ≥ 0 for i = 1, . . . ,M , and
∑M

i=1wi =

1. Important weights are (1/M, . . . , 1/M)′—the arithmetic-mean combination—and the M

Euclidian standard basis vectors (1, 0, . . . , 0)′, . . . , (0, . . . , 0, 1)′. Specifically, the ith basis

vector reduces the VAFEM and non-VAFEM combination forecasts in Eq. (4) to the ith

individual VAFEM and (initial) non-VAFEM forecasts ˜̂yt+h|t,i and ŷt+h|t,i, respectively.

Our empirical application in Section 4 makes extensive use of the M standard basis

vectors, for conducting MSE comparisons between the individual VAFEM and the initial

non-VAFEM forecasts. Besides our special cases, the popularity of general linear-convex

weighting schemes stems from the fact that the associated combination forecasts (i) do

not leave the co-domain of the individual forecasts, and (ii) are unbiased if the individual
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forecasts are unbiased (Timmermann, 2006).6

2.2 Unbiasedness and MSEs

2.2.1 Unbiasedness of VAFEM forecasts

We now show that the 3-step VAFEM procedure inherently generates unbiased individual

forecasts, thus constituting a convenient tool for simultaneoulsy bias-correcting all initial

individual forecasts (plus any linear-convex combination of them).

Proposition 1. In the setting of Section 2.1, (i) all M individual VAFEM forecasts in

˜̂yt+h|t from Eq. (3), and (ii) any (non-stochastic) linear-convex VAFEM combination fore-

cast ˜̂ycomb
t+h|t from Eq. (4) are unbiased.

To obtain the result, we define the M × 1 vector yt+h ≡ (yt+h, yt+h, . . . , yt+h)′ and write

the individual VAFEM prediction errors in vector form as

yt+h − ˜̂yt+h|t = yt+h − (ŷt+h|t + êItt+h|t)

= et+h|t − êItt+h|t. (5)

Taking the expectations on both sides of Eq. (5), it follows that the individual VAFEM

forecasts in ˜̂yt+h|t are unbiased, if and only if E
[
et+h|t − êItt+h|t

]
= 0, i.e. if and only if the

predicted errors from the estimated VAR in Eq. (1) are unbiased. This latter unbiasedness

follows directly from Dufour (1985), due to our use of the LS estimators and the VAFEM

assumptions in Section 2.1. The unbiasedness of all individual VAFEM forecast in ˜̂yt+h|t,

in turn, implies the unbiasedness of any linear-convex VAFEM combination forecast ˜̂ycomb
t+h|t.

6The MSE-results proved below remain valid for non-stochastic, but time-varying linear-convex com-
bination schemes wt = (wt1, . . . , wtM )′. However, the ’non-stochastic’ property of wt is essential in the
proofs. It precludes the general validity of our theoretical MSE results for some popular combination
forecasts, like the median and the trimmed mean. For the latter combinations, the linear-convex elements
in wt become stochastic, due to the ordering of the individual forecasts in ˜̂yt+h|t and ŷt+h|t, and thus are

correlated with ˜̂yt+h|t and ŷt+h|t.
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2.2.2 MSE formulae for VAFEM forecasts

In this section, we provide theoretical MSE formulae for (i) the linear-convex VAFEM

combination forecast ˜̂ycomb
t+h|t from Eq. (4), and (ii) the individual VAFEM forecasts in ˜̂yt+h|t

from Eq. (3). We denote the (theoretical) univariate MSE-operator by MSE(·), and define

the matrix MSEM
(

˜̂yt+h|t

)
≡ E

[(
yt+h − ˜̂yt+h|t

)(
yt+h − ˜̂yt+h|t

)′]
. For the MSE of the

linear-convex VAFEM combination forecast, we obtain

MSE(˜̂ycomb
t+h|t) = E

[(
yt+h − ˜̂ycomb

t+h|t

)2]
= E

[(
yt+h −w′ ˜̂yt+h|t

)2]
= E

[(
w′
{

yt+h − ˜̂yt+h|t

})2]
= w′E

[(
yt+h − ˜̂yt+h|t

)(
yt+h − ˜̂yt+h|t

)′]
w

= w′MSEM
(

˜̂yt+h|t

)
w, (6)

where the M elements on the main diagonal of the MSE-matrix MSEM
(

˜̂yt+h|t

)
are given

by MSE(˜̂yt+h|t,i) for i = 1, . . . ,M (the MSEs of the individual VAFEM forecasts).

The following proposition states a large-sample approximation of the MSEM-matrix in

Eq. (6). Proofs can be found in Lütkepohl (2005, pp. 94-98), and for VAR specifications

without intercept term in Reinsel (1997, pp. 155-157).

Proposition 2 (Reinsel, 1997; Lütkepohl 2005). Given a forecast-error sample of size T

plus a presample of p observations, let D ≡ (Dt−T,h, . . . ,Dt−1,h) with Ds,h ≡
(

1, e′s|s−h, . . . ,

e′s−p+1|s−p+1−h

)′
, and consider the probability limit Γ ≡ plim DD′/T . Denoting the M×M
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identity matrix by IM , we define

A ≡



1 0 0 . . . 0 0

ν A1 A2 . . . Ap−1 Ap

0 IM 0 . . . 0 0

0 0 IM . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . IM 0


and λi ≡ JAiJ′,

where J ≡
(

0 IM 0 . . . 0

)
is an M × (Mp+ 1) matrix. Then, under the assumptions

from Section 2.1, a large-sample approximation of the MSEM-matrix in Eq. (6) is given by

MSEMapprox
(

˜̂yt+h|t

)
=

h−1∑
i=0

λiΣελ
′
i +

1

T
Ω(h), (7)

where Ω(h) ≡
∑h−1

i=0

∑h−1
j=0 trace

[
(A′)h−1−iΓ−1Ah−1−jΓ

]
·λiΣελ

′
j, and trace(·) denotes the

trace operator.

Remark 1. The right-hand side of Eq. (7) consists of two major summands. It is well-

known that the first major summand (
∑h−1

i=0 λiΣελ
′
i) coincides with the exact MSE-matrix,

if the true VAR parameters in Eq. (1) are fully known. That is, under known VAR param-

eters, we have

MSEM
(

˜̂yt+h|t

)
=

h−1∑
i=0

λiΣελ
′
i. (8)

The second major summand in Eq. (7), (1/T )Ω(h), comes into play, when the true VAR

parameters are unknown and need to be estimated.

2.3 MSE properties of VAFEM forecasts

We are now able to compare the forecasting accuracy of any linear-convex VAFEM com-

bination forecast (˜̂ycomb
t+h|t) with that of its (initial) non-VAFEM analogue (ŷcomb

t+h|t). Invoking
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Eqs. (6) and (8), we obtain the following result.

Proposition 3. Under the VAFEM setup from Sections 2.1 and 2.2, assume that the true

VAR parameters are known. For every (non-stochastic) linear-convex combination vector

w = (w1, . . . , wm)′, we then have

MSE(˜̂ycomb
t+h|t) = w′

(
h−1∑
i=0

λiΣελ
′
i

)
w ≤ MSE(ŷcomb

t+h|t). (9)

We prove Proposition 3 in the Appendix. The proof provides the following two clear-cut

results on the accuracy gain of the VAFEM vis-à-vis the (initial) non-VAFEM combination

forecast.

Corollary 1. We define the accuracy gain of the linear-convex VAFEM combination fore-

cast vis-à-vis its (initial) non-VAFEM counterpart as MSE(ŷcomb
t+h|t) − MSE(˜̂ycomb

t+h|t). Then,

the proof of Proposition 3 establishes the following (qualitative) results:

(i) The accuracy gain is larger, if the linear-convex (initial) non-VAFEM combination

forecast ŷcomb
t+h|t is biased.7

(ii) The accuracy gain typically decreases when the forecast horizon h increases. In par-

ticular, we obtain MSE(˜̂ycomb
t+h|t) = MSE(ŷcomb

t+h|t) in Eq. (9) for h→∞, if all M initial

individual forecasts in ŷt+h|t are unbiased.8

It remains to consider the most realistic scenario, in which the true VAR parameters

in Eq. (1) are unknown. Eqs. (6) and (7) provide the following MSE approximation of the

linear-convex VAFEM combination forecast:

MSE(˜̂ycomb
t+h|t) ≈ w′

(
h−1∑
i=0

λiΣελ
′
i

)
w +

1

T
w′Ω(h)w. (10)

7See Eqs. (A.4), (A.5) in the Appendix. The biasedness of ŷcomb
t+h|t requires at least one of the individual

forecasts in ŷt+h|t to be biased.
8See Eqs. (A.4)–(A.7) in the Appendix.
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The summand (1/T )w′Ω(h)w on the right-hand side of Eq. (10) is non-negative, since

the Ω(h) is positive-semidefinite. Thus, in the case of unknown VAR parameters, estimation

errors might substantially increase the MSE of the VAFEM combination forecast according

to the summand (1/T )w′Ω(h)w in Eq. (10). Potentially (and not surprisingly), this can

entail an underperformance of the VAFEM combination forecast.

