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Abstract

We introduce the Maschler—Perles-Shapley value for NTU games composed
by smooth bodies. This way we extend the M—P-S value established for
games composed by Cephoids ("sums of deGua Simplices”).

The development is parallel to the one of the (generalized) Maschler—Perles
bargaining solution. For Cephoidal bargaining problems this concept is
treated in ([4], [11]). It is extended to smooth bargaining problems by the
construction of surface measures. Such measures generalize the Maschler—
Perles approach in two dimensions via a line integral — what the authors call
their “donkey cart” ([6], [11]).

The Maschler—Perles—Shapley value for Cephoidal NTU Games extends the
Cephoidal approach to Non Transferable Utility games with feasible sets
consisting of Cephoids. The presentation is found in [10] and [11]. Using

these results we formulate the Maschler—Perles-Shapley value for smooth
NTU games.

We emphasize the intuitive justification of our concepts. The original Maschler—
Perles approach is based on the axiom of superadditivity which we rate much
more appealing than competing axioms like ITA etc. As a consequence, the
construction of a surface measure (Maschler-Perles’ line integral) is insti-
gated which renders concessions and gains of players during the bargaining
process to be represented in a common space of “adjusted utility”.

Within this utility space side payments — transfer of utils — are feasible in-
terpersonally as well as intrapersonally. Therefore, the barycenter/midpoint
of the adjusted utility space is the natural base for the solution concept.
This corresponds precisely to the Maschler—Perles “donkey card” reaching
the solution by calling for equal concessions in terms of their line integral.

In addition, the adjusted utility space carries an obvious linear structure
— thus admitting expectations in the sense of the Shapley value or “von
Neumann—-Morgenstern utility”. Consequently, we obtain a generally accept-
able concept for bargaining problems as well as NTU games in the Cephoidal
and in the smooth domain.

We collect the details of this reasoning along the development of our theory
in Remarks 1.7., 2.6., and 3.2.. These remarks constitute a comprehensive
view on M—P-S concepts for Cephoidal and smooth NTU games.
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1 Introduction: Cephoids
and the Maschler—Perles Envinronment

The notation within this paper equals the one used in [10],[12] see also 3],
[4]. We denote I := {1,...,n} to be the set of coordinates of R", the
positive orthant is R} := {& = (z1,...,2,) | 2; > 0,(: € I)}. €' denotes
the i unit vector of R™ and e := (1,...,1) = Y ; e’ € R" the “diagonal”
vector.

The notation CovH A is used to denote the convex hull of a subset A of
R”. Also CmpH A is the comprehensive hull of a set A C RY}.

For a = (ai,...,a,) > 0 € R", we define the multiples a’ := ae’ (i € I)
of the unit vectors. Then

(1.1) A® = CovH{al,...,a”}

is the Simplex resulting from a (we use capitals in this context). Slightly
different,

(1.2) I* := CovH {O,al,.‘.,a"} = CmpH A® .
is the deGua Simplex associated to a.

For J C I we write R} :={x € R"|2; =0 (i ¢ J)}. Accordingly, we obtain
the Subsimplex AG : = A*N R} of A® and the deGua Subsimplex
115 = I*NRJj of I1*

Figure 1.1 indicates the deGua Simplex [1* generated by a.

a

Figure 1.1: The deGua Simplex I1*; a = (a4, az, as)

The Simplex A® is the mazimal (outward) face of 11* In the terminology
of Convex Analysis. Here we call A® the Pareto face of 11%.

A Cephoid is a Minkowski sum of deGua Simplices, precisely:
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Definition 1.1. Let K = {1,..., K} and let {a®*
positive vectors. The Minkowski (or algebraic) sum

(1.3) m= > m"

keK

)}keK denote a family of

is called a Cephoid.

In Figure 1.2 (the Cephoid “Odot” : ® ) we depict the Pareto surface of a sum
of 4 deGua Simplices in 3 dimensions. One of the deGua Simplices involved
(brown) is sketched positioned in the origin. The copy on the Pareto surface
is located in central position. This copy is the sum of three vertices and
the brown deGua Simplex. Also, there appear 6 “rhombi” which are sums of
subsimplices and vertices of the four deGua Simplices involved.

The relative position of the Pareto faces is what matters in most structural
features of a Cephoid. Pareto faces form a lattice V representing the structure
of the Pareto surface.

In order to describe this lattice we construct a representation which is an
image V° located in a K-fold multiple of the unit Simplex K A¢€. Figure 1.3
is a typical example; it represents the lattice structure of the Cephoid “Odot”.

Figure 1.2: “Odot”: a sum of 4 deGua Simplices

The inverse mapping of a representation constitutes a parametrization of
the Pareto surface OII of a Cephoid II (see [10] and [12]) This viewpoint
is appropriate whenever we want to discuss measure and integration on the
Pareto surface of a Cephoid.

For more detail, we recall the construction of the canonical parametrization
x(e) which is the inverse of the canonical representation ([10] CHAPTER I,
DEFINITION 2.1, CHAPTER II, and [12]).

For short, any vertex u € OII can be represented uniquely as a sum of vertices
of the Simplices involved, i.e.,

(1.4) u=a" = Z aMik,

keK
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This way it corresponds uniquely to a vector
(1.5) u’ = Z a’®i ¢ [KAC
keK

The parametrization maps bijectively
(1.6) z(e) = u’ —u.

The mapping is extended to Pareto faces via their extremals (vertices) and,
accordingly, to the complete lattice of Pareto faces constituting OII. This
way one obtains an isomorphism between lattices V of Pareto faces of OII
and the corresponding lattice V° in K A®.

Definition 1.2. Let [T =), 11" be a Cephoid. Let a®®) = e (k € K)
be a family of copies of the diagonal vector e and let

(1.7) KA = o™,
keK

Let

(1.8) xz(e) : KA® — 0ll

be the bijection that preserves the lattice structure of Pareto faces of OIl
and of the corresponding polyhedra in K A®. Then (K A€, x(e)) is called the
canonical parametrization.

Example 1.3. Figure 1.3 represents the lattice structure of the Cephoid
“Odot” in Figure 1.2 (a sum of K = 4 deGua Simplices in n = 3 dimensions)
within the Simplex 4A®. The lattice V° is visualized demonstrating the
isomorphism of the Pareto surfaces of Figure 1.2 and Figure 1.3.
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In our present context — bargaining solutions and the extended Shapley value
— Cephoids are interpreted within the framework of cooperative NTU games
as bargaining problems. Then, I is interpreted as the set of players and
P ={S|S C I} =P(I) denotes the set of coalitions. Seen as a bargaining
problem, a Cephoid II allows players to distribute/receive utility according
to a vector of OIl upon agreement. If no agreement can be reached, then
they will be reduced to the utility vector O.

In the context of the Maschler—Perles solution and its extensions the notion
of surface measures for Cephoids (and smooth bodies respectively) plays a
central role. The original version of Maschler and Perles contains such idea,
rudimentary expressed via the “speed” of their “donkey card” travelling on
the Pareto curve of a (two dimensional) bargaining problem. More generally,
surface measures are defined on the Pareto surface of a convex body. We
focus our interest on two versions of a surface measure, the Maschler—Perles
surface measure and the deGua surface measure.

We start out with a short introduction to the Maschler—Perles surface mea-
sure, its interpretation and applicability. Based on this concept we will
present a more refined version of a parametrization, called “measure pre-
serving”.

Definition 1.4. 1. For 0 < a € R"} the adjustment factor is

(1.9) Tha = Tq = n Hai.
icJ

For a family a® = {a("“)} e K of positive vectors and the corresponding
Cephoid 11" =}, 11" this notion is extended via

(1.10) Tia® = Tae = ZTak,

see SECTION 2, CH XII of [10].

2. For positive a € R} the Maschler—Perles measure assigned to A®
is

(1.11) a(A%) =

In particular

(1.12) a(A®) = 1.

Thus, the measure is normalized on the unit Simplex.

3. Let II=3 ", x 11" be Cephoid and let

(1.13) F = A%
ke K
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be a Pareto face with reference system J = {J (k)} . Then the
keK
M-P measure of F' is given by

Jji—1 Jr—1

(1.14) tA(F)=c¢cy" H al H ak

ieJ M) ieJE)
with certain “normalizing coefficients” cy.

For details and motivation see [10].

We observe, that the relation (1.11) extends to the full Pareto surface of a
Cephoid. More precisely, we have

Lemma 1.5. Let I =5, . 11*“ be a Cephoid, then
(1.15) it = a(T0)

Proof: This follows from the exposition concerning the Maschler—Perles
measure for the Pareto faces of a Cephoid as presented in SECTION 2, CH
XIT of [10]. Accordingly, to any Pareto face

(1.16) F = A%
keK
with reference system J = {J (k)} there is a suitable coefficient c; such
ke K
that the Maschler—Perles surface measure of a Pareto face is given by
o [pm] ()] x
(1.17) LA (F) = ¢ [P, ] [PI ]
with
k
PY = P¢"Y = [[a" (ke k).
iel

Denoting the collection of Pareto faces of II by F, we obtain

ea(Il) = Z a(F)

Fed
j1—1 Jr—1
- el )
= Yaifr e
FeJ

n—1 -1
= (Ta(1)+...+7a(k)) = T
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q.e.d.

The measure preserving parametrization T(e) is a variant of the canonical
parametrization taking into account in addition the Maschler—Perles measure
of the various Pareto faces. We proceed similar as in Definition 1.2.

The mapping Z(e) is arranged analogously to the construction of the canon-
ical version x(e). However, we choose @ := 7, e (k € K) to be a family
of multiples of the diagonal vector e.