Remark 2. Our previous analysis indicates three circumstances in which the VAFEM

procedure has the highest potential for deconvolving accuracy-improving effects on linear-

convex combination forecasts:

(i) When the linear-convex non-VAFEM combination forecast ŷcomb
t|t+h is biased [Corollary

1].

(ii) When the sample size T is large [Eqs. (7), (10)].

(iii) When the forecast horizon h is small [Corollary 1].

We end this section by recalling that, upon equating the weighting vector w in Eq. (4)

with the Euclidian standard basis vectors, each of the M (i) individual VAFEM, and (ii)

(initial) non-VAFEM forecasts in ˜̂yt+h|t and ŷt+h|t represent special cases of the general

linear-convex combinations ˜̂ycomb
t+h|t and ŷcomb

t+h|t. Thus, all our previous MSE results for the

general VAFEM and non-VAFEM combination forecasts hold particularly for the individual

VAFEM and non-VAFEM forecasts.

3 Individual forecast models

In Section 4, we will apply the VAFEM procedure to realized-volatility forecasting, using

S&P 500 data. We base our out-of-sample analysis on a maximum number of M = 3

(initial) individual forecasts.9 Two forecast series stem from models (ARFIMA, HAR)

9Notwithstanding our remarks in Footnote 5, we conduct our empirical analysis with three fully-specified
(individual) forecasting processes, for each of which large sets of (daily) forecasts over multiple horizons are
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that are frequently applied in realized-volatility prediction and have experienced a plethora

of formal modifications and extensions (inter alia, Bollerslev et al., 2016; Audrino et al.,

2019; Izzeldin et al., 2019). The other forecast series (GARCH), which we primarily use

for illustrative purposes, has historical and finance-based backgrounds (e.g. Koopman et

al., 2005; Taylor, 2005, Sec. 9). Since our focus is on analyzing VAFEM accuracy effects

on individual and combination forecasts, and not on identifying the ’best’ out-of-sample

prediction model for our data set, we apply standard variants of the (initial) individual

forecast specifications.

To briefly review the models, we let our target variable yt represent the realized volatility

of a financial-return variable xt, and define realized volatility as the square-root of the sum

of n (equidistantly observed) squared intraday returns xt:i (i = 1, . . . , n):

yt =

√√√√ n∑
i=1

x2t:i. (11)

Our first (initial) individual forecast (ŷt+h|t,1) originates from the standard GARCH(1, 1)

model (Bollerslev, 1986), which specifies the financial return xt as

xt = σt · ut, (12)

σ2
t = α0 + α1 · x2t−1 + β1 · σ2

t−1, (13)

with ut
i.i.d.∼ N(0, 1), and parameters α0 > 0, α1, β1 ≥ 0. Assuming α1 + β1 < 1 (second-

moment stationarity), we use the square-root of the h-step-ahead conditional-variance fore-

casts σ̂2
t+h|t from the estimated GARCH(1, 1) specification as our first individual realized-

volatility forecasts. For clarity of exposition, we write ŷt+h|t,GARCH ≡ ŷt+h|t,1 = σ̂t+h|t.

In contrast to the GARCH Eqs. (12), (13), the other two forecast models directly specify

available. This enables us to verify our theoretical VAFEM results from Section 2, in terms of in-sample
sizes and out-of-sample forecast horizons.
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the dynamics of the realized volatility process. The Heterogeneous-Auto-Regressive (HAR)

model (Corsi, 2009) specifies realized volatility as

yt = α0 + α1 · yt−1 + α2 · yw

t−1 + α3 · ym

t−1 + σ · ut, (14)

where

yw

t−1 ≡
1

5

5∑
i=1

yt−i, ym

t−1 ≡
1

22

22∑
i=1

yt−i,

ut
i.i.d.∼ N(0, 1), and with parameters α0, . . . , α3, and σ > 0. The Auto-Regressive Frac-

tionally Integrated Moving Average ARFIMA(1, d, 1) model (Granger and Joyeux, 1980;

Hosking, 1981) specifies realized volatility as

(1− φL)(1− L)d [yt − E(yt)] = (1 + θL) · σ · ut, (15)

with lag operator L, ut
i.i.d.∼ N(0, 1), and parameters d, φ, θ, σ restricted by 0 < d < 0.5;

|φ|, |θ| < 1 (stationarity and invertibility conditions), and σ > 0. Taking conditional

expectations in Eqs. (14) and (15), optimal h-step-ahead forecasts ŷt+h|t,HAR ≡ ŷt+h|t,2 and

ŷt+h|t,ARFIMA ≡ ŷt+h|t,3 subject to the MSE loss function are readily established (Corsi, 2009;

Doornik and Ooms, 2004).

4 Realized-volatility forecasting with S&P 500 data

In this section, we investigate out-of-sample forecasting gains/losses from the VAFEM

procedure, using S&P 500 data. We apply two types of linear-convex weighting schemes.

(i) The Euclidian standard basis vectors (for comparing the individual forecasts before-and-

after VAFEM treatment), and (ii) the (1/M)-equal-weight vector, representing the mean

combination forecast.
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Figure 1 about here

Table 1 about here

4.1 Data set and out-of-sample timeline

Our data set includes daily observations of the S&P 500 index between 3 January 2000 and

31 January 2018 (4539 obs.). The (log) returns were computed from closing prices, and pro-

vided by the Realized Library of the Oxford Man Institute (RLOMI). The realized-volatility

data, also obtained from RLOMI, were computed from 5-minute intraday returns. Daily

trading hours at the New York Stock Exchange (NYSE) were from 9:30 to 16:00 (15:30 to

22:00 CET), covering 78 5-minute intraday intervals, for computing daily realized volatil-

ity, according to Eq. (11). We implemented the entire VAFEM procedure with the EViews

12 software. Figure 1 plots the respective time-series over the entire time span. Table 1

provides some summary statistics, reflecting (i) leptokurtosis, (ii) highly significant (first-

order) autocorrelation, and (iii) non-normality for the target variable (realized volatility),

and the daily S&P returns.

We execute our out-of-sample analysis with alternative sets of individual forecasts

(forecast sets). We denote these by (i) {GARCH}, {HAR}, {ARFIMA} for M = 1, (ii)

{GARCH,HAR}, {GARCH,ARFIMA}, {HAR,ARFIMA} for M = 2, and {GARCH,

HAR,ARFIMA} for M = 3. To compare the (initial) non-VAFEM (individual and combi-

nation) forecasts with their VAFEM analogues, we implement the following timeline (for

each forecast set).

(a) Out-of-sample initial individual forecasts (ŷt+h|t) and forecast errors (et+h|t):

We initialize a rolling window of the fixed observation length N = 500 (trading days)

for estimating the parameters of the individual forecast models (GARCH, HAR,

ARFIMA). The initializing window starts on Obs. #23 (03/FEB/2000) and ends

13



on Obs. #522 (07/FEB/2002).10 We obtain the first initial individual forecasts at

forecast horizon h (h = 1, 2, 3, 5, 10 trading days) for Obs. #(522 +h) (22/FEB/2002

for h = 10). Rolling the estimation window 1-day-ahead and proceeding in the same

fashion, we obtain 4018 − h individual forecasts, and associated forecast-errors. For

h = 10, this amounts to 4008 forecasts and errors, respectively, over the period

22/FEB/2002 – 31/JAN/2018.