Then, as previously, any vertex w € OIl can be represented uniquely as a
sum of vertices of the Simplices involved, i.e.,

(1.19) u = Y a®i

keK

This corresponds uniquely to a vector

(1.20) i = » a""erAc.

keK

Now the (measure preserving) representation K maps

(1.21) K :=u —u

and the (mesaure preserving) parametrization maps bijectively
(1.22) z(e) == u—u.

The mappings are extended to Pareto faces via their extremals (vertices) and,
accordingly, to the complete lattice of Pareto faces constituting OIl. This way
one obtains an isomorphism between lattices V of Pareto faces of JII and the
corresponding lattice V in 77A°. We repeat the formal definition:

Definition 1.6. Let {a(k)}keK be a family of of positive vectors and let
=3k 11" be the Cephoid generated. For k € K let

(1.23) ﬁ(k) = Ta(k)He , ﬁ(k) = Ta(k)Ae , (k‘ c K)

such that

(1.24) MA®) = 7,00 A(A®) as well as ta(A®) = 1x(A®) (k€ K),
holds true. Let

(1.25) A = ZA(k) i TAN IT = ZH(k) = Tnll®
k=1 k=1

so that

(1.26) AA) = TaA(A%) ,  a(A) = a(D)
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follows. Let
(1.27) z(e) : TpA® — OII

be the bijection that preserves the lattice structure of Pareto faces of JIl and
of the corresponding polyhedra in KA®. Then (7A¢ x(e)) is called the
measure preserving parametrization of OII.

Figure 1.4: The measure preserving mappings of a Cephoid

Figure 1.4 suggests the action of K and (e).

The (generalized) Maschler—Perles solution for a Cephoid II is defined via
the barycenter (i.e, the “midpoint”) of 7pA€. This barycenter is

(1.28) io= e = p(Irme)
n

and generally the Maschler—Perles solution of a Cephoid II (regarded as a
bargaining problem) is

(1.29) () = #((rna®) = w("le)

Remark 1.7. We wish to again present the extensive interpretation given in
[10] regarding the measure preserving mapping and its role in the definition
of the Maschler—Perles solution.

To this end, let us first consider a simple bargaining situation such that n
players can allocate a unit of a commodity (“money”) by agreement about the
distribution. Each player ¢ has a linear utility function, say u'(t) = a;t (t €
[0,1],a; > 0). The feasible allocations of the commodity are represented by
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A¢ ={z € R} | Y ,.;zi = 1}. The Pareto surface of the resulting bargaining
problem (“in utility space”) is

(W' @),....u" @) |Z €A} = {(@Br,...,a.5,) | & € A}

(1.30) = CovH({a',...,a"}) = A*.

That is, the bargaining problem is actually given by the deGua Simplex I1¢
resulting from a = (aq, . .., a,) with Pareto surface A®.

Now we extend our framework assuming that our n players are involved in K
bargaining situations of this type available in various locations (“countries”)
and with varying infrastructure. Players bargain about the distribution of
one unit of money in each country £ € K. Within every country each player
i has a linear utility function u®(t) = agk)t (t € [0,1]) referring to his utility
of obtaining money in country k € K.

Thus, a*) = (agk), . .,agf)) represents the utility functions of the players

regarding assignments in country k£ € K.

Now the Cephoid IT =}, _, 11¢™ reflects the assumption that players i € T
add their utilities in various countries accordingly. This can be seen as a
version of intra—personal comparison of utility among the players w.r.t. dif-
ferent countries. Player ¢ € I will assess his holdings in different countries
k, 1 according to his personal transfer rates a /al.

There is also a version of inter—personal transfer of utility. Exchanging a
unit of money/commodity between two players has different effects when
performed within the various locations/countries depending on the transfer
rates ai /a), of two players 4, j in country k.

We choose the space of commodity /money allocations for the joint bargaining
problem to be KA®. The canonical parametrization (Definition 1.2)

xz(e) : KA® — 0II

provides a bijective mapping from commodity/money allocations into the
utility space. (see also Figures 1.2 and 1.3). This way we obtain a represen-
tation of distributions of the total amount of K units of money K according
to the Pareto face of OII being represented.

Now we construct a version of “adjusted utility” such that players exchange
utility units on a universal scale and, simultaneously, have a universal intrap-
ersonal transfer rate over all countries. This way we will obtain a consistent
measurement of utility over the various countries and players resulting in a
side payment situation.

To this end, we introduce a (“side payment”) bargaining problem Il = rhAe.
The utility set A" of each country k is mapped into a copy AR C A,
Within this universal utility space, concessions of players are measured by
length measurements or, more generally by the Lebesgue measure. Also,
intrapersonal comparison of utility takes place at a universal rate.
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The construction of the adjusted utility space is obtained via the measure
preserving parametrization

x(e) : TpA® — OII.

This mapping is based on a decomposition of the “adjusted utility space”, i.e.,
the Simplex A = 7A€ corresponding to the Pareto faces of OII. The canon-
ical identification of the Pareto faces of II with their images is constructed
via the isomorphism of the PO-sets of Pareto faces and their images.