(b) Out-of-sample VAFEM forecasts (˜̂yt+h|t) and errors

We initialize a second rolling window of the fixed length Tp ≡ T + p, containing the

first Tp errors of the M initial individual forecasts (et+h|t) obtained in (a). With these,

we estimate the VAR(p) specification (1) via multivariate LS (for p = 1, 2, 3, 4). Us-

ing these estimates, we obtain the first M h-period-ahead VAFEM forecasts (˜̂yt+h|t)

according to Eq. (3), and compute the associated first M VAFEM forecast errors

(yt+h− ˜̂yt+h|t). We roll the estimation window, day-by-day, and for each window po-

sition, reestimate the VAR(p) specification (1) to obtain the h-period-ahead VAFEM

forecasts, along with the associated VAFEM forecast errors. For instance, for T = 50

(T = 750), h = 10, p = 4, the initializing VAR(4) estimation window covers the

period 22/FEB/2002 – 09/MAY/2002 (28/FEB/2005). For these two settings of

(T, h, p), the rolling procedure generates 3945 and 3245 (M -tuple) VAFEM fore-

casts, along with the associated VAFEM forecast errors (until the sample ending

date 31/JAN/2018).

(c) Out-of-sample MSEs and MDM p-values

We consider (i) the M -tuple VAFEM forecast errors obtained in (b), and (ii) the

contemporaneous individual non-VAFEM forecast errors (et+h|t) obtained in (a). For

10We need the first 22 observations (03/JAN/2000 – 02/FEB/2000) to initialize the HAR model; see
Eq. (14).
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all settings of (T, h, p), we conduct the evaluation over the same period covering the

last 3245 observations (14/MAR/2005 – 31/JAN/2018). Over this evaluation period,

we initialize a third rolling window of the fixed length E = 500, containing the first

E VAFEM forecast-error M -tuples and their corresponding individual non-VAFEM

analogues. For both of these, we compute the out-of-sample (sampling) MSEs over the

E observations in the window. We apply the modified Diebold-Mariano test (MDM;

Harvey et al., 1997) for equal predictive ability to the corresponding VAFEM and

non-VAFEM forecast combinations, and compute the MDM p-values on the basis of

the window observations.11 We roll the window day-by-day, each time proceeding in

the same fashion. This leads to 2746 out-of-sample MSEs per forecast-errors series,

and the same number of MDM p-values for the chosen pairs of VAFEM and non-

VAFEM forecast-error series over the S&P-500 sampling period.

Figure 2 about here

4.2 VAFEM forecasting results

4.2.1 VAFEM bias-correction

We start the out-of-sample analysis by illustrating the VAFEM forecast-bias correction

(Proposition 1). Figure 2 illustrates this finite-sample property, using the 3-element forecast

set {GARCH,HAR,ARFIMA}, with T = 50, p = 1, h = 1. The left panels display the

forecast errors of the non-VAFEM individual forecasts, the right panels the respective

VAFEM analogues. In contrast to non-VAFEM HAR and ARFIMA (left panels), the non-

VAFEM GARCH forecasts exhibit pronounced downward bias. In line with Proposition 1,

the VAFEM treatment removes any bias from the individual forecasts (right panels).

Figure 3 about here

11We implemented the left-tailed version of the MDM test.
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4.2.2 Forecast set {GARCH,HAR,ARFIMA}

Next, we analyze the (rolling) out-of-sample MSEs, and the MDM p-values (Section 4.1,

Step (c)). Figure 3 shows the mean- and forecast-specific VAFEM MSEs relative to their

non-VAFEM MSE-analogues (MSE-ratios ’VAFEM-MEAN-MSE/non-VAFEM-MEAN-MSE’,

and so forth), obtained for the 3-element forecast set {GARCH,HAR,ARFIMA}, using the

common parameters p = 1, h = 1, and the two sample sizes T = 50 (left panels), T = 750

(right panels).12 In each panel, the MSE-ratios (blue lines) are assigned to the left axis.

MSE-ratios falling below (exceeding) 1 indicate VAFEM accuracy gains (losses). The p-

values of the MDM test for differences in VAFEM and non-VAFEM predicitve ability are

assigned to the right axes (red lines). The grey-shaded areas contain those p-values that

fall below the 5% level (significant accuracy gains via the VAFEM treatment).

Panel-rows 1 and 2 in Figure 3 indicate exceptional VAFEM accuracy gains for (i) the

MEAN combination, and (ii) the GARCH forecasts. For T = 50 (left panels), both ratio-

series exhibit MSE-reductions of 90% (and higher) over (quasi) the entire out-sample period.

Even larger MSE-reductions emerge for T = 750 (right panels). All VAFEM accuracy gains

are highly significant, with MDM p-values virtually equal to zero within the grey-shaded

areas. Prima facie, the accuracy gains/losses for the HAR and ARFIMA forecasts appear

less distinctive (Panel-rows 3, 4). For both forecasts, the sample-size increase from T = 50

to T = 750 is associated (on trend) with lower MSE-ratios. For T = 750, the ARFIMA

forecasts exhibit VAFEM accuracy gains for 75.97% of the computed MSEs, where, for

45.12% of the MSEs, the accuracy gains are significant (MDM p-values within the grey-

shaded area). By contrast, the HAR forecasts incur accuracy losses for 88.97% of the MSEs,

and exhibit very few significant VAFEM accuracy gains for T = 750.

Tables 2 – 5 about here

12For convenience, we refer to the ’in-sample size’ T as the ’sample size’ throughout Section 4.

16



Tables 2 – 5 condense the MSE-results from Figure 3, and report summary statistics for

a broad range of parameter settings, based on the set {GARCH,HAR,ARFIMA}. Each

table displays the results for the sample sizes T ∈ {50, 100, 250, 500, 750}, VAR lag-lengths

p = 1, 2, 3, 4, and forecast horizons h ∈ {1, 2, 3, 5, 10}.13 For each parameter setting, we

consider the following three summary statistics, observed during the out-of-sample period:

(i) The percentage of (rolling) MSE ratios (VAFEM relative to non-VAFEM) falling

below 1 (termed ’MSE ratios < 1 (in %)’).

(ii) The percentage of (rolling) VAFEM predictive-ability improvements, significant at

least at the 5% level (termed ’MDM p-values ≤ 0.05 (in %)’).

(iii) The (single) MSE ratio (VAFEM/non-VAFEM) computed for the full evaluation

period (14/MAR/2005 – 31/JAN/2018; 3245 observations) from Step (c) of the out-

of-sample timeline in Section 4.1 (termed ’MSE ratio (full period)’). This MSE ratio

serves as an aggregated measure of VAFEM accuracy gains/losses over the out-of-

sample period. We also conducted the modified Diebold-Mariano tests for the full

evaluation period. In Tables 2 – 5, we indicate significantly different MSEs (VAFEM

MSE < non-VAFEM MSE) at the 10, 5, and 1% levels by ∗,∗∗ ,∗∗∗, respectively.

We start our detailed analysis with the out-of-sample VAFEM results for the mean

combination (Table 2) and the individual GARCH forecasts (Table 3), which appear similar.

In both tables, we find highly significant accuracy gains with out-of-sample percentages,

in terms of ’MSE-ratios ≤ 1’ and ’MDM p-values ≤ 0.05′, equal to 100% across the vast

majority of the tabulated (T, p, h)-constellations. More concretely, we restrict our analysis

to the VAR lag length p = 1, and ignore the two settings (T = 50, h = 5), (T = 50, h = 10)

in Tables 2 and 3. For the remaining 23 (T, p = 1, h) settings in Table 2, we find full-period

13In the main text, we only report results for the VAR lag-length p = 1. Results for p = 2, 3, 4 are
provided in the supplementary file ’Tables 2-5’.
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MSE ratios ranging between 0.05 and 0.28 (implying VAFEM-induced MSE reductions

between 72% and 95%) for the mean combination. Analogously, for the GARCH forecasts

in Table 3, the 23 full-period MSE ratios range between 0.04 and 0.20, indicating VAFEM-

induced MSE reductions between 80% and 96%. We ascribe these comprehensive VAFEM

accuracy gains to the severe biasedness of the initial (non-VAFEM) GARCH forecast series

(Remark 2(i), Section 2.3).14

Next, we discuss VAFEM results for the individual ARFIMA forecasts. Figure 3 displays

the (rolling) ARFIMA MSE ratios for the special cases (p = 1, h = 1) and T = 50, 750

(left and right panels in Row 4). Mere visual inspection suggests that, ceteris paribus,

the sample-size increase entails clear-cut VAFEM accuracy gains (in the form of reduced

ARFIMA MSE-ratios). Table 5 corroborates this impression. For brevity, we only analyze

the case p = 1.15

(i) Let us consider the forecast horizon h as fixed. Then, the stepwise sample-size

increases (T = 50, T = 100, . . .) are accompanied by reductions in the full-period ARFIMA

MSE-ratios. For h = 1, the sequence of decreasing (full-period) MSE ratios is 1.02, 0.83,

0.77, 0.76, 0.75 (implying a 25% VAFEM MSE-reduction for T = 750).16 This tendency

of observing increased VAFEM accuracy gains (decreasing full-period MSE-ratios) with

increasing sample sizes, ceteris paribus, is strictly consistent with our theoretical results in

Section 2.3; see Remark 2(ii).