Combining we obtain a mapping
U = x(e)oz (o) : KA® — TA®

which maps allocations onto adjusted utilities. This set—up reflects a side-
payment situation with total amount 7 of utility to be distributed.

Figure 1.6 illustrates a typical shape of the adjusted utility side payment
situation A corresponding to the three player bargaining problem given by
the Cephoid IT (“Odot”) of Figure 1.2.

Figure 1.5: The canonical representation of “Odot”

Figure 1.6: Measure Preserving Representation of Odot
The mapping @ = x(e) o ' (e) maps commodity /money allocations bijec-
tively from Figure 1.5 onto corresponding adjusted utilities of Figure 1.6.

We argue, that a consistent utility comparison of this type is dictated by the
rationale of the Maschler—Perles solution.

For a bargaining problem in two dimensions, concessions of players dur-
ing the bargaining process are measured in terms of the surface measure.
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The Maschler—Perles solution requests equal concessions of players to be de-
fined by equal volume (area) of line segments A* = A1) je. by equal
Maschler—Perles measures /a;ay along the Pareto surface. A concession of a
player along a line segment A" is considered to be equal to the concession
of another player along A? if and only if 71 = 75 or ta(A%) = 1A (A%
holds true.

The Maschler—Perles solution is the point in utility space at which players
have made overall equal concessions along the Pareto surface (curve). This
way, the size of a segment (Pareto face) A% when transferred to the uni-
versal utility space is ¢a(A®).

The Maschler—Perles solution is axiomatically based on the concept of su-
peradditivity. Due to this axiom, the solution evaluates concessions of the
players along line segments according to the corresponding area of the trian-
gles (deGua Simplices). Superadditivity is the unique and outstanding axiom
for this solution.

In three dimensions (for three players) the measurement of utility along
boundary lines of a Simplex (a country) induces a measure for just this Sim-
plex A?"™ | The measurement of utility should be consistent —i.e., the length
of the boundary segments of a rhombus in Figure 1.6 should consistently be
determined by the length measurement in the Simplices (triangles). As a
rhombus has two linear boundary segments (determined by two triangles),
this implies that the area should be consistently defined by the area in the
generating Simplices.

This area, after some normalization (according to Definition 1.4) is obtained
to be

{Vaias \Jaias \/a2a3}§ = v/(a1aza3)® = ta(A?) .

This way the construction of our universal (“adjusted”) utiltiy space is deter-
mined by the axiomatic of the Maschler—Perles solution, i.e., by superaddi-
tivity.

Finally, as the measure preserving representation A (the adjusted utility
space) allows for a universal comparison of utility, we hold that the barycen-
ter or midpoint of this utility space establishes the bargaining solution. Con-
sistently, we choose the barycenter /midpoint g of the side payment situation
A as in (1.28). This results in the Maschler—Perles solution for polyhedral

~—1

bargaining problems p = Ky () = Z(K) given by (1.29).

Next we recall the notion of the deGua surface measure on the Pareto surface
of a smooth body I'.

To this end we consider a parametrization (T, (x(e)) of OI'. The functional
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determinants

Oy (ie)

(1.31) Di(t) = (Diz)(t) =
ot keI\{i},jeI\{n}

determine the normal at OI' in x(t):

(1.32) a =n*® = (Di),...,D.(D) .

The deGua measure on Ol is

(1.33)

() — a/m - T/v<Dl-~-Dn>owdx

- / YDty tae1)) - Dp(@(ty, - tn_y)) dty---dt,_q.

T

More generally for a measurable function F' on JI' the integral w.r.t the
deGua measure is

/Fd’l? = /F"dul---dnn

(1.34) or or

:(/F@QDVDmdﬂy~DMﬂQMQ~dm.

T

The deGua measure, when defined analogously on Cephoids, differs from the
Maschler—Perles measure. However, the main result of [12| is that for any
filter of Cephoids converging towards I', the accompanying filter of Maschler—
Perles measures converges towards the de(Gua measure on OI'.
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2 Coalitional Functions

The underlying concept of Game Theory within our present framework is the
notion of a (cooperative) Non Transferable Utility Game. We recall

Definition 2.1. A (cooperative) NTU game is a triple (I,P, V). Here,
I={1,...,n}isthe set of players, P = {S|S C I} = P(I) is the system
of coalitions, and V : P — P(R") is the coalitional function. V assigns
to any coalition S a nonempty, compact, comprehensive, and convex set of

“utility vectors” V' (S) C RY,.

We assume

(2.1) V{i}) = {0} (ieI).

The standard interpretation has it that V(S) is the set of utility vectors
that can be ensured to the members of coalition S by cooperation. The
(utility) vector O reflects the fall back position (“status quo”) for all players
should cooperation fail in every coalition. The assumption that utilities are
nonnegative and the status quo is 0 simultaneously for all players is not
severe.

For simplicity we also refer to V' as to “the game”.