(ii) Let us consider the sample size T as fixed. Then, the stepwise increases in the

forecast horizons (h = 1, h = 2, . . .) entail increasing full-period ARFIMA MSE-ratios;

e.g. 0.75, 0.87, 1.08, 1.18, 1.37 for T = 750. This pattern of observing higher VAFEM

accuracy gains for nearby forecast horizons coincides with our theoretical result in Remark

14The biasedness of the non-VAFEM GARCH forecasts is shown in Figure 2 (upper left panel). This
GARCH-biasedness induces biased non-VAFEM mean-combination forecasts (not shown here).

15The same qualitative features also hold for p = 2, 3, 4; see Table 5 in the supplementary file.
16We note that the other two summary statistics in Table 5 typically increase with increasing sample

size.

18



2(iii), Section 2.3.

Finally, we present the VAFEM results for the HAR forecasts. Figure 3 (panels in Row

3) gives a first impression. For the two parameter settings, p = 1, h = 1, T ∈ {50, 750}, the

(rolling) HAR MSE-ratios exceed 1 most of the time. Table 4 substantiates this indication

of VAFEM accuracy losses. Irrespective of the parameter setting, all full-period HAR MSE-

ratios exceed 1. We emphasize, however, that the VAFEM results for the HAR forecasts

are still widely consistent with our theoretical findings presented in Remark 2 (Section

2.3).17 We give two complementary explanations of the VAFEM accuracy losses for the

HAR forecasts. (1) The initial non-VAFEM HAR forecasts are unbiased (Figure 2, Row 2,

left panel). Thus, a promotive precondition for realizing VAFEM accuracy gains according

to Remark 2(i) (Section 2.3) does not apply. (2) In view of VAR Eq. (1), we would expect

to find (substantial) VAFEM accuracy gains, if the (initial) non-VAFEM HAR forecast-

errors (i) featured autocorrelation, and/or (ii) interrelated significantly with the errors of

the remaining non-VAFEM forecasts from the set.

For our S&P 500 data, the initial non-VAFEM HAR forecast-errors (i) do not exhibit

autocorrelation (see Section 4.2.3). (ii) Also, the non-VAFEM HAR forecast-errors do

not effectively interrelate with the errors of the GARCH and ARFIMA forecasts in the

joint VAR modeling. Overall, the non-VAFEM HAR forecasts already feature sufficiently

good out-of-sample properties, leaving virtually no room for further VAFEM accuracy

improvement (under the forecast set {GARCH,HAR,ARFIMA}).

Figure 4 about here

17For fixed forecast horizon h (sample size T ), the HAR forecasts (largely) show decreasing (increasing)
full-period MSE-ratios under increases in T (h).
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4.2.3 Smaller sets

We briefly outline results for some selected 2- and 1-element forecast sets.18 Figure 4

displays (rolling) MSE-ratios and MDM p-values for the sets {HAR,ARFIMA} [Panels

(a)–(c)], and {GARCH,ARFIMA} [Panels (d)–(f)], for T = 750, p = 1, h = 1. Under

{HAR,ARFIMA}, we observe (i) balanced VAFEM accuracy gains/losses for the combi-

nation mean [Panel (a)], (ii) persistent losses for the HAR forecasts [Panel (b)], and (iii)

substantial VAFEM accuracy gains for the ARFIMA forecasts [Panel (c); full-period MSE

ratio: 0.76, MDM p-value: 0.07].

Under the set {GARCH,ARFIMA}, we obtain clear-cut VAFEM accuracy gains for (i)

both individual forecasts [GARCH, Panel (e); ARFIMA, Panel (f)], plus (ii) their mean

combination [Panel (d)]. While the accuracy gains in Panels (d) and (e) are unambiguous,

the gains for the ARFIMA forecasts in Panel (f) are less extreme, but nonetheless significant

(full-period MSE ratio: 0.82, MDM p-value: 0.08).

Figure 5 about here

Figure 5 contains the (rolling) MSE-ratios under the single-element (M = 1) forecast

sets {HAR} [Panels (a), (b)] and {ARFIMA} [Panels (c), (d)], using p = 1, h = 1, and

the two sample sizes T = 50, 750. For M = 1, the forecast-error VAR in Eq. (1) reduces

to a univariate autoregression of order p. The VAFEM procedure then confines itself to

adjusting the forecasts in Eq. (3) for autocorrelation in past forecast errors. As shown in

Panels (c) and (d), the ARFIMA forecasts realize VAFEM accuracy gains through this

autocorrelation adjustment (full-period MSE ratio for T = 750 [T = 50]: 0.83 [0.89]; MDM

p-values: 0.09 [0.22]). By contrast, the VAFEM-HAR forecasts in Panels (a), (b) do not

exhibit accuracy improvements. Obviously, the initial non-VAFEM HAR model is already

capable of generating (first-order) autocorrelation-free forecast errors.

18We only show graphical results. Full graph and table disclosure for all forecast sets, analogous to
Figures 3–5 and Tables 2–5, is available upon request.
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5 Concluding remarks

In this paper, we formalize a ’post-processing’ 3-step procedure (called VAFEM) for improv-

ing the MSE-accuracy of linear-convex forecast combinations in a classic VAR framework,

in which the multivariate LS estimators are consistent. We (i) prove probabilistic char-

acteristics of the procedure (forecast bias-correction, MSE-reductions under known VAR

parameters), and (ii) establish settings under which the VAFEM approach has the highest

potential to generate forecasting improvements in real-world applications. Accuracy gains

are most likely to occur, if (i) some of the original individual forecasts are biased, (ii) a

sufficiently large number of historical forecast errors are available (for accurately estimating

the VAR parameters), and (iii) the forecast horizons are small. Our theoretical results are

to a large extent confirmed empirically in an out-of-sample volatility-forecasting analysis,

using daily S&P 500 data over an 18-year time span.

At various points of our analysis, we emphasize that ’large VAR-parameter estimation

errors’ (in Step 1 of the VAFEM procedure) might ultimately bring about accuracy-losses.

A closely related practical issue concerns the adequate in-sample VAR model selection.

Here, two crucial aspects include (i) the VAR lag-length selection (p), and (ii) the ’correct’

VAR specification in Eq. (1). Pertaining to (i), there are several manifest techniques

to experiment with, like the Akaike/Bayesian information criteria, and the discounted

MSFE(δ) criterion (Stock and Watson, 2004, Eq. (4)). With respect to (ii), Weigt and

Wilfling (2021) successfully apply a heteroskedastic VAR with time-varying parameters,

using a Bayesian estimation technique. Additionally, it remains to investigate the accuracy-

effects of the VAFEM methodology on the numerous other (non-linear-convex) combination

forecasts suggested in the literature. We leave all these topics for future research.
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SUPPLEMENTARY MATERIAL

Pdf-file ’Tables 2-5’: The file continues the Tables 2–5 from the main text, reporting

results for the VAR lag-lengths p = 2, 3, 4.

Appendix: A. Proof(s) and remark(s)

Proof of Proposition 3. We first express the VAR(p) model from Eq. (1) in the VAR(1)

(companion) form. Defining the Mp× 1 column vectors

Et,h ≡
(
e′t+h|t, e

′
(t−1)+h|t−1, . . . , e

′
(t−p+1)+h|t−p+1

)′
,

ξt+h ≡
(
ε′t+h,0

′, . . . ,0′
)′
,

N ≡ (ν ′,0′, . . . ,0′)
′
,
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and the Mp×Mp matrix

A ≡



A1 A2 . . . Ap−1 Ap

IM 0 . . . 0 0

0 IM 0 0
...

. . .
...

...