The aim of our present context is to extent the Maschler—Perles—Shapley
value as developed in [10] to “smooth” case. Thus, we will admit that V(.S)
is either a Cephoid or a smooth body. Precisely:

Definition 2.2. An NTU game V is Cephoidal-smooth if, for S € P,

1. either

(2.2) V(S) is a smooth body,

2. or else V/(S) is a Cephoid in RY, , i.e., there exists a (n.d.) family of
positive vectors

(2.3) {C"S’(k)}kexg C Ry,

such that

(2.4) Vs = Y ne = Y e
keKg keKg

V is called Cephoidal if item 2 is satisfied for all S € P.
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The TU game derived from an NTU game in the context of Cephoidal struc-
tures is derived from the adjustment factor. We recall this idea for Cephoids
IT and then extend it to smooth bodies I' (in the sense of [12], Section 3).

The adjustment factor (Definition 1.4) is defined by its values on deGua
Simplices:

(2.5) Tla = Tq = p Hai.
el

This constitutes an additive function 7, (Theorem 1.2. CH XIII of [10])
defined on Cephoids via Definition 1.4, formula (1.10). The connection to
the Machler Perles measure ¢ta (Definition 1.4) is given by Lemma 1.5, for
any Cephoid IT =}, _ . 11" we have

(2.6) Tt = A (T0) .
By Corollary 4.12 of [12] we know that the Maschler Perles measure ¢x con-

verges towards the deGua measure ¥ along the filter of Cephoids approaching
a smooth body.

(2.7) A ® - (N = o(n)9" .
Here, o(n) is a factor depending on the dimension only, it can be seen as a
density of the Maschler Perles measure w.r.t. the deGua measure. Lemma

1.5 suggests that we use this fact in order to define the adjustment factor on
smooth bodies.

Definition 2.3. The adjustment factor for a smooth body I' is defined
by

(2.8) Tr = "V o(n)¥(dr) .

Combining we obtain

Corollary 2.4. 1. Let I be a smooth body. Then there exists an approx-
imating filter {I19}geq such that

(2.9) 1 —»or.
holds true uniformly. Here the topology maybe chosen to be the Hauss-

dorff topology or equivalently a uniform topology suggested by the
canonical parametrization of a convex comprehensive set.

2. The corresponding sequence of Maschler Perles measures {Lg}QGQ has
a weak limit ¢l satisfying

(2.10) ta® - N = o(n)9" .
holds true. In particular we have

(2.11) L(9) = 10T (119) T>o(n)z9f(ar)
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3. The corresponding sequence of adjustment factors {T¢g}geq has a weak
limit which is the adjustment factor of I,

(2.12) TQ 7 Tr = "/ o(n)d" .

Proof: Follows from the results in [12] (see Lemma 4.3) and [11].
q.e.d.

Definition 2.5. Let V be a Cephoidal-smooth NTU game. The TU game
induced by V is the coalitional function

(2.13) 2 =3 : P>R

(2.14) 3(S) = BY(S) = Tv) (SEP).

Remark 2.6. We pause for a moment in order to recall the motivation for
choosing the TU-game as above. As we have seen, the environment of the
Maschler—Perles solution induces players to evaluate concessions and gains
in accordance with the coordinate product or rather the surface measure. In
particular, the Maschler—Perles solution in two dimensions is the midpoint of
the measure preserving image of the Pareto surface of the bargaining set. In
two dimensions the evaluation of concessions and gains takes place according
to the Maschler—Perles measure ¢to which is dictated by /—dx;dx, — we are
back at the origin with the Maschler—Perles donkey cart.

As a consequence, the “worth” of coalition S which comands utility vectors
according to V' (.5) should be measured according to the total Maschler—Perles
measure scaled appropriately. This is just the term provided by (2.8), i.e.,

TV(S)-

Thus, other than the traditional approach of “admitting side payments” (ini-
tiated by SHAPLEY [14]) we do not just take the Lebesgue measure of a util
for its worth but the corresponding Maschler—Perles measure. This strongly
points to using Definition 2.5 for the “TU game” induced by an NTU game.

A glance at “side payment” or TU games is also helpful. To this end let
(2.15) v:P—-Ry, v0)=0.

be a (nonnegative) TU game. Consider a hyperplane NTU game V
constructed as follows. For S € P, let a® ¢ RS, be a positive vector and let

V(S) = v(S)II* (S eP).
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That is, V() is a deGua Simplex determined by a hyperplane reflecting the
rate of exchanging utility in coalition S. Then we have

TV(s) = 5l H(’U(S)af) = v(5) s Haf
\/ ieS \/ ieS

= ’U(S)THas = ’U(S)Tas .
Hence, the TU game induced by V is given by
(2.16) v(S) =v(9)Tes (S €P)

We observe that the worth of coalition S € P is adjusted or rescaled utilizing
the adjustment factor. Clearly, © and v coincide whenever a® = eg is the
restriction of the unit vector e and hence V is the standard “embedding” of
the side payment game v into the NTU framework.

Now we use the results of [12] in order to approximate smooth games by
Cephoidal Games.