0 0 . . . IM 0


,

we obtain the companion form as

Et,h = N + AEt−1,h + ξt+h. (A.1)

Given our stability assumption in Section 2.1, the VAR process in Eq. (A.1) has the moving

average representation

Et,h = E(Et,h) +
∞∑
i=0

Aiξt+h−i. (A.2)

Next, we define the M ×Mp matrix J1 ≡
(

IM 0 . . . 0

)
, and the M ×M matrix

λi ≡ J1A
iJ′1. It is straightforward to verify that the matrix λi thus defined is identical to

the matrix λi from Proposition 2, so that λi has the two representations λi = J1A
iJ′1 =

JAiJ′ (with J and A from Proposition 2). We now have

et+h|t = J1Et,h

= J1E(Et,h) +
∞∑
i=0

J1A
iξt+h−i

= E(et+h|t) +
∞∑
i=0

λiεt+h−i. (A.3)

We note that the matrices E(et+h|t)E(et+h|t)
′ and Σε from Eq. (1) are positive semidef-

inite. Then, using the M × 1 vector yt+h = (yt+h, . . . , yt+h)′ and the representation in
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Eq. (A.3), we obtain

MSE(ŷcomb
t+h|t) = E

[(
yt+h −w′ŷt+h|t

)2]
= w′ E

[(
yt+h − ŷt+h|t

) (
yt+h − ŷt+h|t

)′]
w

= w′ E
[
et+h|te

′
t+h|t

]
w

= w′ E

[(
E(et+h|t) +

∞∑
i=0

λiεt+h−i

)(
E(et+h|t) +

∞∑
i=0

λiεt+h−i

)′]
w

= w′

{
E(et+h|t)E(et+h|t)

′ + E

[(
∞∑
i=0

λiεt+h−i

)(
∞∑
i=0

λiεt+h−i

)′]}
w

= w′ E(et+h|t)E(et+h|t)
′w + w′

(
∞∑
i=0

λiΣελ
′
i

)
w (A.4)

≥
∞∑
i=0

w′λiΣε (w′λi)
′

(A.5)

=
h−1∑
i=0

w′λiΣε (w′λi)
′
+
∞∑
i=h

w′λiΣε (w′λi)
′

(A.6)

≥ w′

(
h−1∑
i=0

λiΣελ
′
i

)
w. (A.7)

In view of Eq. (6) and Eq. (8) in Remark 1, this completes the proof.

Remark 3. We note the following two issues.

(i) If all M (initial) individual forecast models are unbiased, we have E(et+h|t) = 0 in

Eq. (A.4), and obtain equality in (A.5).

(ii) When the forecast horizon h becomes infinitely large (h → ∞), there is no need to

split up the sum in (A.6), and we obtain equality in (A.7).
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Figure 1: S&P 500 (in levels), daily returns, and realized volatility
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Figure 2: VAFEM forecast-bias correction for the forecast set {GARCH,HAR, ARFIMA}
and (T = 50, p = 1, h = 1)
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Figure 3: Rolling MSE-ratios (VAFEM/non-VAFEM; blue lines; left axes) and mod-
ified Diebold-Mariano (MDM) p-values (red lines; right axes) for the forecast set
{GARCH,HAR,ARFIMA}, T ∈ {50, 750}, p = 1, h = 1
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Figure 4: Rolling MSE-ratios (VAFEM/non-VAFEM) and MDM p-values for the forecast
sets {HAR,ARFIMA} [Panels (a)–(c)], {GARCH,ARFIMA} [Panels (d)–(f)], for T =
750, p = 1, h = 1
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Figure 5: Rolling MSE-ratios (VAFEM/non-VAFEM) and MDM p-values for the forecast
sets {HAR} [Panels (a), (b)], {ARFIMA} [Panels (c), (d)], for p = 1, h = 1, and T = 50
(left panels), T = 750 (right panels)
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Table 1: Summary statistics (daily observations, 1 January 2000 until 31 January 2018)

Realized volatility Daily returns
(S&P 500) (S&P 500)

Number of obs. 4539 4538

Minimum 1.22× 10−6 −0.0969

Maximum 0.0047 0.1064

Mean 0.0001 0.0001

Skewness 8.1957 −0.1960

Kurtosis 103.0757 11.3045

ACF(1) 0.7670 −0.0708

Q(1) (p-value) 0.0000 0.0000

JB (p-value) 0.0000 0.0000

Note: ACF(1) denotes the value of the (sample) autocorrelation function at lag 1. Q(1) is the
Ljung-Box test for autocorrelation at lag 1. JB denotes the Jarque-Bera normality test.
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Table 2: Out-of-sample forecast evaluation — Combination: MEAN (VAFEM versus non-
VAFEM), Forecast set: {GARCH,HAR,ARFIMA}

Lag length (p) / Sample size
Horizon (h) T = 50 T = 100 T = 250 T = 500 T = 750

p = 1 h = 1 MSE ratios < 1 (in %) 100.00 100.00 100.00 100.00 100.00

MDM p-values ≤ 0.05 (in %) 100.00 100.00 100.00 100.00 100.00

MSE ratio (full period) 0.06∗∗∗ 0.05∗∗∗ 0.05∗∗∗ 0.05∗∗∗ 0.05∗∗∗

h = 2 MSE ratios < 1 (in %) 100.00 100.00 100.00 100.00 100.00

MDM p-values ≤ 0.05 (in %) 100.00 100.00 100.00 100.00 100.00

MSE ratio (full period) 0.12∗∗∗ 0.08∗∗∗ 0.07∗∗∗ 0.07∗∗∗ 0.07∗∗∗

h = 3 MSE ratios < 1 (in %) 100.00 100.00 100.00 100.00 100.00

MDM p-values ≤ 0.05 (in %) 96.14 100.00 100.00 100.00 100.00

MSE ratio (full period) 0.20∗∗∗ 0.10∗∗∗ 0.09∗∗∗ 0.09∗∗∗ 0.09∗∗∗

h = 5 MSE ratios < 1 (in %) 81.79 100.00 100.00 100.00 100.00

MDM p-values ≤ 0.05 (in %) 81.79 100.00 100.00 100.00 100.00

MSE ratio (full period) 1.65 0.14∗∗∗ 0.11∗∗∗ 0.10∗∗∗ 0.10∗∗∗

h = 10 MSE ratios < 1 (in %) 56.23 100.00 100.00 100.00 100.00

MDM p-values ≤ 0.05 (in %) 41.84 81.79 100.00 100.00 100.00

MSE ratio (full period) 99.24 0.28∗∗∗ 0.14∗∗∗ 0.13∗∗∗ 0.13∗∗∗

Note: ’MSE ratios < 1 (in %)’ represents the percentage of MSE ratios (VAFEM relative to non-VAFEM) less
than 1 (indicating lower VAFEM than non-VAFEM MSEs), observed during the out-sample period. ’MDM
p-values ≤ 0.05 (in %)’ is the percentage of VAFEM-MSE improvements, significant at least at the 5% level,
according to the left-tailed version of the modified Diebold-Mariano test for equal predictive ability, observed
during the out-of-sample period. ’MSE ratio (full period)’ represents the MSE ratio (VAFEM/non-VAFEM),
computed for the full evaluation period from Step (c) of the timeline in Section 4.1 (3245 observations between
14/MAR/2005 and 31/JAN/2018). *, **, *** denote significantly different MSEs according to the (left-tailed)
modified Diebold-Mariano test at 10, 5, and 1% levels, respectively.

Table continued (with results for the VAR lag-lengths p = 2, 3, 4) in the supplementary file ’Tables 2-5’.
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Table 3: Out-of-sample forecast evaluation — Individual forecast: GARCH (VAFEM versus
non-VAFEM), Forecast set: {GARCH,HAR,ARFIMA}

Lag length (p) / Sample size
Horizon (h) T = 50 T = 100 T = 250 T = 500 T = 750

p = 1 h = 1 MSE ratios < 1 (in %) 100.00 100.00 100.00 100.00 100.00

MDM p-values ≤ 0.05 (in %) 100.00 100.00 100.00 100.00 100.00

MSE ratio (full period) 0.05∗∗∗ 0.05∗∗∗ 0.05∗∗∗ 0.05∗∗∗ 0.04∗∗∗

h = 2 MSE ratios < 1 (in %) 100.00 100.00 100.00 100.00 100.00

MDM p-values ≤ 0.05 (in %) 100.00 100.00 100.00 100.00 100.00

MSE ratio (full period) 0.11∗∗∗ 0.08∗∗∗ 0.07∗∗∗ 0.07∗∗∗ 0.07∗∗∗

h = 3 MSE ratios < 1 (in %) 100.00 100.00 100.00 100.00 100.00

MDM p-values ≤ 0.05 (in %) 96.61 100.00 100.00 100.00 100.00

MSE ratio (full period) 0.17∗∗∗ 0.10∗∗∗ 0.09∗∗∗ 0.09∗∗∗ 0.08∗∗∗

h = 5 MSE ratios < 1 (in %) 81.79 100.00 100.00 100.00 100.00

MDM p-values ≤ 0.05 (in %) 81.79 100.00 100.00 100.00 100.00

MSE ratio (full period) 1.24 0.13∗∗∗ 0.11∗∗∗ 0.10∗∗∗ 0.10∗∗∗

h = 10 MSE ratios < 1 (in %) 81.72 100.00 100.00 100.00 100.00

MDM p-values ≤ 0.05 (in %) 47.27 100.00 100.00 100.00 100.00

MSE ratio (full period) 67.46 0.20∗∗∗ 0.14∗∗∗ 0.13∗∗∗ 0.13∗∗∗

Notes: Analogous to the notes for Table 2.