Theorem 2.7. Let V be a Cephoidal-smooth game. Then for all S € P
there exists an approximating filter {VQ(S)}QGQS of Cephoids such that

(2.17) Ve(9) — V(9).

holds true uniformly. Here the topology is the Haussdorff topology or a uni-
form topology suggested by the canonical parametrization of convex compre-
hensive sets.

Proof: By item 2.9 of Corollary 2.4. Whenever V(S) is Cephoidal (i.e.,
obeys item 1), then one choose V?(S) = V(S) for the approximation.
Whenever V(S) is a smooth body, one chooses a filter V2(S) by means
of Corollary 2.4.

q.e.d.

The filter Qg depends on the choice of S. For any system Q = {Qs}secp
satisfying Qg € Qs (S € P) we obtain a game -

Q ._ Q
(2.18) ve = {Vv S(S>}Seg
such that

(2.19) Ve — V.

holds true in the sense of (2.17). We denote by Q the collection of all these
systems. Then, with reference to this convention, we state
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Corollary 2.8. Let V' be a Cephoidal-smooth game. Then there exists a
filter

9 ._ Q
(2.20) Vs = {V }Q62
such that

(2.21) 1% — V.

Moreover, for the corresponding filter of TU games 59 it follows that, for
S € P, we obtain

(2.22) 59(5) = 3V(S) = Ty ?'BV(S) = %(S),

which we write

(2.23) o9 .

Proof: By Theorem 2.7 and Corollary 2.4, see in particular (2.12) for the
second part.

q.e.d.

For the remaining sections we focus on smooth games omitting the clumsy
reference to the mixed “Cephoidal-smooth” version — the generalizations are
obvious.
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3 The Shapley Value

For the Shapley value we refer to SHAPLEY’S original work [14], see also [6]
for a textbook treatment. A short summary follows.

Given a TU game v the Shapley value assigns a worth

an o= o) = Y UTEIEIE DG s )

SeP

to player i € I. The vector ® = (Py,...,D,) constitutes an additive set
function via
B(S) = Y & (SeP).
ics
The concept is characterized by an axiomatic foundation relying on anonymity,

Pareto efficiency, additivity, and a dummy or null-player property.

The Shapley value of a game is a linear combination of the Shapley values of
the unanimous games e”. If

(3.2) v(e) = ZcTeT(o)

TeP

is the representation of a TU game v the basis {€”}scp via the (Moebius)
coefficients

(3.3) cr = Z—l‘T\SW(S) (T €

SCT

ige]

),

then the Shapley value of v writes

(3.4) d(v) = ZCT/,LT = ZCTCP(eT).

TeP TeP

The additive function p? is given by

(3.5) WI(S) = 1SNT| (S €p)
and it is the Shapley value of the unanimous game e’

Extending the Shapley value to NTU games does also have a tradition based
on SHAPLEY’s conference paper [13]. This approach as most others hinges
on a fixed point theorem.

In our present context, the Shapley value for a Cephoidal NTU game is
treated in [12], CHAPTER XIV, SECTION 3. We shortly recall the definition.

First of all we adapt the measure preserving parametrization (SECTION 1,
Definition 1.6, Remark 1.7) to the framework of an NTU game V. The
representation of the Pareto surface OV (1) is

(3.6) Ry + OV(I) = TynA® = 8Y (I)A®,
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and the inverse mapping is the measure preserving parametrization
~ ~—1 e
(3.7) Zyvn(e) = Ky vV (I)A® — OV (I) .

As ®(v)(I) = v(I), we find that ®(v) is located in the range of K(v ()
which is the domain of xy (;)(e), i.e., we have

(3.8) ®(vY) e TynA® = BV (I)A°.

Therefore, we are in the position to define the Shapley value of the Cephoidal
NTU game V.

Definition 3.1. The Maschler—Perles—Shapley value of a Cephoidal NTU
game V' (for short the M-P-S value ) is

(3.9) X(V) = Ryp(@@Y) = By (2(@")) .

Remark 3.2. Let us pause for an interpretation along the guidelines of Re-
marks 1.7 and 2.6. The intuition behind formula (3.9) follows the arguments
presented within those remarks.

Accordingly, players compare gains and concessions via the M—-P measure
ta (“adjusted utilities”) and this leads to focus on the side payment game

© = 0. The feasible side payments for the grand coalition in terms of
adjusted utilities are reflected by the multiple v(I)A*© .

The corresponding side payment vectors for the various coalitions are then
represented in v(S)A®s. The Shapley value concept involves a linear struc-
ture: the (unanimous) games e° constitute a basis of the linear space of side
payment games. (see (3.2), (3.4)) This linear structure is referred to as “von
Neumann—-Morgenstern utility” as it involves lotteries and expectations of
lotteries.

As the Shapley value essentially distributes the wealth of the grand coalition
— respecting the power of smaller coalitions — we are led to consider the
utility vectors of v(I)A® as the relevant set for the determination “power
based” utility agreement among the players. One is computing the Shapley
value within the framework of adjusted utilities of the grand coalition.