Table continued (with results for the VAR lag-lengths p = 2, 3, 4) in the supplementary file ’Tables 2-5’.
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Table 4: Out-of-sample forecast evaluation — Individual forecast: HAR (VAFEM versus
non-VAFEM), Forecast set: {GARCH,HAR,ARFIMA}

Lag length (p) / Sample size
Horizon (h) T = 50 T = 100 T = 250 T = 500 T = 750

p = 1 h = 1 MSE ratios < 1 (in %) 2.00 7.36 7.28 5.79 11.03

MDM p-values ≤ 0.05 (in %) 0.00 0.00 0.00 0.04 4.33

MSE ratio (full period) 1.52 1.21 1.12 1.10 1.10

h = 2 MSE ratios < 1 (in %) 0.95 10.89 7.25 4.95 7.36

MDM p-values ≤ 0.05 (in %) 0.00 0.00 0.00 0.00 0.22

MSE ratio (full period) 2.41 1.40 1.16 1.12 1.10

h = 3 MSE ratios < 1 (in %) 0.22 8.38 11.54 12.31 14.13

MDM p-values ≤ 0.05 (in %) 0.00 0.00 0.00 0.33 7.32

MSE ratio (full period) 4.15 1.75 1.30 1.22 1.20

h = 5 MSE ratios < 1 (in %) 0.58 10.20 3.35 0.11 8.99

MDM p-values ≤ 0.05 (in %) 0.00 0.07 0.00 0.00 8.05

MSE ratio (full period) 32.88 2.34 1.31 1.23 1.22

h = 10 MSE ratios < 1 (in %) 3.64 10.16 7.32 1.17 9.29

MDM p-values ≤ 0.05 (in %) 0.00 2.48 0.25 0.00 4.66

MSE ratio (full period) > 100 20.52 1.77 1.56 1.55

Notes: Analogous to the notes for Table 2.

Table continued (with results for the VAR lag-lengths p = 2, 3, 4) in the supplementary file ’Tables 2-5’.
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Table 5: Out-of-sample forecast evaluation — Individual forecast: ARFIMA (VAFEM
versus non-VAFEM), Forecast set: {GARCH,HAR,ARFIMA}

Lag length (p) / Sample size
Horizon (h) T = 50 T = 100 T = 250 T = 500 T = 750

p = 1 h = 1 MSE ratios < 1 (in %) 32.81 58.81 73.78 73.89 75.97

MDM p-values ≤ 0.05 (in %) 9.58 16.39 36.71 38.09 45.12

MSE ratio (full period) 1.02 0.83 0.77∗ 0.76∗ 0.75∗

h = 2 MSE ratios < 1 (in %) 11.54 39.55 56.52 69.56 72.54

MDM p-values ≤ 0.05 (in %) 10.45 14.06 26.44 30.15 36.89

MSE ratio (full period) 1.87 1.05 0.90 0.88 0.87

h = 3 MSE ratios < 1 (in %) 10.82 14.97 32.01 34.01 53.68

MDM p-values ≤ 0.05 (in %) 10.82 13.84 19.63 27.82 28.22

MSE ratio (full period) 3.14 1.46 1.15 1.10 1.08

h = 5 MSE ratios < 1 (in %) 10.85 14.79 31.79 35.51 53.13

MDM p-values ≤ 0.05 (in %) 10.82 12.20 16.02 29.06 35.32

MSE ratio (full period) 26.02 2.08 1.27 1.19 1.18

h = 10 MSE ratios < 1 (in %) 9.10 12.31 24.40 34.63 50.76

MDM p-values ≤ 0.05 (in %) 0.04 11.00 17.92 22.29 32.67

MSE ratio (full period) > 100 18.54 1.71 1.40 1.37

Notes: Analogous to the notes for Table 2.

Table continued (with results for the VAR lag-lengths p = 2, 3, 4) in the supplementary file ’Tables 2-5’.
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Supplementary Material

A procedure for upgrading linear-convex combination
forecasts with an application to volatility prediction

� This supplement continues the Tables 2–5 from the main text, reporting results

for the VAR lag-lengths p = 2, 3, 4.
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Table 2: Continued. Out-of-sample forecast evaluation — Combination: MEAN
(VAFEM versus non-VAFEM), Forecast set: {GARCH,HAR,ARFIMA}

Lag length (p) / Sample size
Horizon (h) T = 50 T = 100 T = 250 T = 500 T = 750

p = 2 h = 1 MSE ratios < 1 (in %) 100.00 100.00 100.00 100.00 100.00

MDM p-values ≤ 0.05 (in %) 100.00 100.00 100.00 100.00 100.00
MSE ratio (full period) 0.06∗∗∗ 0.05∗∗∗ 0.05∗∗∗ 0.05∗∗∗ 0.05∗∗∗

h = 2 MSE ratios < 1 (in %) 100.00 100.00 100.00 100.00 100.00
MDM p-values ≤ 0.05 (in %) 100.00 100.00 100.00 100.00 100.00
MSE ratio (full period) 0.12∗∗∗ 0.09∗∗∗ 0.07∗∗∗ 0.07∗∗∗ 0.07∗∗∗

h = 3 MSE ratios < 1 (in %) 96.21 81.79 100.00 100.00 100.00
MDM p-values ≤ 0.05 (in %) 88.82 81.79 100.00 100.00 100.00
MSE ratio (full period) 0.35∗∗∗ 0.60 0.09∗∗∗ 0.08∗∗∗ 0.08∗∗∗

h = 5 MSE ratios < 1 (in %) 70.03 81.79 100.00 100.00 100.00
MDM p-values ≤ 0.05 (in %) 70.03 81.79 100.00 100.00 100.00
MSE ratio (full period) 12.04 2.12 0.11∗∗∗ 0.10∗∗∗ 0.10∗∗∗

h = 10 MSE ratios < 1 (in %) 51.64 81.79 100.00 100.00 100.00
MDM p-values ≤ 0.05 (in %) 43.59 60.23 100.00 100.00 100.00
MSE ratio (full period) > 100 > 100 0.17∗∗∗ 0.12∗∗∗ 0.12∗∗∗

p = 3 h = 1 MSE ratios < 1 (in %) 100.00 100.00 100.00 100.00 100.00

MDM p-values ≤ 0.05 (in %) 100.00 100.00 100.00 100.00 100.00
MSE ratio (full period) 0.07∗∗∗ 0.06∗∗∗ 0.05∗∗∗ 0.05∗∗∗ 0.05∗∗∗

h = 2 MSE ratios < 1 (in %) 100.00 100.00 100.00 100.00 100.00
MDM p-values ≤ 0.05 (in %) 100.00 100.00 100.00 100.00 100.00
MSE ratio (full period) 0.15∗∗∗ 0.11∗∗∗ 0.08∗∗∗ 0.07∗∗∗ 0.07∗∗∗

h = 3 MSE ratios < 1 (in %) 96.14 95.92 100.00 100.00 100.00
MDM p-values ≤ 0.05 (in %) 77.79 92.13 100.00 100.00 100.00
MSE ratio (full period) 0.44∗∗∗ 0.27∗∗∗ 0.09∗∗∗ 0.08∗∗∗ 0.08∗∗∗

h = 5 MSE ratios < 1 (in %) 70.03 81.76 100.00 100.00 100.00
MDM p-values ≤ 0.05 (in %) 61.58 81.76 100.00 100.00 100.00
MSE ratio (full period) 34.89 26.41 0.11∗∗∗ 0.10∗∗∗ 0.09∗∗∗

h = 10 MSE ratios < 1 (in %) 34.05 60.09 81.79 81.79 81.79
MDM p-values ≤ 0.05 (in %) 15.80 38.86 81.79 81.79 81.79
MSE ratio (full period) > 100 > 100 16.65 1.66 1.48

Continued on next page.
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Table 2: Continued.