This operation is performed consistently in the sidepayment environment of
v(I)A® which reflects “adjusted utility”. Then players agree upon the solution
vector within OV (I) dictated by ®(v), that is, the result is lifted back to
OV (I) via x(e). This is the essence of the Maschler—Perles-Shapley value,
as established by formula (3.9).
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Now we turn to the territory of smooth bodies. First of all, we extend the
notion of the measure preserving parametrization Z(e). This procedure is
only slightly more involved as the one for the Simplex parametrization used
in [12]. The following is the analog to Lemma 4.4. in [12|, the adjustment
based on Corollary 2.4.

Lemma 3.3. Let I be smooth and let {HQ}QCN be an approximating filter,
that is, -

(3.10) 1 —dr

uniformly. Let the measure preserving parametrizations be given by
z%e) (Q € 9Q),

such that

(3.11) 2%(e) : ToA® = % (Q € Q)

holds true. Then these parametrizations converge uniformly to a mapping

(3.12) z'(e) :TrA® - O  (Q€Q)

which is continuous and bijective, hence constitutes a parametrization of OI'.

Proof:

The proof is a slightly modified version of the one for Lemma 4.4. in [12] -
a standard procedure which we omit. As in [12], bijectivity follows as OI" is
smooth, i.e. in our terminology, there is a bijection between points @ € OI'
and normals n®.

q.e.d.

Definition 3.4. The mapping Z' (e) constitutes the measure preserving
parametrization (TpA€, &) of IT.

We proceed as in the Cephoidal case. Let V' be a smooth NTU game. The
TU game derived is v = 9V, In view of Pareto efficiency the Shapley value
O (v) satisfies

(3.13) (@@)(I) = Y ¥(®) = v(I)

el
that is

(3.14) d(v) € A’De = F(I)A® .
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By Lemma 3.3 and Definition 3.4 the measure preserving parametrization
(3.15) "D rypas = 3V(IAS - V() .

is defined such that ®(v) € v(I)A*® is located in its domain. This permits
us to formulate the following definition.

Definition 3.5. Let V' be a smooth NTU game and let ¥ be the TU game
derived. The Maschler—Perles—Shapley value (the M-P-S value) of V
is

(3.16) x(V) = 2¥D(o@"))

As this is the analog to Definition 3.1, we will be able to transfer the axioms
and properties of the Maschler—Perles—Shapley NTU value as established for
the Cephoidal case to the smooth case.
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4 The Value Axioms

The Maschler-Perles-Shapley value x for Cephoidal NTU games V' admits
of an axiomatic justification, see [12], CHAPTER XIV. In what follows we
will extend the axioms and properties as established for the Cephoidal case
to the smooth case.

Theorem 4.1. The M-P-S value on smooth NTU games

1. is Pareto efficient,
2. 18 symmetric,
3. respects affine transformations of utility.

4. 18 conditionally additive.

Proof: Conditional additivity (the last concept) is the only property that
causes a problem for smooth NTU games. We postpone the proof to the next
section.

Pareto efficiency is obvious by definition. Symmetry (“anonymity”) and in-
variance under affine transformations of utility are straightforward by conti-
nuity. For completeness we treat the first concept.

To formulate symmetry we consider the actions of a permutation 7 of I. For
x € R" we have
(W:B)Z' = Tr-1(h) (’L S I) .
For a TU game v we have
mo(S) = vor }(8) (SEPB).
while for NTU games, the appropriate definition is

TV(S) = toVor 1(S) (SeP).
For a Cephoidal game V' we know by Theorem 3.2 CHAPTER XIV of [10]

that x is symmetric or “anonymous”, that is, for any permutation = of I we
have

(4.1) x(mV) = m(x(V)) .
Now let V' be a smooth NTU game. Then, by Corollary 2.8 we find a filter
of Cephoidal NTU games

(4.2) Ve = {VQ}Qeg
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such that

4.3 Ve _ LV and3d® — 3.
Q Q

holds true. It is not hard to see that for the permuted versions there is an
appropriate (“permuted”) filter converging to 7V and 7w as well. Therefore,
it remains to establish continuity of x as a function on games along a filter
of games as above. We refer to Definition 3.16. The TU Shapley value ® is
clearly continuous (perceived as a function on RE) and the parametrizations
z?" (I) will behave continuously by Lemma 3.3. This proves (4.1) for smooth
games as well.

q.e.d.
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5 Conditional Additivity

AUMANN’S [1] concept of conditional additivity refers to correspondences,
i.e., a “value” is a set valued function defined on smooth surfaces (bargaining
problems or NTU games).

The Maschler—Perles solution g and the Maschler—Perles-Shapley value x
are functions defined on Cephoids. These functions are conditionally additive
on Cephoidal bargaining problems or NTU games respectively. (CHAPTER
XIV, Theorem 3.2., [10]). We recall the definition.