Lag length (p) / Sample size
Horizon (h) T = 50 T = 100 T = 250 T = 500 T = 750

p = 4 h = 1 MSE ratios < 1 (in %) 100.00 100.00 100.00 100.00 100.00

MDM p-values ≤ 0.05 (in %) 100.00 100.00 100.00 100.00 100.00
MSE ratio (full period) 0.09∗∗∗ 0.06∗∗∗ 0.05∗∗∗ 0.05∗∗∗ 0.05∗∗∗

h = 2 MSE ratios < 1 (in %) 100.00 100.00 100.00 100.00 100.00
MDM p-values ≤ 0.05 (in %) 100.00 100.00 100.00 100.00 100.00
MSE ratio (full period) 0.20∗∗∗ 0.11∗∗∗ 0.08∗∗∗ 0.07∗∗∗ 0.07∗∗∗

h = 3 MSE ratios < 1 (in %) 91.88 100.00 100.00 100.00 100.00
MDM p-values ≤ 0.05 (in %) 67.33 93.59 100.00 100.00 100.00
MSE ratio (full period) 0.55∗∗ 0.22∗∗∗ 0.09∗∗∗ 0.08∗∗∗ 0.08∗∗∗

h = 5 MSE ratios < 1 (in %) 63.04 81.79 100.00 100.00 100.00
MDM p-values ≤ 0.05 (in %) 51.78 74.22 100.00 100.00 100.00
MSE ratio (full period) 40.02 33.60 0.11∗∗∗ 0.09∗∗∗ 0.09∗∗∗

h = 10 MSE ratios < 1 (in %) 15.29 57.06 81.76 81.79 81.79
MDM p-values ≤ 0.05 (in %) 8.99 43.26 78.33 81.79 81.79
MSE ratio (full period) > 100 > 100 > 100 3.75 2.98

Notes: Analogous to the notes for Table 2 in the main text.
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Table 3: Continued. Out-of-sample forecast evaluation — Individual forecast: GARCH
(VAFEM versus non-VAFEM), Forecast set: {GARCH,HAR,ARFIMA}

Lag length (p) / Sample size
Horizon (h) T = 50 T = 100 T = 250 T = 500 T = 750

p = 2 h = 1 MSE ratios < 1 (in %) 100.00 100.00 100.00 100.00 100.00

MDM p-values ≤ 0.05 (in %) 100.00 100.00 100.00 100.00 100.00
MSE ratio (full period) 0.06∗∗∗ 0.05∗∗∗ 0.05∗∗∗ 0.04∗∗∗ 0.04∗∗∗

h = 2 MSE ratios < 1 (in %) 100.00 100.00 100.00 100.00 100.00
MDM p-values ≤ 0.05 (in %) 100.00 100.00 100.00 100.00 100.00
MSE ratio (full period) 0.11∗∗∗ 0.09∗∗∗ 0.07∗∗∗ 0.07∗∗∗ 0.07∗∗∗

h = 3 MSE ratios < 1 (in %) 96.69 92.24 100.00 100.00 100.00
MDM p-values ≤ 0.05 (in %) 95.19 81.79 100.00 100.00 100.00
MSE ratio (full period) 0.26∗∗∗ 0.47∗ 0.09∗∗∗ 0.08∗∗∗ 0.08∗∗∗

h = 5 MSE ratios < 1 (in %) 70.03 81.79 100.00 100.00 100.00
MDM p-values ≤ 0.05 (in %) 70.03 81.79 100.00 100.00 100.00
MSE ratio (full period) 7.32 1.05 0.10∗∗∗ 0.10∗∗∗ 0.09∗∗∗

h = 10 MSE ratios < 1 (in %) 69.85 81.79 100.00 100.00 100.00
MDM p-values ≤ 0.05 (in %) 43.77 81.79 100.00 100.00 100.00
MSE ratio (full period) > 100 > 100 0.16∗∗∗ 0.12∗∗∗ 0.11∗∗∗

p = 3 h = 1 MSE ratios < 1 (in %) 100.00 100.00 100.00 100.00 100.00

MDM p-values ≤ 0.05 (in %) 100.00 100.00 100.00 100.00 100.00
MSE ratio (full period) 0.07∗∗∗ 0.06∗∗∗ 0.05∗∗∗ 0.05∗∗∗ 0.04∗∗∗

h = 2 MSE ratios < 1 (in %) 100.00 100.00 100.00 100.00 100.00
MDM p-values ≤ 0.05 (in %) 100.00 100.00 100.00 100.00 100.00
MSE ratio (full period) 0.13∗∗∗ 0.10∗∗∗ 0.07∗∗∗ 0.07∗∗∗ 0.06∗∗∗

h = 3 MSE ratios < 1 (in %) 96.50 100.00 100.00 100.00 100.00
MDM p-values ≤ 0.05 (in %) 94.94 93.41 100.00 100.00 100.00
MSE ratio (full period) 0.32∗∗∗ 0.20∗∗∗ 0.09∗∗∗ 0.08∗∗∗ 0.08∗∗∗

h = 5 MSE ratios < 1 (in %) 70.03 81.76 100.00 100.00 100.00
MDM p-values ≤ 0.05 (in %) 70.03 81.76 100.00 100.00 100.00
MSE ratio (full period) 24.29 22.37 0.10∗∗∗ 0.09∗∗∗ 0.09∗∗∗

h = 10 MSE ratios < 1 (in %) 34.16 60.12 81.79 81.79 81.79
MDM p-values ≤ 0.05 (in %) 16.02 60.09 81.79 81.79 81.79
MSE ratio (full period) > 100 > 100 6.52 0.85 0.82

Continued on next page.
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Table 3: Continued.

Lag length (p) / Sample size
Horizon (h) T = 50 T = 100 T = 250 T = 500 T = 750

p = 4 h = 1 MSE ratios < 1 (in %) 100.00 100.00 100.00 100.00 100.00

MDM p-values ≤ 0.05 (in %) 100.00 100.00 100.00 100.00 100.00
MSE ratio (full period) 0.08∗∗∗ 0.06∗∗∗ 0.05∗∗∗ 0.04∗∗∗ 0.04∗∗∗

h = 2 MSE ratios < 1 (in %) 100.00 100.00 100.00 100.00 100.00
MDM p-values ≤ 0.05 (in %) 100.00 100.00 100.00 100.00 100.00
MSE ratio (full period) 0.16∗∗∗ 0.10∗∗∗ 0.07∗∗∗ 0.07∗∗∗ 0.06∗∗∗

h = 3 MSE ratios < 1 (in %) 93.48 100.00 100.00 100.00 100.00
MDM p-values ≤ 0.05 (in %) 81.46 100.00 100.00 100.00 100.00
MSE ratio (full period) 0.44∗∗∗ 0.16∗∗∗ 0.09∗∗∗ 0.08∗∗∗ 0.08∗∗∗

h = 5 MSE ratios < 1 (in %) 69.99 81.79 100.00 100.00 100.00
MDM p-values ≤ 0.05 (in %) 57.65 81.76 100.00 100.00 100.00
MSE ratio (full period) 60.01 35.30 0.10∗∗∗ 0.09∗∗∗ 0.09∗∗∗

h = 10 MSE ratios < 1 (in %) 34.27 60.12 81.79 81.79 81.79
MDM p-values ≤ 0.05 (in %) 15.00 52.44 78.37 81.79 81.79
MSE ratio (full period) > 100 > 100 33.10 1.10 0.98

Notes: Analogous to the notes for Table 2 in the main text.
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Table 4: Continued. Out-of-sample forecast evaluation — Individual forecast: HAR
(VAFEM versus non-VAFEM), Forecast set: {GARCH,HAR,ARFIMA}