Definition 5.1. Let x be a mapping from a class of convex valued NTU
games into R’} such that x(V') € OV (I) holds true for all V.. x is condi-
tionally additive if, for any two games V and W such that x (V') +x (W)
is Pareto efficient in (V +W)(I) = V(I) + W (I), it follows that

(5.1) xX(V+W) = x(V)+x(W)

holds true.

Within this section we establish conditional additivity of the Shapley value
for smooth NTU games. The result is based on the one for Cephoids. A
problem arises as conditional additivity is not an l.h.c. property. That
is, limiting Cephoids approaching a smooth body may lack limiting correct
normals. But conditional superadditivity always hinges on the fact that the
sum of two extremals is an extremal in the sum of two convex bodies if
and only if they admit of the same normal. In what follows, we repair this
deficiency.

Lemma 5.2. Let V be a smooth game and let x(V') be the Maschler—
Perles—Shapley value of V. Denote the normal at V' (I) in x(V) by n® =
(2 ,%) Then, for any ¢ > 0, there exists a Cephoidal Game V< with

Hausdorff distance |V, V9| < ¢ such that the normal at V9(I) in x(V?(I))
is n%.

Proof:

Let € > 0 and let < £. Define a (“unanimous”) game V@ as follows:

V) = A®
V(S) = {0} (SAI)

such that the derived TU-game is the (“unanimous”) game

(5.2)

(5.3) 3V = 1a(A%)e! = ae’ .
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with @ = ¢a(A%). We write 37 = 3V and 3@ = 37",
Now choose V¥ such that
(5.4) z = x(V) = 2(0@®@"Y)) e dVI)NIVYI)

and n® is normal in Z to OV (I) as well as to OV ?(I); this is feasible by
Theorem 1.5 in [11]. In addition, choose @ such that

(5:5) (@) — @(®?)| <.

Define a game

(5.6) VO = 1—e)Ve4eVe

As ¥* (i.e. 7,) is linear in V' ([10], CHAPTER XVIII, Theorem 1.2.) we obtain

(5.7) 92 =3V = IVEHEVT (1 )59 4 p°

The Shapley value for TU games is linear as well, consequently

(%) = (1 —e)o? +£0%)

(58) = (1—2)0[@9) + 0%

The Shapley value for the unanimous game 3® is

a o\ € e
5.9 (%) = 1a(AHE = ¢
(5:9) ) = (a9 = a°
using @ := ta(A%) as above.

Thus we continue (5.8) by
e

(@) = (1-2)0(®@9) +ca—
(5.10) v
= 1-2)0@Y)+ ea—+o(n) .

Here o(n) is a vector of the order of 7, i.e., |o(n)| <n by (5.5).

As @2 is the barycenter of @A® and (%) € ¥2°(I)A® we conclude from
(5.10) that for n < = :

(5.11) (M%) € (1 —e)d(D") 4+ caA® .

Now n® is normal in & = x(V (I)) to dV (I) as well as to OV (I). A® has
the same normal. Therefore,

(5.12) F® = (1 —-e)x (V") +eA®
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is a Pareto face of 9V ?*(I) with normal .

. . ~ A~V Qe . . .
The parametrization Z(e) = (o) is the inverse of measure preserving
Vv Qse

representation The latter one maps the Pareto face F®° via the
isomorphism of the lattices of Pareto faces bijectively onto the face

(5.13) F% = (1-¢)®@")+cale

of <(1 — )V (I) + 6&) A® That is, we have

(5.14) z(e) = 2V (e) : FOF 5 FE<

Combining (5.11) and (5.14) we obtain
(5.15) x(VP) = &(®[@0%°)) € F** = (1 —e)x(V?) +ecale.
Hence, x(V'9¢) has the same normal to V9<(I) as x (V) namely n®.

q.e.d.

Theorem 5.3. The Maschler—Perles—Shapley value x is conditionally addi-
tive on smooth NTU games.

Proof:

15*STEP : Let V and W be smooth games and let x (V) +x (W) be Pareto
efficient in (V+W)(I) = V(I)+ W (I). Then necessarily V (I), W (I) and
(V+W)(I) admit of the same normal o in x (W), x(V') and x(V)+ x (W)
respectively.

According to Corollary 2.8 we can approximate V' and W by Cephoidal
games V9 and W such that all Shapley values have the same normal @ at
VO(I) and W?(I) respectively. The approximating filter V2 can be chosen
simultaneously for both games.

Then the values x(V?) and x(W®) approximate the corresponding values
of x(V?) and x(W®?) accordingly.

Now, it follows again from the common normal property that x(V'?) +
x(W®) is Pareto efficient in (V® 4+ W?)(I). As the MaschlerPerles-
Shapley value is conditionally additive on Cephoidal Games (Theorem 3.2,
CHAPTER XIV of [10]), we conclude that for Q € Q

(5.16) x(VE+W?) = x(V9) +x(W?) .
Consequently,
X(V+W) = lim x(Ve +Ww9)

(5.17) = lién x(V9) + lién x(W9)

= x(V)) +x(W)
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