Lag length (p) / Sample size
Horizon (h) T = 50 T = 100 T = 250 T = 500 T = 750

p = 2 h = 1 MSE ratios < 1 (in %) 1.02 0.55 1.68 10.16 18.75

MDM p-values ≤ 0.05 (in %) 0.00 0.00 0.00 0.00 0.62
MSE ratio (full period) 1.90 1.49 1.23 1.16 1.15

h = 2 MSE ratios < 1 (in %) 0.07 0.15 1.71 5.39 12.35
MDM p-values ≤ 0.05 (in %) 0.00 0.00 0.00 0.00 2.33
MSE ratio (full period) 3.53 1.81 1.21 1.16 1.14

h = 3 MSE ratios < 1 (in %) 0.51 0.11 1.82 0.29 10.05
MDM p-values ≤ 0.05 (in %) 0.00 0.00 0.00 0.00 0.66
MSE ratio (full period) 12.08 8.05 1.39 1.29 1.26

h = 5 MSE ratios < 1 (in %) 0.00 0.66 0.47 0.58 2.88
MDM p-values ≤ 0.05 (in %) 0.00 0.00 0.00 0.00 0.18
MSE ratio (full period) > 100 > 100 1.68 1.49 1.47

h = 10 MSE ratios < 1 (in %) 0.04 5.68 2.08 0.15 5.75
MDM p-values ≤ 0.05 (in %) 0.00 0.66 0.15 0.00 1.86
MSE ratio (full period) > 100 > 100 3.03 1.82 1.79

p = 3 h = 1 MSE ratios < 1 (in %) 0.00 0.04 0.51 4.01 12.75

MDM p-values ≤ 0.05 (in %) 0.00 0.00 0.00 0.00 0.04
MSE ratio (full period) 2.79 2.24 1.57 1.35 1.33

h = 2 MSE ratios < 1 (in %) 0.00 0.07 0.15 0.51 6.99
MDM p-values ≤ 0.05 (in %) 0.00 0.00 0.00 0.00 0.00
MSE ratio (full period) 6.01 2.92 1.44 1.26 1.23

h = 3 MSE ratios < 1 (in %) 0.00 0.11 0.22 0.04 9.25
MDM p-values ≤ 0.05 (in %) 0.00 0.00 0.00 0.00 8.05
MSE ratio (full period) 25.03 7.26 1.46 1.34 1.31

h = 5 MSE ratios < 1 (in %) 0.00 0.00 0.47 4.12 9.03
MDM p-values ≤ 0.05 (in %) 0.00 0.00 0.00 0.00 8.05
MSE ratio (full period) > 100 > 100 1.95 1.43 1.42

h = 10 MSE ratios < 1 (in %) 0.00 2.77 0.80 0.51 7.98
MDM p-values ≤ 0.05 (in %) 0.00 0.00 0.00 0.00 2.04
MSE ratio (full period) > 100 > 100 > 100 > 100 > 100

Continued on next page.
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Table 4: Continued.

Lag length (p) / Sample size
Horizon (h) T = 50 T = 100 T = 250 T = 500 T = 750

p = 4 h = 1 MSE ratios < 1 (in %) 0.00 0.00 0.07 2.62 8.16

MDM p-values ≤ 0.05 (in %) 0.00 0.00 0.00 0.00 0.00
MSE ratio (full period) 4.57 3.38 2.18 1.61 1.57

h = 2 MSE ratios < 1 (in %) 0.00 0.07 0.07 0.15 3.57
MDM p-values ≤ 0.05 (in %) 0.00 0.00 0.00 0.00 0.00
MSE ratio (full period) 11.49 4.21 1.68 1.37 1.33

h = 3 MSE ratios < 1 (in %) 0.00 0.11 0.04 0.00 8.78
MDM p-values ≤ 0.05 (in %) 0.00 0.00 0.00 0.00 3.97
MSE ratio (full period) 33.22 8.23 1.46 1.37 1.33

h = 5 MSE ratios < 1 (in %) 0.00 0.18 0.18 5.68 8.96
MDM p-values ≤ 0.05 (in %) 0.00 0.00 0.00 0.22 8.05
MSE ratio (full period) > 100 > 100 2.68 1.67 1.63

h = 10 MSE ratios < 1 (in %) 0.00 2.40 1.78 0.36 6.77
MDM p-values ≤ 0.05 (in %) 0.00 0.00 0.00 0.00 2.04
MSE ratio (full period) > 100 > 100 > 100 > 100 > 100

Notes: Analogous to the notes for Table 2 in the main text.
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Table 5: Continued. Out-of-sample forecast evaluation — Individual forecast:
ARFIMA (VAFEM versus non-VAFEM), Forecast set: {GARCH,HAR,ARFIMA}

Lag length (p) / Sample size
Horizon (h) T = 50 T = 100 T = 250 T = 500 T = 750

p = 2 h = 1 MSE ratios < 1 (in %) 24.58 44.65 68.54 77.20 77.90

MDM p-values ≤ 0.05 (in %) 8.78 9.21 32.92 36.45 37.11
MSE ratio (full period) 1.14 0.90 0.82 0.79∗ 0.79∗

h = 2 MSE ratios < 1 (in %) 10.74 14.71 35.94 58.38 68.50
MDM p-values ≤ 0.05 (in %) 9.03 11.00 19.88 27.09 33.76
MSE ratio (full period) 2.93 1.55 1.01 0.98 0.96

h = 3 MSE ratios < 1 (in %) 10.56 14.53 26.47 33.87 35.32
MDM p-values ≤ 0.05 (in %) 10.56 13.55 16.68 21.70 27.31
MSE ratio (full period) 15.55 10.30 1.30 1.21 1.19

h = 5 MSE ratios < 1 (in %) 10.78 14.09 20.58 25.27 29.72
MDM p-values ≤ 0.05 (in %) 9.47 11.51 13.69 15.77 26.37
MSE ratio (full period) > 100 25.83 1.66 1.50 1.46

h = 10 MSE ratios < 1 (in %) 1.86 11.80 20.76 21.27 29.39
MDM p-values ≤ 0.05 (in %) 0.00 11.00 12.09 9.29 17.15
MSE ratio (full period) > 100 > 100 7.85 3.17 3.04

p = 3 h = 1 MSE ratios < 1 (in %) 9.58 17.33 44.72 73.63 75.64

MDM p-values ≤ 0.05 (in %) 8.16 8.81 28.59 34.12 36.64
MSE ratio (full period) 1.62 1.33 1.04 0.96 0.95

h = 2 MSE ratios < 1 (in %) 9.76 14.57 28.70 31.35 49.38
MDM p-values ≤ 0.05 (in %) 8.19 10.63 18.79 25.31 28.59
MSE ratio (full period) 5.38 2.83 1.39 1.13 1.09

h = 3 MSE ratios < 1 (in %) 10.56 12.64 25.86 31.83 45.34
MDM p-values ≤ 0.05 (in %) 9.69 10.71 14.06 27.28 28.04
MSE ratio (full period) 24.93 9.25 1.31 1.20 1.17

h = 5 MSE ratios < 1 (in %) 4.04 13.73 21.23 28.73 36.31
MDM p-values ≤ 0.05 (in %) 0.00 10.89 15.84 23.38 22.76
MSE ratio (full period) > 100 6.63 2.38 1.71 1.67

h = 10 MSE ratios < 1 (in %) 3.13 8.12 18.43 19.08 27.53
MDM p-values ≤ 0.05 (in %) 0.00 7.25 12.31 13.51 17.70
MSE ratio (full period) > 100 > 100 > 100 > 100 > 100

Continued on next page.
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Table 5: Continued.

Lag length (p) / Sample size
Horizon (h) T = 50 T = 100 T = 250 T = 500 T = 750

p = 4 h = 1 MSE ratios < 1 (in %) 8.16 14.35 39.44 51.24 53.57

MDM p-values ≤ 0.05 (in %) 7.47 8.27 25.09 33.07 35.07
MSE ratio (full period) 2.55 1.97 1.42 1.21 1.19

h = 2 MSE ratios < 1 (in %) 8.19 8.96 27.31 30.63 50.55
MDM p-values ≤ 0.05 (in %) 6.88 8.16 16.64 24.62 28.30
MSE ratio (full period) 10.41 4.49 1.92 1.26 1.21

h = 3 MSE ratios < 1 (in %) 10.52 8.99 21.70 29.17 32.74
MDM p-values ≤ 0.05 (in %) 8.99 7.32 13.11 25.46 27.86
MSE ratio (full period) 34.44 11.43 1.50 1.19 1.14

h = 5 MSE ratios < 1 (in %) 0.00 11.25 18.65 22.14 26.66
MDM p-values ≤ 0.05 (in %) 0.00 8.92 12.09 21.19 21.49
MSE ratio (full period) > 100 > 100 3.15 2.03 1.96

h = 10 MSE ratios < 1 (in %) 0.00 7.68 14.71 24.65 26.29
MDM p-values ≤ 0.05 (in %) 0.00 7.43 12.45 13.22 17.59
MSE ratio (full period) > 100 > 100 > 100 7.94 3.64

Notes: Analogous to the notes for Table 2 in the main text.
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